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Abstract. We use methods from combinatorics and algebraic statistics to study analogues of
birth-and-death processes that have as their state space a finite subset of the m-dimensional
lattice and for which the m matrices that record the transition probabilities in each of the lattice
directions commute pairwise. One reason such processes are of interest is that the transition
matrix is straightforward to diagonalize, and hence it is easy to compute n step transition
probabilities. The set of commuting birth-and-death processes decomposes as a union of toric
varieties, with the main component being the closure of all processes whose nearest neighbor
transition probabilities are positive. We exhibit an explicit monomial parametrization for this
main component, and we explore the boundary components using primary decomposition.

1. Introduction

Birth-and-death processes are among the simplest Markov chains. In discrete time, they
model a particle that wanders back and forth on a sub-interval of the integers by taking unit
size steps. Birth-and-death processes arise in fields ranging from ecology, where the points in
the state space represent population size and at each point in time only a single birth or death
event can occur, to queuing theory, where the states represent the number of individuals waiting
in a queue and at any time one individual either joins or leaves the queue. The finite time
behavior of a birth-and-death process is easy to study because the transition matrix P , whose
entry P (i, j) is the probability of going from state i to state j in one step, is tri-diagonal. This
means that the matrix P can be diagonalized using a related family of orthogonal polynomials,
and this enables the computation of the power Pn whose entries are the probabilities of going
from one state to another in n steps [13, 14].

It is natural to consider Markov chains that have as their state space products of intervals
in higher-dimensional integer lattices. For instance, the ecology model could be extended to a
situation in which individuals in the population have a type and one keeps track of the number of
individuals of each type, or the queuing theory example generalizes to one where there are several
servers, each with their own set of customers, and one follows the respective queue lengths.

There are also higher-dimensional models where one of the coordinates describes the quantity
of primary interest while the others describe a fluctuating environment or background that
modulates the dynamics of that quantity. This is the point of view taken in quasi-birth-and-
death processes [15, 16], where the state of the primary variable is usually called the level, while
the state of the subsidiary ones is the phase. Such models have been used, inter alia, to model
queues in random environments and queues where the service times and inter-arrival times have
phase-type distributions. The setting here is most often that of continuous time, but many
of the same considerations apply to discrete time. A discussion of the discrete time case and
its connection with matrix-valued orthogonal polynomials is given in [10]. There is also a huge
literature in finance, economics and engineering on similar processes, where the terminology used
is usually that of regime switching or stochastic volatility models. The setting there is again often
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in continuous time and also the primary variable often has a continuous state space. However,
numerical computations for such a model often involve approximation by one with discrete time
and discrete state space. A few representative examples are [1, 4, 7, 11, 17, 19, 21, 22].

Unfortunately, even when such higher-dimensional models have only nearest neighbor transi-
tions that are analogous to those of birth-and-death chains, it is no longer even true that they
are necessarily reversible, and so there is no hope that there will be a straightforward spectral
decomposition like that afforded by the use of orthogonal polynomials. It is therefore natural to
seek special cases where one can still recover something of the classical one-dimensional theory.

One case in which this is possible is if, when we write the transition matrix as the sum of
matrices, one for the transitions in each coordinate direction, the resulting collection of matrices
commute. We motivate our study by examining the two-dimensional case in Section 2. After
deriving the algebraic constraints for commuting matrices, we show how spectral methods may
still be used to compute n step transition probabilities for a process on a two-dimensional grid.
The same approach extends without difficulty to higher-dimensional grids.

With this observation in mind, we aim to understand what restrictions are placed on a Markov
chain by the requirement that the matrices appearing in such a decomposition commute. In Sec-
tion 3, we obtain an essentially unique parametrization of such a commuting model under the
assumption that all nearest neighbor transition probabilities are positive; and, under the same
assumption, we characterize the minimal number of constraints on the transition probabilities
that are necessary to ensure commutation. We then use methods from linear algebra, matroid
theory and algebraic statistics to further analyze the binomial ideal generated by the commu-
tation condition. In Section 4 we determine for which grid graphs the matrix describing the
parametrization is unimodular. For these lattices, we derive an explicit graphical representation
of the Graver basis, which is the most inclusive in the hierarchy of lattice bases in [5, §1.3].
In Section 5 we explore the extraneous boundary components of our commuting variety. These
correspond to families of commuting birth-and-death processes having some zero transition prob-
abilities which are not limits of commuting birth-and-death processes with positive transition
probabilities. This underlines the applicability of binomial primary decomposition in probability
and statistics, well beyond the contexts envisioned by Diaconis, Eisenbud and Sturmfels in [3].

2. Motivation: Birth-and-death processes in dimension two

Consider a discrete-time, time-homogeneous Markov chain Z = (Zk)∞k=0 that has as its state
space the finite two-dimensional grid E := {0, 1, . . . , m}×{0, 1, . . . , n}. Suppose the chain makes
jumps of size one either upwards, downwards, to the right, or to the left. In other words, if we
impose a graph structure on E by declaring that two states (i′, j′) and (i′′, j′′) are connected by
an edge if and only if |i′ − i′′|+ |j′ − j′′| = 1, then the chain can only make “nearest neighbor”
jumps. If we draw E in the plane and include the edges as intervals of unit length, then the
resulting figure is made up of m× n squares, and so we refer to E as the m× n grid.

The dynamics of Z are specified by the transition probabilities

Li,j := P{Zk+1 = (i− 1, j) | Zk = (i, j)},
Ri,j := P{Zk+1 = (i + 1, j) | Zk = (i, j)},
Di,j := P{Zk+1 = (i, j − 1) | Zk = (i, j)},
Ui,j := P{Zk+1 = (i, j + 1) | Zk = (i, j)}.

These transition probabilities are non-negative real numbers that satisfy Li,j+Ri,j+Di,j+Ui,j ≤
1. This inequality is allowed to be strict. As usual, strict inequality is interpreted in terms of
an adjoined absorbing state † with P{Zk+1 = † | Zk = (i, j)} = 1− (Li,j + Ri,j + Di,j + Ui,j).

The transition matrix P of the Markov chain Z has format [(m+1)(n+1)]×[(m+1)(n+1)]. It
may be written as a sum of two matrices, P = Ph +Pv, one for the horizontal moves and one for
the vertical moves. The horizontal matrix Ph commutes with the vertical matrix Pv if and only if
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the following four constraints hold for all index pairs (i, j) ∈ {0, 1, . . . , m−1}×{0, 1, . . . , n−1}:
Ui,jRi,j+1 = Ri,jUi+1,j (up-right)

Di,j+1Ri,j = Ri,j+1Di+1,j+1 (down-right)

Di+1,j+1Li+1,j = Li+1,j+1Di,j+1 (down-left)

Ui+1,jLi+1,j+1 = Li+1,jUi,j (up-left).

(2.1)

In English: for each corner of a square in the grid, the probability of going from that corner to
the diagonally opposite corner of the square in two steps is the same for the two possible paths.

Example 2.1 (m = 2 and n = 1). We label the vertices of the 2× 1 grid as follows.

The 6× 6 transition matrix P = Ph + Pv is the sum of the horizontal transition matrix

Ph =

(0, 0) (0, 1) (1, 0) (1, 1) (2, 0) (2, 1)
(0, 0) 0 0 R00 0 0 0
(0, 1) 0 0 0 R01 0 0
(1, 0) L10 0 0 0 R10 0
(1, 1) 0 L11 0 0 0 R11

(2, 0) 0 0 L20 0 0 0
(2, 1) 0 0 0 L21 0 0

,

and the vertical transition matrix

Pv =

(0, 0) (0, 1) (1, 0) (1, 1) (2, 0) (2, 1)
(0, 0) 0 U00 0 0 0 0
(0, 1) D01 0 0 0 0 0
(1, 0) 0 0 0 U10 0 0
(1, 1) 0 0 D11 0 0 0
(2, 0) 0 0 0 0 0 U20

(2, 1) 0 0 0 0 D21 0

.

Suppose that the 14 transition probabilities Lij , Rij , Dij , Uij are all strictly positive. Then
the commuting relations (2.1) are found to be equivalent to the following rank constraints:

(2.2) rank
(

R00 U00 L11 D11

R01 U10 L10 D01

)
= 1 and rank

(
R10 U10 L21 D21

R11 U20 L20 D11

)
= 1.

Indeed, the eight equations in (2.1) are among the twelve 2×2-minors of these two 2×4-matrices.
The constraints (2.2) imply that our commuting variety {PhPv = PvPh} has the parametrization

(2.3)

R00 = h1
a00
a10

, R01 = h1
a01
a11

, R10 = h2
a10
a20

, R11 = h2
a11
a21

,

L10 = h1
a10
a00

, L11 = h1
a11
a01

, L20 = h2
a20
a10

, L21 = h2
a21
a11

,

U00 = v1
a00
a01

, U10 = v1
a10
a11

, U20 = v1
a20
a21

,

D01 = v1
a01
a00

, D11 = v1
a11
a10

, D21 = v1
a21
a20

.

An analogous parametrization for commuting birth-and-death processes on larger two-dimensional
grids and in higher dimensions will be derived in Section 3 and further studied in Section 4. The
analogues of the parameters h1, h2, v1 and the parameters ai,j are straightforward to compute
given the transition matrix P . We note that if the transition probabilities are allowed to be zero
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then (2.3) is insufficient because (2.1) can be satisfied even if (2.2) fails. The identification of
such boundary phenomena is the content of our algebraic discussion in Section 5.

The parametrization (2.3) of the transition matrix P in Example 2.1 can be rewritten as

(2.4) Ph = AQhA−1 and Pv = AQvA
−1,

where the three matrices appearing on the right hand side are

A =

(0, 0) (0, 1) (1, 0) (1, 1) (2, 0) (2, 1)
(0, 0) a00 0 0 0 0 0
(0, 1) 0 a01 0 0 0 0
(1, 0) 0 0 a10 0 0 0
(1, 1) 0 0 0 a11 0 0
(2, 0) 0 0 0 0 a20 0
(2, 1) 0 0 0 0 0 a21

,

Qh =

(0, 0) (0, 1) (1, 0) (1, 1) (2, 0) (2, 1)
(0, 0) 0 0 h1 0 0 0
(0, 1) 0 0 0 h1 0 0
(1, 0) h1 0 0 0 h2 0
(1, 1) 0 h1 0 0 0 h2

(2, 0) 0 0 h2 0 0 0
(2, 1) 0 0 0 h2 0 0

,

Qv =

(0, 0) (0, 1) (1, 0) (1, 1) (2, 0) (2, 1)
(0, 0) 0 v1 0 0 0 0
(0, 1) v1 0 0 0 0 0
(1, 0) 0 0 0 v1 0 0
(1, 1) 0 0 v1 0 0 0
(2, 0) 0 0 0 0 0 v1

(2, 1) 0 0 0 0 v1 0

.

As we shall see in Theorem 3.1, the matrix parametrization (2.4) is valid for the m × n-grid.
Here A is a diagonal matrix of size (m + 1)(n + 1), the matrix Qv is block diagonal with m + 1
identical (n+1)×(n+1)-blocks Rv that are symmetric and tri-diagonal, and Qh is block diagonal
with n+1 identical (m+1)×(m+1)-blocks Rh that are symmetric and tri-diagonal. Note that in
order to make the block diagonal structure of the matrix Qh apparent it is necessary to re-order
the rows and columns as follows: (0, 0), (1, 0), (2, 0), (0, 1), (1, 1), (2, 1). Thus, the tri-diagonal
matrices Rh and Rv satisfy:

Qh((i′, j′), (i′′, j′′)) =

{
Rh(i′, i′′), if j′ = j′′,
0, otherwise,

and

Qv((i′, j′), (i′′, j′′)) =

{
Rv(j′, j′′), if i′ = i′′,
0, otherwise.

By the spectral theorem for real symmetric matrices [12, Theorem 4.1.5], the rth power of
the matrix Rh has entries

Rr
h(i′, i′′) =

m∑

k=0

λr
h,kuh,k(i′)uh,k(i′′),
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where λh,0, λh,1, . . . , λh,m are the eigenvalues of Rh and the uh,k are the corresponding orthonor-
malized eigenvectors. With analogous notation, for any positive integer r, we have

Rr
v(i

′, i′′) =
n∑

`=0

λr
v,`uv,`(j′)uv,`(j′′).

Now, because Ph and Pv commute, the t-step transition probability matrix P t is given by

P t = (Ph + Pv)t =
t∑

s=0

(
t

s

)
P s

hP t−s
v

=
t∑

s=0

(
t

s

)
(AQhA−1)s(AQvA

−1)t−s

= A

[
t∑

s=0

(
t

s

)
Qs

hQt−s
v

]
A−1.

By combining the above formulas, we obtain the following simple expression for the t-step
transition probabilities of the Markov chain Z:

P t((i′, j′), (i′′, j′′)) = ai′,j′

[∑

k

∑

`

(λh,k + λv,`)tuh,k(i′)uh,k(i′′)uv,`(j′)uv,`(j′′)

]
a−1

i′′,j′′ .

Moreover, note that for a constant c > 0 and I the identity matrix,

(cI + P )t((i′, j′), (i′′, j′′)) = ai′,j′

[∑

k

∑

`

(c + λh,k + λv,`)tuh,k(i′)uh,k(i′′)uv,`(j′)uv,`(j′′)

]
a−1

i′′,j′′ ,

and so we may readily compute the t-step transition probabilities of certain chains for which
the particle has a constant positive probability of not moving from its current position at each
step. The calculations we have just done extend to the finite higher-dimensional grids E to
be discussed in the next section. The problem of finding the t-step transition probabilities for
these models reduces to finding the eigenvalues and eigenvectors of a collection of symmetric
tri-diagonal matrices whose non-zero entries are the parameters W (u, v) in Theorem 3.1.

In our definition of the Markov chain Z above, we did not require that the rows of the
transition matrix P add to 1. In order to get a feeling for the effect of imposing that extra
constraint, we return to the case m = 2 and n = 1 in Example 2.1. The rows of P add to 1 if
and only if 1 is an eigenvalue of the symmetric matrix

Qh + Qv =

(0, 0) (0, 1) (1, 0) (1, 1) (2, 0) (2, 1)
(0, 0) 0 v1 h1 0 0 0
(0, 1) v1 0 0 h1 0 0
(1, 0) h1 0 0 v1 h2 0
(1, 1) 0 h1 v1 0 0 h2

(2, 0) 0 0 h2 0 0 v1

(2, 1) 0 0 0 h2 v1 0

with corresponding right, and hence also left, eigenvector (a−1
00 , a−1

01 , a−1
10 , a−1

11 , a−1
20 , a−1

21 ).
The preceding matrix is irreducible when the parameters h1, h2, v1 are positive, and the

Perron-Frobenius Theorem [12, Theorem 8.4.4] guarantees that the eigenvalue with largest ab-
solute value is positive, with an eigenvector that has positive entries and is unique up to a
constant multiple. Consequently, if positive parameters h1, h2, v1 are given, then replacing them
by bh1, bh2, bv1 for a suitable positive constant b permits the choice of parameters aij that are
unique up to an irrelevant constant multiple such that the rows of P sum to 1. More generally,
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replacing h1, h2, v1 by bh1, bh2, bv1 for a suitable positive constant b permits the choice of pa-
rameters aij that are unique up to an irrelevant constant multiple such that the rows of P sum
to 1− c for a given constant 0 < c < 1, in which case the rows of the matrix cI + P sum to 1.
These considerations extend to larger two-dimensional grids and to higher dimensions.

3. Parametrization

Suppose now that we have a discrete-time, time-homogeneous Markov chain with state space

E := {0, 1, . . . , n1} × {0, 1, . . . , n2} × · · · × {0, 1, . . . , nm}.
The m-dimensional grid E indexes the rows and columns of the transition matrix P . We assume
that P (u, v) = 0 unless u ∼ v by which we mean that u − v ∈ {±ek} for some k ∈ {1, . . . ,m}.
Here ek is the standard basis vector with entry 1 in the kth coordinate and 0 elsewhere. Thus, P
describes a Markov chain with nearest neighbor transitions on the graph with vertices E where
two vertices u and v are connected by an edge if u ∼ v. For 1 ≤ k ≤ m define a matrix Pk by

Pk(u, v) :=

{
P (u, v), if u− v ∈ {±ek},
0, otherwise.

These matrices are the analogues of the matrices Ph and Pv for the two-dimensional grid. The
requirement that the matrices Pi and Pj commute for all pairs of indices 1 ≤ i < j ≤ m is
equivalent to the condition that the following quadratic expressions vanish for all i, j and u:

P (u, u + ei)P (u + ei, u + ei + ej)− P (u, u + ej)P (u + ej , u + ei + ej),

P (u, u + ei)P (u + ei, u + ei − ej)− P (u, u− ej)P (u− ej , u + ei − ej),

P (u, u− ei)P (u− ei, u− ei + ej)− P (u, u + ej)P (u + ej , u− ei + ej),

P (u, u− ei)P (u− ei, u− ei − ej)− P (u, u− ej)P (u− ej , u− ei − ej).

(3.1)

Our aim is to solve this system of polynomial equations for the unknowns P (u, v). The next
theorem offers such a solution under the assumption that the unknowns are strictly positive.

Theorem 3.1. Suppose that P (u, v) > 0 for all u, v ∈ E such that u ∼ v. Then the matrices
P1, P2, . . . , Pm commute pairwise if and only if

(3.2) P (u, v) = au ·W (u, v) · a−1
v , u, v ∈ E,

for some collection of constants au and W (u, v), u, v ∈ E, that satisfy W (u′, v′) = W (u′′, v′′)
when v′ − u′ ∈ {±ek} for some k and {u′′, v′′} = {u′ + w, v′ + w} for some w ∈ ∑

` 6=k Ze`. The
constants au are unique up to a common multiple, and the constants W (u, v) are unique.

Example 3.2 (2× 1 grid). If m = 2, n1 = 2 and n2 = 1, then this is the parametrization (2.3)
in Example 2.1 with h1 = W ((0, 0), (1, 0)), h2 = W ((1, 0), (2, 0)) and v1 = W ((0, 0), (0, 1)). ¤
Proof. The sufficiency of the stated condition is straightforward. For example,

P (u, u + ei)P (u + ei, u + ei + ej) = auW (u, u + ei)a−1
u+ei

au+eiW (u + ei, u + ei + ej)a−1
u+ei+ej

= auW (u, u + ej)a−1
u+ej

au+ejW (u + ej , u + ei + ej)a−1
u+ei+ej

= P (u, u + ej)P (u + ej , u + ei + ej),

because W (u, u + ei) = W (u + ej , u + ei + ej) and W (u, u + ej) = W (u + ei, u + ei + ej).
For the converse, we first show that if the matrices P1, . . . , Pm commute, then the transition

matrix P is reversible; that is, there are positive constants bu such that buP (u, v) = bvP (v, u)
for all u, v ∈ E. Write ‖u‖ = u1 + · · ·+ um for u = (u1, . . . , um) ∈ E. We claim it is possible to
construct the constants bu, u ∈ E, by induction on the value of ‖u‖, and that their values are
determined once b0 is specified. For u ∈ E with ‖u‖ = 1, we must take bu = b0P (0, u)/P (u, 0).
For v ∈ E with ‖v‖ = 2, we need to be able to find bv such that buP (u, v) = bvP (v, u) for all u ∈ E
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with ‖u‖ ≤ 1. This is equivalent to showing that we can choose bv so that buP (u, v) = bvP (v, u)
for all u ∈ E of the form u = v − ek for some k. If v = 2ek for some k, then we must take

bv = bek

P (ek, 2e2k)
P (2ek, ek)

= b0
P (0, ek)
P (ek, 0)

P (ek, 2e2k)
P (2ek, ek)

.

If v = ei + ej for i 6= j, then it is necessary that

bei

P (ei, ei + ej)
P (ei + ej , ei)

= b0
P (0, ei)
P (ei, 0)

P (ei, ei + ej)
P (ei + ej , ei)

and bej

P (ej , ei + ej)
P (ei + ej , ej)

= b0
P (0, ej)
P (ej , 0)

P (ej , ei + ej)
P (ei + ej , ej)

are equal, in which case we must take bv to be the common value. However, from (3.1) we have

P (0, ei)P (ei, ei + ej) = P (0, ej)P (ej , ei + ej)

and P (ei + ej , ei)P (ei, 0) = P (ei + ej , ej)P (ej , 0).
Hence the value of bv is uniquely defined. Continuing in this way shows that, if w ∈ E and
0 = w0, w1, . . . , wN = w with wM+1 − wM ∈ {e1, . . . , em} for 0 ≤ M ≤ N − 1, then the value of

N−1∏

M=0

P (wM , wM+1)
P (wM+1, wM )

does not depend on the choice of w1, . . . , wN−1. Moreover, if we take bw to be this common
value, then the collection of constants bu, u ∈ E, is such that buP (u, v) = bvP (v, u) for all
u, v ∈ E, and this is the unique collection with that property and the given value of b0.

Now, suppose that we have positive constants bu, u ∈ E, such that buP (u, v) = bvP (v, u) for
all u, v ∈ E. If we set au = b

−1/2
u and define W (u, v) by

(3.3) P (u, v) = auW (u, v)a−1
v ,

then

(3.4) W (u, v) = W (v, u).

Conversely, if we have constants au and W (u, v) that satisfy equations (3.3) and (3.4), then

P (u, v)
P (v, u)

=
auW (u, v)a−1

v

avW (v, u)a−1
u

= a2
ua−2

v ,

when u ∼ v, and so a−2
u P (u, v) = a−2

v P (v, u), u, v ∈ E. From what we have argued above, this
implies that there are constants, au, u ∈ E, and W (u, v), u, v ∈ E, that satisfy equations (3.3)
and (3.4), the au are unique up to a common constant multiple, and the W (u, v) are unique.

To complete the proof, we need to check that the W (u, v) have the additional properties listed
in the statement of the theorem. Because P (u, v), u, v ∈ E, is a common zero of the polynomials
in (3.1), it follows that W (u, v), u, v ∈ E, is a common zero of the same set of polynomials. The
constraints that are associated with a particular two-dimensional face of one of the hypercubes
in the grid with vertices {u, u + ei, u + ej , u + ei + ej} are

W (u, u + ei)W (u + ei, u + ei + ej) = W (u, u + ej)W (u + ej , u + ei + ej),

W (u + ei, u + ei + ej)W (u + ei + ej , u + ej) = W (u + ei, u)W (u, u + ej),

W (u + ei + ej , u + ej)W (u + ej , u) = W (u + ei + ej , u + ei)W (u + ei, u),

W (u + ej , u)W (u, u + ei) = W (u + ej , u + ei + ej)W (u + ei + ej , u + ei).

Because W (u, v) = W (v, u) for all u, v ∈ E, these four constraints are equivalent to

W (u, u + ei)W (u + ei, u + ei + ej) = W (u, u + ej)W (u + ej , u + ei + ej) and

W (u + ei, u + ei + ej)W (u + ej , u + ei + ej) = W (u, u + ei)W (u, u + ej),
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and hence to the equations

W (u, u + ei) = W (u + ej , u + ei + ej) and W (u, u + ej) = W (u + ei, u + ej + ei).

Iterating these two equations yields the remaining assertions stated in Theorem 3.1. ¤
Remark 3.3. Note that if u−v ∈ {±ek}, then {u, v} = {hek +r, (h+1)ek +r} for unique values
of h ∈ {0, 1, . . . , nk − 1} and r ∈ ∑

` 6=k Ze`. Therefore, if the necessary and sufficient conditions
of Theorem 3.1 hold, then W (u, v) = W (hek, (h + 1)ek). Thus, the parametrization involves
n1 + n2 + · · · + nm uniquely defined parameters of this form and (n1 + 1)(n2 + 1) · · · (nm + 1)
parameters of the form au. The latter are uniquely defined up to a common multiple.

The set of constraints (3.1) has some redundancies when the unknown quantities P (u, v),
u ∼ v, are positive. For example, any three of the equations in (2.1) implies the fourth. In what
follows, we present a linear algebra approach to identifying and representing constraints that are
independent. Note first that the quadratic equations in (3.1) are all of the form P (a, b)P (b, c)−
P (a, d)P (d, c) = 0. This condition is equivalent to [P (a, b)P (b, c)]/[P (a, d)P (d, c)] = 1 or
Q(a, b) + Q(b, c) − Q(a, d) − Q(d, c) = 0, where we write Q(u, v) for the logarithm of P (u, v).
This suggests the following encoding of (3.1) as rows of a matrix with entries from {−1, 0, +1}.
Notation 3.4. Let S(n1,...,nm) be the matrix that has one row for each polynomial in (3.1) and
columns indexed by ordered pairs (u, v) ∈ E × E with u ∼ v, with the row corresponding to
a polynomial of the form P (a, b)P (b, c) − P (a, d)P (d, c) having entries +1, +1,−1,−1 in the
columns associated with the pairs (a, b), (b, c), (a, d), (d, c) and zero entries elsewhere.

Remark 3.5. The matrix S(n1,...,nm) has format
4

∑

1≤i<j≤m


ninj

∏

k 6=i,j

(nk + 1)





×


2

m∑

i=1

ni

∏

j 6=i

(nj + 1)


 .

We wish to determine the rank of S(n1,...,nm), that is, the dimension of the vector space spanned
by the rows, as this gives the size of a maximal set of independent constraints for positive P (u, v).

Example 3.6 (2× 1 grid constraint matrix). The 8× 14-matrix S(2,1) has rank 6 and equals
R00 R01 R10 R11 L10 L11 L20 L21 U00 U10 U20 D01 D11 D21

R00U10 − U00R01 1 -1 0 0 0 0 0 0 -1 1 0 0 0 0
U10L11 − L10U00 0 0 0 0 -1 1 0 0 -1 1 0 0 0 0
L11D01 −D11L10 0 0 0 0 -1 1 0 0 0 0 0 1 -1 0
D01R00 −R01D11 1 -1 0 0 0 0 0 0 0 0 0 1 -1 0
R10U20 − U10R11 0 0 1 -1 0 0 0 0 0 -1 1 0 0 0
U20L21 − L20U10 0 0 0 0 0 0 -1 1 0 -1 1 0 0 0
L21D11 −D21L20 0 0 0 0 0 0 -1 1 0 0 0 0 1 -1
D11R10 −R11D21 0 0 1 -1 0 0 0 0 0 0 0 0 1 -1

.

This matrix encoding of the constraints suggests a similar encoding for the parametrization.

Notation 3.7. Let A(n1,...nm) be a matrix that has one column for each ordered pair (u, v) ∈
E ×E with u ∼ v and one row for each of the parameters identified in Remark 3.3; the column
corresponding to the pair (u, v) has +1 in the coordinate corresponding to the parameter au, −1
in the coordinate corresponding to the parameter av, and +1 in the coordinate corresponding
to the parameter W (u, v). Such a column records the parametrization of P (u, v) in (3.2).

Remark 3.8. The matrix A(n1,...,nm) has format
(

m∏

i=1

(ni + 1) +
m∑

i=1

ni

)
×


2

m∑

i=1

ni

∏

j 6=i

(nj + 1)


 .

Example 3.9 (2×1 grid parametrization matrix). The 9×14-matrix A(2,1) has rank 8 and equals
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R00 R01 R10 R11 L10 L11 L20 L21 U00 U10 U20 D01 D11 D21

a00 1 0 0 0 -1 0 0 0 1 0 0 -1 0 0
a01 0 1 0 0 0 -1 0 0 -1 0 0 1 0 0
a10 -1 0 1 0 1 0 -1 0 0 1 0 0 -1 0
a11 0 -1 0 1 0 1 0 -1 0 -1 0 0 1 0
a20 0 0 -1 0 0 0 1 0 0 0 1 0 0 -1
a21 0 0 0 -1 0 0 0 1 0 0 -1 0 0 1
h1 1 1 0 0 1 1 0 0 0 0 0 0 0 0
h2 0 0 1 1 0 0 1 1 0 0 0 0 0 0
v1 0 0 0 0 0 0 0 0 1 1 1 1 1 1

.

The following result is essentially a restatement of Theorem 3.1. It will enable us to compute
the maximal number of linearly independent rows of S(n1,...,nm) from the rank of A(n1,...,nm).

Corollary 3.10. The two vector spaces spanned by the rows of the matrix S(n1,...,nm) and the
rows of the matrix A(n1,...,nm) are the orthogonal complements of each other.

Proof. First note that each row vector of A is orthogonal to the row space of S. This follows
directly from the parametrization given in Theorem 3.1. So it suffices to prove that any vector
w ∈ ker(S) is in the rowspan of A. Let k×l denote the size of the matrix A. Take w ∈ ker(S) and
consider g = (ewi)i=1,...,l, the componentwise exponentiation of w. We will construct a transition
matrix P from w. The transition matrix P has the non-zero entries P (u, v), u ∼ v, equal to
the corresponding entries of g. Since w ∈ ker(S), the matrix P can be decomposed into a sum
of transition matrices P1, . . . , Pm (one in each coordinate direction), which commute pairwise.
So, by Theorem 3.1, we have g = (ua1 , . . . , ual), where u is the vector of vertex and edge weight
parameters, a1, . . . , al are the columns of A, and we take componentwise exponentiation. We
conclude that w = log(g) = (log(t1), . . . , log(tk))A is a linear combination of the rows of A. ¤

Lemma 3.11. The rank of the matrix A(n1,...,nm) is one less than the number of rows, that is,

(3.5)
m∏

i=1

(ni + 1) +
m∑

i=1

ni − 1.

Proof. By [12, Remark 0.4.6(d)], it suffices to show that the Gram matrix A(n1,...,nm)A(n1,...,nm)>

has rank equal to the number in (3.5). Suppose that x is a row of A(n1,...,nm) corresponding to
the parameter au for a vertex u of the grid E. The inner product x ·x is twice the vertex degree –
that is, the number of v ∈ E with u ∼ v – because au appears in the two transition probabilities
P (u, v) and P (v, u) for each such v. If x′ and x′′ are two such rows, then the inner product
x′ · x′′ is 0 if u 6∼ v and it is −2 if u ∼ v.

Now suppose that y is a row of A(n1,...,nm) corresponding to one of the edge parameters
W (hek, (h + 1)ek). The inner product y · y is 2

∏
` 6=k(n` + 1) because the edge parameter

appears in the transition probabilities P (hek + r, (h + 1)ek + r) and P ((h + 1)ek + r, hek + r) for∏
` 6=k(n` +1) choices of r ∈ ∑

` 6=k Ze`. If y′ and y′′ are two such rows, then y′ ·y′′ = 0, since each
transition probability only involves a single edge parameter. For the same reason, y · z = 0 if z
is a row of A(n1,...,nm) corresponding to an edge parameter W (je`, (j + 1)e`) with ` 6= k.

Lastly, if x and y are as above, then x ·y is clearly 0 unless the vertex u associated with x is in
the set {hek + r : r ∈ ∑

6̀=k Ze`} ∪ {(h + 1)ek + r : r ∈ ∑
` 6=k Ze`} of starting and ending points

of transitions that involve the edge parameter associated with y. If the vertex u is in this set,
then x · y = (+1×+1) + (+1×−1) = 0 also, with the +1 coming from a transition probability
of the form P (u, v) and the −1 coming from a transition probability of the form P (v, u).

Let X and Y1, . . . ,Ym be the submatrices of A(n1,...,nm) that correspond to the rows for the
vertices of the grid graph E, and the parallel edges in direction e1, . . . , em, respectively. We
have shown that YiY>i = 2

∏
j 6=i(nj + 1)I where I is the identity matrix of appropriate size,

and XX> = 2(∆ − J), where ∆ is the diagonal matrix listing the vertex degrees and J is
the adjacency matrix of the graph. Thus, XX> is a multiple of the Laplacian matrix of the
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graph, and, because the graph is connected, its rank is one less than the number of vertices
[9, Lemma 13.1.1]. The matrices XY>i and YiY>j are all 0 when i 6= j. We conclude that

A(n1,...,nm)A(n1,...,nm)> is a block diagonal matrix, with a block of rank
∏m

i=1(ni + 1) − 1, one
less than its size, and m blocks of full rank n1, . . . , nm, respectively. Therefore, the rank of
A(n1,...,nm)A(n1,...,nm)> is precisely the quantity in (3.5). ¤

Corollary 3.10 and Lemma 3.11 imply the following result.

Proposition 3.12. The rank of the constraint matrix S(n1,...,nm) equals

(3.6) 2
m∑

i=1


ni

∏

j 6=i

(nj + 1)


−

m∏

i=1

(ni + 1)−
m∑

i=1

ni + 1.

Remark 3.13. The number (3.6) has the following geometric interpretation. We regard E as
the edge graph of a cubical cell complex. The `-cells of that complex have the form{

u + λ1ek1 + λ2ek2 + · · ·+ λ`ek`
: 0 ≤ λ1, λ2, . . . , λ` ≤ 1

}

for u ∈ E and basis vectors ek1 , . . . , ek`
such that u +

∑`
j=1 ekj ∈ E. It can be shown that

(3.6) =
m∑

`=2

(−1)`(` + 1) #`-cells,

but we omit the proof. The reasoning behind this alternating formula, which is reminiscent of
an Euler characteristic, can be used to select a row basis of S(n1,...,nm).

4. The toric ideal

In this section we examine the matrix A = A(n1,...,nm) from the perspective of combinatorial
commutative algebra [6, 20]. Let R[P ] be the polynomial ring over the real numbers R generated
by the unknowns P (u, v) with u, v ∈ E and u ∼ v. We write IA for the toric ideal associated with
the matrix A. Thus, IA is generated by all binomials PZ+−PZ− where we take componentwise
exponentiation and Z = Z+ − Z− runs over all integer vectors in the kernel of A. Among these
binomials are the quadratic binomials in (3.1) whose corresponding vectors Z are the rows of
the matrix S = S(n1,...,nm). These quadratic binomials do not suffice to generate the toric ideal
IA, and one of our objectives is to identify a generating set of binomials. In algebraic statistics
[5, §1.3], one considers several generating sets of IA. Minimal generating sets are known as
Markov bases. However, it is often more natural to study the larger Graver basis, which also
contains all circuits of the integer kernel of A, and all reduced Gröbner bases of IA. Recall that
the circuits of a sublattice of ZN are the primitive vectors of inclusion-minimal support. Here
“primitive” means that the coordinates have greatest common denominator equal to one, so
there are finitely many circuits and they are unique up to sign. For an elementary introduction
to toric ideals we refer to [20], and for their interpretation in terms of Markov chains see [3, 5].

Example 4.1 (2× 1 grid). If m = 2, n1 = 2 and n2 = 1, then R[P ] is a polynomial ring in 14
unknowns and IA is the ideal of 2×2-minors of the two matrices in (2.2). Thus the Markov basis
of A has 12 elements. The Graver basis of A has 29 elements, listed in Example 4.12 below. ¤

The space of commuting birth-and-death processes with positive probabilities is the set of
positive real points on a toric variety. The ideal representing that toric variety is the toric
ideal IA. The toric variety V (IA) is D-dimensional in RN where N = 2

∑m
i=1 ni

∏
j 6=i(nj + 1)

and D =
∏m

i=1(ni + 1) +
∑m

i=1 ni − 1. These numbers were derived in Section 3. Moreover, a
parametrization of the toric variety of commuting birth-and-death processes was given in (3.2).

We start our study in this section by reviewing two definitions regarding matrices in general.

Definition 4.2. A Cayley matrix is a special block matrix of the form illustrated in Figure 1.



COMMUTING BIRTH-AND-DEATH PROCESSES 11

Figure 1. The form of a Cayley matrix.

By changing the order of the columns of our matrix A, we can see that A is a Cayley matrix,
where the blocks correspond to the parallel edges in the lattice. Toric varieties associated with
Cayley matrices have a nice special structure, and they appear in applied contexts such as
chemical reaction networks [2, Theorem 9]. Here is an even more important special structure.

Definition 4.3. An integer matrix of rank d is unimodular if all its non-zero d× d minors have
the same absolute value. There are many equivalent characterizations. For instance, a matrix
is unimodular if and only if all initial monomial ideals of its toric ideal are squarefree [20, §10].

Investigating whether a matrix is unimodular is interesting from the perspective of algebraic
statistics and computational algebra. One reason is the following result which is proven in [20].

Proposition 4.4. Let A be any unimodular matrix. Then every reduced Gröbner bases of the
toric ideal IA consists of differences of squarefree monomials. Moreover, the following three sets
coincide: the union of all reduced Gröbner bases, the set of circuits, and the Graver basis of A.

It is thus natural to ask whether our matrix is unimodular. We address this question as
follows:

Theorem 4.5. The Cayley matrix A = A(n1,...,nm) is unimodular if and only if the dimension
of the grid equals m = 2 and the format of the grid is either 2× 2 or n× 1 for some n ≥ 1.

Our proof of this theorem employs tools from matroid theory. Recall that a matroid M is a
pair (E , I) consisting of a finite ground set E and a collection I of subsets of E that satisfy

i) ∅ ∈ I.
ii) If I1 ∈ I and I2 ⊆ I1, then I2 ∈ I.
iii) If I1, I2 ∈ I and #I1 < #I2, then there is an element e ∈ I2\I1 such that I1 ∪ {e} ∈ I.

The members of I are the independent sets of M and subsets of E that are not in I are dependent.
A maximal independent set in M is a basis of M and a minimal dependent set a circuit of M .
A particular class of matroids arises from matrices as follows. The ground set E consists of the
columns of a matrix A, and I is the set of linearly independent subsets of column vectors of A.

The following three results from matroid theory will be useful for the proof of Theorem 4.5.
These and further properties of matroids can be found in [18].

Lemma 4.6. Let E be a set and C a collection of subsets of E. Then C is the collection of
circuits of a matroid on E if and only if C satisfies the following three conditions:

i) ∅ /∈ C.
ii) If C1, C2 ∈ C and C1 ⊆ C2, then C1 = C2.
iii) If C1, C2 ∈ C distinct and e ∈ C1 ∩ C2, then ∃C3 ∈ C such that C3 ⊆ (C1 ∪ C2)\{e}.

Lemma 4.7. The collection B of bases of a matroid M satisfies the following two conditions:
i) B is non-empty.
ii) If B1, B2 ∈ B and e ∈ B1\B2, then ∃f ∈ B2\B1 such that (B1\{e}) ∪ {f} ∈ B.

Lemma 4.8. Let M be a matroid over a set E and B a basis of M . If e ∈ E\B, then B ∪ {e}
contains a unique circuit C(e,B). Moreover, e ∈ C(e,B).
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Our goal is to describe the circuits of the matroid associated with the matrix A = A(n1,...,nm).
The ground set E is the set of column vectors of A. We identify E with the set of directed edges
in the grid E. Two directed edges in E are called parallel if they point in the same direction
and they have the same edge parameter W (u, v); that is, directed edges (u′, v′) and (u′′, v′′) are
parallel if v′ − u′ ∈ {±ek} for some k and (u′′, v′′) = (u′ + w, v′ + w) for some w ∈ ∑

` 6=k Ze`.
Recall that a cycle in a graph that is not necessarily simple is a subgraph in which every vertex
has degree 2.

Definition 4.9. Let C = C(n1,...,nm) be the set of subsets C ⊂ E with the following properties:
i) C is a disjoint union of pairs of distinct parallel directed edges;
ii) the set of undirected edges corresponding to C, where two directed edges (u, v) and (v, u)

are replaced by two undirected edges, is a union of edge disjoint cycles;
iii) if B ⊂ C, then at least one of (i) or (ii) does not hold for B.

The set C(2,1) of such walks on the 2× 1-grid has 29 elements, listed in Example 4.12 below.

Proposition 4.10. The set C is the set of circuits of a matroid on E.
Proof. The collection C satisfies the three conditions in Lemma 4.6: Condition i) is trivial,
ii) comes from the minimality requirement iii) in the definition of C, and iii) holds since by
eliminating the shared directed edges in two overlapping elements C1, C2 ∈ C, we get a collection
of directed edges, which satisfies i) and ii) of Definition 4.9 and hence contains an element of C.
Thus C is the set of circuits of a matroid on E . ¤

In an early stage of our project we believed that Proposition 4.10 characterizes the matroid
of A. Later we found out that this is true over a field of characteristic two but generally false
over the real field R we are interested in here. However, when A is unimodular the matroid is
independent of the characteristic of the ground field. Here is one instance where this happens.

Lemma 4.11. For a grid of size n× 1, the set C equals the set of circuits of the matroid of A.

Proof. For n×1 grids, the condition iii) in Definition 4.9 implies that the set of undirected edges
corresponding to a circuit C ∈ C is a union of at most two cycles. For each C ∈ C we construct
a vector VC in {0, +1,−1}E whose support equals C and that lies in the kernel of A. The vector
VC is constructed as follows: We choose a cycle in C and walk along this cycle clockwise. We
assign +1 to forward pointing edges and −1 to backward pointing edges. If C consists of two
cycles, we walk along the second cycle counterclockwise and assign +1 to forward pointing edges
and −1 to backward pointing edges. This ensures that VC has zero inner product with each row
of A that is indexed by a vertex parameter av. Parallel pairs of edges receive opposite signs
because they point in the same direction. This ensures that VC has zero inner product with
each row of A that is indexed by a parameter W (u, v). Hence VC lies in the kernel of A.

The construction of VC reveals that the columns of A corresponding to any proper subset of
C are linearly independent. This implies the inclusion

C ⊆ {
minimal linearly dependent subsets of column vectors of A}

.

But the reverse inclusion ⊇ holds as well. Consider any V ∈ ker(A)\{0}. We interpret V as a
multiset of signed directed edges in E , where each entry denotes the number of the corresponding
directed edges. These edges come in parallel pairs of opposite sign because V has zero inner
product with the rows of A that are indexed by parameters W (u, v). The undirected graph
underlying V is a union of cycles because V has zero inner product with the other rows. Hence
the support of V must contain some circuit C ∈ C. This completes the proof of Lemma 4.11. ¤
Proof of Theorem 4.5. To prove the “only if” direction, it suffices to give two examples of circuits
which are not squarefree, one for the 3× 2 grid and one for the 1× 1× 1 grid. These examples
are also circuits for larger two-dimensional grids, and for grids of dimension m ≥ 3, respectively.
Then, by Proposition 4.4, we conclude that the corresponding matrix A is not unimodular.
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i) 3× 2 grid: The following non-squarefree binomial is a circuit:

L10L30U
2
01U20D02D31 − L12L32U10U11U31D01D22

ii) 1× 1× 1 grid: The non-squarefree binomial

R2
000D010F100B001 −R001R011D110F010B111

is a circuit, where B and F denote the additional backward and forward moves.

We now prove the “if” direction for the n × 1 grid. Let k denote the number of rows of
the matrix A = A(n,1). Then rk(A) = k−1 by Lemma 3.11. We must show that all non-zero
(k−1)×(k−1) minors of A have the same absolute value. The row vectors of A corresponding to
the vertices of the grid are not independent: they sum to 0. So, in order to get non-zero minors,
we delete the row corresponding to the vertex a0,...,0. The resulting matrix is denoted A′.

In Lemma 4.11 we characterized the circuits of the matroid on the column vectors of A′ for
n×1 grids. Consider two distinct bases B and B′ of this matroid. To finish the proof, we need to
show that the determinants of the submatrices of A′ corresponding to these bases have the same
absolute value. Let e ∈ B\B′. So by Lemma 4.7, ∃f ∈ B′\B such that B1 = (B\{e})∪ {f} is a
basis. This construction can be carried on until Bk = B′. So without loss of generality B1 = B′.
By Lemma 4.8 B∪{f} contains a unique circuit C and f ∈ C. Because B1 is also a basis, we get
by the same argument that e ∈ C. The corresponding vector VC in kernel(A) has coordinates
±1 in positions e and f . Hence we can replace the column vector e by the column vector f
without changing the absolute value of the determinant. In symbols, |det(B)| = |det(B′)|.

To finish the proof, we need to show that the 13×24 matrix A for the 2×2 grid is unimodular.
This can be verified with the help of a computer algebra system such as CoCoA or 4ti2. Namely,
we compute the Graver bais of A and we observe that all binomials in that Graver basis are
squarefree. Since the Graver basis contains every reduced Gröbner basis, this implies that
every initial monomial of IA is squarefree. Hence, by [20, Remark 8.10], the matrix A(2,2) is
unimodular. ¤

We conducted a further computational study of the toric ideal IA for the two minimal grids
whose matrices A are not unimodular, namely the 3 × 2 grid and the 1 × 1 × 1 grid. In what
follows, we present two tables that show the total number of binomials of each degree for the
Graver basis, the set of circuits and the minimal Markov basis. In parenthesis are the numbers
of squarefree binomials in these bases. The two tables were computed using the software 4ti2.

3× 2 grid:

Degree 2 3 4 5 6 7 8

Graver basis 45 (45) 128 (128) 464 (464) 1600 (1600) 3904 (3904) 4928 (4032) 1088 (192)

Circuits 45 (45) 128 (128) 464 (464) 1600 (1600) 3904 (3904) 4928 (4032) 896 (0)

Markov basis 36 (36) 0 (0) 4 (4) 4 (4) 4 (4) 0 (0) 0 (0)

1× 1× 1 grid:

Degree 2 3 4 5 6

Graver basis 42 (42) 224 (224) 1032 (1032) 1728 (1152) 672 (96)

Circuits 42 (42) 224 (224) 1032 (1032) 1728 (1152) 576 (0)

Markov basis 33 (33) 8 (8) 12 (12) 0 (0) 0 (0)

Note that the Markov basis in both examples consists of squarefree binomials only and that
the number of binomials with squares of degree 7 and 8 for the 2× 3 grid, respectively of degree
5 and 6 for the 1× 1× 1 grid is the same. We wonder if this also holds for higher dimensions.

We end this section by illustrating the conclusion of Theorem 4.5 for our running example.
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Example 4.12 (2 × 1 grid). The set C(2,1) of circuits of the 8×14-matrix A(2,1) in Example
3.9 consists of 29 elements. Each circuit C corresponds to a unique (up to sign) vector VC in
{0, +1,−1}14 ∩ kernel(A(2,1)), and hence to a difference of squarefree monomials in

R[P ] = R[R00, R01, R10, R11, L10, L11, L20, L21, U00, U10, U20, U01, D11, D21]

We now list the 29 binomials in the Graver basis C(2,1) of IA(2,1) . First, there are the eight
quadrics which generate I(2,1). These correspond to the eight circuits of type C1. Next, there
are five circuits of type C2. These are displayed below as a quadratic binomial and as a picture:

1) R00L10 −R01L11

2) R10L20 −R11L21

3) D11U10 −D01U00

4) D21U20 −D01U00

5) D21U20 −D11U10

The remaining 16 circuits are given below with the corresponding binomials in the Graver basis.

1) R00R10U20 −R01R11U00 9) R00R10D01 −R01R11D21

2) L10L20U00 − L11L21U20 10) L10L20D21 − L11L21D01

3) R00L21U20 −R01L20U00 11) R00L21D01 −R01L20D21

4) R10L11U20 −R11L10U00 12) R10L11D01 −R11L10D21

5) R10D11U20 −R11D01U00 13) R11D21U10 −R10D01U00

6) L21D11U20 − L20D01U00 14) L20D21U10 − L21D01U00

7) R00D21U20 −R01D11U00 15) R01D21U20 −R00D01U10

8) L11D21U20 − L10D11U00 16) L10D21U20 − L11D01U10
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Similar lists of circuits can be computed, as least in principle, for larger and higher-dimensional
grids. However, their combinatorial structure will be quite complicated. To appreciate this, we
invite the reader to draw the picture for the circuit of the 4×4-grid displayed in (5.6) below. ¤

5. Primary decomposition and boundary components

The set of commuting birth-and-death processes is the set of non-negative real solutions of
the quadratic equations (3.1). In the previous two sections we have focused on the set of strictly
positive solutions, and we have argued that its closure is a toric variety V (IA) with interesting
combinatorial properties. In this section we apply binomial primary decomposition [3, 6] to
classify those non-negative solutions of (3.1) that are not in the closure of the positive solutions.

Notation 5.1. Let I(n1,...,nm) denote the ideal in the polynomial ring K[P ] that is generated
by the quadrics in (3.1). Here K is allowed to be an arbitrary field. The ideal I(n1,...,nm) is a
binomial ideal in the sense of [6]. It represents all commuting birth-and-death processes.

To keep things simple, we first concentrate on the two-dimensional case. We use the notation
of Section 2 for an m×n grid. Then I(m,n) is a binomial ideal in the polynomial ringK[R, L, D, U ]
over an arbitrary field K. The set of indeterminates equals

{
Rij : 0 ≤ i < m, 0 ≤ j ≤ n

} ∪ {
Lij : 0 < i ≤ m, 0 ≤ j ≤ n

}

∪ {
Dij : 0 ≤ i ≤ m, 0 < j ≤ n

} ∪ {
Uij : 0 ≤ i ≤ m, 0 ≤ j < n

}
.

The ideal I(m,n) is minimally generated by the following set of 4mn quadratic binomials
{
Ui,jRi,j+1 −Ri,jUi+1,j , Ri,j+1Di+1,j+1 −Di,j+1Ri,j , Di+1,j+1Li+1,j − Li+1,j+1Di,j+1 ,

Li+1,jUi,j − Ui+1,jLi+1,j+1 : 0 ≤ i < m, 0 ≤ j < n
}
.

As a warm-up, let us discuss the simplest case, namely the four binomials on a single square.

Example 5.2. (m = n = 1) The variety V (I(1,1)) ⊂ K8 consists of all pairs of matrices

(5.1)




0 0 R00 0
0 0 0 R01

L10 0 0 0
0 L11 0 0


 and




0 U00 0 0
D01 0 0 0
0 0 0 U10

0 0 D11 0




that commute. The possibilities for this to happen are revealed by the primary decomposition

I(1,1) = 〈U00R01 −R00U10, R01D11 −D01R00, D11L10 − L11D01, L10U00 − U10L11〉
= IA ∩ 〈U00, U10, D01, D11〉 ∩ 〈R00, R01, L10, L11〉.

Here IA is the toric ideal of the matrix A = A(1,1). It is generated by the six 2×2-minors of the
matrix

(5.2)
(

R00 U00 L11 D11

R01 U10 L10 D01

)
.

We see that V (I(1,1)) is the union of three irreducible components. The main component V (IA)
has dimension 5, while the two boundary components have dimension 4. The two matrices (5.1)
commute if and only if either one of them is the zero matrix or the matrix (5.2) has rank ≤ 1. ¤

An ideal in a polynomial ring is radical if and only if it is a finite intersection of prime
ideals. We say that a pure toric ideal is a prime ideal which is generated by indeterminates and
differences of monomials. For example 〈xy−z2〉 is pure toric but 〈xy+z2〉 and 〈x2−z2〉 are not.

Conjecture 5.3. The ideal I(m,n) is radical, all its associated primes are pure toric ideals, and
the prime decomposition of I(m,n) in K[R, L, D, U ] is independent of the coefficient field K.
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Example 5.2 establishes this conjecture for m = n = 1. What follows is devoted to establishing
partial results that support Conjecture 5.3, and to explore the combinatorics of the irreducible
components of our binomial variety V (I(m,n)) of commuting birth-and-death processes.

Example 5.4. (m ≤ 3, n = 1) The radical ideal I(2,1) is the intersection of 11 pure toric ideals.
These 11 primes are easily found in Singular or Macaulay2. They come in six symmetry classes:

(1) The main component has codimension 6 and degree 16. It corresponds to the rank one
condition for two matrices as in (5.2), one for each of the two squares in the 2× 1-grid:

IA =
〈

2× 2-minors of
(

R00 U00 L11 U11

R01 U10 L10 D01

)
and of

(
R10 U10 L21 D21

R11 U20 L20 D11

)〉
.

(2) There are two components of codimension 7 and degree 4, each isomorphic to V (I(1,1))
times a four-dimensional coordinate subspace. One of these two primes is the pure toric
ideal generated by {L21, L20, R11, R10} and the six 2× 2-minors of the matrix (5.2).

(3) The monomial component representing horizontal transitions has codimension 6:

〈U00, U10, U20, D01, D11, D21 〉.

(4) The monomial component representing vertical transitions has codimension 8:

〈R00, R01, R10, R11, L10, L11, L20, L21 〉.

(5) There is another pair of monomial primes of codimension 8. One of these two ideals is

〈R00, R01, L10, L11, U10, U20, D11, D21 〉.

(6) The last class consists of four monomial primes of codimension 7, such as

〈R10, L21, U00, U10, D01, D11, D21 〉.

A similar computation shows that I(3,1) is also a radical ideal. It is the intersection of 40 pure
toric ideals. The list is analogous to that above. Here, the main component IA is generated by
the 18 minors of the three 2× 4-matrices coming from the three squares in the grid. ¤

Current general-purpose implementations of primary decomposition are not able to perform
the corresponding computation for the 2× 2 grid. To crack this case, we applied the methods of
[3, 6] in an interactive fashion in order to verify Conjecture 5.3 and find the prime decomposition.

Example 5.5. (m = n = 2) The ideal I(2,2) is radical and it is the irredundant intersection of
199 pure toric ideals. The toric ideal IA representing the main component is minimally generated
by 26 binomials. Besides the 24 familiar quadrics which come from the 2×4-matrices on the four
squares of the grid, here we find the following two additional quartic Markov basis elements:

(5.3) R00L22U20D02 − R02L20U00D22 and R10L12U21D01 − R12L10U01D11.

¤
We shall next derive one theoretical result related to Conjecture 5.3. Let I be a pure binomial

ideal in a polynomial ringK[x1, x2, . . . , xr], that is, I is as ideal generated by monomial differences
xu1

1 xu2
2 · · ·xur

r − xv1
1 xv2

2 · · ·xvr
r . The lattice LI associated with I is the sublattice of Zr spanned
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by the vectors (u1 − v1, u2 − v2, . . . , ur − vr) in any generating set of I. For any positive integer
i < r, the elimination ideal I ∩K[x1, . . . , xi] is also pure binomial, and we have

(5.4) LI∩K[x1,...,xi] = LI ∩ (Ze1 + · · ·+ Zei).

A result of Gilmer [8] states that the radical
√

I of a pure binomial ideal I is also a pure binomial
ideal, and, using the methods developed in [6, §3], it is not hard to see that LI = L√I .

We say that a pure binomial ideal I is unimodular if the corresponding lattice LI is a unimod-
ular sublattice of Zr. By this we mean that the quotient group Zr/LI is free abelian and the
same holds for every elimination ideal of I. Equivalently, I is unimodular if the quotient group
Z{es : s ∈ σ}/(LI ∩ Z{es : s ∈ σ}) is free abelian for every subset σ of {1, 2, . . . , r}.
Proposition 5.6. If I is a unimodular pure binomial ideal in a polynomial ring K[x1, . . . , xr]
then every associated prime of I is a pure toric ideal.

Proof. We abbreviate the polynomial ring by S = K[x1, . . . , xr]. If I is toric then we are done.
Otherwise, we follow the approach in the proof of [6, Theorem 6.1] and pick a variable xi

such that both (I : xi) and I + 〈xi〉 strictly contain I. Note that the lattice LI+〈xi〉 equals
LI ∩ Z{e1, . . . , ei−1, ei+1, . . . , er} and hence is unimodular. The exact sequence

(5.5) 0 −→ S/(I : xi) −→ S/I −→ S/(I + 〈xi〉) −→ 0

shows that each associated prime of I is an associated prime of (I : xi) or of I + 〈xi〉. Both
(I : xi) and I + 〈xi〉 are unimodular pure binomial ideals, and they satisfy the desired conclusion
by Noetherian induction. Hence so does I. ¤

We have the following result which generalizes the main conclusion of Example 5.4.

Corollary 5.7. Every associated prime of the binomial ideal I(n,1) is a pure toric ideal.

Proof. In Theorem 4.5 we have shown that the lattice kernel(A(n,1)) associated with our binomial
ideal I(n,1) is unimodular. By Proposition 5.6, every associated prime of I(n,1) is pure toric. ¤

An overly optimistic conjecture suggested by Examples 5.4 and 5.5 would be that a minimal
Markov basis for the main component IA of I(m,n) consists of the 6mn quadrics derived from
the matrices (5.2) on all 1× 1-subgrids and the 2(m− 1)(n− 1) quartic binomials (5.3) derived
from all 2× 2-subgrids of the m× n-grid. Unfortunately this is far from true. For instance, for
m = n = 3 the Markov basis of IA consists of 314 binomials, including the 54 quadrics and 8
quartics, but there are also 16 quintics, 36 sextics and 200 binomials of degree eight such as

(5.6) U00U32L20L30L13L23R21R02 − U30U02L11L21L22L32R00R23.

It would be desirable to identify which circuits make up the Markov basis for arbitrary m and n.
We next examine the situation for the smallest example of a three-dimensional grid.

Example 5.8. (1×1×1-grid) The ideal I(1,1,1) is generated by 24 quadratic binomials (four for
each face of the 3-cube) in 24 unknowns (two for each edge of the 3-cube). We write I(1,1,1) =〈

L100U000 − U100L110, L101U001 − U101L111, L110D010 −D110L100, L111D011 −D111L101,

L100F000 − F100L101, L110F010 − F110L111, L101B001 −B101L100, L111B011 −B111L110,

R000U100 − U000R010, R001U101 − U001R011, R010D110 −D010R000, R011D111 −D011R001,

R000F100 − F000R001, R010F110 − F010R011, R001B101 −B001R000, R011B111 −B011R010,

B101U100 − U101B111, B001U000 − U001B011, B011D010 −D011B001, B111D110 −D111B101,

F000U001 − U000F010, F100U101 − U100F110, F010D011 −D010F000, F110D111 −D110F100

〉
.

The main component is a unimodular toric ideal of codimension 14 and degree 300. Its Markov
basis consists of 53 binomials (33 quadrics, 8 cubics and 12 quartics), and its Graver basis consists
of 3698 binomials (42 quadrics, 224 cubics, 1032 quartics, 1728 quintics and 672 sextics).
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We found that the binomial ideal I(1,1,1) is the intersection of 135 prime ideals, so it is radical.
Besides the main component, there are 91 monomial primes and 43 other binomial primes:

# cd deg representative associated prime
2 12 1 〈B001, B111, D010, D111, F010, F100, L100, L111, R001, R010, U001, U100〉
24 15 1 〈B011,B101,B111,D011,D110,F000,F100,F110,L101,L110,L111,R000,R001,R011,U000〉
9 16 1 〈B001,B011,B101,B111,F000,F010,F100,F110,L100,L101,L110,L111,R000,R001,R010,R011〉
48 17 1 〈B101,B111,D010,D011,D111,F010,F100,F110,L100,L101,L110,L111,R000,R001,R010,U000,U001〉
8 18 1 〈B011,B101,B111,D010,D011,D110,F010,F100,F110,L100,L101,L111,R000,R001,R011,U000,U001,U100〉
3 14 16 〈F110,F100,F010,F000, B111,B101,B011,B001 and 12 of the binomial generators of I(1,1,1)〉
14 15 4 〈R000, R010, L100, L110, F110, F100, F010, F000, B111, B101, B011, B001 and six binomials〉
26 16 9 〈L111, L101, F000, F010, R010, R000, L110, L100, F110, F100, B111, B101 and six binomials〉

We end by restating the main point of Conjecture 5.3 for grids in the m-dimensional lattice.

Conjecture 5.9. The binomial ideal I(n1,...,nm) is radical.
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