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Abstract

There are many sources of error in counting votes on election day:

the apparent winner might not be the rightful winner. Hand tallies

of the votes in a random sample of precincts can be used to test the

hypothesis that a full manual recount would find a different outcome.

This paper develops a conservative sequential test based on the vote-

counting errors found in a hand tally of a simple or stratified random

sample of precincts. The procedure includes a natural escalation: If

the hypothesis that the apparent outcome is incorrect is not rejected at

stage s, more precincts are audited. Eventually, either the hypothesis
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is rejected—and the apparent outcome is confirmed—or all precincts

have been audited and the true outcome is known. The test uses a pri-

ori bounds on the overstatement of the margin that could result from

error in each precinct. Such bounds can be derived from the reported

counts in each precinct and upper bounds on the number of votes cast

in each precinct. The test allows errors in different precincts to be

treated differently to reflect voting technology or precinct sizes. It is

not optimal, but it is conservative: the chance of erroneously confirm-

ing the outcome of a contest if a full manual recount would show a

different outcome is no larger than the nominal significance level. The

approach also gives a conservative P -value for the hypothesis that a

full manual recount would find a different outcome, given the errors

found in a fixed size sample. This is illustrated with two contests

from November, 2006: the U.S. Senate race in Minnesota and a school

board race for the Sausalito Marin City School District in California,

a small contest in which voters could vote for up to three candidates.

Keywords: hypothesis test, sequential test, auditing, elections

1 Introduction

Votes can be miscounted because of human error (by voters or election work-

ers), hardware or software “bugs” or deliberate fraud. Post-election audits—

manual tallies of votes in individual precincts—are intended to detect mis-

count, especially miscount large enough to alter the outcome of the election.1

To the best of my knowledge, eighteen states require or allow post-election

1Post-election audits can also reveal process problems, programming errors, equipment

malfunctions and other issues that should be addressed even if they do not change the
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audits [15, 8]. California is one. Since 1965, California Elections Code has re-

quired a hand count of the ballots in a random sample of 1% of the precincts

in each county, plus one precinct for each contest not represented in the 1%

sample.2 A post-election audit of 1% of precincts is a reasonable check for

gross error and malfunction. However, to provide high confidence3 that a

full manual recount would confirm the apparent outcome requires auditing a

number of precincts that depends on the number of precincts in the contest,

the number of ballots cast in each precinct, the apparent margin of victory

and the discrepancies the audit finds. No flat percentage, short of 100%,

gives high confidence in all circumstances.4

outcome. And audits deter fraud. See [14, 12]. For more on election monitoring, see [5].

An alternative approach to detecting error and deterring fraud is the “quick count,” which

monitors the counting process at a random set of polling stations or precincts. See [7].

An advantage of quick counts is that they can monitor the process, not just the outcome.

A disadvantage is that poll workers and potential fraudsters can know which precincts

or polling places are being audited before the counts are official. The U.S. Government

Accountability Office has published many reports on the accuracy and reliability of voting

systems and election outcomes (for example, [1, 2, 10]).
2See, for example, California Elections Code §15360.
3The meaning of “confidence” in the election audit community differs from its meaning

in statistics. The “confidence” that the apparent outcome is correct is 100% minus the P -

value of the hypothesis that the apparent outcome differs from the outcome a full manual

recount would find.
4Some audit laws, such as California’s 1% law, use the same precinct sampling frac-

tion for every contest in an election. The amount of error required to make the apparent

outcome of a contest wrong depends on the margin in the contest. The probability distri-

bution of the miscount an audit uncovers in a contest depends on how the sample is drawn

and the sample size, and also on the number of precincts in the contest and the number

of ballots and miscounted ballots in each contest in each precinct. And the amount of

error required to produce to make one of the losing candidates appear to be the winner

depends on the margin in the contest. Thus, the decision of whether to confirm an election
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In August 2007, California Secretary of State Debra Bowen de-certified

and conditionally re-certified electronic voting machines in California. One

condition of re-certification is that elections be audited using a sample size

that depends on “the apparent margin of victory, the number of precincts,

the number of ballots cast in each precinct, and a desired confidence level

that the winner of the election has been called correctly.”5 The method

presented here solves that problem. I am not aware of any other method that

does. New Jersey recently passed a bill that requires post-election audits of

randomly selected precincts, “to ensure with at least 99% statistical power

that for each federal, gubernatorial or other Statewide election held in the

State, a 100% manual recount of the voter-verifiable paper records would not

alter the electoral outcome reported by the audit. For each election held for

State office, other than Governor and Lieutenant Governor, and for county

and municipal elections held in 100 or more election districts, [the procedure

will] ensure with at least 90% statistical power that a 100% manual recount

of the voter-verifiable paper records would not alter the electoral outcome

reported by the audit.”6 Again, the method presented here is the only one I

am aware of that meets this requirement.

The U.S. House of Representatives is considering a bill, H.R. 811, The

Voter Confidence and Increased Accessibility Act of 2007 (Holt),7 which re-

quires post-election audits of federal elections. The sampling percentage de-

pends on the apparent margin of victory. Because the sampling percentage

does not take into account precinct sizes, the number of precincts in a contest

outcome depends on variables that are specific to a single contest. The method developed

here addresses one contest at a time.
5See www.sos.ca.gov/elections/elections vsr.htm.
6www.njleg.state.nj.us/2006/Bills/AL07/349 .PDF .
7See holt.house.gov/HR 811.shtml.
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or the errors uncovered during the audit, it does not guarantee any particular

level of confidence that the apparent outcome agrees with the outcome a full

manual recount would find.

The Massachusetts legislature is also considering a bill that would require

post-election audits of 5% of precincts, H671. The bill demands a complete

recount if the discrepancy between the manual count and the reported vote

exceeds certain thresholds. Like H.R. 811, H671 requires sampling a per-

centage of precincts that does not depend on the number of precincts in the

contest, so it does not guarantee any particular level of confidence that the

correct candidate was named the winner—unless a full recount is triggered.

Minnesota has an audit law (SF 2743) that requires audits of elections for

President, governor, U.S. Senator and U.S. Representative. The sample size

in each county is related to the number of registered voters in the county,

rather than the number of precincts in the county. The sampling percentage

the law requires does not take into account the number of precincts in the

contest or the margin, but it has provisions for increasing the sample size if

discrepancies are found; large discrepancies can trigger a recount of a county

or an entire congressional district. Like the bills mentioned above, the Min-

nesota audit law does not guarantee any particular level of confidence that

the outcome of the election is correct. See also section 5.2.

Previous papers on the statistics of post-election audits (for example,

[18, 13, 6, 17]) in essence have concentrated on the question, “if there is

enough error overall to change the outcome of an election, how large a random

sample of precincts must be drawn to have chance at least 1 − α of finding

at least one error?”8 If fewer precincts than that are audited, we will not

8The computations in those papers assume that the precincts to be hand-tallied are a

random sample without replacement drawn from all the precincts in the contest. However,
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have 1− α confidence that the outcome of the election is correct, even if the

audit finds no errors. That is because there are ways of distributing enough

miscount to spoil the election that have chance greater than α of being missed

entirely by the sample.

If the sample is at least as large as these methods prescribe, and the

manual tally finds no error, we are done: either the apparent winner is the

true winner or an event with probability less than α occurred (or one of

the assumptions of the method is wrong). But if the sample contains any

miscount, however small, these approaches do not tell us how reliable the

election outcome is, nor whether to confirm the outcome. The rules are

incomplete.

Manual tallies routinely turn up small miscounts. What should we do

then? Recount the entire contest by hand? Audit more precincts? If so, how

many? What if the expanded audit finds more miscount? When do we stop?

How do we decide whether the outcome is in doubt?

An audit procedure is incomplete unless it always either (i) confirms the

outcome of the election or (ii) demands a full recount. And it should have

an error rate that can be quantified in a reasonable way. For example, a

procedure might come with a mathematical guarantee that if it confirms the

outcome of the election, either the outcome is the same that a full manual

recount would find, or an event with probability no greater than α occurred.9

Deciding whether to confirm the outcome of a contest can be viewed as

testing a null hypothesis. The null hypothesis for election audits can be

in California, the precincts for audit are not chosen that way. Rather, 1% of the precincts

in each county are chosen at random (additional precincts are chosen, not necessarily at

random, if contests are missed by the sample). This is a stratified random sample of

precincts, not a simple random sample of precincts.
9See section 6.5 for other possibilities.
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chosen in more than one way. For example, the null hypothesis could be

“the outcome is right” or “the outcome is wrong.” In the Neyman/Pearson

paradigm, the chance of a type I error, the error of rejecting the null hypoth-

esis when it is true, is controlled to be at most α, the significance level.10 The

risk of incorrectly rejecting the null hypothesis when it is true is primary.

In election auditing, the primary risk is that of confirming an outcome

that is wrong. Failing to confirm an outcome that is correct—on the basis of

an initial audit sample—could lead to additional auditing, but that economic

risk seems less serious than the risk of awarding the contest to the wrong

candidate. We want the audit to provide strong evidence that the contest

came out right, not just to fail to find evidence that the contest came out

wrong. Hence, it makes sense to choose the null hypothesis to be that the

outcome is wrong, and to devise a test that has probability at most α of

incorrectly rejecting that hypothesis. If we reject the hypothesis that the

outcome is wrong, we conclude that the apparent outcome is the outcome

a full manual recount would find. If not, we count more votes. Eventually,

either we confirm the outcome or we have recounted all the ballots by hand.

This paper constructs a conservative sequential test of the hypothesis that

the apparent outcome is not the outcome a full manual recount would find.

The test terminates either with the declaration that the apparent outcome

is correct or with a full recount. The chance is at most α that the procedure

declares that the outcome is correct if the outcome is not the outcome a

full manual recount would find. The procedure also gives a P -value for the

hypothesis that the outcome is incorrect: a number P such that, given the

errors observed in the sample, either a full manual recount would find the

10One can try to find the level-α test that maximizes the power, the chance of rejecting

the null hypothesis when a particular alternative is true.
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same outcome or an event that had probability no greater than P occurred.

In the approach developed here, an audit can confirm the outcome of

a contest, but only a full manual recount can invalidate the outcome. So,

there is a positive probability that a declaration that the election outcome

is correct is mistaken, but a declaration that the outcome is incorrect is as

certain as a full manual recount can be. The approach automatically leads

to a full recount if the outcome of the contest is not validated by a manual

tally of some sufficiently large random sample of precincts.

There are many ad hoc choices in the method below, and the approach is

not the most powerful (with a different method, it might be possible to get

the same confidence by auditing fewer precincts). The choices were made to

simplify the exposition and implementation: methods need to be transparent

to be adopted as part of the election process and to inspire public confidence.

For example, an approach that required numerical optimization to maximize

P -values for a likelihood ratio test statistic over sets of nuisance parameters

might be more efficient, but because of its complexity would likely meet

resistance from elections officials and voting rights groups. In contrast, the

most esoteric calculation required for the method presented here is
(

N
n

)
. It

could be implemented in a spreadsheet program, which is perhaps a good

design criterion for software to be used by jurisdictional users at all levels of

government.

The main point of this paper is not the method itself; rather, the method

is an existence proof showing that it is possible to get conservative statistical

measures of confidence in election outcomes from post-election audit results

using simple computations.
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2 Assumptions and notation

Table 1 sets out the notation. All variables refer to a single contest of the

form “vote for up to f candidates.” Each ballot has f voting opportunities

for the contest; there are f apparent winners of the contest. A ballot with

votes for more than f candidates is overvoted . Overvotes are invalid—they

do not count as votes for any candidate.11 A ballot with votes for fewer than

f candidates is undervoted . The number of undervotes on such a ballot is f

minus the number of votes.

The analysis uses the following assumptions:

1. All kinds of error are possible in the machine counts: there can be

errors in the number of valid votes for each candidate, undervotes and

invalid votes. Ballots can be overlooked entirely. Ballots that do not

exist can be counted.

2. The truth is whatever the hand tally shows. (When the hand count does

not match the machine count, the hand count is typically repeated until

the counters are confident that the problem is with the machine count.

Hand counts are subject to error, but they are the gold standard.)

3. Precincts are selected at random for post-election audit.

Among the apparent losers, any candidate with at least as many reported

votes as the rest is an “apparent runner-up.” The apparent margin M is the

11Some states have “voter intent” laws: the people conducting the hand tally try to

determine what the voter intended, even if a machine could not. So, for example, a ballot

that had a mark for George Washington and also had George Washington as a write-in

candidate would be an overvote according to the machine, but a human might infer that

the voter intended to vote for George Washington. This paper assumes that rules are in

place for determining whether that is a valid vote.
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difference between the number of votes reported for the apparent winner(s)

with the fewest reported votes and the number of votes reported for an ap-

parent runner-up. If more than f candidates have at least as many reported

votes as the apparent top f candidates, M = 0: the contest is apparently

tied for the last winning place.

More precisely, let Vk be the total number of votes reported for candidate

k, k = 1, . . . , K. Let (V(k))
K
k=1 be the votes (Vk)

K
k=1 in rank order, so that

V(1) ≥ V(2) ≥ · · · ≥ V(K). Then M = V(f) − V(f+1). If #{k : Vk ≥ V(f)} > f ,

M = 0 and the contest is a tie.

As discussed in section 3.1, some subsets of apparent losers (and un-

dervotes and invalid ballots) can be pooled to form a smaller number of

“pseudo-candidates.” Pooling can reduce the sample size needed to con-

firm the election. After pooling, there remain K candidates and pseudo-

candidates, numbered 1 through K.

3 Testing the election outcome

The approach to testing whether the apparent election outcome is wrong is

as follows:

1. Select a test statistic.12

2. Select a sampling design and an increasing sequence of sample sizes

12In principle, the choice could be optimized to maximize power against some alterna-

tives. In practice, the method must be transparent, easy for the public to understand,

easy for elections officials to implement, and easy to verify or replicate. Here I use the

maximum of functions of the amount by which error in each precinct in the sample could

have inflated the margin, after pooling subsets of losers as described in section 3.1. This

leads to simple probability calculations. See section 3.3.
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C number of counties with at least one precinct in the contest.

C the integers {1, . . . , C}.
N ≡

∑
c∈C Nc total number of precincts in the contest.

N the integers {1, . . . , N}.
Nc number of precincts in the contest in county c.

J ?
n a simple random sample of n elements of N .

J �
n a random sample with replacement of n elements of N .

bp reported voting opportunities in precinct p, f times the number of

ballots reported in precinct p, including undervoted and invalid ballots.

Bc reported voting opportunities in county c.

B ≡
∑

p∈N bp =
∑

c∈C Bc reported voting opportunities in the contest.

K number of candidates and pseudo-candidates in the contest, after

pooling. See section 3.1.

K the integers {1, . . . ,K}.
Kw the indices of the f candidates who are apparent winners.

K` the indices of the K − f candidates who are apparent losers.

akp actual vote for (pseudo-)candidate k in precinct p.

Ak ≡
∑

p∈N akp actual total vote for (pseudo-)candidate k.

rp upper bound on
∑

k∈K akp, the actual total vote in precinct p.

vkp reported vote for (pseudo-)candidate k in precinct p.

Vk ≡
∑

p∈N vkp total vote reported for (pseudo-)candidate k.

M overall apparent margin in votes: reported votes for the apparent winner(s)

with fewest reported votes, minus reported votes for an the apparent loser(s)

with the most reported votes: M = ∧k∈KwVk − ∨k∈K`
Vk.

ep ≡
∑

k∈Kw
(v1p − a1p)++ maximum by which error in precinct p could increase M .

+
∑

k∈K`
(akp − vkp)+

up a priori upper bound on ep. See section 3.2.

E =
∑

p∈N ep maximum by which error in all precincts could increase M .

wp(·) a monotonic weight function for error in precinct p. See section 3.3.

w−1
p (·) the inverse of wp: w−1

p (t) ≡ supz{z : wp(z) ≤ t}.

Table 1: Notation.
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(ns).
13 Select a corresponding sequence of significance levels (αs) that

give a level-α test overall.14

3. Set s = 1. Set the initial sample to be the empty set.

4. Augment the current sample by a random sample so that it contains

ns precincts in all.

5. Tally the votes in the new precincts by hand.

6. Calculate the test statistic and the maximum P -value for the test statis-

tic over all ways of allocating error among the precincts that would

result in a different election outcome.

7. If the maximum P -value is less than αs, confirm the apparent outcome.

Otherwise, increment s and return to step 4, unless all N precincts have

now been hand tallied. If all precincts have been hand tallied, confirm

the outcome the hand tally shows.

3.1 Marginal notes

Example 1. Consider a winner-take-all (f = 1) contest with K = 2 candi-

dates. The reported vote for the apparent winner is V1 = 1, 000 votes, and

13We might increase the sample size by a fixed number of precincts at each stage, such

as d0.02Ne. Or we might increment the sample by the smallest number of precincts such

that, if the test statistic did not increase from its current value, we would confirm the

outcome. The only requirement is that ns+1 − ns ≥ 1.
14For example, αs ≡ α/2s, s = 1, . . .. Alternatively, if the sequence of sample sizes (ns)

guarantees that by stage S all N precincts will be in the sample, we could take αs = α/S.

These choices just use Bonferroni’s inequality; one could do better using methods from

sequential analysis. See section 6.4.
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the reported vote for the apparent loser is V2 = 500 votes. The margin is

M = 1, 000− 500 = 500 votes.

It is possible that both candidates actually had 750 votes and the apparent

margin was produced by miscounting 250 ballots with votes for the apparent

loser as votes for the apparent winner: if the the apparent winner’s vote total

was high by 250 and the apparent loser’s vote total was low by 250, that could

have turned a tie into the apparent margin. Alternatively, if 500 apparent

undervotes were miscounted as votes for the apparent winner, that could have

turned a tie into the apparent margin. Or if 500 ballots with votes for the

apparent loser had been overlooked on election day, that could have turned

a tie into the apparent margin. Or if 500 ballots with votes for the apparent

winner had been double-counted on election day, that could have turned a

tie into the apparent margin. If 100 votes for the apparent loser had been

miscounted as undervotes, 100 had been miscounted as votes for the apparent

winner, 100 votes for the apparent loser had been overlooked entirely, and

100 nonexistent ballots had been counted as votes for the apparent winner,

that could have turned a tie into the apparent margin. (Net, the reported

vote totals would have been off by 200 for the apparent winner and 300 for

the apparent loser, 500 votes in all.) But if the overcount for the apparent

winner plus the undercount for the apparent loser is less than 500 votes in

all, the apparent winner must be the true winner.

More generally, suppose there are K candidates in all, undervotes, invalid

ballots and overlooked ballots. (A negative number of ballots could be over-

looked, corresponding to overcounting real ballots or counting nonexistent

ballots). An error that increases the count for any of the apparent winners

by 1 vote increases the apparent margin by at most 1 vote. An error that

decreases the count for any of the apparent losers by 1 vote increases the
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apparent margin by at most 1 vote. Conversely, errors that decrease the

count for any apparent winner or that increase the count for any apparent

loser might decrease the apparent margin, but cannot increase the apparent

margin. Miscounting a vote for an apparent loser as a vote for an apparent

winner could affect inflate the apparent margin by as much as 2 votes (or

possibly 0 or 1). Miscounting an undervote as a vote for one of the apparent

winners could increase the apparent margin by as much as 1 vote. Overlook-

ing a valid vote for one of the losers could increase the apparent margin by

as much as 1 vote. Errors in the number of undervotes or invalid ballots do

not by themselves affect the margin.

In summary, the amount by which error could have artificially inflated the

apparent margin is at most the total overcount for all the apparent winners,

plus the total undercount for all the apparent losers.

Let vkp be the reported number of votes for candidate k in precinct p,

Vk =
∑

p∈N vkp be the total number of reported votes for candidate k, akp be

the actual number of votes for candidate k in precinct p, and Ak =
∑

p∈N akp

be the actual total number of votes for candidate k. Let Kw denote the

indices of the candidates who are apparent overall winners of the race (so

#Kw = f) and let K` denote the indices of the candidates who are apparent

losers. For real z, define z+ ≡ z ∨ 0. The potential margin overstatement in

precinct p is

ep ≡
∑

k∈Kw

(vkp − akp)+ +
∑

k∈K`

(akp − vkp)+. (1)

The total potential margin overstatement is E ≡ ∑
p∈N ep. The net potential

margin overstatement in the election is

E ≡
∑

k∈Kw

(Vk − Ak)+ +
∑

k∈K`

(Ak − Vk)+. (2)
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We know that

M = ∧k∈KwVk − ∨k∈K`
Vk. (3)

Thus,

∧k∈KwAk − ∨k∈K`
Ak ≥ (∧k∈KwVk − ∨k∈Kw(Vk − Ak)+)−

− (∨k∈K`
Vk + ∨k∈K`

(Ak − Vk)+)

≥

∧k∈KwVk −
∑

k∈Kw

(Vk − Ak)+

−

−

∨k∈K`
Vk +

∑
k∈K`

(Ak − Vk)+


= M −

∑
k∈Kw

(Vk − Ak)+ −
∑

k∈K`

(Ak − Vk)+

= M − E . (4)

So, the apparent set of winners must be the true set of winners if

E < M. (5)

By the triangle inequality,

E ≡
∑

k∈Kw

(Vk − Ak)+ +
∑

k∈K`

(Ak − Vk)+

=
∑

k∈Kw

∑
p∈N

(vkp − akp)


+

+
∑

k∈K`

∑
p∈N

(akp − vkp)


+

≤
∑

k∈Kw

∑
p∈N

(vkp − akp)+ +
∑

k∈K`

∑
p∈N

(akp − vkp)+

=
∑
p∈N

 ∑
k∈Kw

(vkp − akp)+ +
∑

k∈K`

(akp − vkp)+


=

∑
p∈N

ep ≡ E. (6)

Hence, the apparent outcome must be the same that a full manual recount

would show if E < M . Our test is based on this condition.
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Example 2. Consider a winner-take-all (f = 1) contest with K = 4 can-

didates. The reported vote totals are V1 = 800 votes, V2 = 500 votes,

V3 = 150 votes, and V4 = 50 votes. The margin is M = 800−500 = 300 votes.

The reported winner might not be the real winner if 150 votes for candidate 2

had been miscounted as votes for candidate 1, producing a net potential mar-

gin overstatement in the election of 300 votes; then candidates 1 and 2 might

have been tied. Candidate 3 could not have been the winner unless the net

potential margin overstatement in the election is more than 650 votes, and

candidate 4 could not have been the winner unless the net potential margin

overstatement in the election is more than 750 votes. The apparent winner

must be the true winner if E < M .

Example 3. What if, in example 2, we pretend that candidates 3 and 4

are a single “pseudo-candidate” with 150 + 50 = 200 reported votes? Then

K = 3 (pseudo-)candidates, with V1 = 800 votes, V2 = 500 votes, and

V3 = 200 votes. Candidate 1 must be the true winner if the net potential

margin overstatement in the election for candidate 1, candidate 2 and pseudo-

candidate 3 is less than M = 300 votes. If pseudo-candidate 3 could not

have been the winner, then neither the original candidate 3 nor the original

candidate 4 could have been the winner, because the pseudo-candidate gets

all the votes for both of them—at least as many votes as either gets separately.

The apparent winner must be the true winner if E < M , with E measured

for the three pseudo-candidates who remain after pooling candidates 3 and 4.

Pooling candidates 3 and 4 into a single pseudo-candidate tends to result

in a more powerful test, because ep, the potential margin overstatement in
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precinct p, then ignores errors that do not change the number of votes for

the pseudo-candidate, such as counting a vote for candidate 3 as a vote for

candidate 4 or vice versa. Such errors cannot suffice to change the outcome

of the election. For the outcome to be wrong, in addition to errors that redis-

tribute votes among the candidates who are pooled together, it is necessary

that E ≥ M .

If we pool candidates 2 and 3 into a single pseudo-candidate with 500 +

150 = 650 votes, the margin between the apparent winner and that pseudo-

candidate is only 150 votes. Provided the total potential margin overstate-

ment measured for candidate 1, the pseudo-candidate and candidate 4 is less

than 150 votes, candidate 1 must be the real winner. The sufficient condition

for the outcome to be right has changed: we need E < 150 < M . In effect,

we need to test using a smaller margin, the margin between the winner and

the pseudo-candidate—the runner-up after pooling. That could result in a

less powerful test, so we will avoid it. We cannot pool candidates whose to-

tal vote is greater than or equal to the vote for any of the apparent winners,

because then the outcome of the contest could be wrong even if E = 0.

Example 4. Suppose that the contest allows votes for up to two out of three

candidates, so f = 2 and K = 3. Suppose that a full hand recount would

show that candidate 1 got 1, 000 votes, candidate 2 got 500 votes, candidate 3

got 500 votes, there were 250 undervotes and there were 250 overvoted bal-

lots. Let M ≤ 500. Miscounting M/2 of the votes for candidate 3 as votes

for candidate 2 would produce an apparent margin of M between them, with

net potential margin overstatement in the election of M . Miscounting M of

the overvoted ballots as one vote each for candidate 1 and candidate 2 would
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produce an apparent margin of M votes between candidates 2 and 3, with

net potential margin overstatement in the election of 2M . Failing to count

M of the votes cast for candidate 3 would produce an apparent margin of M

votes between candidates 2 and 3, with a net potential margin overstatement

in the election of M . The outcome must be correct if E < M .

Example 5. Finally, consider an example with f = 2, undervotes and over-

votes and pooling. There are four candidates on the ballot, plus two write-in

candidates. The reported votes are as follows: 500 votes for the apparent

overall winner; 400 votes for the apparent second-place winner; 300 votes

for the apparent runner-up (the loser with the most votes); 100 votes for

the apparent fourth-place candidate listed on the ballot; 5 votes for each

of the two write-ins; 50 undervotes and 50 invalid ballots. The margin is

M = 400−300 = 100 votes. If we pool the fourth-place candidate, the write-

ins, the undervotes and f times the overvotes into a single pseudo-candidate,

that pseudo-candidate would have 100 + 5 + 5 + 50 + 2 × 50 = 260 votes,

fewer than the runner-up. So, we can take K = 4 candidates, corresponding

to the apparent overall winner, the apparent second winner, the runner-up

and the pseudo-candidate. The outcome of the election cannot be wrong

unless the net potential margin overstatement in the election, measured for

those four (pseudo-)candidates, is at least M = 100 votes. The total po-

tential margin overstatement E would have to be greater than 140 votes for

the pseudo-candidate to be one of the winners, and if the pseudo-candidate

is not a winner, neither the apparent fourth-place candidate nor any of the

write-ins could be winners. Hence, the outcome must be correct if E < M .

We shall adopt the following rule for pooling:
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Pooling rule.

Pool the losers into groups so that no group has more votes than

the runner-up, but the group with the fewest votes has as many

votes as possible.

Other pooling rules make sense too, for example, “pool the losers into as

few groups as possible such that no group has more votes than the runner-

up.” Any such pooling rule ignores many errors that by themselves cannot

affect the outcome of the contest, but still the apparent winners must be

the true winners if the total potential margin overstatement E < M . If

a pseudo-candidate cannot be the winner, then neither can any of the real

candidates who were pooled to form the pseudo-candidate. The value of K is

the number of candidates and pseudo-candidates that remain after pooling.

It is not necessary to pool—the test developed below is conservative even

without pooling—but pooling yields a more powerful test.

3.2 Bounding the potential margin overstatement in

each precinct

If the potential margin overstatement in individual precincts can be large

compared to the margin, it will take a large sample to provide compelling

evidence that E < M , because an outcome-changing error could hide in a

small number of precincts. Miscount that could affect the outcome of an

election is easier to detect if it must be spread over many precincts.

By how much can error in precinct p inflate the apparent margin? We

need an upper bound up for the potential margin overstatement ep in precinct

p. The smaller the values u = (up)
N
p=1 are, the larger the number of precincts
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that must be “tainted” to have E > M , and so the easier it is to detect an

election-altering amount of error. If any number of ballots could be over-

looked or overcounted on election day, there is no finite bound up for ep.

Some studies assume that if the discrepancy in any precinct exceeds, say,

40% of the votes reported in precinct p [18, 13] or 40% of the ballots reported

in precinct p, including undervotes and invalid ballots [6], that would be

detected even without an audit. (If votes on 20% of the ballots had been

“flipped” to an apparent winner from an apparent loser, that would produce

a potential margin overstatement ep of 40% of the ballots.) That is, the

studies take up = 0.4bp. This could be reasonable in some circumstances,

but it is hard to justify.

Suppose we know a number rp ≥ 0 so that the actual total vote satisfies∑
k∈K akp ≤ rp. For example, in precincts that use optical scan ballots, the

total number of votes can be no larger than f times the number of ballots

delivered to the precinct, so that could serve as rp. The number of votes cast

in a precinct can be no larger than f times the number of voters registered in

a precinct, including same-day registrations (if the jurisdiction allows them),

so that could serve as rp. A count of signatures in a precinct pollbook, times

f , might provide a value for rp, although occasionally someone might vote

without signing in. In some jurisdictions, elections officials check the number

of voted, spoiled and unvoted ballots in every precinct against the number of

ballots sent to and returned from the precinct. The number of voted ballots

according to such an “accounting of ballots,” times f , could serve as rp.

If
∑

k∈K akp ≤ rp, it is impossible for ep to exceed

e+
p (rp) ≡ max

x∈IRK
:x≥0,

∑
k∈K xk≤rp

 ∑
k∈Kw

(vkp − xk)+ +
∑

k∈K`

(xk − vkp)+


= rp +

∑
k∈Kw

vkp − ∧k∈K`
vkp. (7)
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These bounds suppose that every one of the rp possible valid votes in precinct

p might in fact have been a vote for the apparent loser k ∈ K` with the fewest

reported votes in precinct p. Let e+(r) denote the N -vector with components

(e+(r))p = e+
p (rp), p ∈ N .

Note that if some apparent loser k ∈ K` gets no votes in precinct p, e+
p (rp)

takes its maximum possible value, rp +
∑

k∈Kw
vkp; e+

p (rp) gets smaller as the

minimum number of votes any apparent loser gets in precinct p gets bigger.

The pooling rule in section 3.1 tends to make ∧k∈K`
vkp larger than it would

be without pooling. This is another way pooling helps, especially in contests

with write-in candidates, because often there are many precincts in which

some write-in candidate receives no votes.

Henceforth, u will be a vector of upper bounds for e. Whether u is e+(r),

0.4b or some other bound does not matter for the rest of the mathematical

development.

3.3 The test statistic

For any x ∈ IRN and J ⊂ N , define

∨Jx ≡ ∨p∈Jxp (8)

and ∑
J

x ≡
∑
p∈J

xp. (9)

For x, y ∈ IRN , define x ∧ y to be the vector with components

(x ∧ y)p = xp ∧ yp, p ∈ N , (10)

and x ∨ y to be the vector with components

(x ∨ y)p = xp ∨ yp, p ∈ N . (11)
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Fix a set of monotonically increasing functions w = (wp(·))N
p=1 and for

x ∈ IRN , define w(x) ≡ (wp(xp))
N
p=1. Let J ?

n be a simple random sample of

size n from N . The hypothesis test is based on the test statistic

∨J ?
n
w(e). (12)

The functions w = (wp(·)) quantify our relative tolerance for errors in dif-

ferent precincts p ∈ N . All choices of w yield conservative tests, so w can

be chosen at will. For example, we might choose wp(z) = z. Then every

error that could increase the apparent margin gets the same weight. Or we

might choose wp(z) = z/bp; then ∨J ?
n
w(e) is the maximum potential margin

overstatement relative to the reported number of voting opportunities in the

precinct. We might choose wp(z) = z/up; then ∨J ?
n
w(e) is the maximum po-

tential overstatement of the margin as a fraction of the bound on the margin

overstatement in the precinct. Or we might pick wp(z) to reflect the accu-

racy of the voting technology. For example, we might be less tolerant of error

in precincts with direct-recording electronic (DRE) machines than we are of

error in precincts with optically scanned ballots.15 Then we might pick wp(·)
to grow more rapidly for DRE precincts than for precincts that use optically

scanned ballots. Because post-election audits often find a miscounted vote or

two, even in precincts with very few votes, weight functions of the following

form can be desirable:

wp(z) = (z −m)+/bp, (13)

15If a DRE is working correctly, it should record every vote perfectly. In contrast, if

a voter does not use an appropriate pen or pencil to fill in an optically scanned ballot,

makes a stray mark on the ballot or does not fill in the bubble perfectly, or if the scanner

is miscalibrated, the optical scan could reasonably differ from a human’s inference about

the voter’s intent [12].
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with m on the order of 2 or 3. This function ignores potential margin over-

statements of up to m votes per precinct, and penalizes larger potential

margin overstatements in inverse proportion to the size of the precinct (here

size is the reported number of voting opportunities). That prevents an error

in scanning a single ballot in a small precinct from making the test statistic

large, but takes into account the fact that we expect more discrepancies in

larger precincts, all other things being equal.

3.4 Tail probabilities for the sample maximum

This section shows how to find P -values for the hypothesis E ≥ M using the

test statistic ∨J ?
n
w(e).

We have a vector u = (up)
N
p=1 > 0 of upper bounds on the errors (ep)

N
p=1

and a vector of monotonically increasing functions w = (wp)
N
p=1. If the total

potential margin overstatement E =
∑
N e is big, if e ≤ u, and if the sample

is big enough, it is unlikely that ∨J ?
n
w(e) will be small. So, if the observed

value of ∨J ?
n
w(e) is “small enough,” that is evidence that E =

∑
N e < M—

evidence that a full recount would find the same outcome. This section makes

the idea precise.

Let t ∈ IR be strictly positive. Let the sample size n < N be fixed. Define

X = X (u, M) ≡ {x ∈ IRN : x ≤ u and
∑
N

x ≥ M}. (14)

The set X contains all ways of distributing potential margin overstatements

across precincts that satisfy the a priori bound e ≤ u and the null hypothesis

E ≥ M . To reject the hypothesis E =
∑
N e ≥ M when we observe that

∨J ?
n
w(e) = t, we need to know that IP{∨J ?

n
w(x) ≤ t} is small for all x ∈ X .
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Hence, we seek

π?(t) = π?(t; n, u, w, M) ≡ max
x∈X (u,M)

IPx{∨J ?
n
w(x) ≤ t}. (15)

The related quantity

π�(t) = π�(t; n, u, w, M) ≡ max
x∈X (u,M)

IPx{∨J �n w(x) ≤ t}, (16)

where J �
n is a random sample of size n with replacement from N , is useful

to bound the P -value when the data come from a stratified sample.

The individual components of e are nuisance parameters: the null hy-

pothesis involves only their sum, E =
∑
N e, but the precinct-level potential

margin overstatements {ep} affect the probability distribution of ∨J ?
n
w(e),

the test statistic.

Claim 1. Let w−1(t) ≡ (w−1
p (t))N

p=1. Let J −
k be the set of indices of the

k smallest components of u − w−1(t). Let q = q(t, u, w, M) be the largest

integer for which ∑
J−q

u ∧ w−1(t) +
∑

N\J−q

u ≥ M (17)

or q = 0 if there is no such integer. Then

π?(t; n, u, w, M) =


0, q < n

(q
n)

(N
n)

, q ≥ n
(18)

and

π�(t; n, u, w, M) = (q/N)n. (19)

Claim 1 is proved in appendix A.

The following algorithm finds q iteratively:
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1. Set J = N .

2. If J = ∅ or
∑
J u ∧ w−1(t) +

∑
N\J u ≥ M , q = #J .

3. Otherwise, let p ∈ J attain [up− (up∧w−1
p (t))] = ∨J [u− (u∧w−1(t))].

(Ties can be broken arbitrarily.) Remove p from J and return to step

2.

4 Putting it together

4.1 Testing using a simple random sample of precincts

Suppose that the precincts for audit will be drawn as a simple random sample.

To use the present method, do the following:

1. Select an overall significance level α and a sequence (αs) so that se-

quential tests at significance levels α1, α2, . . ., give an overall signifi-

cance level no larger than α. For example, we might take αs ≡ α/2s,

s = 1, 2, . . ..

2. Group apparent losing candidates using the pooling rule in section 3.1.

3. Choose a set of error bounds u, for example, the rigorous bounds e+ or

heuristic bounds such as 0.4b.

4. Select a vector of monotonically increasing functions w = (wp(·))N
p=1.

For example, wp(z) = z, wp(z) = z/bp or wp(z) = (z − 2)+/bp.

5. Compute the apparent margin M .
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6. Select an initial sample size n1 and a rule for selecting ns when the

hypothesis E ≥ M is not rejected at stage s−1.16 The only requirement

is that n1 ≥ 0 and ns − ns−1 ≥ 1.

7. Set s = 1, n0 = 0 and J0 = ∅.

8. Draw a random sample J ?
ns−ns−1

of size ns − ns−1 from N \ Js−1. Set

Js = Js−1 ∪ J ?
ns−ns−1

. Calculate ∨Jsw(e).

9. If π?(∨Jsw(e); ns, u, w, M) ≤ αs, confirm the outcome and stop. Oth-

erwise, increment s.

10. If ns < N , return to step 7. Otherwise, audit any precincts not yet in

the sample. Confirm the outcome if the outcome was correct.

If there is not a clear set of f winners (if M = 0), this will always escalate

to a full manual tally.

4.2 Testing using stratified random samples of precincts

Under current California law, each county draws its own random sample of

1% of precincts, at a minimum, for post-election audits. (Each county audits

at least one precinct for each contest, and fractions are rounded up. Some

counties voluntarily audit even larger samples.) Similarly, under Minnesota

law, each county draws its own random sample of 2, 3 or 4 precincts for

audit, depending on the number of registered voters in the county. The

samples in different counties are drawn independently. Thus, for contests

that cross county lines, the sample of precincts is a stratified random sample,

not a simple random sample. This section presents two ways to combine

16Section 4.3 discusses selecting n1. See footnote 12 for approaches to selecting ns.
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independent audits of different counties conservatively. Both have merits

and shortcomings.

Suppose there are C counties with precincts in the contest. Let C ≡
{1, . . . , C}. Let Ec be the total potential margin overstatement in county

c ∈ C, so E =
∑

c∈C Ec. Let Nc be the number of precincts in the contest in

county c ∈ C, so N =
∑

c∈C Nc. Let Bc be the number of voting opportunities

in the contest in county c ∈ C, so B =
∑

c∈C Bc.

4.2.1 Bounds from proportional sampling with replacement

Fix ns > 0. Let

ncs ≡ dnsNc/Ne. (20)

(Note
∑

c∈C ncs ≡ n′s ≥ ns.)

Claim 2. Suppose ncs precincts are drawn at random without replacement

from county c, independently for all c ∈ C. If there are k precincts among the

N in the contest for which wp(ep) ≤ t, the chance that none of the precincts

in any of the C samples has wp(ep) > t is at most (k/N)ns . This is proved

in appendix B.

Essentially, for finding at least one precinct with wp(ep) > t, stratified

sampling without replacement is more effective than stratified sampling with

replacement, which is at least as effective as unstratified sampling with re-

placement if the stratum sample sizes are {ncs}. So if we draw a sample of

size ncs (equation 20) from county c, independently for each c ∈ C, π� is an

upper bound on the maximum P -value. This approach computes probabili-

ties as if the sample were drawn with replacement from the entire population

of N precincts in the contest, but allocates the sample proportionately to
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the number of precincts in each county. (Fractions are rounded up, so the

actual sample size could be up to C precincts larger than the sample size

ns used in the probability calculations.) If the number of precincts in the

contest is large and the margin is not too small, the sample size is not much

bigger than that required for a simple random sample from the population

of N precincts in the contest.

If N is large relative to the overall margin, this method leads to a sample

size that is not much larger than required if the sample were a simple random

sample from all N precincts in the contest. Each county does a “fair share”

of the auditing—the number of precincts a county audits is proportional to

the number of precincts in the contest in that county, but for roundoff.

However, if the null hypothesis is not rejected at stage s, the sample will

need to be expanded in every county in the contest (but for roundoff). More-

over, whether such an expansion is needed depends on the audit results from

all counties in the contest, so county audit schedules are interdependent.

In contrast, the approach in the next subsection typically requires auditing

more precincts, but the audits in different counties are logistically indepen-

dent: whether the audit in a given county needs to be expanded depends on

the audit results in that county alone.

Stanislevic [20] makes a claim that implies that the probability that none

of the precincts in the stratified sample has wp(ep) > t is at most
(

k
ns

)
/
(

N
ns

)
,

that is, stratification using sample sizes {ncs} can only help. If that conjec-

ture were true, one could calculate the maximum P -value using π? instead

of π�, and the sample size would be at most C precincts larger than that

required for a simple random sample from the N precincts in the contest.

The conjecture is false, but seems to be “almost true.”17

17Stanislevic [personal communication (2007)] notes that there are counterexamples,
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Note that this approach can be used to find a conservative P -value for any

set of sample sizes ncs by pretending that the overall sample size corresponds

to the smallest sampling fraction ncs/Nc; that is, that the data came from

a sample of size ns = bN ∧c∈C (ncs/Nc)c drawn with replacement from the

population of N precincts. If the sampling fractions vary widely by county,

this can be extremely conservative. See section 5.2 for an illustration.

4.2.2 Bounds from independent tests in every county

Claim 3. There must be at least one county c ∈ C for which Ec

Bc
≥ E

B
. This

is proved in appendix C.

Suppose we test in each county at significance level α whether Ec ≥
MBc/B. Let Rc be the event that the test in county c rejects the hypothesis

but his numerical experiments suggest that increasing n by one restores the inequality.

Moreover, he claims that the inequality fails only when the counties have equal size and

k and ns are divisible by C, and that when the inequality fails,(
k
n

)(
N
n

) <

( (k/C
n/C

)(
N/C
n/C

))C

. (21)

That is, taint is hardest to detect when the counties are the same size and have the same

number of tainted precincts. Here is an example: Take N = 100, ns = 80, k = 98,

C = 2, N1 = N2 = 50, n1s = n2s = d80/2e = 40, k1 = k2 = 49 (that is, one heavily

tainted precinct in each county). Then the chance a simple random sample of size 80 from

the 100 precincts contains neither of the two heavily tainted precincts is (98
80)

(100
80 ) = 3.8%,

but the chance that a stratified random sample that draws 40 precincts from each of the

two counties without replacement contains neither of the two heavily tainted precincts is(
(49
40)

(50
40)

)2

= 4%. In this case, the chance of finding a heavily tainted precinct is less for

the stratified random sample than for the simple random sample: stratification can hurt.

(If both heavily tainted precincts are in the same county, stratification helps.) If ns is

increased to 81 so that ncs = 41 precincts are drawn from each county, then stratification

helps. The situation with stratification is rather delicate.
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Ec ≥ MBc/B. Then, if in at least one county Ec ≥ MBc/B,

Pr(∩c∈CRc) ≤ ∧c∈C Pr(Rc) ≤ α (22)

(the probability of an intersection of events is no greater than the smallest of

the event probabilities). Thus, if the total error E across precincts is M or

greater, the chance that we conclude at significance level α that Ec < MBc/B

in every one of the C counties is at most α overall, and typically rather less.18

This approach can be quite conservative. When the counties all contain

many precincts in the contest and the margin is large, the overall sample size

will tend to be about C times larger than would be required if the sample

were drawn without stratification. This wastes resources.

However, the approach has some logistical advantages. The apparent

margin depends on results in every county involved in the contest, so there

must be communication among counties before the audit can begin. But,

unlike the previous method, errors detected in one county do not require

any other county to increase its sample size, and the audit process does not

require cooperation or communication among counties.

4.3 “Fault-tolerant” initial sample size

The procedure can start with any initial sample size n1 ≥ 0. However, if the

initial sample size n1 is too small, we will not be able to reject the hypothesis

18Dopp and Stenger have asserted that to audit contests that span more than one county,

one should set the sample size using the smaller of the county or state margin [6]. To the

best of my knowledge, they have not investigated the effect that has on confidence in the

outcome of the election, and gave no proof that it results in a conservative test. This proof

shows that if one uses the overall margin—scaled by the number of ballots voted in the

contest in the county in question—the result is conservative.
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E ≥ M on the basis of the initial sample even if it shows no miscount

whatsoever. Audit samples often show small miscounts.

We can determine an initial sample size n1 so that we can confirm the

outcome without expanding the sample, provided the potential margin over-

statement found in the initial sample is sufficiently small. For example,

suppose we would like to be able to confirm the outcome as long as the test

statistic evaluated for the initial sample is no greater than t1. If we choose

n1 = arg min
n>0

{n : π?(t1, n, u, w,M) < α1}, (23)

then if ∨J ?
n1

w(e) ≤ t1, we can confirm the outcome without expanding the

sample. Section 5.1 gives an example of this calculation.

If we are drawing a stratified random sample, we need to find an ini-

tial sample size n1c for each county c. For the approach to stratification in

section 4.2.1, we can take n1c = dn1Nc/Ne, with

n1 = arg min
n>0

{n : π�(t1, n, u, w,M) < α1}. (24)

.

For the approach to stratification in section 4.2.2, the calculation is more

complex. Let uc denote the vector of precinct error bounds for county c and

let wc denote the vector of precinct weight functions for county c. If the

initial sample size for county c is chosen to be

n1c = arg min
n>0

{n : π?(t1, n, uc, wc, bMBc/Bc) < α1}, (25)

we will not have to expand the audit in county c, provided the test statistic

for the initial sample is no greater than t1.
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5 Examples

This section gives examples of calculating P -values for the hypothesis that

the apparent outcome of an election is wrong. It does not give examples of

expanding the sample size sequentially: data required for those computations

are not available.

5.1 November 2006 Sausalito Marin City school board

race

The November 2006 school board race for the Sausalito Marin City School

District in Marin County, California involved nine precincts. Voters could

vote for three of five candidates or a write-in. Table 2 lists vote totals by

precinct for each candidate. Absentee and polling-place votes were combined.

The winning candidate with the fewest votes was Mark Trotter, with

2022 votes. The losing candidate with the most votes was George Stratigos,

with 1936 votes. The margin between the two was 2022−1936 = 86 votes—an

extremely narrow margin of 0.57% of the 15,000 possible votes. If 43 votes for

Stratigos had been awarded erroneously to Trotter, that would have sufficed

to change a tie (1979 votes each) into a win for Trotter, with a net potential

margin overstatement in the election of 86. Any other change to the set of

winners would have required a larger potential margin overstatement. Thus,

if we can reject the hypothesis that the total potential margin overstatement

is greater than or equal to 86 votes, we can conclude that the outcome of the

election was correct.

Every unexercised opportunity to vote counts as an undervote. In this

example, a ballot can contribute up to three undervotes: the number of un-

dervotes on a ballot is 3 minus the number of candidates voted for, provided
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Precinct undervotes+ Thornton Hoyt Trotter Stratigos Romanowsky write-ins votes

3×overvotes

3001 780 296 309 283 271 60 5 2004

3002 920 311 287 274 291 44 3 2130

3104 699 238 244 240 225 48 4 1698

3105 765 270 262 240 228 56 3 1824

3106 668 239 267 294 209 58 5 1740

3107 732 251 260 236 214 53 3 1749

3600 582 235 233 129 186 51 6 1422

3601 367 234 178 126 170 40 7 1122

3602 610 160 155 200 142 39 5 1311

Total 6123 2234 2195 2022 1936 449 41 15,000

Table 2: Vote totals by precinct for the November 2006 Sausalito Marin City

School Board race. Voters could vote for up to three candidates. The number

of undervotes is three times the number of ballots, minus the total number of

votes for candidates, ignoring ballots showing votes for more than three can-

didates (overvoted ballots). Column 9, “votes,” is the total number of voting

opportunities, three times the number of ballots. There were 5,000 ballots,

including two overvoted ballots, one in precinct 3104 and one in precinct

3601. The post-election audit examined all the ballots in precinct 3107 and

found a discrepancy of one vote. The discrepancy was due to operator error;

re-scanning the ballots eliminated the discrepancy. [E. Ginnold, Registrar

of Voters, Marin County, California, personal communication (2007)] Data

courtesy of E. Ginnold and M. Briones.
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the number voted for is no greater than three. If a voter marked the ballot

for more than three candidates, the ballot contributes overvotes.

We shall take wp(z) = z/bp, so that the test statistic is the maximum

potential margin overstatement as a fraction of the voting opportunities in

each precinct in the sample. Note that the number of votes for write-ins plus

the number of votes for Peter C. Romanowsky is less than the number of

votes for the runner-up, George T. Stratigos, but the number of undervotes

plus three times the number of invalid ballots is greater than the number

of votes for Stratigos. Therefore, write-ins can be pooled with each other

and with Romanowsky, but undervotes and invalid ballots are treated as a

separate candidate, as described in section 3.1.

Table 3 gives three potential margin overstatement bounds: the a priori

bounds e+ based on pooling write-in candidates only, e+ based on pooling

write-in candidates and Romanowsky, and d0.4be, 40% of the votes, including

undervotes and three times the overvotes, rounded up to the next integer.

For all three bounds, any of the nine precincts could harbor enough miscount

to change the apparent outcome of the election.

Suppose we want to design an initial sample size so that, provided the

maximum potential margin overstatement in any precinct in the sample is

no more than 0.2% of the votes reported in that precinct (including under-

votes and three times the overvotes), we would reject the hypothesis that the

wrong set of winners was named at significance level 0.01 (we would confirm

the outcome at “confidence level” 99%). That corresponds to rejecting the

hypothesis when ∨J ?
n
w(e) ≤ 0.002. Note that 0.002 × 15, 000 = 30 < 86,

so at least one precinct must have more than this background level of error

(0.2%) for the outcome of the election to be wrong.
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Precinct e+(b) e+(b) d0.4be
write-ins write-ins &

pooled Romanowsky

pooled

3001 2887 2827 802

3002 2999 2955 852

3104 2416 2368 680

3105 2593 2537 730

3106 2535 2477 696

3107 2493 2440 700

3600 2013 1962 569

3601 1653 1613 449

3602 1821 1782 525

Table 3: Three possible bounds on the potential margin overstatement in

each precinct. The bound e+(b) is defined in equation (7). Column 2 pools

the write-in candidates in computing e+. Column 3 pools the write-in can-

didates and Peter C. Romanowsky in computing e+, which leads to smaller

bounds on the error; see section 3.1. The bound d0.4be is 40% of the reported

voting opportunities in the precinct, rounded up to the next integer. This is

analogous to the maximum within-precinct error bounds used by [18, 6, 13].
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Thus,

π?(0.002, n, u, w, 86) =

(
8
n

)
(

9
n

) . (26)

Enough miscount to change the outcome could lurk in a single precinct.

Suppose that just one precinct had miscount, and that the miscount was

enough to change the outcome of the election. Then even if we audited 8 of

the 9 precincts at random, there is a one-in-nine chance that we would fail

to audit that precinct. So, to have 99% confidence in the outcome of this

race if the observed potential margin overstatement were at most 0.2% of the

votes (including undervotes and overvotes) in any precinct, we would have to

audit every precinct. That is bad news, but since the margin is only 0.57%

of the possible votes, it is not surprising.

In fact, one precinct was audited (precinct 3107) and it was found to con-

tain one error. We shall presume that this error favored one of the apparent

winners. The number of votes in precinct 3107 is 1749, so this corresponds

to a test statistic value ∨J ?
1
w(e) = 1/1749 = 0.00057. On the basis of this

audit, the maximum P -value of the hypothesis that the wrong set of three

candidates was declared the winner is

π?(0.00057, 1, u, w, 86) =

(
8
1

)
(

9
1

) = 88.9%. (27)

So, even if there were enough miscount in the aggregate to cause the apparent

set of winners to differ from the true set of winners, the chance that an audit

of one precinct would show wp(ep) ≤ 0.00057 could be as large as 88.9%,

depending on how the miscount is distributed across precincts.

Conversely, what would we have to believe about the error for these audit

data to yield a P -value of 1% or less? For a random sample of just one

of the nine precincts to have at most a 1% chance of having ∨J ?
1
w(e) ≤
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Voters undervotes Fitzgerald Kennedy Klobuchar Cavlan Powers Write-ins

& invalid (Indep) (Repub) (Democ/Farm/ (Green) (Constit)

ballots Labor)

2,217,818 15,099 71,194 835,653 1,278,849 10,714 5,408 901

Table 4: Summary of 2006 U.S. Senate race in Minnesota.

0.00057, all nine precincts would have to have wp(ep) > 0.00057. For an

election-altering discrepancy to require wp(ep) > 0.00057 in every precinct

corresponds to a bound u = 0.0057b. Unless we believe that a potential

margin overstatement of more than 0.0057% of the votes is either impossible

or certain to be detected without an audit, we could not possibly get 99%

confidence in the outcome of this race by auditing only one precinct.

5.2 November 2006 Minnesota U.S. Senate Race

This section examines the November 2006 Senate race in Minnesota. Min-

nesota has 87 counties with a total of 4,123 precincts, of which 202 were

audited after the election. Table 4 lists the vote totals for the race. The

winner was Amy Klobuchar and the runner-up was Mark Kennedy. The

statewide margin of victory was 443,196 votes for 2,217,818 voters, 20.0% of

voters (not of cast votes).19

The audit of this election is discussed by [9]. Minnesota elections law

S.F. 2743 (2006) requires auditing a random sample of precincts in each

county, with a sample size that depends on the voting population in the

county: counties with fewer than 50,000 registered voters must audit at least

19Data in this section come from www.sos.state.mn.us/docs/2006 General Results.XLS,

electionresults.sos.state.mn.us/20061107/ElecRslts.asp?M=S&Races=0102, and

www.sos.state.mn.us/home/index.asp?page=544.
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two precincts; counties with between 50,000 and 100,000 registered voters

must audit at least three; and counties with more than 100,000 registered

voters must select at least four precincts. At least one of the precincts se-

lected in each county must have 150 or more votes cast. Hennepin County

audited eight precincts instead of the four required. (It still had the small-

est sampling fraction.) Several other counties also audited more than the

minimum required.

Precincts audited had from 2 to 2,393 ballots cast.20 The largest value

of ep was 2; the largest value of ep/bp was 0.67%. The total observed dis-

crepancy was 62 votes, about 0.065% of ballots cast in the audited precincts,

including undervotes and invalid votes; the total observed potential margin

overstatement was 25 votes, about 0.026% of ballots.

The audit shows a different number of ballots from that reported in 13

of the audited precincts: “ballot accounting” apparently had not been done.

Ten of the differences were one ballot each. In two precincts21, the number

of ballots was off by three. Most of the discrepancies in vote totals seem to

have been caused by jams in the optical scanner or by ballots fed through

the scanner twice. The observed discrepancies in bp are not large enough to

affect the error bounds e+ or 0.4b by much, but they show that bp is not an

inviolable upper bound on ap, and there might be larger discrepancies in the

precincts not sampled.

Under Minnesota law, auditors can interpret voter intent, even if the

ballot is not marked properly.22 In one precinct,23 three machine-unreadable

20Mean 471, median 272, IQR 505.
21Spring Lake Park Precinct 3 and Orono Precinct 2.
22However, discrepancies caused by machine-unreadable ballots do not trigger an esca-

lation of the audit.
23Lee Township, Norman County.
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ballots originally tallied as undervotes were interpreted by the auditors as

votes for Amy Klobuchar. The precinct had only 96 voters, so a three-vote

error is a large percentage of bp—although in this case the error does not

contribute to ep because it favors Klobuchar, the winner). This illustrates

why taking wp(z) = z/bp is perhaps too sensitive to occasional errors, and

wp(z) = z or wp(z) = (z −m)+/bp might be preferable.

We will calculate P -values for the hypothesis that a full manual recount

would not find that Amy Klobuchar is the winner, under a variety of as-

sumptions. Because the Minnesota law links sample sizes to the number

of registered voters in each county rather than to the number of precincts

in each county and never requires more than 4 precincts per county, the

sampling fraction of precincts varies widely from county to county. The min-

imum sampling fraction in the 2006 audit was 1.9% and the maximum was

23.8%. Two-thirds of the counties had precinct sampling fractions between

4% and 9%. Only one had a sampling fraction below 2%—the largest county,

Hennepin. The overall sampling fraction was 4.9% of precincts.

Reported undervotes, overvotes and votes for all other candidates total

less than the vote reported for runner-up Mark Kennedy, so they can all be

pooled into one pseudo-candidate as described in section 3.1. Thus, we have

K = 3 pseudo-candidates, f = 1, N = 4, 123, B = 2, 217, 818, M = 443, 196.

We will consider two upper bounds on the precinct-level miscount, u = e+(b)

and u = 0.4b, and three functions for weighting the precinct-level potential

margin overstatements, wp(z) = z, wp(z) = z/bp and wp(z) = (z − 2)+/bp.

The approach to dealing with stratification in section 4.2.2 leads to very

large P -values in this example—over 27% for all six combinations of u and

wp. We can get a very conservative P -value by pretending that the sample

was drawn with replacement from the entire population of precincts, but that
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wp(z) = z wp(z) = z/bp wp(z) = (z − 2)+/bp

u = e+(b) 130 128 130

u = 0.4b 721 720 721

Table 5: The smallest number of precincts in Minnesota as a whole that

must have wp(ep) > ∨Jw(e) for the outcome of the election to differ from

the outcome a full manual recount would show, where J is the set of indices

of precincts actually sampled. Here ∨Jw(e) is the observed value of the test

statistic for the 202 precincts in the sample. Values are given for three choices

of the weight functions wp and two bounds u on the amount of error each

precinct can hold.

only 1.9% of the precincts (78) were sampled; this is an application of the

bound in section 4.2.1. Table 5 shows the lower bounds on the number of

precincts statewide that would have to have potential margin overstatements

greater than w−1
p (∨Jw(e)) in order to have E ≥ M (here J are the indices

of the 202 precincts in the actual sample).

Table 6 gives the corresponding P -values. It also gives P -values using the

same observed discrepancies, but pretending that the sample of 202 precincts

was drawn in two other ways: as a stratified sample with sample size pro-

portional to the number of precincts in each county, using the bound derived

in section 4.2.1, or as a simple random sample of 202 precincts. Had the

202 precincts been drawn in either of those ways, the P -values would be

much smaller than the bound derived for the sampling scheme Minessota

actually used.

Table 6 shows that the audit data would allow us to reject the hypothesis

that a full recount would find a different winner at significance level 10%, for

all three choices of test statistics and for either error bound. For the error
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1.9% sample w/ proportional sample sample w/o

replacement replacement

u = e+(b) u = 0.4b u = e+(b) u = 0.4b u = e+(b) u = 0.4b

wp(z) = z 8.2% 0.00003% 0.15% 1.4× 10−15% 0.13% 4.6× 10−16%

wp(z) = z/bp 8.5% 0.00003% 0.17% 1.5× 10−13% 0.15% 4.9× 10−16%

wp(z) = (z − 2)+/bp 8.2% 0.00003% 0.15% 1.4× 10−15% 0.13% 4.6× 10−16%

Table 6: P -values for the hypothesis that a full manual recount would show

that Amy Klobuchar did not win the Senate race, under different assumptions

about how the sample was drawn and the potential margin overstatement in

each precinct [upper bounds u = e+(b) and u = 0.4b], and different choices

of the weighting of errors in each precinct. The first row is for precinct-level

weight function wp(z) = z: each error has the same weight. The second row is

for wp(z) = z/bp: errors in larger precincts have lower weight. The third row

is for wp(z) = (z − 2)+/bp: that test statistic ignores the first two potential

margin overstatements in each precinct; after the first two, potential margin

overstatements in larger precincts have lower weight. Columns 2 and 3 are

very conservative upper bounds derived by treating the sample as if it were

a smaller sample of 1.9% of the precincts in each county (78 precincts in

all, rather than 202). Columns 4 and 5 pretend that the data came from a

stratified random sample of 202 precincts in which the number of precincts

drawn from each county is proportional to the number of precincts in the

county. Columns 6 and 7 pretend that the data came from a simple random

sample from all the precincts in the state. Only the results in columns 2 and

3 apply to the auditing scheme Minnesota actually used.
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bound u = 0.4b, we could reject the hypothesis at significance level 1%. If

the data had come from a simple random sample from the state as a whole,

or if the sample size in each county had been proportional to the number

of precincts in the county, we would have been able to reject the hypothesis

that the apparent outcome differs from the outcome a full manual recount

would show at significance level 1%.

6 Discussion

6.1 P -values

As illustrated in section 5, the method can also find the maximum P -value

of the hypothesis that E ≥ M and hence of the hypothesis that the elec-

tion outcome is incorrect given discrepancy data from a particular sampling

design. The maximum P -value is π?(∨J1w(e); n1, u, w, M), where J1 is the

initial random sample, of size n1. This expression applies only to the initial

sample. If the approach is used sequentially, the P -values need to be adjusted

to take that into account.

6.2 Two-position contests requiring super-majority

The bound e+ on potential margin overstatement can be sharpened easily for

contests such as ballot measures or propositions that have only two positions

and that require more than a simple majority to pass. For example, suppose

that a contest allows only “yes” or “no” votes, and requires a 2/3 majority

of “yes” votes to pass. Suppose that, according to the reported totals, the

measure passed. Let “yes” be candidate k = 1 and “no” be candidate k = 2.

42



The effective apparent margin is the margin above 2/3 of the total vote:

M =
⌊
V1 −

2

3
(V1 + V2)

⌋
. (28)

An error that increases V1 by one vote increases V1 − 2
3
(V1 + V2) by only 1/3

of a vote. An error that decreases V2 by one vote increases V1 − 2
3
(V1 + V2)

by 2/3 of a vote. Within each precinct, error could have inflated the effective

apparent margin over 2/3 by no more than⌈
−2

3
rp − (v1p −

2

3
(v1p + v2p)

⌉
=
⌈
2

3
(rp − v2p − v1p/2)

⌉
. (29)

These values are a tighter choice for u than e+, and are still rigorous.

6.3 Why not use the sample sum or sample mean?

Using the discrepancy of the totals across the precincts in the sample as

the test statistic instead of calculating the discrepancy separately for each

precinct would have advantages. For example, it would allow errors that

hurt a particular candidate to cancel errors favoring that candidate in a

different precinct, which might allow us to reject the hypothesis that the

wrong candidate was named the winner using smaller samples. However, it

is far more difficult to calculate tail probabilities for the discrepancy of the

totals. In particular, it is not true that the most difficult-to-detect election-

altering taint concentrates as much miscount as possible in as few precincts

as possible, precisely because cancellations can occur.

6.4 Improving the power

The approach presented here is conservative: the chance that it declares the

outcome to be correct when the outcome is not correct is at most α. However,
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other approaches could do the same thing using smaller audit samples—they

could have more power for the same significance level.

The elements of the approach with the most room for improvement are

these:

1. The test statistic, pooling and aggregation of the miscount. The func-

tions {wp}p∈N could be optimized against various alternatives. One

could construct a more powerful test using likelihood ratios or the sam-

ple sum, as described in section 6.3. However, these improvements in

power come at a cost of far more complex probability calculations and

a loss of transparency to jurisdictional users. Numerical optimization

would appear to be necessary to calculate P -values.

2. Stratification. The approaches to dealing with stratification for con-

tests that cross county lines are conservative but not sharp. Better

inequalities would allow smaller samples to be used.

3. Thresholds for sequential tests. The inequalities used to set the signif-

icance levels in the sequential tests could be improved.

4. Sample design. If we were at liberty to choose the sampling design,

a different approach—such as sampling with probability proportional

to up, the upper bound on the potential margin overstatement—might

permit smaller samples.24

24See, for example, [3, 21]. Current and pending audit laws do not contemplate sampling

designs other than simple or stratified random samples. If sampling with probability

proportional to up were allowed, it would bring election auditing much closer to work in

financial auditing, where monetary unit sampling is often used [16]. However, if precincts

have differing probabilities of selection, so do ballots, which might raise legal issues of

differential enfranchisement.
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Ideas from sequential analysis [19, 22] could certainly help improve the thresh-

olds for sequential testing.

6.5 Alternative approaches

One could also take a Bayesian approach to the problem: given a prior

probability distribution, one could compute posterior odds that the election

named the right winner given the audit data, and confirm the outcome if

those odds were, say, 100 to 1 or greater. This approach requires prior

probability distributions for the number of votes for each candidate and for

the potential margin overstatement.

The false discovery rate [4] gives another perspective: rather than insist

that the chance of confirming an outcome that is incorrect be no larger than

α, we could require the expected fraction of confirmed election outcomes that

are confirmed in error to be no larger than α.

A rather different approach is to combine a base rate of random sampling

with “targeted” sampling, where candidates or other interested parties select

some precincts for audit by any means they choose [14, 12]. Computing a

P -value for this approach would require an ad hoc model for the efficacy of

“educated guesses” in finding miscounted precincts, but the method could

increase public confidence in the election outcome.

Any of these approaches is incomplete without rules for expanding the

audit if the precincts in the targeted sample show material miscount, culmi-

nating either in confirming the outcome or in a full recount.
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7 Conclusions

Post-election audits can be used to confirm election outcomes or show that

a full manual recount is needed. The election outcome is confirmed if, on

the assumption that the election outcome is incorrect, the probability is large

that the sample would have contained larger potential margin overstatements

than it did contain. If that probability is not sufficiently large, the sample size

needs to be increased. Eventually, either the sample includes every precinct

(there has been a complete manual recount), or there is compelling statistical

evidence that the election outcome is correct.

Confirming an election outcome statistically requires upper bounds on the

potential margin overstatement in each precinct. Such upper bounds can be

calculated from upper bounds on the total number of votes in each precinct.

Upper bounds on the number of votes could in turn come from the number

of registered voters, from the number of ballots issued to precincts, from

precinct pollbooks or from “ballot accounting.” Alternatively, one might use

ad hoc bounds on the potential margin overstatement, such as 40% of the

number of reported ballots in the precinct. The results are sensitive to the

bounds, so ad hoc choices need to be justified and tested empirically in every

election.

Combining a base rate of sampling (such as California’s 1% law) with

rules for increasing the sample size for contests, where—given the margin,

the number of ballots cast in each precinct and the miscount observed in

the initial sample—the outcome is in doubt, is a statistically sound and

potentially practical way25 to use post-election audits to decide whether to

25The method is being tested in practice in Marin County, California, to audit Measure A

on the 5 February 2008 ballot to attain 75% confidence that a full manual count would

match the apparent outcome.
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confirm the outcome. The base rate of sampling provides a broad check for

gross errors; increasing the sample size for close contests and contests where

the audit reveals potential margin overstatements can guarantee any desired

level of confidence in the outcome.

In states where election regulations do not contemplate increasing the

size of an initial audit, the approach outlined here can be used to calculate

the confidence that each election outcome is correct,26 given the size of the

sample, the margin, the reported votes in each precincts and the potential

margin overstatements observed in the sample.

A Proof of claim 1

Both IPx{∨J ?
n
w(x) ≤ t} and IPx{∨J �n w(x) ≤ t} are monotonic in #{p : xp ≤

w−1
p (t)}. Hence, π?(t) and π�(t) are attained by the element x− of X with

the fewest components greater than the corresponding components of w−1(t).

To maximize #{p : xp ≤ w−1
p (t)} while keeping E =

∑
N x ≥ M and x ≤ u,

set xp = up for those components p for which up − w−1
p (t) is largest, and set

the remaining components of x to whichever is smaller, up or w−1
p (t). Thus,

for some k, x− is of the form

x−p =

 (u ∧ w−1(t))p, p ∈ J −
k

up, p 6∈ J −
k .

(30)

The value of k that gives x− is the largest possible value for which E ≥ M ,

namely, q (defined in equation 17). The chance that J ?
n (w(x−)) ≤ t is the

chance that J ?
n consists of n of the q components of x− that are less than the

26As mentioned above, “confidence” that the outcome is correct is taken to mean 100%

minus the P -value of the hypothesis that the outcome is incorrect; this is not a standard

statistical definition of “confidence.”
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corresponding components of w−1(t), as equation 18 asserts. Similarly, the

chance that J �
n (w(x−)) ≤ t is the chance that J �

n includes only components

x− that are less than the corresponding components of w−1(t). There are q

such components, so the chance is (q/N)n, as claimed. 2

B Proof of claim 2

Among the N precincts in the contest, k have wp(ep) ≤ t. We divide the

N precincts into C strata. In stratum c, there are Nc precincts of which

kc precincts have wp(ep) ≤ t, and
∑

c∈C kc = k. We draw ncs = dnsNc/Ne
precincts at random without replacement from county c. Let n′s =

∑
c∈C ncs ≥

ns. Let Sc be the number of precincts in the sample from county c for which

wp(ep) > t. Then Sc has the hypergeometric distribution with parameters

Nc, Nc − kc and ncs, and {Sc}c∈C are independent. Moreover,

IP{Sc = 0} =

(
kc

ncs

)
(

Nc

ncs

) ≤ (kc/Nc)
ncs . (31)

This follows from the fact that x
y

> x−1
y−1

when x < y and y > 1. Because the

samples from different strata are independent,

IP{
∑
c∈C

Sc = 0} ≤
∏
c∈C

(kc/Nc)
ncs . (32)

Since ncs ≥ nsNc/N , and ns =
∑

c∈C nsNc/N ,

∏
c∈C

(kc/Nc)
ncs ≤

∏
c∈C

(kc/Nc)
nsNc/N

≤
(

1

ns

∑
c∈C

(nsNc/N)(kc/Nc)

)ns

= (k/N)ns . (33)
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The second step is an application of the arithmetic mean–geometric mean

inequality. Hoeffding [11, Theorem 4] proves something rather more general.

Inequality 33 shows that if we draw a stratified sample of precincts with

ncs precincts from county c, c ∈ C, but compute the maximum P -value as if

we were sampling with replacement from the entire population of N precincts

(that is, if we use π� as the bound on the P -value), we get a conservative

test. 2

C Proof of claim 3

Claim 3 just asserts that either every element of a list is equal to the mean

of the list, or there is at least one element greater than the mean:

E

B
=

∑
c∈C Ec

B

=

∑
c∈C Bc(Ec/Bc)

B

=
∑
c∈C

Bc/B(Ec/Bc)

≤ (
∑
c∈C

Bc/B)× ∨c∈C
|Ec|
Bc

= B/B × ∨c∈C
|Ec|
Bc

= ∨c∈C
|Ec|
Bc

. (34)

The antepenultimate step follows from Hölder’s inequality.

So, if the total potential margin overstatement E across counties is M or

more, there must be at least one county c for which Ec ≥ MBc/B. 2
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