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Abstract

We address the problem of recovering a common set of covariates that are relevant simultane-
ously to several classification problems. We propose a joint measure of complexity for the group
of problems that couples covariate selection. By penalizing the sum of `2-norms of the blocks of
coefficients associated with each covariate across different classification problems, we encourage
similar sparsity patterns in all models. To fit parameters under this regularization, we propose a
blockwise boosting scheme that follows the regularization path. As the regularization coefficient
decreases, the algorithm maintains and updates concurrently a growing set of covariates that
are simultaneously active for all problems. We show empirically that this approach outperforms
independent `1-based covariate selection on several data sets, both in accuracy and number of
selected covariates.

1 Introduction

The problem of covariate selection for regression and classification has been the focus of a substantial
literature [9]. As with many model selection problems, the problem is rendered difficult by the
disparity between the large number of models to be considered and the comparatively small amount
of data available to evaluate these models. One approach to the problem focuses on procedures that
search within the exponentially-large set of all subsets of components of the covariate vector, using
various heuristics such as forward or backward selection to limit the search [6]. Another approach
treats the problem as a parameter estimation problem in which the shrinkage induced by a constraint
on the `1 norm of the parameter vector yields estimates in which certain components are equal to
zero [17, 8, 5]. A virtue of the former approach is that it focuses on the qualitative decision as to
whether a covariate is relevant to the problem at hand, a decision which is conceptually distinct
from parameter estimation. A virtue of the latter approach is its computational tractability.

In this paper, we focus on a problem setting in which these virtues appear to be better aligned
than they are in general regression and classification problems. In particular, we focus on situations
involving multiple, related data sets in which the same set of covariates are present in each data
set but where the responses differ. In this multi-response setting it is natural to associate a notion
of “relevance” to a covariate that is conceptually distinct from the numerical value of a parameter.
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For example, a particular covariate may appear with a positive coefficient in predicting one response
variable and with a negative coefficient in predicting a different response. We would clearly want to
judge such a covariate as being “relevant” to the overall class of prediction problems without making
a commitment to a specific value of a parameter. In general we wish to “borrow strength” across
multiple estimation problems in order to support a decision that a covariate is to be selected.

Our focus on this paper is on classification. Consider, in particular the following pattern recog-
nition problem. Assume that we are given a data set consisting of pixel-level or stroke-level repre-
sentations of handwritten characters and we wish to classify a given character into one of a fixed
set of classes. In this optical character recognition (OCR) problem, there are several thousands of
covariates, most of which are irrelevant to the classification decision of character identity. To support
the choice of relevant covariates in this high-dimensional problem, we consider an extended version
of the problem in which we assume that multiple data sets are available, one for each individual in
a set of writers. We expect that even though the styles of individual writers may vary, there should
be a common subset of image features (pixels, strokes) that form a shared set of useful covariates
across writers.

As another example of our general setting, consider a DNA microarray analysis problem in which
the covariates are levels of gene expression and the responses are phenotypes or cellular processes [12].
Given the high-dimensional nature of microarray data sets, covariate selection is often essential both
for scientific understanding and for effective prediction. Our proposal is to approach the covariate
selection problem by considering multiple related phenotypes—e.g., related sets of cancers—and
seeking to find covariates that are useful in predicting these multiple response variables.

Our approach to the simultaneous covariate selection problem is a straightforward adaptation
of `1 shrinkage methods such as LASSO. Briefly, for each data set {(xl

i, y
l
i) : i = 1, . . . , Nl}, where

l ∈ {1, . . . , L} indexes data sets, we fit a model involving a parameter vector wl. Define the jth
relevance vector by taking the jth component of each of the parameter vectors, ranging over l. We
now define a regularization term that is an `1 sum of the `2 norms of the relevance vectors. Each
of these `2 norms can be viewed as assessing the overall relevance of a particular covariate. The `1
sum then enforces a selection among covariates based on these norms.

This approach is a particular case of a general methodology in which block norms are used to
define groupings of variables in regression and classification problems [22, 15, 13, 21, 23]. However,
the focus in this literature differs from ours in that it is concerned with grouping variables within
a single regression or classification problem. For example, in a polynomial regression we may wish
to group the linear, quadratic and cubic terms corresponding to a specific covariate and select
these terms jointly. Similarly, in an ANOVA model we may wish to group the indicator variables
corresponding to a specific factor. The block-norm approach to these problems is based on defining
block norms involving hybrids of `1, `2 and `∞ norms as regularization terms. Our method is a
particular application of this general framework to a multi-response setting in which a group is
defined by fixing a specific covariate and ranging over multiple response variables.

Given that our motivation is high-dimensional covariate selection, computational efficiency is an
important concern. Regularization-based methods generally requiring determining the value of one
or more regularization parameters, and naive approaches that evaluate such parameters on a grid can
be infeasible computationally. In the linear regression setting, this problem has been addressed via
homotopy-based methods that evaluate entire regularization paths efficiently [7, 14]. An important
virtue of the block-norm approach is that it is often possible to extend such homotopy-based methods
to other loss functions and regularization terms. Indeed, in the current paper we provide a theoretical
result establishing the convergence of a homotopy-based method for our particular `1/`2 block norm.

In the machine learning literature, the general problem of estimating models from multiple,
related data sets is often referred to as “transfer learning,” or “multi-task learning,” and there have
been a variety of proposals for covariate selection in the transfer learning setting [2, 11, 18]. Our work
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is similar in spirit to this line of work, but differs in technical detail in its focus on homotopy-based
methods and block-norm regularization.

The paper is organized as follows. In Section 2, we present our proposed regularization scheme
and the corresponding optimization problem. In Section 3 we discuss homotopy methods as a
preliminary to the algorithm that we present in Section 4. We present experimental results in
Section 5 and conclude with a discussion in Section 6.

2 Joint complexity measure

We assume a group of L classification problems or “tasks” and a set of data samples {(xl
i, y

l
i) ∈

X ×Y, i = 1, . . . , Nl, l = 1, . . . , L} where the superscript l indexes tasks and the subscript i indexes
the i.i.d. observations for each task. We assume that the common covariate space X is <K and the
outcome space Y is {0, 1}.

Let wl ∈ <K be the parameter vector for a statistical model for task l, and let J l(wl, xl, yl)
be a loss function on example (xl, yl) for task l. Typical loss functions for linear classification
models include log-likelihood, exponential and hinge losses. A standard approach to obtaining sparse
estimates of the parameters wl is to solve a `1-regularized empirical risk minimization problem:

min
wl

Nl∑

i=1

J l(wl, xl
i, y

l
i) + λ ‖wl‖1.

Solving each of these problems independently across tasks is equivalent1 to solving the global problem
obtained by summing the objectives:

min
W

L∑

l=1

Nl∑

i=1

J l(wl, xl
i, y

l
i) + λ

L∑

l=1

‖wl‖1, (1)

where W = (wl
k)l,k is the matrix whose rows are the vectors wl and whose columns are the vectors

wk of the coefficients associated with covariate k across classification tasks. Solving this optimization
problem would lead to individual sparsity patterns for each wl.

Our approach aims instead to select covariates globally. We achieve this by encouraging several
wk to be zero. We thus propose to solve the problem

min
W

L∑

l=1

Nl∑

i=1

J l(wl, xl
i, y

l
i) + λ

K∑

k=1

‖wk‖2, (2)

in which we penalize the `1-norm of the vector of `2-norms of the covariate-specific coefficient vectors.
In Fig. 1 (Left) we provide a pictorial representation of this regularization. Note that this `1/`2
regularization scheme reduces to `1 regularization if the group is reduced to one task, and can
thus be seen an extension of the `1 regularization where instead of summing the absolute values of
coefficients associated with covariates we sum the Euclidean norms of coefficient blocks.

The `2-norm is used here as a measure of magnitude and one could also generalize to `1/`p-
norms by considering `p-norms for 1 ≤ p ≤ ∞. The choice of p should depend on how much
covariate sharing we wish to impose among classification problems, from none (p = 1) to full sharing
(p = ∞). Indeed, increasing p corresponds to allowing better “group discounts” for sharing the same
covariate, from p = 1, where the cost grows linearly with the number of classification problems that
use a covariate, to p = ∞, where only the most demanding classification matters.

1Provided the regularization coefficient λ is the same across classification problems.
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Figure 1: (Left) Norm ball induced on the coefficients (w2
1, w

2
2) for task 2 as covariate coefficients for

task 1 vary: thin red contour for (w1
1, w

1
2)=(0, 1) and thick green contour for (w1

1, w
1
2)=(0.5, 0.5).

The shape of the unit “ball” of the `1/`2-norm is difficult to visualize. It clearly has corners that,
in a manner analogous to the `1 norm, tend to produce sparse solutions. One way to appreciate the
effect of the `1/`2 norm is to consider two classification problems based on two covariates and to
observe (see Fig. 1) the ball of the norm induced on w2 when w1 varies under the constraint that
‖w1‖1 = 1 in an `1/`2 ball of size 2

√
2 (which is the value of the `1/`2 norm if w1

i = w2
i = 1). If a

covariate k has a non-zero coefficient in w1 then the induced norm on w2 is smooth around w2
k = 0.

Otherwise, it has sharp corners, which encourages w2
k to be set to zero.

3 A regularization path

In the optimization problem presented in Eqn. (2) the amount of sparsity is controlled by the
regularization coefficient λ. As λ ranges from 0 to ∞, the sparsity of solutions typically progresses
through several levels, although this is not guaranteed in general. In most practical cases the
appropriate amount of sparsity relevant to a problem is not known in advance and the parameter λ
has to be chosen using cross-validation. Re-solving a regularized problem for several values of the
parameter is often a waste of computational resources. Interestingly, it has been shown that for a
class of regularized problems the regularization path (i.e., the set of all solutions obtained by varying
the regularization coefficient) is piecewise linear (cf. [16]). This class includes `1 and `2 regularized
support vector machines and `1 regularized least-squares regression. Various algorithms (among
them LARS [7]) have been proposed to construct the regularization path efficiently for some of
these problems. In general, however, the path is not piecewise linear and can only be approximated.
Following the regularization path can be thought of as traversing the parameter space from the
origin to the unregularized solution and there is a natural trade-off between speed-of-traversal and
closeness to the path. We are interested in simple, fast and scalable algorithms that approximate the
regularization path of Eqn. (2). In the case of `1 regularization it has been noticed that the beginning
of the regularization path is very close to the path obtained by coordinate descent (ε-boosting or
stagewise forward selection [10]). Zhao and Yu [24] have shown that a simple modification of boosting
can approximate the LASSO regularization path. In contrast, traditional path-following techniques
require the computation of the Hessian of the combined objective so as to move along the path by a
combination of prediction steps (along the tangent to the path) and correction steps (which correct
for the first order approximation of the prediction steps). Inspired by the work of Zhao and Yu,
we capitalize on the sparsity of the solution at the onset of the regularization path and propose an
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algorithm in which correction steps are extremely cheap computationally.

4 Blockwise boosted LASSO algorithm

An inspection of the Karush-Kuhn-Tucker (KKT) conditions of the optimization problem in Eqn. (2)
shows how the sparsity of the solution can lead to an efficient construction of the path. Let us denote
J(W )=

∑L
l=1

∑Nl

i=1 J l(wl, xl
i, y

l
i). Then the KKT conditions for Eqn. (2) are as follows:

either w∗k = 0, ‖∇wk
J(W ∗)‖2 ≤ λ

or w∗k ∝ −∇wk
J(W ∗), ‖∇wk

J(W ∗)‖2 = λ,

where the quantities of interest ∇wk
J(W ) are partial gradients in each of the subspaces of the

relevance vectors. In words, only the “active” covariates—those whose gradients are no less than λ—
participate in the solution (i.e., have non-zero parameters). In particular if λ ≥ λ0 = maxk ‖∇wk

J(0)‖2
then the zero vector is a solution to our problem.

This analysis suggests an algorithm in which we gradually decrease the regularization coefficient
from λ0 and populate an active set with inactive covariates as they start to violate the approximate
KKT conditions. We write the latter generically as follows:

either wk = 0, ‖∇wk
J(W )‖ < λ + ξ0

or
∥∥∥∇wk

J(W ) + (λ− ξ) wk

‖wk‖

∥∥∥ ≤ ξ,
(3)

where ξ0 is a slack parameter. Algorithm 1 uses this idea to maintain the constraints in Eqn. (3)
with ξ0 = 0, updating the regularization parameter only if none of the inactive covariates violate
the KKT conditions at the end of the previous iteration.

Algorithm 1 Maintain approximate KKT conditions
while λt > λmin do

Set j∗ = argmaxk‖∇wk
J(W t)‖

Update w
(t+1)
j∗ = w

(t)
j∗ − εut with ut =

∇wj∗ J

‖∇wj∗ J‖
if ‖∇wj∗J(W t)‖ > λt then

λt+1 = λt

else
λt+1 = min(λt, J(W t)−J(W t+1)

ε )
end if
Add j∗ to the active set
Enforce Eqn. (3) only for covariates of the active set

end while

With an appropriate smoothness assumption on the gradient of J , we can derive a simpler
algorithm which is similar to the generalized Boosted LASSO algorithm of Zhao and Yu [24]. Indeed,
assuming J to be twice differentiable and assuming that the spectrum of the Hessian of J is bounded
above by µmax, i.e., ∀x, x>Hx ≤ µmax‖x‖2, Algorithm 2 maintains Eqn. (3) for any ξ0 such that
ξ0 ≥ 1

2εµmax.
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Algorithm 2 Blockwise boosted LASSO
while λt > λmin do

Set j∗ = argmaxk‖∇wk
J(W t)‖

Update w
(t+1)
j∗ = w

(t)
j∗ − εut with ut =

∇wj∗ J

‖∇wj∗ J‖

λt+1 = min(λt, J(W t)−J(W t+1)
ε )

Add j∗ to the active set
Enforce (3) only for covariates of the active set

end while

Proposition 1. Assuming J to be twice differentiable and strictly convex, for all η there exists ε
such that iterates W t of Algorithm 2 obey ‖W t−W (λt)‖ ≤ η for every t such that λt+1 < λt, where
W (λt) is the unique solution to Eqn. (2). Moreover, the algorithm converges (provided the active
set is not pruned) in a finite number of iterations to a regularization coefficient no greater than any
prespecified λmin > 0.

A proof of this proposition is presented in the appendix.
Remarks:

• For both algorithms the step in the direction ut performs descent on J . In practice we set
ut = ∇wj∗J/‖∇wj∗J‖. It is also possible to take a coordinate descent step, where, if A is the
active set, ut = ∇WA∪j∗J/‖∇WA∪j∗J‖`1/`2 . Other possibilities include gradient-related descent
directions.2 In particular ut could be along the gradient or be closer to a typical prediction
step and use the Hessian of the joint objective restricted to the active set.

• For simplicity, we have presented the algorithms using a fixed step size ε, but in practice
we recommend using an adaptive step size determined by a line search limited to the segment
(0, ε]. This allows us to explore the end of the path where the regularization coefficient becomes
exponentially small. Our proofs extend to this case (cf. Lemma 3).

• If we understand the “active set” as the set of covariates with non-zero coefficients it is possible
for a covariate to enter and later exit the set, which would require pruning. The analysis of
this case is more delicate and we do not consider it here. In practice, the case of parameters
returning to zero is rare, and its consideration would not yield a significant speed-up of the
algorithm.

• Each of the two algorithms that we have presented has its own advantages. For Algorithm 1,
the step size can be taken relatively large without influencing the precision of the approximation
to the path at points where the regularization decreases. On the other hand, for a relatively
small step size, Algorithm 2 maintains a more steady progression along the path.

• In the formulation of the algorithms we have assumed that we can solve the problem of enforcing
the constraints (3) on the active set. In our implementations, we use blockwise coordinate
descent to implement such a solution. We have to be cautious here because the objective we
are optimizing is non-differentiable. Pathological examples of continuous non-differentiable
functions have been produced for which steepest descent combined with exact line search does
not converge to a stationary point ([3], p.633). In our case, however, as we show in Lemma 6,
these pathologies cannot arise and the method necessarily converges to a global minimum of
the objective function.

2I.e., directions such that lim inft−ut.
∇J(W t)
‖∇J(W t)‖ > δ > 0 (cf. [3], p. 35).
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Figure 2: Misclassification error represented as a function of the number n of samples used for
training, in plots with increasing number of tasks (from left to right: L = 2, 5, 10, 50, 80) and
increasing number of discriminative covariates (from top to bottom: r = 2, 5, 10, 50 out of 300
covariates total) and for three different algorithms based on either independent `1 regularization
(green), `1/`1 regularization (red) or `1/`2 regularization (blue).

5 Experiments and applications

We first investigate the behavior of the algorithm with simulated data that satisfies the assumptions
underlying our model and analysis. We then turn to experiments with real data, focusing on optical
character recognition. We also briefly present extensions to multi-class classification and subspace
selection.

5.1 Synthetic data

We consider a number L of binary classifications tasks all based on a common covariate space of
dimension K. A common subset of r ¿ K covariates defines a common subspaceD within which each
pairs of classes can be discriminated. For every classification task, both class-conditional densities
are Gaussian in D and each of the K − r other dimensions consist of noise uniformly distributed on
the interval [0, 1]. The covariance matrix of each class is drawn from an r × r-dimensional Wishart
distribution, W(r, r, Id), with r degrees of freedom. The two classes are separated by a vector
δ = µ1−µ0 constructed as follows: a random vector is drawn uniformly in {−1, 0, 1}r\{0} and then
normalized so that so that the mean of the Mahalanobis distances for both covariance matrices is a
fixed value c = 1

2

√
δ>Σ0δ + 1

2

√
δ>Σ1δ. We picked c = 3 in our experiments which corresponds to

well-separated classes. Note that by construction, the coordinates of δ are only non-zero on a subset
of the r common dimensions, so that the set of covariates that separates the classes is not exactly
the same for each classification.

The results are shown in Fig. 2, where we compare independent `1, `1/`1 and `1/`2 regular-
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Figure 3: Average misclassification error represented as a function on the log scale of the total
number K of covariates, for a fixed number r = 10 of discriminative covariates, in plots with in-
creasing number of tasks (from left to right: L = 2, 5, 10, 50, 80) and increasing number of datapoints
(from top to bottom: n = 8, 13, 25, 50, 100, 200) and for three different algorithms based on either
independent `1 regularization (green), `1/`1 regularization (red) or `1/`2 regularization (blue).
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Figure 4: (Left) The letter a written by 40 different people. (Right) Strokes extracted from the
data.

izations. The results indicate that the `1/`1 and independent `1 regularizations perform almost
identically. This is not surprising because the essential difference between the behavior of these two
regularizations is due to the coupling of the regularization coefficients λk in the `1/`1 case. But the
classification problems we generated are of equal difficulty, which means that the amount of regu-
larization that is needed for each problem is presumably the same. On the other hand we see from
Fig. 2 that the `1/`2 regularization achieves systematically better results, with dramatic improve-
ments for small training set sizes. The relative improvement is generally larger for small training
sets, but as the number of informative dimensions increases the best training set size increases as
well.

Fig. 3 illustrates that `1/`2 is more robust to the number of noisy dimensions than the other
regularizations, and suggests that the growth of the error is roughly linear with log K but that the
slope decreases significantly with the number of tasks.

5.2 Writer-specific character recognition

In this section, we consider an application to the problem of the optical character recognition (OCR)
of handwritten characters. Consider the problem of discriminating between pairs of letters for
different writers. The simplest approach is to pool all the letters from all writers and build a global
classifier for each pair; this may be justifiable if we obtain only a few examples of each letter per
writer, but enough different writers. Another naive method is to learn a classifier for each writer
independently. We compare these naive methods to our `1/`2 regularization method.

Data

We used letters from a handwritten words data set by Rob Kassel at the MIT Spoken Language
Systems Group.3 This data set contains samples from more than 180 different writers (see Fig. 4
(Left) for examples). For each writer, however, the number of examples of each letter is rather small:
between 4 and 30 depending on the letter. As shown in Fig. 5, the letters are originally represented
as 8× 16 binary pixel images.

Experimental setup

We built binary classifiers that discriminate between pairs of letters. Specifically we concentrated
on the pairs of letters that are difficult to distinguish when written by hand. We compared four
discriminative methods, all based on minimizing a loss function, with different regularization schemes
as follows:

3Available at www.seas.upenn.edu/∼taskar/ocr/.
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Figure 5: Samples of the letters s and g for one writer.

• Pooled `1: The writers are ignored and all the letters of both classes to be discriminated
are pooled. We use Algorithm 2 to follow the regularization path of the `1-regularized logistic
regression.

• Independent `1 regularization: For each writer an independent `1-regularized logistic re-
gression is learned using Algorithm 2 with blocks of size 1.

• `1/`1-regularization: The objective function is Eqn. (1) with the log-loss and so the tasks are
tied only by the regularization coefficient. The regularization path is obtained by Algorithm 2
with blocks of size 1, where the updates of covariates used in different tasks are interwoven.

• `1/`2-regularization: The objective is Eqn. (2) with the log-loss; here the covariate selection
processes are coupled by the regularization. The regularization path is obtained by Algo-
rithm 2.

Covariates: pixels and strokes

The basic covariates we use are the 8×16 binary pixels. Since individual pixels are often uninforma-
tive, we also used a simple, ad hoc procedure to generate combinations of contiguous pixels (strokes)
that appeared in the images. To produce a stroke, we selected a random image and a random filled
pixel and we followed a biased random walk on the filled pixels of the image. We used an second-
order Gaussian Markov model of strokes in which the velocity varies slowly to bias for low-curvature
lines. We followed walks of lengths 2, 4 and 6. To produce realistically thick strokes we also included
the pixels of the letters that are neighbors of the stroke. The obtained stroke was finally smoothed
by convolution with a simple kernel combining only neighboring pixels. To construct a set of strokes
for the task of discriminating between two letters we extracted 500 strokes in the training set from
letters of each of these two types and 100 strokes from other letter types as well. The total number
of strokes we generated in each of our experiments was on the order of a thousand. The “strokes”
selected by our algorithm for the g vs s classification are shown in Fig. 4 (Right).

Results

We fitted classification models for discriminating 9 pairs of letters for 40 different writers according
to the four schemes presented in Section 5.2. We conducted experiments with the two types of
covariate sets proposed (pixels and strokes). The error rates of the classifiers obtained are reported
in Table 1.

For the pixel covariates, the `1/`2 regularization method improves significantly on pooling and on
the other regularization methods. Indeed, it improves in all cases except one, with an improvement
over `1 regularization that is greater than 50% in many cases.

For the stroke covariates the improvement due to the `1/`2 regularization is less pronounced.
There is a clear improvement over pooling and over `1/`1; on the other hand, `1 and `1/`2 regular-
izations perform comparably.
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Table 1: Average 0-1 loss on the test set. The bold font indicates the best performing method in
each row among the different methods: `1/`2, `1/`2, `1/`1, independent (id.) `1 or pooled `1.

strokes : error(%) pixels: error (%)
Task `1/`2 `1/`1 id.`1 pool `1/`2 `1/`1 id.`1 pool
c/e 2.5 3.0 3.3 3.0 4.0 8.5 9.0 4.5
g/y 8.4 11.3 8.1 17.8 11.4 16.1 17.2 18.6
g/s 3.3 3.8 3.0 10.7 4.4 10.0 10.3 6.9
m/n 4.4 4.4 3.6 4.7 2.5 6.3 6.9 4.1
a/g 1.4 2.8 2.2 2.8 1.3 3.6 4.1 3.6
i/j 8.9 9.5 9.5 11.5 12.0 14.0 14.0 11.3
a/o 2.0 2.9 2.3 3.8 2.8 4.8 5.2 4.2
f/t 4.0 5.0 6.0 8.1 5.0 6.7 6.1 8.2
h/n 0.9 1.6 1.9 3.4 3.2 14.3 18.6 5.0

Our interpretation of these results is that classifiers based on the weaker features (pixels) benefit
more from the sharing among tasks than those based on the stronger features (strokes). As support
for this interpretation, consider Fig. 6, where we present the parameters wl learned for each of
the 40 writers. The top two rectangles contain the parameters for the pixel covariates, with the
results from `1/`2 regularization on the left and the results from independent `1 regularization on
the right. It is clear that the sharing induced by the `1/`2 regularization has yielded parameters
that are more discriminative in this case. On the other hand, in the case of stroke covariates (the
lower two rectangles), we see that the parameters induced by independent `1 are already quite
discriminative; thus, there appears to be less to gain from shrinkage among tasks in this case. Note
also (from Table 1) that the overall error rate from the classifiers based on pixels is significantly
higher than that of the classifiers based on strokes. Finally, for this problem pooling does not perform
well presumably because the inter-writer variance of the letters is large compared to the inter-class
variance.

Another advantage of the `1/`2-regularization is that it yields a more compact representation
than the other methods (with the exception of pooling). This is particularly noticeable for the stroke
representation where fewer than 50 features are typically retained for the `1/`2-regularization versus
versus three to five times as many for the other regularization schemes.

5.3 Multi-class classification

Multi-class classification can be viewed as a multiple response problem in which a set of responses
share a set of covariates. This is certainly an appropriate perspective if the multi-class classification
problem is approached (as is often done) by fitting a set of binary classifiers, but it is also appropriate
if a single multi-class classifier is fit by a single “polychotomous” logistic regression. In either case,
it may be useful to find covariates that are useful across the set of discriminations. Our `1/`2
regularization applies directly to this setting; indeed, the methodology that we have presented thus
far makes no reference to the fact that the loss function is a sum of losses across tasks. We can
thus replace this loss function with any joint loss function (e.g., the polychotomous logit). In the
remainder of this section we investigate the use of `1/`2 regularization in two multi-class classification
domains.

5.3.1 Digit classification

We conducted a multi-class classification experiment using the “multi-feature digit” data set from
the University of California Irvine repository [19]. This data set of 2000 entries contains 200 ex-
amples of each of the 10 digits. The data are represented by 649 covariates of different types (76
Fourier coefficients, 216 profile correlations, 64 Karhunen-Love coefficients, 240 pixel averages in
2×3 windows, 47 Zernike moments and 6 morphological features). We compared models based on
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Figure 6: Plots of the discriminative masks learned for the classification of g vs s under `1/`2
regularization (Left) and independent `1 regularization (Right), based on either pixel covariates
(Top) or stroke covariates (Bottom). The better masks capture the closure of the circle in g and the
diagonal stroke of s as discriminative features of these letters.
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polychotomous logistic regression fitted with `1/`2 and `1/`1 regularizations and the classification
obtained by combining individually regularized logistic regressions (using the `1 norm). To focus on
the data-poor regime in which regularization methods would appear to be of most value, we used
only 1/10 of the data to fit the model and retained the rest for testing. We replicated the experiment
ten times.

Our results indicate that `1/`2 regularization is clearly superior for this problem compared to
the other regularization methods. The average error rate obtained was 2.9% (σ̂ = 0.24%) for `1/`2,
versus 4.2% (σ̂ = 0.65%) for `1/`1 and 4.1% (σ̂ = 0.65%) for separate binary classifications.

5.3.2 Classification of cancers

The diagnosis of complex diseases such as cancer can be assisted by genomic information provided
by expression microarrays; specifically, microarrays allow us to identify genes that are differentially
expressed in different cell lineages or at different stages of a cancer. This is interesting because the
relationship between gene expression patterns and the illness is more direct than that of somatic
symptoms, but it is also difficult because of the large number of genes and the high levels of noise
present in the data. We used the `1/`2, `1/`1 and independent `1 regularizations to differentiate
four types of skin cancers (studied by [12]) based on gene expression data.

In terms of predictive performance, all three of these regularization schemes performed as well
as the best-performing methods studied by [12] and [20]. However, `1/`2 regularization achieved
this result with a smaller set of non-zero parameters than the other methods: there were 57, 81 and
85 contributing genes to the classifier based on `1/`2, `1/`1 and independent `1, respectively. This
small gene signature is obviously of importance in the biological setting, where simpler/cheaper tests
are desirable and where predictively-important genes may be prioritized for further study. Note also
that the parameter values obtained from `1/`2 regularization were different qualitatively from those
obtained via the other regularizations (see Fig. 7). We found that a striking feature of the sparsity
pattern obtained from `1/`2 was that several genes used by the other regularizations were eliminated
because if the expression of a gene is indicative of a cancer type, then that covariate is encouraged
to be also more discriminative for the other cancers. This might be an efficient way to eliminate
competing correlated predictors.

5.4 Subspace selection

While we have focused on the problem of selecting covariates, it is also of interest to consider possible
extensions of our approach to the problem of selecting general subspaces (i.e., linear combinations
of covariates). That is, we may wish to consider situations in which a subspace that is useful across
multiple tasks is not aligned with the original covariate coordinate system, such that the models are
sparse in a rotated coordinate system. This situation is considered in [1, 2].

We can treat the subspace selection problem within our formalism by making use of random
projections. Specifically, we propose the following approach: map all data sets to <d using a common
set of d projections on one-dimensional random subspaces. In this new representation of the data,
use `1/`2 regularization to perform joint covariate selection. The covariates selected in <d correspond
to a common relevant subset of directions in the original space. Intuitively, we would expect for
this procedure to find projections that are useful across tasks, thus uncovering a common subspace
linking the tasks.4

4In a further theoretical development that is beyond the scope of the present manuscript, we have been able to
show that the random projection method approaches a trace-norm regularization as the number of projections grow.
This connects the random projection approach with the work of Argyriou et al. [2], who propose to directly optimize
the trace norm as the basis of a subspace selection method. Numerically, the approach based on random projections
would appear to have some advantages, because the trace-norm regularization is a non-differentiable problem and
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Figure 7: Matrix of parameters obtained from three regularization methods. The `1/`2, `1/`1 and
independent `1 regularizations use 57, 81 and 85 (respectively) contributing genes to classify four
cancer types: EWS, BL, NB, RMS. Note that the `1/`2 regularization has an interesting “mikado”
pattern (i.e., with alternating, contrasted coefficients columnwise) indicating that a given feature
has important opposite effects in the classification of two classes that it discriminates well.

Table 2: Average 0-1 loss on the test set with random projections as a preprocessing step. The
bold font indicates the best performing method in each row among the different methods: `1/`2,
`1/`1, independent (id.) `1 or pooled `1. The boxed entry indicates conditions in which there was
an improvement over the feature selection results in Table 1.

strokes : error(%) pixels: error (%)
Task `1/`2 `1/`1 id.`1 pool `1/`2 `1/`1 id.`1 pool

c/e 2.0 3.5 3.3 2.5 3.5 7.8 10.3 4.5

g/y 10.3 10.3 9.3 16.9 11.6 9.7 10.9 21.4

g/s 3.8 4.0 2.5 12.0 4.7 6.7 5.0 6.4

m/n 4.1 5.8 3.6 5.3 1.9 2.8 4.1

a/g 0.8 1.6 1.3 2.5 0.8 1.7 1.4 3.9

i/j 9.2 9.8 11.1 11.3 10.3 12.7 13.5 11.5

a/o 2.7 2.7 1.9 4.3 2.1 3.1 3.5 4.2

f/t 5.8 4.1 5.5 7.5 6.4 11.1 9.6 7.1

h/n 0.9 0.6 0.3 3.7 1.8 3.6 5.0 5.0

Returning to the OCR problem, we conducted an experiment that was identical to the previous
experiment, but in which 500 random projections were used to transform the pixel covariates into
a new covariate space. Similarly, in the case of the strokes covariates we used 3000 projections.
In both cases this yielded roughly four times as many projections as there were dimensions of the
original covariate space. The results of this experiment are shown in Table 2. We see that the
subspace selection yields an improvement over the earlier feature selection results in the case of the
pixel covariates.

6 Discussion

We have presented a regularization scheme for joint covariate selection in grouped classification,
where several classification models are fitted simultaneously and make simultaneous choices of rele-

involves the implicit solution of an eigenvalue problem.
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vant covariates. We have also proposed a scalable algorithm that follows the regularization path for
this problem.

We should emphasize that although classification has been the focus of our presentation, the
approach is generic and applies immediately to problems based on other smooth loss functions,
including least squares regression and more broadly generalized linear models. More generally, any
norm inducing sparse solutions can benefit from a similar approach.

We should also point out that there is a natural extension of our setting to a sequential (online)
version of grouped classification. In this case, tasks are presented one after another and each new
model is encouraged to share the same sparsity pattern as previous classifiers. This can be achieved
by minimizing the sum of the loss on the new task plus a joint `1/`2 norm combined with previous
classification parameters.

We showed empirically in several examples that the proposed regularization methodology can
improve overall classification performance and can also aid in interpretability. We found that the
method is particularly useful in cases in which covariates are noisy and in which the amount of data
for each classification task is limited.
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A Appendix

In this appendix we prove Proposition 1, showing that the path-following algorithms that we have
presented guarantee steady progress along the path and guaranteeing that the latter is well approx-
imated. While we focus on Algorithm 2, it is also worth noting that with minor modifications the
proof also goes through for Algorithm 1.

The proof proceeds via a sequence of lemmas. Lemma 2 justifies the update rule λt+1 =
min(λt, ε−1[J(W t)−J(W t+1)]) by showing that it ensures that each time the regularization co-
efficient λt is updated, the solution satisfies approximate KKT conditions and is thus, by Lemma
1, reasonably close to the path. The algorithm is designed to move along the path smoothly in pa-
rameter space, by taking a bounded step. Lemmas 3 and 4 establish that the progression is steady
in terms of λt and that the algorithm terminates after a finite number of steps. More precisely,
Lemma 3 shows that the regularization decreases by at least a constant amount εµmin at almost
each iteration and therefore becomes smaller than εµmin after a finite number of steps. Lemma 4
establishes additionally that even the part of the path corresponding to small values of the regu-
larization can be reached efficiently after a finite number of steps if a bounded line search method
is used to determine the step size of the descent steps on J . Lemmas 5 and 6 show that steepest
descent converges for our regularized objective, in spite of its non-differentiability.

All lemmas assume that J is convex, continuously twice differentiable (C2) and that, as a conse-
quence, the spectrum of its Hessian is uniformly bounded above and below respectively by µmax and
µmin on some fixed compact set. Lemmas 3 and 4 assume that Algorithm 2 is used without pruning
the active set A (i.e., once a point is inserted in A it stays in A). For a function F , we denote by
∂F (x) the set of subgradients of the function at x and ∂kF (x) the set of subgradients in the kth

subspace.

Lemma 1. Let T be any convex function, and G(x) = λT (x) + J(x). Then let g ∈ ∂G(x) be a
subgradient of G at x and x∗ the unique minimum of G , then

‖x∗ − x‖ ≤ 2
‖g‖
µmin
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Proof. This is a simple extension of a standard result in optimization (cf. [4], pp. 459-460). Com-
bining a Taylor expansion of J with a convexity inequality for the norm we get:

∃ξ, J(x∗) ≥ J(x) +∇J(x)(x∗ − x) +
1
2
(x∗ − x)>H(ξ)(x∗ − x)

T (x∗) ≥ T (x) + t>(x∗ − x) with t ∈ ∂T (x)

So that with g = t +∇J(x)

∃ξ, G(x∗) ≥ G(x) + g>(x∗ − x) +
1
2
(x∗ − x)>H(ξ)(x∗ − x)

0 ≥ G(x∗)−G(x) ≥ g>(x∗ − x) +
1
2
µmin‖x∗ − x‖2

1
2
µmin‖x∗ − x‖2 ≤ ‖g‖‖x∗ − x‖

which yields the desired result.

Lemma 2. Let ξ0 in Eqn. (3) satisfy ξ0 ≥ max(2ξ, 1
2εµmax). Then for all t such that λt+1 < λt

the approximate KKT conditions hold just before the gradient step at iteration t; as a consequence
‖W t − W (λt)‖ ≤ √

K 2ξ0
µmin

where W (λt) is the optimal solution of Eqn. (2) for the regularization
coefficient λt.

Proof. The approximate KKT conditions are explicitly enforced by the algorithm in the active set.
Moreover, ∀k /∈ A, wk = 0 and

‖∇wk
J(W t)‖ ≤ ‖∇wj∗J(W t)‖ ≤ ‖∇J(W t)‖ ≤ 1

ε
(J(W t)− J(W t+1)) +

1
2
εµmax ≤ λt + ξ0

using a second order Taylor expansion of J . This shows the first part of the lemma. As we argue
now, these approximate KKT conditions imply that there exists a subgradient of our regularized
objective of size at most

√
Kξ0, which by Lemma 1 implies the result. Indeed for every covariate

k such that wk 6= 0, ‖∇wk
J(W )‖ ≤ 2ξ + λ; then for every covariate such that wk = 0, since the

subgradient set of λ‖ · ‖2 at 0 is the Euclidean ball of radius λ, given that ‖∇wk
J(W )‖ ≤ λ + ξ0,

one can choose a subgradient of the `2-norm such that the corresponding partial subgradient of the
regularized objective with respect to wk is of norm less than ξ0. Since the subgradient of the norms
can be chosen independently in each subspace, we have a subgradient g = (g1, · · · , gK) such that
maxk ‖gk‖ ≤ ξ0 and therefore ‖g‖ ≤ √

Kξ0.

Lemma 3. If we use steps of fixed size ε, after a finite number of steps λt becomes smaller than
1
2εµmin.

Proof. Except for a number of iterations bounded by K, at the beginning of each iteration of the
algorithm, we have ‖∇wj∗t

J(W t)‖ ≤ λt. Indeed, any active covariate k satisfies ‖∇wk
J(W t)‖ ≤ λt

after the approximate KKT conditions are enforced at the end of the previous iteration, and if some
inactive covariate has a gradient larger than λt then the largest gets incorporated in the active set,
which can only happen once for every covariate if there is no pruning. For all steps t such that
‖∇wj∗t

J(W t)‖ ≤ λt, if the step taken is ε ut with ut a unit vector in subspace k, then, using a Taylor
expansion of J , the update of the regularization satisfies

λt+1 =
J(W t)− J(W t+1)

ε
≤ ‖∇wj∗t

J(W t)‖ − ε

2
µmin ≤ λt − ε

2
µmin

So if steps of fixed size ε are used, then, after a finite number of steps λt becomes smaller than
1
2εµmin.
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Lemma 4. If, given the direction ut =
∇wj∗t

J(W t)

‖∇wj∗t
J(W t)‖ , we choose a step size εt ≤ ε which maximizes

the decrease J(W t)− J(W t+1), then limt λt ≤ 2ξ.

Proof. The beginning of the previous argument is still valid and so there exists t0 such that ∀t > t0,
λt+1 ≤ λt − 1

2εtµmin. So εt converges to 0. In particular, there exists t1 such that ∀t > t1, εt < ε.
But if εt < ε:

J(W t)− J(W t+1) ≤ εt∇wj∗t
J(W t+1) · ut +

1
2
ε2t µmax =

1
2
ε2t µmax

the last equality being due to the fact that the minimizer is in the interior of [0, ε]. But then using
J(W t)−J(W t+1) ≥ εtδ‖∇wj∗t

J(W t)‖− ε2t
2 µmax we finally get λt−2ξ ≤ ‖∇wj∗t

J(W t)‖ ≤ εt

δ µmax →
t

0.

Lemma 5. For any non-differentiable point W 0 of G = J + λ‖ · ‖`1/`2 with wk = 0 and a descent
direction in the kth subspace, there exists a neighborhood Bε of W 0 such that, for all W ∈ Bε, a
steepest descent step with line search executed in the the kth subspace leads to a point V ∗ such that
G(W 0) > G(V ∗).

Proof. Let Bε = {W | maxj ‖wj − w0
j‖ ≤ ε}. For clarity denote g0 =∇kJ(W 0), g =∇kJ(W ), gv =

∇kJ(V ). Fix η0 and let ε1 = ‖g0‖+η0
λ ε. Since J is assumed C2, we can choose ε such that ε1 is small

enough that for all V in Bε1 , ‖gv − g0‖ < η. Note that the existence of a descent direction in the kth

subspace implies λ < ‖g0‖ and so, provided η0 < λ− ‖g0‖, then we have ε1 ≤ ε and Bε ⊂ Bε1 .
Since we perform a line search from W , note that the new component in the kth subspace, v∗k,

is of the form vk(γ) = wk − γ
(
λ wk

‖wk‖ + g
)
. Consider the suboptimal point in the steepest direction

of subspace k given by vk = vk

(
‖wk‖

λ

)
= −‖wk‖

λ g. Note that for V (resp. V ∗) obtained from W by

updating coordinate k to vk = −‖wk‖
λ g (resp. v∗k), we have G(V ∗) ≤ G(V ).

Moreover V ∈ Bε1 since

max
j
‖vj − w0

j‖ ≤ max(max
j
‖wj − w0

j‖,
‖g‖‖wk‖

λ
) < ε1.

But ∀V ∈ Bε1 by convexity of G,

G(W 0)−G(V ) ≥ −v>k

(
λ

vk

‖vk‖ + gv

)
≥ −λ‖vk‖ − v>k g0 − η‖vk‖

and since vk = −γg with γ = ‖wk‖
λ ,

1
γ

[
(λ + η)‖vk‖+ v>k g0

] ≤ (λ + η)‖g‖ − g>g0 ≤ [
(λ + 3η)− ‖g0‖]‖g‖,

which is negative as soon as η < η0 ≤ 1
3 (‖g0‖ − λ).

So for η < η0 ≤ 1
3 (‖g0‖ − λ), G(V ∗)−G(W 0) ≤ G(V ∗)−G(W 0) < 0.

Lemma 6. For any strictly convex function J ∈ C2 and G = J +λ‖·‖`1/`2 , then blockwise coordinate
descent on G based on partial directional derivatives combined with exact line searches converges to
the global minimum of G.

18



Proof. Let W t,k = (wt
1, · · · , wt

k, wt−1
k+1, · · · , wt−1

K ) and let gt,k ∈ ∂kG(W t,k−1) be the steepest descent
direction.5 For any cycle t and update of the component in subspace k, the following inequality can
be obtained from a Taylor expansion and convexity inequalities:

∃W̃ t,k, G(W t,k−1) ≥ G(W t,k)− αt,kst,k+1>gt,k +
1
2
α2

t,kgt,k>Hkk
J (W̃ t,k)gt,k

where st,k+1 ∈ ∂kG(W t,k) can be chosen such that st,k+1>gt,k = 0: indeed, if there was no such
st,k+1, given the convexity of the subgradient set, this would contradict that gt,k is a minimum of G
along the descent direction. We used the notation Hkk

J for the restriction of the Hessian of J to the
kth subspace and denoted W̃ t,k−1 a point on the segment [W t,k−1,W t,k]. Given that (W t,k−1)t is in
a compact set (because G is coercive) we can extract a converging subsequence. On a compact set
we have gt,k>Hkk

J (W̃ t,k)gt,k ≥ µmin‖gt,k‖2 because J is assumed strictly6 convex and C2 so that its
spectrum is lower bounded. On a subsequence converging to W ∗, since it decreases monotonically,
we therefore have:

G(W 0,k−1)−G(W ∗) ≥
∑

i

G(W ti,k−1)−G(W ti,k) ≥ 1
2
µmin

∑

i

α2
ti,k‖gti,k‖2. (∗)

For any W t,k−1 such that the closed segment joining wt−1
k and wt

k doesn’t contain the zero vector,
two full Taylor expansions yield:

∃W̄ t,k, G(W t,k)−G(W t,k−1) = −αt,k‖gt,k‖+
1
2
α2

t,kgt,k>Hkk
G (W̄ t,k)gt,k.

∃W̃ t,k, G(W t,k−1)−G(W t,k) =
1
2
α2

t,kgt,k>Hkk
G (W̃ t,k)gt,k.

For the latter, since wt
k 6=0, G has a partial differential at W t,k in the kth subspace which is orthogonal

to gt,k, hence the missing linear term. We can assume αti,k 6= 0 (otherwise, either we can extract
a further subsequence with that property, or the subsequence is finitely convergent to a stationary
point). Combining the Taylor expansions and using Hkk

G (W ) = Hkk
J (W ) + 1

‖wk‖ (Id− wkw>k
‖wk‖2 ) we get

1 =
1
2
αti,k

gti,k> [HG(W̃ ti,k)−HG(W̄ ti,k)] gti,k

‖gti,k‖2 ≤ 1
2
αti,k

[(
µmax +

1
‖w̃ti

k ‖

)
− µmin

]
.

Since in the limit (wti

k )i is lower bounded and, since ‖wt
k−wt+1

k ‖ →
t

0, so is (w̃ti

k )i asymptotically. The

previous inequality then implies that αti,k is lower bounded as well and therefore, from Eqn. (∗),
‖gti,k‖ →

i
0. So either wti

k →
i

0 or ‖gti,k‖ →
i

0. This characterizes any accumulation point of

the sequence (W t,k)t. Note that, for any k0 and any converging subsequence (W ti,ki)i, we have
‖W ti,ki −W ti,k0‖ →

i
0 since for all k, ‖wt

k −wt+1
k ‖ →

t
0, which means that the accumulation points

of the overall sequence are the same as the accumulation points of any sequence (W t,k)t with k
fixed. Furthermore, given our assumptions on J , G is strictly convex and therefore, once a set Ac of
components for which wti

k →
i

0 is specified, only one accumulation point is possible because gti,k →
i

0

implies that (W ti

A )i converges to a point which is the unique minimum of WA 7→ G(0Ac ,WA) where
(0Ac ,WA) is a full matrix W in the domain of G where all components of subspaces indexed by
k ∈ Ac are set to 0 (note that this is even true if (W ti

A )i converges to a point of non-differentiability

5We use subgradient notation for the steepest descent direction since the directional derivative of f in direction d
can be calculated from the subgradients as f ′(x, d) = sups∈∇f(x)s

>d.
6Note that we actually only use the strict convexity in the direction of the gradient.
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of G(0Ac , ·)). This implies that there are at most a finite number of accumulation points possible
(in particular at most 2K).
We now argue that the only accumulation point possible is the minimum of G. Since G is strictly
convex, at most one of the potential accumulation point has no descent direction. But by Lemma 5
any potential accumulation point W 0 with a descent direction has a neighborhood such that, for
any iterate in that neighborhood, the next iterate V satisfies G(V ) < G(W 0), which implies that
W 0 cannot be an accumulation point since the sequence is decreasing in G. The only accumulation
point possible is therefore the minimum.
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