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Abstract. If we follow an asexually reproducing population through time,

then the amount of time that has passed since the most recent common an-
cestor (MRCA) of all current individuals lived will change as time progresses.

The resulting stochastic process has been studied previously when the popu-

lation has a constant large size and evolves via the diffusion limit of standard
Wright-Fisher dynamics. We investigate cases in which the population varies

in size and evolves according to a class of models that includes suitably con-

ditioned (1 + β)-stable continuous state branching processes (in particular, it
includes the conditioned Feller continuous state branching process). We also

consider the discrete time Markov chain that tracks the MRCA age just be-

fore and after its successive jumps. We find transition probabilities for both
the continuous and discrete time processes, determine when these processes

are transient and recurrent, and compute stationary distributions when they
exist. We also introduce a new family of Markov processes that stand in a

relation with respect to the (1 + β)-stable continuous state branching process

that is similar to the one between the Bessel-squared diffusions and the Feller
continuous state branching process.

1. Introduction

Any asexually reproducing population has a unique most recent common ances-
tor, from whom the entire population is descended. In sexually reproducing species,
the same is true for each nonrecombining piece of DNA. For instance, our “mito-
chondrial Eve” from whom all modern-day humans inherited their mitochondrial
DNA is estimated to have lived around 180,000 years ago [IKPG00], while our “Y-
chromosomal Adam” is estimated to have lived around 50,000 years ago [TPS+00].
There have also been efforts to estimate the time since the MRCA lived (which we
will also call the “age of the MRCA”) in populations of other organisms, partic-
ularly pathogens [TCG+04, VBL+01]. These studies, using sophisticated models
incorporating of demographic history, are focused on estimating the age of the
MRCA at a single point in time (the present).

As time progresses into the future, eventually the mitochondrial lineages of all
but one of the daughters of the current mitochondrial Eve will die out, at which
point the new mitochondrial Eve will have lived somewhat later in time. The age of
the MRCA is thus a dynamically evolving process that exhibits periods of upwards
linear growth separated by downwards jumps.
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Recently, [PW06] and [SD06] independently investigated the MRCA age pro-
cess for the diffusion limit of the classical Wright-Fisher model. The Wright-Fisher
model is perhaps the most commonly used model in population dynamics: each
individual in a fixed size population independently gives birth to an identically dis-
tributed random number of individuals (with finite variance), and after the new
offspring are produced some are chosen at random to survive so that the total pop-
ulation size remains constant. The diffusion limit arises by letting the population
size go to infinity and taking the time between generations to be proportional to
the reciprocal of the population size.

In this paper, we investigate the MRCA age process for a parametric family
of population models in a setting that permits the population size to vary with
time and, by suitable choice of parameters, allows control over the extent to which
rare individuals can have large numbers of offspring that survive to maturity. The
model for the dynamics of the population size is based on the critical (1+β)-stable
continuous-state branching process for 0 < β ≤ 1. These processes arise as scaling
limits of Galton-Watson branching processes as follows.

Write Z
(n)
t for the number of individuals alive in a critical continuous-time

Galton-Watson branching process with branching rate λ and offspring distribution
γ. The distribution γ has mean 1 (and thus, the process is “critical”). Suppose
that if W is a random variable with distribution γ, then the random walk with
steps distributed as the random variable (W −1) falls into the domain of attraction
of a stable process of index 1 + β ∈ (1, 2]. The case β = 1 corresponds to γ having
finite variance and the random walk converging to Brownian motion after rescal-
ing. Set X

(n)
t = n−(1+ 1

β )Z
(n)
t and suppose that X

(n)
0 → x as n → ∞. Then, up

to a time-rescaling depending on λ and the scaling of the stable process above, the
processes X(n) converge to a Markov process X which is a critical (1 + β)-stable
continuous-state branching process, and whose distribution is determined by the
Laplace transform

(1.1) E
[
e−θXt

∣∣X0 = x
]

= exp
(
− θx

(1 + θβt)1/β

)
.

If β = 1, this is Feller’s critical continuous-state branching process [Fel51, Kni81].
(Note that time here is scaled by a factor of 2 relative to some other authors, so
that the generator of our “Feller continuous-state branching process” is x ∂2

∂x2 .)
Let τ = inf{t > 0 : Xt = 0} denote the extinction time of X (it is not hard to

show that Xt = 0 for all t ≥ τ). Taking θ →∞ in (1.1) gives

P {τ > t | X0 = x} = 1− exp
(
− x

t1/β

)
,

so X dies out almost surely. However, it is possible to condition X to live forever
in the following sense:

lim
T→∞

E[f(Xt) | X0 = x, τ > T ] =
1
x

E[f(Xt)Xt | X0 = x].

Thus, if Pt(x′, dx′′) are the transition probabilities of X, then there is a Markov
process Y with transition probabilities

Qt(y′, dy′′) =
1
y′

Pt(y, y′′)y′′.
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The process Y is the critical (1 + β)-stable continuous-state branching process X
conditioned on non-extinction. The distribution of Yt is determined by its Laplace
transform

(1.2) E[exp(−θYt) | Y0 = y] = exp

(
− yθ

(tθβ + 1)−1/β

)(
1 + tθβ

)− β+1
β

— see Section 6. Moreover, it is possible to start the process Y from the initial
state Y0 = 0, and the formula (1.2) continues to hold for y = 0. The super–process
generalization of this construction was considered for β = 1 in [EP90, Eva93, Eva92]
and for general β in [EW03].

For β = 1, the conditioned process Y can be described informally as a single
“immortal particle” constantly throwing off infinitesimally small masses with each
mass then evolving according to the dynamics of the unconditioned process. These
infinitesimal masses can be interpreted as the single progenitors of families whose
lineage splits from the immortal particle at the birth time of the progenitor and are
eventually doomed to extinction. Most such families die immediately but a rare
few live for a non-infinitesimal amount of time. More formally, there is a σ-finite
measure ν on the space of continuous positive excursion paths

E0 := {u ∈ C(R+, R+) : u0 = 0 & ∃γ > 0 s.t. ut > 0 ⇔ 0 < t < γ}
such that if Π is a Poisson point process on R+ × E0 with intensity λ⊗ ν, where λ
is Lebesgue measure, and (X̄t)t≥0 is an independent copy of X begun at X̄0 = y,
then the process

(1.3)

X̄t +
∑

(s,u)∈Π

u(t−s)∨0


t≥0

has the same distribution as (Yt)t≥0 begun at Y0 = y — see [Eva93]. A point
(s, u) ∈ Π corresponds to a family that grows to non-negligible size: the time s
records the moment the family splits off from the immortal particle, and the value
ur of the trajectory u gives the size of the family τ units of time after it split off.
The family becomes extinct after the period of time γ(u) := inf{r > 0 : u(t) =
0, ∀t > r}. The σ-finite measure ν is Markovian with transition probabilities the
same as those of the unconditioned process X — in other words, ν arises from a
family of entrance laws for the semigroup of X. The process (X̄t)t≥0 records the
population mass due to descendants of individuals other than the immortal particle
who are present at time 0.

An analogous description of the conditioned process Y for the case β ∈ (0, 1) is
presented in [EW03]. There is again a single immortal lineage, but now families split
off from that lineage with a non-infinitesimal initial size, reflecting the heavy-tailed
offspring distributions underlying these models. More precisely, a decomposition
similar to (1.3) holds, but the Poisson point process Π is now on R+ × E where
E = {u ∈ D(R+, R+) : ∃γ > 0 s.t. ut > 0 ⇔ 0 ≤ t < γ}, the set of càdlàg paths
starting above zero that eventually hit zero. The non-decreasing process (Mt)t≥0,
where

Mt :=
∑

(s,u)∈Π

u0.

is the total of the initial family sizes that split off from the immortal particle in the
time interval [0, t]. It is a stable subordinator of index β.
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Suppose now that β ∈ (0, 1] is arbitrary. Take Y0 = 0, so that X̄t ≡ 0 in
the decomposition (1.3) and all “individuals” belong to families that split off from
the immortal particle at times s ≥ 0. Extend the definition of γ(u) given above
for u ∈ E0 to u ∈ E in the obvious way. The individuals besides the immortal
particle alive at time t > 0 belong to families that correspond to the subset At :=
{(s, u) ∈ Π : 0 ≤ t − s < γ(u)} of the random set Π. At time t, the amount
of time since the most recent common ancestor of the entire population lived is
At := sup{t − s : (s, u) ∈ At}. As depicted in Figure 1, the MRCA age process
(At)t≥0 has saw-tooth sample-paths that drift up with slope 1 until the current
oldest family is extinguished, at which time they jump downward to the age of the
next-oldest family.

It is not necessary to know the Poisson point process Π in order to construct
the MRCA age process (At)t≥0. Clearly, it is enough to know the point process
Λ on R+ × R++ given by Λ := {(s, γ(u)) : (s, u) ∈ Π}. Indeed, if we define the
left-leaning wedge with base at (t, x) to be the the set

(1.4) 4(t, x) := {(u, v) ∈ R2 : u < t & v − u > x− t},

then
At = t− inf{s : ∃x > 0 s.t. (s, x) ∈ Λ ∩4(t, 0)}

— see Figure 1.
Note that Λ is a Poisson point process with intensity λ⊗µ, where µ is the push-

forward of ν by γ; that is, µ((t,∞)) = ν({u : γ(u) > t}). We will show in Section
5 that µ((t,∞)) = (1 + β)/(βt).

With these observations in mind, we see that if Λ is now any Poisson point
process on R+×R++ with intensity λ⊗µ, where µ is any σ-finite measure on R++

with µ(R++) = ∞ and 0 < µ((x,∞)) < ∞ for all x > 0, then the construction that
built (At)t≥0 from the particular point process Λ considered above will still apply,
and produce an R+-valued process with saw-tooth sample paths. We are therefore
led to the following general definition.

Definition 1.1. let Λ be a Poisson point process on R+ × R++ with intensity
measure λ ⊗ µ, where λ is Lebesgue measure and µ is a σ-finite measure on R++

with µ(R++) = ∞ and µ((x,∞)) < ∞ for all x > 0. Define (At)t∈R+ by

At := t− inf{s ≥ 0 : ∃x > 0 s.t. (s, x) ∈ Λ ∩4(t, 0)},

where 4(t, 0) is defined by 1.4, and At = 0 if Λ ∩4(t, 0) is empty.

We will suppose from now on that we are in this general situation unless we spec-
ify otherwise. We will continue to use terminology appropriate for the genealogical
setting and refer to (At)t≥0 as the MRCA age process and µ as the lifetime measure.
We will assume for convenience that the measure µ is absolutely continuous, with
a density m with respect to Lebesgue measure that is positive Lebesgue almost
everywhere. It is straightforward to remove these assumptions.

The strong Markov property of the Poisson point processes Λ implies that (At)t≥0

is a time-homogeneous strong Markov process. In particular, there is a family of
probability distributions (Px)x∈R+ on the space of R+-valued càdlàg paths, with
Px interpreted in the usual way as the “distribution of (At)t≥0 started from A0 =
x”. More concretely, the probability measure Px is the distribution of the process
(Ax

t )t≥0 defined as follows. Let Λx be a point process on [−x,∞)×R++ that has the
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Figure 1. The points of Λ (marked “x”), the sample path of the
process A (solid line), the oldest extant family at time t (labeled
“O”), and the left-leaning wedge 4(t, 0) (the shaded region).

distribution of the random point set {(t−x, y) : (t, y) ∈ Λ}∪{(−x, Z)}, where Z is
an independent random variable with values in the interval (x,∞) and distribution

P{Z ≤ z} = µ((x, z])/µ((x,∞)).

Then we can define

Ax
t := t− inf{s ≥ −x : ∃y > 0 s.t. (s, y) ∈ Λx ∩4(t, 0)}, t ≥ 0

— see the proof of part (a) of Theorem 1.1 below for more detail. From now on,
when we speak of the process (At)t≥0 we will either be referring to the process
constructed as in Definition 1.1 from the Poisson process Λ on a probability space
equipped with the probability measure P or the canonical process on the space of
càdlàg R+-valued paths equipped with the family of probability measures (Px)x≥0.
This should cause no confusion.

We prove the following properties of the process (At)t≥0 in Section 2.

Theorem 1.1. (a) The transition probabilities of the time-homogeneous Markov
process (At)t≥0 have an absolutely continuous part

Px{At ∈ dy} =
µ((x, x + t])
µ((x,∞))

exp
(
−
∫ x+t

y

µ((z,∞)) dz

)
µ((y,∞)) dy,
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for y < x + t and a single atom

Px{At = x + t} =
µ((x + t,∞))

µ((x,∞))
.

(b) The total rate at which the process (At)t≥0 jumps from state x > 0 is

m(x)
µ((x,∞))

,

and when the process jumps from state x > 0, the distribution of the state
to which it jumps is absolutely continuous with density

y 7→ exp
(
−
∫ x

y

µ((z,∞)) dz

)
µ((y,∞)), 0 < y < x.

(c) The probability P0{∃t > 0 : At = 0} that the process A returns to the state
zero is positive if and only if∫ 1

0

exp
(∫ 1

x

µ((y,∞)) dy

)
dx < ∞.

(d) If ∫ ∞

1

exp
(
−
∫ x

1

µ((y,∞)) dy

)
dx = ∞,

then for each x > 0 the set {t ≥ 0 : At = x} is Px-almost surely unbounded.
Otherwise, limt→∞At = ∞, Px-almost surely, for all x ≥ 0.

(e) A stationary distribution π exists for the process (At)t≥0 if and only if∫ ∞

1

µ((z,∞)) dz < ∞,

in which case it is unique, and

π(dx) = µ((x,∞)) exp
(
−
∫ ∞

x

µ((z,∞)) dz

)
dx.

(f) If the process (At)t≥0 has a stationary distribution π, then

dTV (Px{At ∈ ·}, π) ≤ 1− exp
(
−
∫ ∞

t+x

µ((y,∞)) dy

)
× µ([x, x + t))

µ([x,∞))
.

where dTV denotes the total variation distance. In particular, the distribu-
tion of At under Px converges to π in total variation as t →∞.

Specializing Theorem 1.1 to the case when A is the MRCA age process of the
conditioned critical (1 + β)-stable continuous state branching process gives parts
(a) to (d) of the following result. Part (e) follows from an observation that a space-
time rescaling of this MRCA age process is a time-homogeneous Markov process
that arises from another Poisson process by the general MRCA age construction of
Definition 1.1. The proof is in Section 5.

Corollary 1.1. Suppose that A is the MRCA age process associated with the critical
(1 + β)-stable continuous-state branching process.

(a) The transition probabilities of the process A have an absolutely continuous
part

Px {At ∈ dy} =
(1 + β)ty1/β

β(x + t)2+1/β
dy , 0 < y < x + t,
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and a single atom

Px {At = x + t} =
x

x + t
.

(b) The total rate at which the process A jumps from the state x > 0 is 1/x,
and when it jumps from state x > 0, the distribution of the state to which
it jumps is absolutely continuous with density

(1 + 1/β)
y1/β

x1+1/β
, 0 < y < x.

(c) The probability P0{∃t > 0 : At = 0} that the process A returns to the state
zero is 0.

(d) For each x ≥ 0, limt→∞At = ∞, Px-almost surely.
(e) The process (

e−tAet

)
t∈R

indexed by the whole real line is a time-homogeneous Markov process under
Px for any x ≥ 0, and it is stationary when x = 0. Moreover, At/t con-
verges in distribution to the Beta(1 + 1/β, 1) distribution as t → ∞ under
Px for any x ≥ 0, and At/t has the Beta(1 + 1/β, 1) distribution for all
t > 0 when x = 0.

Note that the sample paths of (At)t≥0 have local “peaks” immediately before
jumps and local “troughs” immediately after. We investigate the discrete time
Markov chain of successive pairs of peaks and troughs in Section 4. We also con-
sider the jump heights and inter-jump intervals, and describe an interesting duality
between these sequences in Section 3.

Finally, recall that the Bessel-squared process in dimension γ, where γ is an
arbitrary non-negative real number, is the R+-valued diffusion process with infini-
tesimal generator 2xd2/dx2 + γd/dx. When γ is a positive integer, such a process
has the same distribution as the square of the Euclidean norm of a Brownian mo-
tion in Rγ . Feller’s critical continuous-state branching process is thus, modulo a
choice of scale in time or space, the zero-dimensional Bessel-squared process. It was
shown in Example 3.5 of [PY82] that for 0 ≤ γ < 2 the Bessel-squared process with
dimension γ conditioned on never hitting zero is the Bessel-squared process with
dimension 4−γ. Thus, for β = 1, the conditioned process Y is the four-dimensional
Bessel-squared process. We introduce a new family of processes in Section 6 that
are also indexed by a non-negative real parameter and play the role of the Bessel-
squared family for values of β other than 1. These processes will be studied further
in a forthcoming paper.

We end this introduction by commenting on the connections with previous work.
Firstly, we may think of each point (s, x) ∈ Λ as a “job” that enters a queue with
infinitely many servers at time s and takes x amount of time to complete. We thus
have a classical M/G/∞ queue [Tak62], except we are assuming that the arrival
rate is infinite. With this interpretation, the quantity At is how long the oldest job
at time t has been in the queue. Many properties of M/G/∞ queues have been
studied (see, for example, [Eli07]), but this work seems somewhat orthogonal to
ours.

Secondly, note that the process (At)t≥0 is an example of a piecewise deterministic
Markov process: it consists of deterministic flows punctuated by random jumps.
Such processes were introduced in [Dav84] and studied further in [Dav93] (see also
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[JS96], where the nomenclature jumping Markov processes is used). The general
properties of such processes have been studied further in, for example, [DC99,
CD08, CDP01].

Lastly, piecewise deterministic Markov processes like (At)t≥0 that have periods
of linear increase interspersed with random jumps have been used to model many
phenomena, such as stress in an earthquake zone [BVJ00], congestion in a data
transmission network [DGR02], and growth-collapse [BPSZ06]. They also have
appeared in the study of the additive coalescent [EP98] and R-tree-valued Markov
processes [EPW06].

2. Proof of Theorem 1.1

(a) Suppose that (At)t≥0 is constructed from Λ as in Definition 1.1. For s ≥ x
consider the conditional distribution of As+t given As = x. The condition As = x
is equivalent to the requirements that there is a point (s−x, Z) in Λ for some Z > x
and that furthermore there are no points of Λ in the left-leaning wedge 4(s−x, x).
The conditional probability of the event {Z > z} is µ((z,∞))/µ((x,∞)) for z ≥ x.
If Z > x+ t, then As+t = x+ t. Otherwise, As+t < x+ t. The second claim of part
(a) follows immediately.

given no point
in this region

no point can fall 
in this region

point must fall 
in this half line

s+ts

y

x

x+t

point must fall 
in this interval yx

given no point
in this interval

Figure 2. The computation of P{As+t ∈ dy | As = x}.

Now consider P{As+t ∈ dy | As = x} for y < x + t. This case is depicted in
Figure 2. By construction, As+t = y if and only if there is a point (s+t−y, W ) ∈ Λ
for some W > y, and there are no points of Λ in 4(s + t− y, y). From above, the
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condition As = x requires there to be no points of Λ in the wedge 4(s− x, x) (the
lightly shaded region in Figure 2). Therefore, if As = x, then As+t = y if and only
if Z ≤ x + t, there are no points of Λ in the darkly shaded region of Figure 2), and
there is a point of Λ of the form (s + t− y, w) with w > y.

Now, the conditional probability that Z ≤ x + t is
µ((x, x + t])
µ((x,∞))

.

The probability that no points of Λ are in the darkly shaded region is

exp
(
−
∫ x+t

y

µ((u,∞)) du

)
.

The probability that Λ has a point in the infinitesimal region [s + t− y, s + t− y +
dy] × (y,∞) is µ((y,∞)) dy. Multiplying these three probabilities together gives
the first claim of part (a).

(b) Both claims follow readily by differentiating the formulae in (a) at t = 0. It is
also possible to argue directly from the representation in terms of Λ.

(c) Suppose that (At)t≥0 is constructed from Λ as in Definition 1.1. Note that

{t > 0 : At = 0} = R++ \
⋃

(t,x)∈Λ

(t, t + x).

The question of when such a “Poisson cut out” random set is almost surely empty
was asked in [Man72], and the necessary and sufficient condition presented in part
(c) is simply the one found in [She72] (see also [FFS85]).

(d) For x > 0, the random set {t ≥ 0 : At = x} is a discrete regenerative set under
Px that is not almost surely equal to {0}. Hence this set is a renewal process with an
inter-arrival time distribution that possibly places some mass at infinity, in which
case the number of arrivals is almost surely finite with a geometric distribution and
the set is almost surely bounded.

Suppose that the set {t ≥ 0 : At = x} is Px-almost surely unbounded for some
x > 0. Let 0 = T0 < T1 < . . . be the successive visits to x. It is clear that Px{∃t ∈
[0, T1] : At = y} > 0 for any choice of y > 0 and hence, by the strong Markov
property, the set {t ≥ 0 : At = y} is also Px-almost surely unbounded. Another
application of the strong Markov property establishes that the set {t ≥ 0 : At = y}
is Py-almost surely unbounded. Thus, the set {t ≥ 0 : At = x} is either unbounded
Px-almost surely for all x > 0 or bounded Px-almost surely for all x > 0.

A straightforward argument using the saw-tooth nature of the sample paths of
A shows that the expected number of visits to x under Px is a finite multiple of∫ ∞

0

Px{At ∈ dx}
dx

dt.

Using the expression from part (a) and the argument above, this quantity is infinite,
and hence the number of visits is P x-almost surely infinite, if and only if∫ ∞

1

exp
(
−
∫ u

1

µ((y,∞)) dy

)
du = ∞.

If the set {t ≥ 0 : At = x} is Px-almost surely bounded for all x > 0, then, by
an argument similar to the above, the set {t ≥ 0 : At = y} is Px-almost surely
bounded for all x, y > 0. It follows that, for all x > 0, Px-almost surely all of the
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sets {t ≥ 0 : At = y} are finite. This implies that limt→∞At exists Px-almost
surely and takes values in the set {0,∞}. However, it is clear from the Poisson
process construction that 0 does not occur as a limit with positive probability.

(e) Suppose there exists a probability measure π on R+ such that∫
R+

P{At ∈ dy | A0 = x}π(dx) = π(dy), y ∈ R+.

Taking t →∞ in part (a) gives

π(dy) = lim
t→∞

∫
R+

π(dx)
µ((x, x + t])
µ((x,∞))

exp
(
−
∫ x+t

y

µ((u,∞)) du

)
µ((y,∞)) dy

=

{
0, if

∫∞
y

µ((u,∞)) du = ∞,

exp
(
−
∫∞

y
µ((u,∞)) du

)
µ((y,∞)) dy, otherwise.

Therefore, a stationary probability distribution exists if and only if
∫∞

y
µ((u,∞)) du <

∞, and if a stationary distribution exists, then it is unique.

(f) It will be useful to begin with a concrete construction of a stationary version of
the process A in terms of a Poisson point process. Suppose that

∫∞
x

µ((u,∞)) du <
∞ for all x > 0, so that a stationary distribution exists. Let Λ↔ be a Poisson point
process on R× R++ with intensity measure λ⊗ µ. Define (A↔t )t∈R by

A↔t := t− inf{s : ∃x > 0 s.t. (s, x) ∈ Λ↔ ∩4(t, 0)}.

The condition on µ ensures that almost surely any wedge 4(t, x) with x > 0
will contain only finitely many points of Λ↔, and so (A↔t )t∈R is well-defined. The
process (A↔t )t∈R is stationary and Markovian, with the same transition probabilities
as (At)t≥0.

Recall the construction of the process Ax started at x for x > 0 that was de-
scribed preceding the statement of Theorem 1.1. Construct the point process Λx

that appears there by setting Λx := {(t, y) ∈ Λ↔ : t > −x}∪{(−x, Z)}, where Z is
an independent random variable with values in the interval (x,∞) and distribution
P{Z > z} = µ((z,∞))/µ((x,∞)).

By construction, Ax
t = A↔t for all t ≥ T , where T is the death time of all families

alive at time −x in either process:

T := inf{t > 0 : Z ≤ t + x and Λ↔ ∩4(−x, t + x) = ∅}.

Thus,

dTV (Px{At ∈ ·}, π) ≤ P{Ax
t 6= A↔t }

≤ P{T > t}
= 1− P{Z ≤ t + x} P{Λ↔ ∩4(−x, t + x) = ∅},

and part (f) follows.

3. Duality and time-reversal

Suppose in this section that
∫∞

x
µ((y,∞)) dy < ∞ for all x > 0, so that, by part

(e) of Theorem 1.1, the process A has a stationary distribution. Let (A↔t )t∈R be
the stationary Markov process with the transition probabilities of A that was con-
structed from the Poisson point process Λ↔ in the proof of part (f) of Theorem 1.1.
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Define the dual process (Â↔t )t∈R by Â↔t := inf{s > 0 : 4(t, s) ∩ Λ↔ = ∅}. See
Figure 3. Thus, Â↔t is the amount of time that must elapse after t until the MRCA
lived at a time after t. The càdlàg R+-valued process (Â↔t )t∈R has saw-tooth
sample-paths that drift down with slope −1 between upward jumps.

Figure 3. The process A↔ and the dual process Â↔. The points
in the shaded area represent the families alive at time t, and the
solid line is the sample path of A↔. The point marked “O” is the
oldest living family at time t; the point marked “Y” is the family
extant at time t that will live the longest into the future.

Proposition 3.1. The dual process (Â↔t )t∈R has the same distribution as the time-
reversed process (Ā↔t )t∈R, where Āt := limu↓t A↔−u.

Proof. Define a bijection φ : R × R++ → R × R++ by φ(t, x) := (t + x, x). Write
Λ⇔ for the image of Λ↔ under φ. The map φ preserves the measure λ ⊗ µ, and
hence Λ⇔ has the same distribution as Λ↔. Define (A⇔t )t∈R in terms of Λ⇔ in the
same way that (A↔t )t∈R was defined in terms of Λ↔, so that (A⇔t )t∈R has the same
distribution as (A↔t )t∈R.

Let Γ↔ := {(s, t) ∈ Λ↔ : 4(s, t) ∩ Λ↔ = ∅}, the set of points of Λ↔ that,
in genealogical terminology, correspond to families that at some time will be the
oldest surviving family in the population. The linear segments of the paths of the
dual process (Â↔t )t∈R each begin at a point in Γ↔ and descend with slope −1,
whereas the of linear segments of the paths of the MRCA process (A↔t )t∈R ascend
with slope +1 to points in Γ⇔ := {φ(t, x) : (t, x) ∈ Γ↔} — see Figure 4.

Set Λ̄↔ := {(−t, x) : (t, x) ∈ Λ↔}, and define Γ̄↔ in terms of Λ̄↔ in the same
manner that Γ↔ was defined in terms of Λ↔. Note that Λ̄↔ has the same distribu-
tion as Λ↔ (because the map (t, x) 7→ (−t, x) preserves the measures λ ⊗ µ), and
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hence Γ̄↔ has the same distribution as Γ↔. To show that time–reversal exchanges
the roles of A and Â, it will thus suffice to check that Γ⇔ = Γ̄↔. However, this
follows from the observations that the map φ converts left-leaning wedges to right-
leaning wedges, so that a point in Γ⇔ is a point of Λ⇔ that has no other points of
Λ⇔ in the right-leaning wedge with it as the vertex, and the map (t, x) 7→ (−t, x)
converts right-leaning wedges into left-leaning wedges. �

Figure 4. The (coupled) processes A↔ and Â↔ for the same set
of family lifetimes (the “x”s). The paths of Â↔ begin at points in
Γ↔ and descend, while the paths of A↔ ascend to points in Γ⇔.
The mapping φ is shown by the horizontal dotted lines in the lower
diagram.
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Remark 3.1. There is an interesting connection between the jump sizes and the
inter-jump intervals, stemming from the observation that the paths of A↔ and Â↔

have the same sequences of “trough” and “peak” heights, while the roles of the jump
sizes and inter-jump intervals for the two are exchanged — see Figure 4. To explain
the connection, suppose that T ∈ {t ∈ R : A↔t− 6= A↔t } is a jump time for the process
A↔. Let T< := sup{t < T : A↔t− 6= A↔t } and T> := inf{t > T : A↔t− 6= A↔t } be the
jump times on either side of T . Put L := A↔T− and R := A↔T , and define L<, R<,
L<, and R> as the analogous values and left limits of A↔ at the times T< and T>.
Write ∆ := L − R for the size of the jump at time T and H := T − T< for the
length of the time interval since the previous jump. Observe that T − L is a jump
time for the dual process Â↔, with Â↔(T−L)− = R< and Â↔(T−L) = L. Moreover,

H = L−R< = Â↔(T−L) − Â↔(T−L)−

and

∆ = (T> − L>)− (T − L) = inf{t > T − L : Â↔t− 6= Â↔t } − (T − L).

Note that the map T 7→ T−L sets up a monotone bijection between the jump times
of the process A↔ and those of the process Â↔. It thus follows from Proposition 3.1
that the point processes{

(T, T − T<, A↔T− −A↔T ) : A↔T− 6= A↔T
}

and {
(T, A↔T− −A↔T , T − T<) : A↔T− 6= A↔T

}
have the same distribution.

4. Jump chains

Suppose again that
∫∞

x
µ((y,∞)) dy < ∞ for all x > 0, so that the process A has

a stationary distribution. Recall the stationary Markov process (A↔t )t∈R with the
transition probabilities of A that was constructed from the Poisson point process
Λ↔ in the proof of part (f) of Theorem 1.1.

For t ∈ R, denote by Jt := inf{u > 0 : A↔u 6= A↔u−} the next jump time of A↔

after time t. Define an increasing sequence of random times 0 < T0 < T1 < · · · by
T0 := J0 and Tn+1 := JTn

for n ≥ 0. Put Ln := A↔Tn− and Rn := A↔Tn
. Thus, the

sequences (Ln)∞n=0 and (Rn)∞n=0 record, respectively, the “peaks” and the “troughs”
of the path of A↔ that occur between the times 0 and supn Tn.

The next result can be proved along the same lines as part (a) of Theorem 1.1,
and we leave the proof to the reader.

Proposition 4.1. The sequence (L0, R0, L1, R1, . . .) is Markovian with the follow-
ing transition probabilities:

P{Rn ∈ dy | Ln = x} = µ((y,∞)) exp
(
−
∫ x

y

µ((u,∞)) du

)
dy, 0 < y ≤ x,

and

P{Ln+1 ∈ dz | Rn = y} =
m(z)

µ((y,∞))
dz, z > y.

In particular, the sequence of pairs ((Ln, Rn))∞n=0 is a time-homogeneous Markov
chain.
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Now we may compute the transition probabilities of the peak and trough chains.
By Proposition 4.1,

P{Ln+1 ∈ dz | Ln = x}/dz

=
∫ x

0

exp
(
−
∫ x

y

µ((u,∞)) du

)
µ((y,∞))

m(z)1y≤z

µ((y,∞))
dy

= m(z)
∫ x∧z

0

exp
(
−
∫ x

y

µ((u,∞)) du

)
dy,

(4.1)

and
P{Rn+1 ∈ dz | Rn = x}/dz

=
∫ ∞

x

m(y)
µ((x,∞))

µ((z,∞)) exp
(
−
∫ y

z

µ((u,∞)) du

)
1y>z dy

= µ((z,∞))
∫ ∞

x∨z

m(y)
µ((x,∞))

exp
(
−
∫ y

z

µ((u,∞)) du

)
dy.

(4.2)

It follows from (4.1) that the peak chain (Ln)∞n=0 is λ-irreducible, where λ is
Lebesgue measure on R++. That is, if A is a Borel subset of R++ with λ(A) > 0,
then, for any x ∈ R++, there is positive probability that the the peak chain begun
at x will hit A at some positive time — see Ch. 4 of [MT93] for more about this
notion of irreducibility. It follows that the peak chain is either recurrent, in the
sense that

∞∑
n=0

P{Ln ∈ A | L0 = x} = ∞

for all x ∈ R++ and all Borel subsets of A ⊆ R++ with λ(A) > 0, or it is transient,
in the sense that there is a countable collection of Borel sets (Aj)∞j=1 and finite
constants (Mj)∞j=1 such that

⋃∞
j=1 Aj = R++ and

sup
x∈R++

∞∑
n=0

P{Ln ∈ Aj | L0 = x} ≤ Mj

— see Theorem 8.0.1 of [MT93].
The peak chain is strong Feller; that is, the function

x 7→ E[f(Ln+1) | Ln = x]

is continuous for any bounded Borel function f . Also, because the support of λ is
all of R++, if the peak chain is recurrent, then each point x of R++ is topologically
recurrent in the sense that

∞∑
n=0

P{Ln ∈ U | L0 = x} = ∞

for every open neighborhood U of x. Hence, by Theorem 9.3.6 of [MT93], if the
peak chain is recurrent, then it is Harris recurrent, which means that given any
Borel set A with λ(A) > 0, the chain visits A infinitely often almost surely starting
from any x. Moreover, the chain is recurrent (equivalently, Harris recurrent) if and
only if it is non-evanescent; that is, started from any x there is zero probability
that the chain converges to 0 or ∞ — see Theorem 9.2.2 of [MT93].

If the peak chain is recurrent (equivalently, Harris recurrent or non-evanescent),
then it has an invariant measure that is unique up to constant multiples — see
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Theorem 10.4.4 of [MT93]. If the invariant measure has finite mass, so that it can
be normalized to be a probability measure, then the chain is said to be positive,
otherwise the chain is said to be null.

Conversely, if the peak chain has an invariant probability measure, then it is re-
current (equivalently, Harris recurrent or non-evanescent) — see Proposition 10.1.1
of [MT93].

All of the remarks we have just made for the peak chain apply equally to the
trough chain (Rn)∞n=0. Recall that we are in the situation when A has a stationary
version, so the transience or recurrence of L and R depends on their behavior near
zero.

Proposition 4.2. Consider the two Markov chains (Ln)∞n=0 and (Rn)∞n=0.

(a) Both chains are transient if and only if∫ 1

0

exp
(∫ 1

x

µ((y,∞)) dy

)
dx < ∞.

(b) Both chains are positive recurrent if and only if∫ 1

0

m(x) exp
(
−
∫ 1

x

µ((y,∞)) dy

)
dx < ∞.

(c) Both chains are null recurrent if and only if both∫ 1

0

exp
(∫ 1

x

µ((y,∞)) dy

)
dx = ∞

and ∫ 1

0

m(x) exp
(
−
∫ 1

x

µ((y,∞)) dy

)
dx = ∞.

Proof. Consider the set Z := {t ∈ R : A↔t = 0}. It follows from part (c) of
Theorem 1.1 that P{Z 6= ∅} > 0 if and only if

(4.3)
∫ 1

0

exp
(∫ 1

x

µ(y,∞) dy

)
dx < ∞.

By the stationarity of (A↔t )t∈R and the nature of its sample paths, it is clear that
for x > 0 the set {t ∈ R : A↔t = x} is unbounded above and below almost surely
(this also follows from part (d) of Theorem 1.1). It follows from a simple renewal
argument that if (4.3) holds, then Z is unbounded above and below almost surely.

Because the paths of (A↔t )t∈R increase with slope 1 in the intervals [Tn, Tn+1), it
follows that if (4.3) condition holds, then limn→∞ Tn = inf{t > 0 : A↔t = 0} < ∞
almost surely and limn→∞ Ln = limn→∞Rn = 0 almost surely. In this case, both
chains are evanescent, and hence transient.

On the other hand, if (4.3) does not hold, then limn→∞ Tn = ∞. Moreover, the
set {t ∈ R : A↔t = x} is almost surely unbounded above and below for any x > 0 ,
as we observed above. If we split the path of (A↔t )t∈R into excursions away from
x, then each excursion interval will contain only finitely many jumps almost surely
and, because the excursions are independent and identically distributed, it cannot
be the case that Ln or Rn converges to 0 or ∞ with positive probability. Thus,
both chains are non-evanescent and hence recurrent.
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It is clear from (4.1) that the kernel giving the transition densities of the peak
chain (Ln)∞n=0 is self-adjoint with respect to the measure having density

p(x) = m(x) exp
(
−
∫ ∞

x

µ((u,∞)) du

)
,

with respect to Lebesgue measure, and so this measure is invariant for the peak
chain. Clearly,

∫∞
0

p(x) dx < ∞ if and only if the condition in part (b) holds,
in which case the peak chain is positive recurrent. Otherwise, the peak chain is
either null recurrent or transient, and so part (a) shows that the peak chain is null
recurrent if the two conditions in part (c) hold.

Similarly, it is clear from (4.2) that the kernel giving the transition densities of
the trough chain (Rn)∞n=0 is self-adjoint with respect to the measure having density

q(x) = µ((x,∞))2 exp
(
−
∫ ∞

x

µ((u,∞)) du

)
with respect to Lebesgue measure, and so this measure is invariant for the trough
chain. An integration by parts shows that

∫∞
0

q(x) dx < ∞ if and only if the con-
dition in part (b) holds, and so the trough chain is positive if and only if the peak
chain is positive. Alternatively, we can simply observe from Proposition 4.1 that
integrating the conditional probability kernel of Rn given Ln against an invariant
probability measure for the peak chain gives an invariant measure for the trough
chain, and integrating the conditional probability kernel of Ln+1 given Rn against
an invariant probability measure for the trough chain chain gives an invariant mea-
sure for the trough chain, so that one chain is positive recurrent if and only if the
other is. �

Remark 4.1. If m(x) = αx−2 for x ∈ (0, 1], then both the peak and trough chains
are

(1) transient ⇔ 0 < α < 1,
(2) null recurrent ⇔ α = 1,
(3) positive recurrent ⇔ α > 1.

Remark 4.2. It follows from parts (b) and (e) of Theorem 1.1 that the stationary
point process {t ∈ R : A↔t− 6= A↔t } has intensity

ρ :=
∫

m(x) exp
(
−
∫ ∞

x

µ((u,∞)) du

)
dx,

and so the peak and trough chains are positive recurrent if and only if ρ is finite.
Suppose that ρ is finite and consider the point process

Ξ := {(t, A↔t−, A↔t ) ∈ R× R+ × R+ : A↔t− 6= A↔t }.
The companion Palm point process Υ has its distribution defined by

P{Υ ∈ ·} = ρ−1E

 ∑
{n∈Z:0≤Tn≤1}

1{θTn
Ξ ∈ ·}

 ,

where θsB = {(t − s, `, r) : (t, `, r) ∈ B} for B ⊂ R × R+ × R+. Enumerate
the points of Υ as ((T̃n, L̃n, R̃n))n∈Z, where . . . < T̃−1 < T̃0 = 0 < T̃1 < . . ..
A fundamental result of Palm theory for stationary point processes says that the
random sequence ((T̃n − T̃n−1, L̃n, R̃n))n∈Z is stationary and that the distribution
of the point process Ξ may be reconstructed from the distribution of this sequence
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– see, for example, Theorem 12.3.II of [DVJ88] or [Kal00]. It is clear that the
stationary random sequences (L̃n)∞n=0 and (R̃n)∞n=0 have the same distribution as
the peak and trough chains started in their respective stationary distributions.

5. The (1 + β)-stable MRCA process

In this section we specialize to the motivating example of the MRCA process of a
critical (1+β)-stable continuous-state branching process conditioned to live forever.
Recall that the unconditioned continuous state branching process has Laplace trans-
forms (1.1) and the conditioned process has Laplace transforms (1.2). For β = 1,
the unconditioned process has generator x ∂2

∂x2 with this choice of time scale.
As mentioned in the introduction, the set of points (t, x) ∈ R+ × R++, where t

is the time that a family splits from the immortal lineage and x is its total lifetime,
is a Poisson point process with intensity measure λ ⊗ µ for some σ-finite measure
µ.

Lemma 5.1. The lifetime measure µ associated with the critical (1+β)-branching
process conditioned on non-extinction is given by

µ((x,∞)) =
1 + β

βx
, x > 0.

Proof. As we remarked in the introduction

(5.1) P{Xt > 0 | X0 = x} = 1− exp
(
− x

t1/β

)
.

First consider the case of β = 1. Recall from the introduction that if Π is a
Poisson point process on R+ × E0 with intensity λ⊗ ν, then

(5.2)

 ∑
(s,u)∈Π

u(t−s)∨0


t≥0

has the same distribution as the conditioned process (Yt)t≥0 with Y0 = 0, and recall
that µ is the push-forward of ν by the total lifetime function γ. Also,

(5.3)

 ∑
(s,u)∈Π:s≤y/2

ut


t≥0

has the same distribution as the unconditioned process (Xt)t≥0 with X0 = y —
see [Eva93]. The factor of 2 differs from [Eva93] and arises from our choice of time
scale. Therefore,

P{Xt > 0 | X0 = y} = P{∃(s, u) ∈ Π : s ≤ y/2 and γ(u) > t}
= 1− exp (−y µ((t,∞))/2) ,

and comparing with (5.1) gives µ((t,∞)) = 2/t.
Now take β ∈ (0, 1). It is shown in [EW03] that the mass thrown off the immortal

lineage is determined by the jumps of a stable subordinator: if Ms is the amount
of mass thrown off during the time interval [0, s], then

E
[
e−θMs

]
= exp

(
−s

1 + β

β
θβ

)
= exp

(
−s

∫ ∞

0

(
1− e−θx

)
ν(dx)

)
,
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where ν(dx) = 1+β
Γ(1−β)x

−(1+β)dx is the Lévy measure of the subordinator.
Since the jump size of the subordinator corresponds to the initial size of the new

family, the lifetime measure µ is given by

µ((t,∞)) =
∫ ∞

0

P{Xt > 0 | X0 = x} ν(dx).

and so, from the above and an integration by parts,

µ((t,∞)) =
∫ ∞

0

(
1− e−x/t1/β

)
ν(dx)

=
1 + β

βt
.

�

Proof of Corollary 1.1
Parts (a) to (d) follow immediately from Theorem 1.1. Part (e) will also follow
from parts (e) and (f) of Theorem 1.1 after the following time and space change.

Define a new time parameter u by t = eu. If the MRCA at time t lived at time
t−x on the original scale, then on the new time scale she lived at time u−y, where
t − x = eu−y. Solving for y, the MRCA age process in the new time scale is the
process (Bt)t≥0 given by Bu = − log(1− e−uAeu). The process (Bt)t≥0 is obtained
by applying the construction (1.1) to the point process given by{(

log s, log
(
1 +

x

s

))
, (s, x) ∈ Λ

}
,

which is a Poisson point process on R× R+ with intensity measure λ⊗ ρ, where

ρ((y,∞)) =
1 + β

β(ey − 1)
, y ∈ R++.

Note that, in general, a time and space change of the Poisson process Λ gives a new
Poisson point process, but the resulting intensity measure will not typically be of
the form λ⊗κ for some measure κ: it is a special feature of µ and the transformation
that the product measure structure is maintained in this case.

It is straightforward to check parts (e) and (f) of Theorem 1.1 that (Bt)t≥0 has
the stationary distribution

π(dx) =
1 + β

β
e−x(1− e−x)

1
β dx,

and that the distribution of Bt converges to π in total variation as t → ∞. Part
(e) of the corollary then follows from the observation that At

t = 1 − e−Blog(t) and
an elementary change of variables. �

6. An analogue of the Bessel-squared family

Recall that the transition probabilities of the unconditioned (1+β)-stable contin-
uous state branching process (Xt)t≥0 are characterized by the Laplace transforms

Ex[exp(−θXt)] = exp
(
−xθ

(
tθβ + 1

)−1/β
)

.
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Hence, the transition probabilities of the conditioned process Y are characterized
by the Laplace transforms

Ey[exp(−θYt)] =
1
y

Ey[exp(−θXt)Xt]

=
1
y

∂

∂θ
Ey[exp(−θXt)]

= exp
(
−yθ

(
tθβ + 1

)−1/β
) (

tθβ + 1
)− β+1

β ,

thus establishing (1.2).
Recall also that if β = 1, then (Xt)t≥0 and (Yt)t≥0 are, up to a constant multi-

ple, the Bessel-squared processes with dimensions 0 and 4 respectively. The Bessel-
squared process (Zt)t≥0 with dimension d (not necessarily integral) is (up to con-
stants) the Markov process characterized by the Laplace transforms

Ez[exp(−θZt)] = exp
(
−zθ (tθ + 1)−1

)
(tθ + 1)−

d
2 .

This suggests that for 0 < β < 1 and δ ≥ 0 there might be a semigroup (Pt)t≥0

such that

(6.1) Pt exp(−θ·)(x) = exp
(
−xθ

(
tθβ + 1

)−1/β
) (

tθβ + 1
)−δ

.

We first verify that, for a fixed value of x, the right-hand side of (6.1) is the
Laplace transform of a probability distribution (as a function of θ). We already
know that

exp
(
−xθ

(
tθβ + 1

)−1/β
)

is the Laplace transform of a probability measure, so it suffices to show that(
tθβ + 1

)−δ

is also a Laplace transform of a probability distribution. Let (St)t≥0 be the β-stable
subordinator starting from S0 = 0 normalized so that

E[exp(−θSt)] = exp(−θβt)

and let (Tt)t≥0 be the gamma subordinator starting from T0 = 0 normalized so
that for t > 0

P{Tt ∈ dy} =
yt−1

Γ(t)
exp(−y) dy

and hence

E[exp(−θTt)] = (θ + 1)−t.

Then if S and T are independent,

E [exp (−θStTδ
)] = E

[
exp(−θβtTδ)

]
=
(
tθβ + 1

)−δ
.
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We next verify that (Pt)t≥0 is a semigroup. Observe that

PsPt exp(−θ·)(x)

=
(
tθβ + 1

)−δ
Ps exp

(
−θ
(
tθβ + 1

)−1/β ·
)

(x)

=
(
tθβ + 1

)−δ
exp

(
−xθ

(
tθβ + 1

)−1/β
(
sθβ

(
tθβ + 1

)−1
+ 1
)−1/β

)
×
(
sθβ

(
tθβ + 1

)−1
+ 1
)−δ

= exp
(
−xθ

(
(s + t)θβ + 1

)−1/β
) (

(s + t)θβ + 1
)−δ

= Ps+t exp(−θ·)(x)

It is clear that limt↓0 Pt exp(−θ·)(x) = exp(−θx) and so limt↓0 Ptf(x) =
f(x) for f ∈ C0(R+). Also, limy→x Pt exp(−θ·)(y) = Pt exp(−θ·)(x), and so
limy→x Ptf(y) = f(x) for f ∈ C0(R+). The standard Feller construction gives
that there is a strong Markov process (Zt)t≥0 with semigroup (Pt)t≥0.

This family of Markov processes shares many features of the Bessel-squared
family. For example, it follows for a, b > 0 that

Eaz[exp(−θa−1Zbt)] = exp

−yθ

(
bt

(
θ

a

)β

+ 1

)−1/β
(bt

(
θ

a

)β

+ 1

)−δ

.

Thus, the process (b−1/βZbt)t≥0 is Markovian with the same transition probabili-
ties as Z. Similarly, if Z0 = 0, then the process (e−t/βZet)t∈R is Markovian and
stationary.

Furthermore, if (Z ′t)t≥0 and (Z ′′)t≥0 are two independent such processes with
parameters δ′ and δ′′, then the process (Z ′t +Z ′′t )t≥0 also belongs to the family and
has parameter δ′ + δ′′.

In a forthcoming paper, we will present a more thorough study of this family
along the lines of [PY82, PY81].
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