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ABSTRACT

This paper is a survey of the growing body of theory concerned with parallel algo
rithms and the complexity of parallel computation. The principal model of computation
that we consider is the parallel random-access machine (PRAM), in which it is assumed
that each processor has random access in unit time to any cell of a global memory. This
model permits the logical structure of parallel computation to be studied in a context
divorced from issues of interprocessor communication.

Section 2 surveys efficient parallel algorithms for bookkeeping operations such as
compacting an array by squeezing out its "dead” elements, for evaluating algebraic expres-
sions, for searching a graph and decomposing it into various kinds of components, and for
sorting, merging and selection. These algorithms are typically completely different from
the best sequential algorithms for the same problems, and their discovery has required the
creation of a new set of paradigms for the construction of parallel algorithms.

Section 3 studies the relationships among several variants of the PRAM model which
differ in their implementation of concurrent reading and/or concurrent writing, presents
lower bounds on the time to solve certain elementary problems on various kinds of PRAMs,
and compares the PRAM with other models such as bounded-fan-in and unbounded-fan-in
circuits, alternating Turing machines and vector machines.

Section 4 discusses NC, a hierarchy of problems solvable by deterministic algorithms
that operate in polylog time using a polynomial-bounded number of processors. Among the
problems shown to lie at low levels within this hierarchy are the basic arithmetic opera-
tions, transitive closure and Boolean matrix multiplication, the computation of the deter-
minant, the rank and the inverse of a matrix, and the evaluation of certain classes of
straight-line programs. Section 4 also introduces the randomized version of NC, and gives
fast randomized parallel algorithms for problems such as finding 2 maximum matching or a
maximal independent set of vertices in a graph. Section 4 concludes by exhibiting saveral
problems that are complete in the sequential complexity class P with respect to logspace
reducibility, and hence unlikely to lie in NC.
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ence, to be published by North-Helland,

*Research supported by the International Computer Science Institute, Berkeley, California
and NSF Grant Nos. DCR-8411954 and CCR-8612563.

{Research supported by the International Computer Science Institute, Berkeley, California
and by Joint Services Electronics Program under NO0OO14-84-C-01439,



.92.

1. Introduction

Parallel computation is rapidly becoming a dominant theme in all areas of
computer science and its applications. It is likely that, within a decade, virtually
all developments in computer architecture, systems programming, computer appli-
cations and the design of algorithms will be taking place within the context of
parallel computation.

In preparation for this revolution, theoretical computer scientists have begun
to develop 2 body of theory centered around parallel algorithms and parallel archi-
tectures. Since there is no consensus yet cn the appropriate logical organization of
a massively paralle! computer, and since the speed of parallel algorithms is con-
strained as much by limits on interprocessor communication as it is by purely com-
putational issues, it is not surprising that a variety of abstract models of parallel
computation have been pursued.

Closest to the hardware level are the VLSI models, which focus on the techno-
logical limits of today’s chips, in which gates and wires are packed into a small
number of planar layers. At the next level of abstraction are those models in
which a parallel computer is viewed as a set of processors interconnected in a fixed
pattern, with each processor having a small number of neighbors.

At one further remove from physical reality is the parallel random-access
machine (PRAM), in which it is assumed that, in addition to the private memories
of the processors, there is a shared memory, and that any processor can access any
cell of that memory in unit time. The PRAM cannot be considered a physically
realizable model, since, as the number of processors and the size of the global

- memory scales up, it quickly becomes impossible to provide a constant-length data
path from any processor to any memory cell. Nevertheless, the PRAM has proved
to be an extremely useful vehicle for studying the logical structure of parallel com-
putation in a context divorced from issues of parallel communication, and it is the
focus of attention in the present survey.

Many studies of algorithms and complexity in the PRAM model focus on the
trade-off between the time for a parallel computation and the number of processors
required. In a practical situation the number of processors available is fixed, but
our theoretical studies are enriched if we let the number of processors grow as a
function of the size of the problem instance being solved. Of particular interest are
so-called efficient algorithms, which run in polylog time (i.e., the parallel computa-
tion time is bounded by a fixed power of the logarithm of the size of the input), and
in which the processor-time product exceeds the number of steps in an optimal
sequential algorithm by at most a polylog factor. Section 2 surveys efficient PRAM
algorithms for bookkeeping operations such as compacting an array by squeezing
out its "dead" elements, for evaluating algebraic expressions, for searching a graph
and decomposing it into various kinds of components, and for sorting, merging and
selection. These efficient parallel algorithms are typically completely different
from the best sequential algorithms for the same problems, and their discovery has

required the creation of a new set of paradigms for the construction of parallel
algorithms.

In the PRAM model there is the possibility of read- and write-conflicts, in
which two or more processors try to read from or write into the same memory cell
concurrently. Distinctions in the way these conflicts are handled lead to several
different variants of the model. The weakest of these is the exclusive-read
exclusive-write (EREW) PRAM, in which concurrent reading or writing are forbid-
den; of intermediate strength is the concurrent-read exclusive write (CREW)
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PRAM, which allows concurrent reading but not concurrent writing; and strongest
of all is the concurrent-read concurrent-write (CRCW) PRAM, which permits both
kinds of concurrency. Several varieties of CRCW PRAMs have been defined; they
differ in their method of resolving write conflicts. In Section 3 it is shown that,
although these variants do net differ very greatly in computation speed, the CREW
PRAM is strictly more powerful than the EREW PRAM and strictly less powerful
than the CRCW PRAM. 1t is also shown that certain simple tasks, such as multi-
plying two n-bit numbers, inherently require time @(logn/loglogn) even on the
strongest PRAM model provided the number of processors is polynomial-bounded.

Section 3 goes on to study the relationship between the PRAM and other
abstract models of parallel computation, such as boolean circuits, alternating Tur-
ing machines and vector machines. It turns out that all these models are
equivalent in their ability to solve problems in polylog time using a polynomial-
bounded number of computing elements (processors or gates). This motivates the
definition of NC as the class of problems that can be solved within these resource
bounds by deterministic algorithms. Two important refinements of this result are
presented, each showing that certain parallel computatwn models are equivalent
in their ablhty to solve problems in time Q(log®n), where k is a fixed positive
integer, using a polynomial-bounded amount of hardware. For PRAMs the amount
of hardware is measured by the number of processors, for uniform circuits, by the
number of wires and, for alternating Turing machines, by the number of possible
configurations, which is exponential in the space. The first refinement, by Ruzzo,
states that alternating Turing machines are equivalent to bounded-fan-in circuits;
the second, by Stockmeyer and Vishkin, states that CRCW PRAMs are equivalent
to unbounded-fan-in circuits.

Section 4 gives a survey of important problems that lie in the class NC.
Among these are the basic arithmetic operations, transitive closure and boolean
matrix multiplication, the computation of the determinant, the rank or the inverse
of a matrix, and the evaluation of certain classes of straight-line programs. Sec-
tion 4 also presents randomized algorithms that operate in polylog time using a
polynomial-bounded number of processors, for problems such as finding a max-
imum matching or a maximal independent set of vertices in a graph.

The study of parallel complexity within the PRAM model has led to some
important negative results. Using a theory of reducibility analogous to the theory
of NP-completeness, it has been possible to identify certain problems as
P —complete; such problems are solvable sequentially in polynomial time, but do
not lie in the class NC unless every problem solvable in sequential polynomial
time lies in NC. This is evidence that the P-complete problems are inherently
resistant to ultra-fast parallel solution. Our survey concludes, in Section 4, by
exploring this concept and deriving a number of examples of P-complete problems,
including the maximum-flow problem and the problem of evaluating the output of
a monotone boolean circuit when ail the inputs are fixed at constant values.
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2. Efficient PRAM Algorithms

2.1 The PRAM Model

The primary model of parallel computation that we will be working with is
the PRAM (Parallel Random Access Machine) (FoWy, Gol, SaSt]. This is an ideal-
ized model, and can be viewed as the parallel analogue of the sequential RAM
(CoRe]. A PRAM consists of several independent sequential processors, each with
its own private memory, communicating with one another through a global
memory. In one unit of time, each processor can read one global or local memory
location, execute a single RAM operation, and write into one global or local
memory location.

PRAMSs can be classified according to restrictions on global memory access. An
EREW PRAM is a PRAM for which simultaneous access to any memory location
by different processors is forbidden for both reading and writing. In a CREW
PRAM simultaneous reads are allowed but no simultaneous writes. A CRCW
PRAM allows simultaneous reads and writes. In this case we have to specify how
to resolve write conflicts. Some commonly used methods of resolving write conflicts
are: a) All processors writing into the same location write the same value (the
COMMON model); b) Any one processor participating in a common write may
succeed, and the algorithm should work correctly regardless of which one succeeds
(the ARBITRARY model); ¢) There is a linear ordering on the processors, and the
minimum numbered processor writes its value in a concurrent write (PRIORITY
model).

Even though there is a variety of PRAM models, they do not differ very
widely in their computational power. We show in section 3 that any algorithm for
a CRCW PRAM in the PRIORITY model can be simulated by an EREW PRAM
with the same number of processors and with the parallel time increased by only a
factor of O(logP), where P is the number of processors; further, any algorithm for a
PRIORITY PRAM can be simulated by a COMMON PRAM with no loss in parallel
time provided sufficiently many processors are available.

Let § be a problem which, on an input of size n, can be solved on a PRAM by
a parallel algorithm in parallel time i(n) with p(n) processors. The quantity
wi{n)=t(n)p(n) represents the work done by the parallel algorithm. Any PRAM
algorithm that performs work w(n) can be converted into a sequential algorithm
running in time w(n) by having a single processor simulate each parallel step of
the PRAM in p(n} time units. More generally, a PRAM algorithm that runs in
parallel time #(n} with p(n) processors also represents a PRAM algorithm perform-
ing work O(w(n)) for any processor count P <p(n): this is because we can make
each processor do the computation of several processors serially by proportlonately
increasing the parallel time to T =t(n)- [p(n)/P |.

Define polylog(n)= (] O(log®n). Let S be a problem whose best sequential
k>0
algorithm runs in time 7'(n); note that many problems have the property that any
algorithm that solves them would need to look at all of the input in the worst case,
and hence T(n)=Q(n) in such cases. A PRAM algorithm A for S, running in paral-
lel time ¢(n) with p(n) processors is optimal if

a) t{n)=polylog(n); and
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b) the work w(n)=p(n)¢(n) is O(T(n)).

Since A represents a sequential algorithm with running time w(n), it serializes
into a sequential algorithm with time complexity O(T(n)). At the same time, since
£(n) is required to be polylog(n), the algorithm attains a super-polynomial speed-up
relative to the best sequential algorithm. Hence an optimal parallel algorithm
achieves a high degree of parallelism in an optimal way. Analogously, we can
define an efficient parallel algorithm for problem S as one for which the work
w(n)=T(n)polylog(n) with the parallel time t(n)=polylog(n); i.e., an efficient
parallel algorithm is one that achieves a high degree of parallelism and comes
within a polylog factor of optimal speedup. A major goal in the design of parallel
algorithms is to find optimal and efficient algorithms with ¢(n) as small as possi-
ble. Clearly it is easier to design optimal algorithms on a CRCW PRAM than on a
CREW or EREW PRAM. However, the simulations between the various PRAM
models make the notion of an efficient algorithm invariant with respect to the par-
ticular PRAM model used. Thus this latter notion is more robust.

Consider a computation that can be done in ¢ parallel steps with x; primitive
operations at step i. If we implement this computation directly on a PRAM to run
in ¢t parallel steps, the number of processors required would be m =max x;, If we
have p <m processors, we can still simulate this chpTation effectively by observ-

ing that the ith step can be simulated in time x,/p|<(x;/p)+1, and hence the

total parallel time to simulate the computation with p processors is no more than
lx/p|+¢. This observation, known as Brent’s scheduling principle [Br], is often
used in the design of efficient parallel algorithms. It should be noted that this
simulation assumes that processor allocation is not a problem, i.e., that it is possi-
ble for each of the p processors to determine, online, the steps it needs to simulate,
We will see below that this is sometimes a nontrivial task.

For PRAM algorithms we would like to have simple algorithms that are easy
to specify and code. Most of the algorithms we describe will have this feature.

There are a few key methods that have emerged as fundamental subroutines
in the design of efficient and optimal parallel algorithms. In the following subsec-
tions, we review these basic techniques and algorithms.

2.2 Basic PRAM Techniques
2.2.1 Prefix Sums

The first problem we consider is prefix sums. Let * be an associative operation
over a domain D, Given an array [x;, - ,x,] of n elements from D, the prefix

problem is to compute the n prefix sums S;=zx,*x,%..%x;= Exj,izl,...,n. This

=1
problem has several applications. For example, consider theiproblem of compact-
ing a sparse array: given an array of n elements, many of which are zero, we wish
fo generate a new array containing the nonzero elements in their original erder.
We can compute the position of each nonzero element in the new array by assign-
ing value 1 to the nonzero elements, and computing prefix sums with * operating
as regular addition. Another application is given in section 4.2. Further, recogni-
tion of any regular language whose input size is restricted to n can be viewed as a
prefix problem.

There is a simple sequential algorithm to solve the prefix sums problem using
n—1 operations, by computing S; incrementally from §;_,, for i=2, - - ,n. Unfor-
tunately this algorithm has no parallelism in it since one of the two operands for
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the ith * operation is the result of the i —1st operation.

We now describe a simple parallel algorithm to compute prefix sums in paral-
lel [LaFi]. For simplicity we assume that n is a power of 2.

PARALLEL PREFIX ALGORITHM

INPUT: An array [x{, - ,x,] of elements from domain D. Element x; is in
memory location M.

1) For i=1, - - - ,n/2 compute x;:=x . ;*xy; and place it in location M;.

2) Recursively compute prefix sums S;,i=1, - -+ ,n/2, for the new array of length
nf2.

3) For i=1,+°+,n set S,-:=S£/2 if ¢ is even else set SilﬂS(i_ﬂU/g*xi.

This algorithm runs on an EREW PRAM since there are no conflicts in the
memory accesses. The parallel time t(n) satisfies the recurrence t(n)=t(n/2)+2
with #(1)=0, and the work satisfies the recurrence w(n)=wi(n/2)+n—1 with
w(1)=0. Thus t{n)=0(ogn) and win)=0{(n}. By invoking Brent’s scheduling
principle we see that this is an optimal EREW PRAM algorithm for
p(n)y=0(n/logn). Processor allocation is straightforward in this case and we illus-
trate it by a standard technique used to implement Brent’s principle: Let the
number of processors available be p=n/logn, and let ¢ =n/p. We first assign the
ith processor to memory locations (i—1)g-+1, (i—1)q+2, - --,i'q, i=1,--- p.
The ith processor stores these values in an array in its local memory and adds up
these n/p values (sequentially) in O(n/p) time and places the result in M;, Now
the array has only p elements in it, and the parallel prefix algorithm is used to
compute these prefix sums in O(logn) time using p processors. Finally, in addi-
tional O(n/p) time, the ith processor computes the prefix sums for its local array
with §;_; as the first element of the array. This algorithm runs in O(n/p) time
with p processors on an EREW PRAM for p <n/logn.

On a CRCW PRAM, the above algorithm can be modified to run optimally in
O(logn/loglogn) time [CoVi2],

Since the prefix problem is an important one, much attention has been given
to fine-tuning the constants in the time and processor bounds (see, e.g., [LaFiFi]).

2.2.2 List Ranking

A problem closely related to the prefix problem is the list ranking problem:
Given a linked list on n elements, compute the suffix sums of the last { elements of
the list, i=1,--,n. This is a variant of prefix sums, in which the ordered
sequence of elements is given in the form of a linked list rather than an array, and
the sums are computed from the end, rather than from the beginning. The term
‘list ranking’ is usually applied to the special case of this problem in which all ele-
ments have value 1, and * stands for addition (and hence the result of the list
ranking computation is to obtain, for each element, the number of elements ahead
of it in the list, i.e., its rank in the list); however the technique we shall present
easily adapts to our generalization.

We assume that the linked list is represented by a contents array ¢{1..n] and
a successor array s[l.n]: here, c(i) gives the value of the element at location i, and
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s(i) gives the location, j, of the successor to ¢(i) on the list. For convenience we
assume that the last element on the list, ¢(i;), has value zero, and s(i;) =i;. The fol-
lowing simple algorithm solves the list ranking problem on an EREW PRAM in
O(logn) time with n processors (see, e.g., [Wyl).

BASIC LIST RANKING ALGORITHM

For [logn] iterations repeat

In parallel, for i=1,---,n do
(i) =c (i e(s(i)):
s(@):=s(s(i)).

The operation used in this algorithm of replacing each pointer s(i) by the
pointer’s pointer s(s(i)) is called pointer jumping, and is a fundamental technique
in parallel algorithm design. Let the rank, r(i), of element c{i) be the distance of
c(i) from the end of the input linked list. The correctness of this algorithm follows
from the observation that at the start of each step, c{i) equals the sum of elements
in the input list with ranks r(i),r(i)—=1, - - - ,#{s(i))+1, for the current s{i); and
after [logn] iterations, s(i)=¢,; for all i{. By assigning a processor to each location i,
we obtain an n-processor O(logn) time paralle! algorithm. Observe, however, that
the work done by this algorithm is ©(nlogn) and hence this algorithm as it stands
does not lead to an optimal parallel algorithm (since there is a simple linear-time
sequential algorithm for the list ranking problem). '

The list ranking problem is similar to the prefix sums problem, which has a
simple optimal parallel algorithm. The optimal parallel prefix algorithm reduces
the problem of computing prefix sums on n elements to one of computing prefix
sums on the n/2 elements at even positions on the array. This reduction is done in
constant time and is data independent in the sense that the locations of the n/2
elements in the reduced list are predetermined. If we try to implement a list
ranking algorithm with this property, we run into the problem that a given ele-
ment has no way of knowing whether it is at an odd or even position on the list.
Except for the beginning and end elements, there appears to be no obvious way of
distinguishing between the local environments of two elements on the list.

In order to overcome this problem, we note that we need not necessarily locate
the elements at even positions. It suffices to construct a set S of no more than
¢ - n elements in the list, with ¢ <1, such that the distance between any two con-
secutive elements in the list is small. The list ranking problem can then be solved
as follows;

(i) List Contraction Create a contracted list composed of the elements of S, in
which each element of S has as its successor the first element of § that fol-
lows it in the original list, and a value equal to its own value in the original
list, plus the sum of the values of the elements that lie between it and this
SUCCessor;

(i1}  Recursively, solve the list ranking problem for the contracted list, The
suffix sum for each element in the contracted list is the same as its suffix
sum in the original list;

(iii) Extend this solution to all elements of the original list. The time to do this
is proportional to the maximum distance between two elements of S in the
original list, and the work is proportional to the length of the original list.
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We shall present an optimal O(logn)-time randomized list ranking algorithm
that takes this approach, but with the following exception: once a contracted list of
length less than n/logn is obtained, list contraction is no longer used; instead,
the list ranking problem for this contracted list is solved directly using the Basic
List Ranking Algorithm. This requires time O(logn) using n/logn processors.

It is necessary to specify how the List Contraction step is carried out. This
entails giving a method for choosing the set S, and a method for the compaction
process needed to place the elements of S in consecutive locations, in preparation
for the recursive solution of the list ranking problem on the compacted list.

We can construct S by the following simple randomized algorithm (see e.g,
[Vi2, MiRe]) called the random mate algorithm. Each element chooses a gender,
female or male, with equal probability. An element e is not in set S if and only if
e is male and its predecessor in the list is female. It is easy to see that with proba-
bility 1—0(1), the size of § is not more than 15n/16, and each element in § can
find its successor in S in constant time, since its successor is at a distance at most
2 from it in the list. With random mating each list contraction tends to shrink
the length of the list by a constant factor, and thus the number of contractions
needed to pass from the original list of length n to a list of length less than
n/logn is O(loglogn).

The process of compacting S into consecutive locations could be done by the
O(log n)-time optimal methed for prefix sums that we saw earlier, but this method
would lead to a list ranking algorithm running in time O(logrloglognrn), since
loglogn list contractions need to be performed. Instead, we can use either an
optimal O(loglogn) time randomized algorithm on an ARBITRARY CRCW PRAM
that approximately compacts an array [MiRe], or the optimal O(logn/loglogn)
time deterministic prefix sum algorithm of [CoVi2], which runs on an ARBI-
TRARY PRAM. Either of these leads to a method that, with high probability,
solves the list ranking problem in time O(logr) and work O(n). Thus, using
Brent’s scheduling principle, one obtains an optimal O(logn)-time randomized list
ranking algorithm using n/logn processors.

In order to obtain an optimal O(logn)-time deterministic list ranking algo-
rithm it is necessary to replace the random mating procedure by a deterministic
method of isolating a contracted set of elements S. A symmetry breaking technique
known as deterministic coin tossing can be used for this purpose [CoVil]. The
technique is based on the concept of an r-ruling set [CoVill. Given an n-element
list, a subset S of these elements is an r-ruling set if no pair in 8 is adjacent on
the list, and every element ¢ not in S is at a distance no more than ¢'r on the list
from an element in S, where ¢ is a suitable constant.

Define log®*'n to be the log function iterated k times, and let r=1log*’n. The
following algorithm finds an r-ruling set in an n-element linked list in O(k) time
using n processors ([CoVil], see also - [GoPlSh]). We assume that the linked list is
doubly linked with successor pointer s{i) and predecessor pointer p{i).

RULING SET ALGORITHM

Input n-element linked list with successor pointers s(i) and predecessor pointers
p(D); integer & to set r=log®'n.

1. Fori=1, - ,n initialize ¢(i):=1.

2. For k iterations do



In parallel for each i do

Determine the rightmost bit position ¢ such that the jth bit of ¢(i) differs
from the gth bit of ¢(s(i)); Let b be the gth bit of ¢(i); c¢(i):=b concatenated
with the binary representation of g;

3. In parallel for each i do
If c{p(i)) =cli) and c{s(i)=c{i) then assign i to the ruling set.

It is straightforward to verify that in this algorithm c(i)=2c(s(i)) at every
iteration. Further the number of bits in each c(i) at the end of the jth iteration is
B; =0(log"'n). Finally, the distance between two local maxima at the jth iteration
1s no more than 2-B;, and hence at the end of the algorithm, any element on the
list is within dlstance O(log™®'n) of an element in the ruling set.

Two special cases of the ruling set algorithm deserve special attention. When
k=c, a constant, the algorithm obtains an O(log™'n) ruling set in constant time
using n processors. Define 10g n as the minimum value of k such that log®'n =3;
log'n is a very slowly crrowmg function of n. Using the ruling set algorithm we
can obtain an O(1) ruling set in O(log n) time with n Processors. Since no two ele-
ments in a ruling set are adjacent, the size of any r-ruling set is at most one more
than half the number of elements in the list. In additional O(r) time, each element
in the ruling set can locate its successor in the ruling set by following the succes-
sor pointers in the linked list, thus forming a contracted list.

The ruling set algorithm with appropriately chosen values of 2 has been used
in rather elaborate procedures to obtain optimal Of{logn) deterministic EREW
PRAM algorithms for list ranking {CoVi2, AnMil

2.2.3 Tree Contraction

There are several applications that require computation on a rooted tree. One
such problem is the expression evaluation problem: Given a parenthesized arith-
metic expression (using + and - operations) with values assigned to the variables,
evaluate £ and all subexpressions of E. Note that the prefix problem is the
expression evaluation problem on the parenthesized expression
(e (xyFxg)txg - )+x,).

Associated with a parenthesized expression is a binary tree with n leaves that
specifies the parenthesization. As in the prefix problem there is a simple linear-
time sequential algorithm for the expression evaluation problem: evaluate the
values on the internal nodes of the expression tree from the leaves upward to the
root. The value at the root gives the value of the expressicn, and the value at each
internal node is the value of the subexpression rooted at that node. However, if
the tree is highly imbalanced, i.e., its height is large in relation to its size, then
this method performs poorly in parallel.

Tree contraction is a method of evaluating expression trees efficiently in paral-
lel. The method transforms the input tree in stages using local operations in such
a way that an n-node tree is contracted into a single node in O(logn) stages, each
of which takes constant time on a PRAM. An efficient method for tree contraction
was first introduced in [MiRe]. There are several optimal tree contraction algo-
rithms that run in O(logn) time on an EREW PRAM [GiRy, CoVi3, AbDaKiPr,
KoDe, GaMiTe]. We describe the method reported independently in [AbDaKiPr]
and {KoDe].
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The tree contraction algorithm works on a rooted, ordered binary tree, ie, a
rooted ordered tree in which every vertex is either a leaf, having no children, or an
internal node, having exactly two children, and each arc points from a child to its
parent. Let [ be a leaf in an n-leaf binary tree T. The SHUNT operation applied to
! results in a contracted tree T' in which [ and p(l), the parent of [ in T are
deleted, and the other child I' of p(l) has the parent of p{l} as its parent, while
leaving the relative ordering of the remaining leaves unchanged (see figure 2.1).

Figure 2.1. The SHUNT operation

We now describe the tree contraction algorithm.

TREE CONTRACTION ALGORITHM
INPUT: A rooted, ordered, binary n-leaf tree T.
1) Preprocess: Label the leaves in order from left to right as 1, - - - ,n.

2) For [logn] iterations do

a) Apply SHUNT in parallel to all odd numbered leaves that are the left child of
their parent.

b) Apply SHUNT in parallel to all odd numbered leaves that are the right child
of their parent.

¢)  Shift out the rightmost bit in the labels of all remaining leaves.

It is straightforward to see that the operations in this algorithm can be imple-
mented on an EREW PRAM. After each iteration, half of the leaves are deleted
from the current tree, and no new leaves are created. Hence after [logn] iterations,
the tree is contracted to a single node.

Step 1 can be implemented optimally in O(logn) time on an EREW PRAM
using the Euler tour technique [TaVil, which we describe in section 2.3. Then in
constant time, the leaves can be placed in an array .ﬁ in_ the order in which they

will be processed. The total work done in step 2 is O n/2")=0(n), and proces-
i=1

sor allocation is no problem since we have the array A. Thus, this gives an optimal

Of(logn) tree contraction algorithm on an EREW PRAM.



- 11 -

By associating appropriate computation with the SHUNT operation, we can
evaluate an arithmetic expression while performing tree contraction on its associ-
ated tree. We associate with each arc (u,v) an ordered pair of values {a,b) with the
interpretation that, if the value of u is x, then the operand supplied to v along arc
(u,v) is a-x+0b. Initially, every arc has the ordered pair (1,0). Thus initially the
value of each node in the tree is exactly the value of its subexpression.

Now consider a SHUNT operation on a leaf [ with parent p, sibling s and
grandparent q. Let the value of leaf [ be v, and let arc (I,p) have value (a,,b,), arc
{s,p) have value (a,,b,), and arc (p,q) have value (as,b,). In the contracted tree, all
three of these arcs are deleted and replaced by the arc (s,gq). Let @ and b be con-
stants such that e¢y+b=as((ay'v+b)*(@ayy+by))+bs, where * represents the
operation at p. Then it is easy to see that assigning the value (a,b) to the newly
introduced arc (s,q) leaves the values of the vertices remaining in the new tree
unaltered. Thus we obtain an optimal O(logn)-time EREW PRAM algorithm for
expression evaluation. All subexpressions in the expression tree can be evaluated
within the same bounds by having an expansion phase at the end, similar to that
in the parallel prefix algorithm. This technique works for the evaluation of expres-
sions over a semiring, ring or field (in the case of a field, the value on each edge is
an ordered set of four values, to represent the ratio of two linear forms). If the
input is in the form of a parenthesized expression the tree form can be extracted
from it optimally in O(logn) time using an algorithm in [BaVil.

In addition to expression evaluation, tree contraction has been applied to a
wide variety of problems. The technique easily generalizes to arbitrary (non-
binary) trees, and has been used to derive parallel algorithms for various graph-
theoretic properties on trees such as maximum matching, minimum vertex cover,
maximum independent set, etc. (He]. Other applications of tree contraction and its
variants can be found in [GiKaMiSo, MiRe, NaNaSc, Ram]. A generalization of the
SHUNT operation is used in the more general problem of straight-line program
evaluation, or evaluation of a DAG (see section 4); in fact, the SHUNT operation
was first introduced in this more general setting [MiRaKal].

2.2.4 Conclusion

We have described optimal parallel algorithms for three basis problems: prefix
sums and expression evaluation.

In section 3 we show that it requires 2(logn) time to compute the OR of n bits
on a CREW PRAM, regardless of the number of processors available. Since the
three problems we considered in this section are at least as difficult as the OR
function, the lower bound applies for these problems as well. Thus the results we
have given are optimal with maximum possible speed-up.

We also show in section 3 that a lower bound of Q(logn/loglogn) time holds
for computing the parity of n bits on a PRIORITY CRCW PRAM with a polyno-
mial number of processors. Since we could solve the parity problem if we could
solve an arbitrary prefix sums, list ranking or tree contraction problem, this lower
bound applies to these problems as well. While an optimal O(logn/loglogn) time
CRCW PRAM algorithm is known for the prefix sums problem, it is not known if
the list ranking and tree contraction problems have sub-logarithmic time algo-
rithms on a CRCW PRAM with a polynomial number of processors.

2.3 Efficient{ Graph Algorithms

Graphs play an important role in modeling real-world problems and sequen-
tial algorithms for graph problems have been studied extensively. Almost without
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exception, all of the optimal (i.e., linear-time) sequential algorithms for these prob-
lems use one of two methods to search a graph: depth-first search or breadth-first
search. At present, neither of these techniques have efficient parallel algorithms.
The best polylog time PRAM algorithm known for breadth-first search of an n-node
graph uses M(n) processors, where M(n) is the number of processors required to
multiply two nxn matrices in O(logn) time. For depth-first search there is
currently no deterministic polylog time parallel algorithm known that uses a poly-
nomial number of processors. For more on parallel breadth-first search and depth-
first search, see section 4.

The early work on parallel graph algorithms [ChLaCh, Ecl, ReCo, Sada,
TaVi, TsCh] used various methods to circumvent the lack of an efficient parallel
method of searching a graph. More recently, a new efficient graph searching tech-
nique called ear decomposition [Wh,Lo,MaScVi,MiRal] has been developed for
undirected graphs. Using this technique, efficient parallel algorithms for several
graph problems including strong orientation, biconnectivity, triconnectivity, four-
connectivity, and s —¢ numbering have been developed. Several of these algorithms
also have optimal sequential implementations, thus giving us new algorithms for
the sequential case. This is an example of a new emerging discipline enriching an
existing one. We briefly survey the results in the following, where we assume that
the input graph G has n vertices and m edges.

2.3.1 Connected Components

The problem of computing connected components is often considered as the
basic graph problem. While it is not known how to apply depth-first search or
breadth-first search to obtain an efficient parallel connected-components algorithm,
the following approach [HiChSa] does give an efficient parallel algorithm for the
problem. The algorithm works in O(logn) stages, and at each stage i, the vertices
of G are organized in a forest of directed trees, with a directed arc from each ver-
tex to its parent in the tree. All vertices in any given tree in the forest are known
to be in the same connected component of G. In the first stage of the algorithm,
each vertex is in a tree by itself, and at the end of the last stage, all vertices in a
connected component are in a tree of height 1. In going from stage i to stage i +1,
some of the trees containing adjacent vertices in G are linked by a hooking process
and then the heights of the resulting new trees are compressed by pointer jumping,
i.e., each vertex that is not a root or a child of a root in the new tree, chooses the
parent of its parent to be its new parent. The hooking process has to be imple-
mented properly in order to maintain the tree structure and to guarantee termina-
tion of the algorithm in O(logn) stages. Various implementations of the above
basic idea for the CREW PRAM [HiChSa], EREW PRAM [NaMal and CRCW
PRAM [AwSh, ShVi2] are available. The implementation bound is O(logn) time
using O(m +n) processors on an ARBITRARY CRCW PRAM (recall that by the
simulations between the PRAMs, this implies an O(log®n) time algorithm using
O(m +n) processors on an EREW PRAM). This algorithm easily extends to obtain
a spanning tree for G with the same time and processor bounds.

By applying more elaborate techniques based on those for optimal list ranking
to the basic algorithm we have outlined, the connected components of a graph can
be determined on an ARBITRARY CRCW PRAM in O(logn) time with
O({(m +n)a(m,n)/logn) processors [CoVi2], where a(m ,n) is the inverse Ackermann
function, which is an extremely slowly growing function of m and n. There is also
a randomized optimal Of(logn) algorithm for finding connected components on an
ARBITRARY CRCW PRAM [Gaz].
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2.3.2 Euler Tour Technique

The starting point for most other graph algorithms is the construction of a
rooted spanning tree T, and the computation of simple tree functions such as pre-
and post-order numbering of vertices in the tree, the level and height of each ver-
tex in the tree, and the number of descendants of each vertex in the tree. For this,
we can use the Euler tour technique on trees [TaVil, which we describe below. This
method works by reducing the computation of these tree functions to list ranking.

Given an unrooted tree, T, we can convert it into an Eulerian directed graph
D by replacing each edge {u,v) by two directed arcs, one from z to v and the other
from v to u. Let E= <ejy,eq, '+ > be an Euler tour of D, with e; being the
directed arc from u to v. Then it is easy to see that E represents a depth-first
search traversal of T with u as the root. Each undirected edge (x,y) appears once
on the list as the directed arc (x,y), and once as the directed arc (y,x). If (x,y)
appears before (y,x) in E, then x is the parent of ¥ in T rooted at u, since in this
case, (x,y) represents the forward traversal of the edge in the depth-first search
and (y,x) represents the backtracking along the edge in the depth-first search.
Conversely, if (y,x) appears before (x,y) in E, then y is the parent of x in T rooted
at u. Thus parent-child relationships in T rooted at u can be determined once we
have ranked the elements in list E.

Given a tree T, finding an Euler tour E for its directed Eulerian version is
very simple. We assume that the tree is specified by an adjacency list for each ver-
tex, which can be interpreted as a list of outgoing arcs from that vertex. This
automatically gives us two arcs directed in opposite directions for each edge. We
assume that there is a pointer from each edge to its reversal. With this represen-
tation we can obtain an Euler tour E in constant time with n processors by speci-
fying for each edge e, its next edge on E as the edge next to &, the reversal of e, in
the adjacency list containing e (if ¢ is the last edge on its adjacency list, its next
edge is the first edge on this list). To obtain a depth-first search from a given root
u, we simply pick any arc (u,v) as the starting arc of the tour. Now we can use
list ranking to determine the position of each arc in E, and hence the parent-child
relation. Other tree functions such as preorder number, level, and number of des-
cendants of each vertex can be determined by list ranking using appropriate initial
weights. For instance, to compute preorder numbers, we can assign a weight of 1
to forward arcs and a weight of 0 to back arcs. Then, for each forward arc (u,v), the
preorder number of v is n ~1— the weighted rank of (u,v) in the list. The optimal
list ranking algorithm implies optimal O(logn) EREW PRAM algorithms for these
problems.

We can also use the Euler tour technique on trees to implement the prepro-
cessing step in the tree contraction algorithm of the previous section optimally. For
this we merely need to give a weight of 1 to leaves and a weight of 0 to internal
nodes, and then compute the weighted rank of each leaf in the Euler tour.

The Euler tour technique on trees generalizes to finding Euler tours in gen-
eral Eulerian graphs with the same complexity bounds as the connected-
components algorithm [AtVi,AwIsSh]. For this, we construct the tour E as above
by specifying for each edge, the edge that follows it in E. For a general Eulerian
graph, this results in a collection of edge disjoint (possibly non-simple) cycles. Two
cycles having a common vertex u can be 'stitched together’ by swapping the succes-
sor edges of the two incoming arcs to « in the Euler tour E, The algorithm obtains
an Euler tour for the graph by stitching all the cycles together into a single con-
nected structure through an appropriate choice of such swaps.
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2.3.3 Ear Decomposition

An ear deomposition D = [Py ..., P,_;] of an undirected graph G = (V,E}is a
partition of E into an ordered collection of edge-disjoint simple paths Py ..., Py
called ears, such that P, is a simple cycle, and for i > 0, P; is a simple path (possi-
bly a simple cycle) with each endpoint belonging to a smaller number ear, and
with no internal vertices belonging to smaller numbered ears (see figure 2.2). An
ear with no internal vertex is called a trivial ear.

An open ear decomposition is an ear decomposition in which none of the
P;,i>0, is a simple cycle.

Figure 2.2. An ear decomposition

It is known that a graph has an ear decomposition if and only if it is 2-edge
connected and a graph has an open ear decomposition if and only if it is bicon-
nected, i.e., 2-vertex connected [Wh].

Let T be a spanning tree of an undirected, 2-edge connected graph G =(V,E),
and let N be the set of non-tree edges in G, i.e., the edges in G—T. Then each
edge e in N completes exactly one cycle in T|_J{e}, called a fundamental cycle of G
with respect to T. It is easy to see that the number of ears in any ear decomposi-
tion or open ear decomposition of an n-vertex, m-edge graph is m —n +1, which is
also the number of fundamental cycles in the graph. In the ear decomposition algo-
rithm presented below [MaScVi,MiRal], each ear is generated as part of a funda-
mental cycle of G with respect to T, and contains the non-tree edge in that funda-
mental cycle.

EAR DECOMPGSITION ALGORITHM

INPUT: Undirected, 2-edge connected graph G ={V ,E).

1. Preprocess G:

a) Find a spanning tree T for G.
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b) Root T and number the vertices in preorder,

¢) Label each non-tree edge by the least common ancestor (lca) of its end-
points in T,

2. Assign ear numbers to non-tree edges: Number non-tree edges from 0 to r—1 in
nondecreasing order of their lea labels.

3. Assign ear numbers to tree edges: Number each tree edge with the number of the
minimum numbered non-tree edge whose fundamental cycle it belongs to.

The correctness of this algorithm follows from a straightforward induction on
ear number. It is easy to see that the edges with ear number 0 form a simple cycle
passing through the root of T', and if we assume inductively that edges with ear
numbers 0 to i satisfy the definition of an ear decomposition, it is not difficult to
show that the edges with ear number {+1 have the desired properties as well.

All of the steps in the algorithm can be implemented using the Euler tour
algorithm, together with efficient parallel algorithms for finding a spanning tree,
sorting, prefix sums, and finding lca’s. The algorithm runs in O(logn) time while
performing O(m +nlogn) work. If consecutive ear numbers are not required, but
only distinct labels from a totally ordered set, then the parallel sorting algorithm
is not required and the algorithm can be implemented to run in O(logn) time while
performing the same amount of work as the connected-components algorithm, i.e.,
O{(m+n)a(m,r)) work, by using an optimal O(logn) parallel algorithm to find
lea’s [ScVi]. The ear decomposition algorithm, in general, does not give an open ear
decomposition, but can be modified to do so [MaScVi,MiRal] with the same parallel
complexity by refining the numbering in step 2 so that non-tree edges with the
same lca labels are further ordered in such a way that the resulting ear numbers
give an open ear decomposition.

2.3.4 Applications of Ear Decomposition

The efficient parallel ear decomposition algorithm implies efficient parallel
algorithms for 2-edge connectivity and biconnectivity. Other efficient parallel algo-
rithms for biconnectivity are known [ChLaCh,TaVi].

We describe two other applications of ear decomposition. A strong orientation
of an undirected graph G =(V,E) is an assignment of a direction to each edge of G
such that the resulting directed graph is strongly connected. A graph has a strong
orientation if and only if it is 2-edge connected. To strongly orient a 2-edge con-
nected graph, we find an ear decomposition for it, and then orient the edges in
each ear from one (arbitrary) endpoint of the ear to the other. This results in a
strongly connected directed graph since it gives a directed ear decomposition for
the resulting directed graph, and a directed graph has a directed ear decomposition
if and only if it is strongly connected [Lo]. Parallel algorithms for strong orienta-
tion are reported in [At, Vi3].

We now briefly describe how to use open ear decomposition to obtain an
efficient parallel algorithm to test triconnectivity, and to find the triconnected com-
ponents of a biconnected graph [MiRa2). Let D =[Py, ---,P,_;] be an open ear
decomposition of a biconnected graph G=(V,E). If G is not triconnected, then it
contains a pair of vertices, x,y, whose removal separates the graph into two or
more pieces. For such a pair of vertices x,y, it is easy to see that there must be
some ear P; in D that contains both of them, such that the portion of P; between x
and y is separated from the rest of P, when x and y are removed from G. The tri-
connectivity algorithm tests if such a separating pair of vertices exists by looking
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for them in each ear in parallel. It does so by constructing, for each nontrivial ear,
its ear graph, which is a graph derived from the input graph, that contains the
necessary information about separating pairs of vertices, if any, on the ear. The
algorithm then further processes the ear graph to obtain its coalesced greph, using
which, all separating pairs on the ear can be determined quickly. Efficient parallel
algorithms for finding the ear graphs of all nontrivial ears and the coalesced graph
of each ear graph are given in [MiRa2, RaVi], leading to a parallel graph tricon-
nectivity algorithm that runs in O(logn) time with O(m-log®n) work on an ARBI-
TRARY CRCW PRAM. These ideas generalize to efficient parallel algorithms for
finding all separating pairs of vertices in a biconnected graph and for finding the
triconnected (or Tutte) components of a biconnected graph These ideas also gen-
eralize to testmg for graph four-connect1v1ty [KanRal, giving a parallel algorithm
that runs in O(og?n) time with O(n?) processors on an ARBITRARY CRCW
PRAM. This approach also gives an 0{(r® sequential algorithm for the problem,
which is an improvement over previously known sequential algorithms for the
problem.

Open ear decomposition has been used to obtain a parallel algorithm for
finding an s ~¢ numbering in a biconnected graph {MaScVi] with the same com-
plexity as the connected«components algorithm. This efficient parallel s —¢ number-
ing algorithm has been used in conjunction with an efficient parallel 1mplementa-
tion of PQ trees, to obtain a parallel planarity algorithm [KIRe] that runs in
O(log®n) time using O(m +n) processors on a CREW PRAM.

At present there is no efficient graph search technique known for directed
graphs. Thus for most problems on directed graphs, including the basic one of test-
ing if one vertex is reachable from another in a directed graph, the best polylog
time parallel algorithm currently known needs on the order of M(n) processors.

2.3.5 Conclusion

In this section we have presented efficient parallel algorithms for several
problems on undirected graphs,

Using the fact that graph problems are typically at least as hard as comput-
ing the OR of n bits or the parity of n bits, it follows from the lower bounds of sec-
tion 3 that graph problems need ((logn} parallel time on a CREW or EREW
PRAM with no restriction on the number of processors, and Q(logn/loglogn) paral-
lel time on a CRCW PRAM with a polynom1a1 number of processors. In practice,
graph problems seem to need at least log®z time on a CREW and EREW PRAM
and logn time on a CRCW PRAM. We have stated many of the results in this sec-
tion only for CRCW PRAMSs, when it is the case that, by the simulations between
the various types of PRAMs, this gives the best bounds known for CREW and
EREW PRAMs as well.

Efficient parallel algorithms have been developed for other combinatorial
problems including string matching [Gal, KarRa, LaVi, Vi4], and computational
geometry [AgChGuODYa, AtCoGo, Chol.

2.4 Sorting, Merging and Selection

In this section we discuss parallel algorithms for which the input is an array
of n elements from a linearly ordered set. In the sorting problem, the task is to
rearrange the elements into nondecreasing order, In the merging problem, the
input array is partitioned into two subarrays, each of which is known to be in non-
decreasing order, and the task is to rearrange the entire array into nondecreasing
order. In the selection problem an integer k between 1 and n is given, and the
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task is to find the k*-smallest element of the array. Except for a brief remark in
Section 2.4.3. we restrict attention to comparison algorithms, in which the only
means of gathering information about the elements is through pairwise comparis-
ons (i.e., tests of the form "Is x less than y? ", where x and y are elements of the
array). We also assume for convenience that the n elements are distinct.

Valiant [Val] proposed a model of parallel comparison algorithms in which, at
each step, p comparisons are performed, where p is a parameter that we shall call
the degree of parallelism. It is not required that the p pairs of elements compared
at a given step be disjoint. The choice of the p comparisons to be performed at a
given step can depend in an arbitrary manner on n, the number of elements, and
on the outcomes of previous comparisons. The algorithm terminates when it has
acquired enough information about the input te specify the answer (the identity of
the k** smallest element in the case of selection, and the permutation required to
put the elements in increasing order, in the case of sorting or merging). The exe-
cution time of an algorithm is the number of steps performed. This model is called
the parallel comparison model.

A second model, the comparator network, is a restriction of the parallel com-
parison model. The basic operation in a comparator network is the i—j
comparison-exchange operation, where i and j are distinct integers between 1 and
n. Such an operation has the following interpretation: compare the contents of
location i with the contents of location j; store the smaller of the two values in
location ¢ and the larger of the two in location j. If a comparator network has
degree of parallelism p, then each of its steps is specified by at most p disjoint i —j
pairs, and consists of the simultaneous execution of the comparison-exchange
operations corresponding to these pairs. The network is oblivious, in the sense
that the set of pairs of locations compared in any given step does not depend on the
outcomes of the comparisons performed at earlier steps. A comparator network
can be represented by a diagram reminiscent of a sheet of music paper, in which
each memory cell is represented by a horizontal line and each i - comparison-
exchange operation ‘is represented by a vertical line segment between horizontal
lines i and j, with an arrow directed toward i, the line that will receive the
smaller of the two values being compared. The order in which the comparison-
exchange operations affecting a given cell are executed is given by the left-to-right
order of the corresponding vertical line segments, From this description it should
be clear that, in contrast to the more general parallel comparison model, compara-
tor networks can easily be realized in hardware,

A comparator network is called a sorting network if it is guaranteed to rear-
range the contents of locations 1 to » into nondecreasing order. Figure 2.3 depicts
an 8-element comparator network with degree of parallelism 4 and execution time
6. Our discussion of bitonic sort in Section 2.4.2 will establish that this network is
a sorting network.
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Figure 2.3. A Sorting Network

A third model is the comparison PRAM. This is a PRAM for which the input
is an array of n elements from a linearly ordered set. In addition to its usual
instruction set, the comparison PRAM is provided with instructions for comparing
the elements of the input array and for moving them around in memory. Elements
of the input array have no interpretation as bit strings or integers, and thus can-
not be used as addresses or as arguments for the arithmetic or shift instructions of
the PRAM. The comparison PRAM is a more realistic model than the parallel
comparison model, because the time required to move data around, as well as the
time required to decide which comparisons are to be performed and which proces-
sors will perform them, are counted in the cost of computation along with the cost
of the comparisons themselves.

Since the parallel comparison model is more permissive than the comparator
network or comparison PRAM, lower bounds on the complexity of comparison prob-
lems within that model are valid for the other models as well.

2.4.1 The Complexily of Finding the Maximum and Merging

In this section we derive tight upper and lower bounds on the complexity of
two problems: finding the largest element in an array and merging two sorted
arrays. Our lower bounds are for the parallel comparison model, and our upper
bounds are for the comparison PRAM. Much of our discussion is based on [Val].

We begin by presenting an algorithm for finding the maximum of n elements
on a COMMON CRCW comparison PRAM with p processors. At a general step
within the algorithm, the search for the maximum will have been narrowed down
to a set S of elements from the input array. Initially S consists of all n elements,
and the computation terminates when S becomes a singleton set.

Let x be the smallest integer such that, when S is partitioned into x blocks of
. S S . . . .
size | " jJorj - ], p comparisons suffice for the direct comparison of each pair of

elements that lie in a common block. Then, in one step, the algorithm determines
the maximum element in each block of such a partition, and thus eliminates all
but x elements of S.
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It can be shown that, when —-g- <p = [g], the number of iterations required

to reduce the cardinality of S from n to 1 is loglog n ~loglog(2p/n) + O(1). Also,
the computations required at each step for each of the p processors to determine
which pair of elements to compare, and for the set of block maxima to be assem-
bled into an array, can be carried out in constant time. This establishes that the
complexity of finding the maximum on a p-processor COMMON CRCW comparison
PRAM is O (loglog n —loglog (2p/n)),

To prove a lower bound in the parallel comparison model we use a graph-
theoretic argument. At the beginning of any step of any comparison-based algo-
rithm, there will remain a set § of candidates for the maximum; an element will
lie in S if it has never been compared with a larger element. At a general step,
the comparisons performed between candidate elements can be represented by the
edges of a graph G whose vertices are the candidate elements. An adversary can
choose any set S’ which is independent in G (i.e., no two elements of S’ are com-
pared with each other in the step), and can consistently specify the outcomes of
comparisons so that all the elements of §' remain candidates. A theorem of Turan
in extremal graph theory shows that, in any gragh G having v vertices and e
edges, there is an independent set of size at least v*/(v + 2e). Thus, the adversary
can ensure that the candidate set S’ is of size at least |S|%/|S| + 2p. It follows
that, against such an adversary strategy, an algorithm requires
loglogn — loglog(—gf) + O(1) steps, when % =p = {g’T
of values of p, the algorithm described above is optimal in the parallel comparison
model and optimal within a constant factor on a COMMON CRCW comparison
PRAM. Interestingly, on a CREW comparison PRAM, finding the maximum
requires time §2(logn), even when no limit is placed on the number of processors,
and there is a simple optimal O (log n)-time EREW PRAM algorithms for the prob-
lem.

Hence, for this range

For the problem of selecting the median. of n elements with degree of parallel-
ism n, a lower bound of Q{loglogn) is implied by the lower bound for the max-
imum problem. A matching upper bound for the comparison model has been given
by [AjKoStSz] building on earlier work by [CoYal. It follows from {BeHa] that
finding the median on a CRCW comparison PRAM using a polynomial-bounded
number of processors requires time & lognlloglognT.[

We turn now to the problem of merging increasing sequences of length n and
m, where n = m. We begin by giving an algorithm within the parallel com-
parison model that has degree of parallelism n + m and execution time O(loglogn).
Let the two sequences be A and B, where A = (ajay, ..,a, and
B = (by, by, ..., b,). The algorithm is as follows.

1. Divide A into Va blocks of length Vn, and B into VYm blocks of length Vm

(here we ignore the simple modifications needed when the length of A or the
length of B is not a perfect square),

2. Let a be the first element of the i block of A, and B;, the first element of
the 7 block of B. In parallel, compare each a; with each 8 ; (the number of

processors required is Vo Vi, which is at most - + n ).

3. In parallel for each a; do

Let j(i) be the unique index such that B;;, < a; < B;;,+, (here we use
the convention that 8y = — 2 and v ,; = +=)
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4. Compare a; with each element of the block starting with g8

At this point, the algorithm has determined where each a; fits into B, and
thus the problem has been reduced to a set of disjoint merging problems, each of
which involves merging a block of length Vn from A with some consecutive subse-
quence of B, Recursively, solve each of these subproblems, using a degree of paral-
lelism equal to the number of elements.

Let T'(n) be the time required by this algorithm to merge a sequence of length
n with a sequence of length m, where n =< m, using n + m processors. Since the
parallel computation model charges only for the comparison steps, and not for the
bookkeeping involved in keeping track of the results of comparisons and determin-
ing which comparisons to perform next, we have: T(1) =1 and
T(n) = 2 + T(¥Yn). This gives T(n) = O(loglogn).

This algorithm can be implemented to run in time O (loglogn) time with
n -+ m processors on a CREW PRAM, although the processor allocation problems
are not entirely trivial [BoHo].

Following {BoHo] we now prove that, in the parallel comparison model, the
time required to merge two sequences of length n wusing 2n processors is
{2(loglogn). In order to prove the lower bound we consider the following generali-
zation of the problem: given ordered sequences A, By, Ay, By, ..., 4,, B,, each of
length %k, and the information that, for i = 1, 2, ..., s =1, each element of A; U B;
is less than each element of A;,, U B; ., merge each of the pairs A;, B; using cks
processors. We refer to this problem as the ¢,k,s problem.

Let the worst-case time to solve this problem in the parallel comparison model
be t(c,k,s), and let T(e,s) = miny t{c,k,s) where k ranges over the positive
integers. = We shall use an advgr§ary argument  to prove that
T(c,s) =21 + T(16¢/7,8') where s’ = Vs/8¢c. Consider the first step in solving a
ck,s problem We have ks X s merging problems and cks Processors. For
i = part1t1on A; into 2 V2cs blocks A}, A2, ..., AY™, each of size s/,
form a 2 VZCs X 2 Vs matnx and mark the [a b} cell of this matrix if some
element of A? is compared with some element of B? at the first step. Each of these
k matrices has 8cs cells, so that the total number of cells in E‘{}]_matrlces is Bcks.
At most ks of these cells are marked. Also, each matrix has 4 V2¢s — 1 diagonals
parallel to the main diagonal. By a simple averaging argument, it is possible to
choose a diagonal in each of these matrices, such that the number of unmarked
cells in the chosen diagonals is at least 7&/8 V 2¢ An adversary can specify the
outcomes of these comparisons so that each unmarked cell on the selected diago-
nals corresponds to an independent s’ X s’ merging problem at the next step. It
follows that the adversary can leave the algorithm with £’ independent merging
probiems to solve, each of which is s" X s’, where &' = Tk/8 V2cs. The number of
processors is cks, which is equal to 16/7 ¢ &' s'. This leads to the inequality
T(c,k,s) =2 1 + T(16¢/7,s"). It foilows that T(c,s) = dloglog,cs, where d is a cer-
tain positive constant. In particular, the complexity of merging two ordered
sequences of length n with 2n processors is at least T(2,n), which is Q(loglogn).
This establishes that the algorithm we have given is optimal up to a constant fac-
tor, both for the parallel comparison model and the CREW comparison PRAM.

2.4.2 Sorting Networks

One of the classic parallel sorting methods is Batcher’s bitonic sorting net-
work [Bat]. This network is based on the properties of certain sequences. Let
A = (ay, ag, ... 2,) be a sequence of distinct elements of a linearly ordered set. For
i =2,3,..,n — 1, call element a; a local minimum if both a;_; and a;,., are
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greater than g;, and a local maximum if both ¢; _; and q;, are less than ¢;. The
sequence A is called unimodal if it has at most one element that is a local
minimum or local maximum, and bifonic if it is a cyclic shift of a unimodal
sequence.

Lemma. Let A = (a4, ay, ..., agy) be a bitonic sequence of even length. Define
the sequences L(A) and R(A) as follows:

L(A) = (min(ay, ay +1), min{ag, ay+3), ..., minlay, asy))

and

R(A) = (max(aj, ay+1), maxlay, ayi9, ..., max(ay, aap))).

Then the sequences L(A) and R(A) are bitonic, and each element of L(A) is less
than each element of R(A).

The lemma suggests a parallel method of sorting a bitonic sequence A whose
length n is a power of two: if A is of length 1 then halt; else compare correspond-
ing elements of the left and right half of A and form the arrays L{A) and R(A); in
parallel, sort L(A) and R(A).

This algorithm can be expressed by a comparator network with degree of
parallelism n/2 and execution time logn.

Batcher’s bitonic sorting network is built upon this algorithm for sorting a
bitonic sequence. Starting with an unsorted n-element array, which can be
regarded as a list of n/2 bitonic sequences of length 2, the algorithm constructs a
list of n/4 bitonic sequences of length 4, then a list of n/8 bitonic sequences of
length 8, and so forth until the array has been transformed into a single bitonic
sequence of length n, which may then be sorted. The algorithm exploits the fact
that the concatenation of an increasing sequence with a decreasing sequence is a
bitonic sequence. Thus, to convert a list of n/2' bitonic sequences of length 2 into
a list of n/2°"! bitonic sequences of length 2°*!, it suffices to sort the sequences of
length 2° alternately into increasing and decreasing order, using the algorithm for
sorting a bitonic sequence. Figure 2.3 shows a bitonic sorting network for 8 ele-
ments.

We now analyze the execution time of the bitonic sorting algorithm. Let B(n}
be the time required to sort a bitonic sequence using degree of parallelism n/2,
and let S(n) be the time required to sort an array of length n, again using degree
of parailelism n/2. Then B(2*) = k, and

S(2h) = é:lB(i) = [k‘gl]

Thus bitonic sort requires time O(log®n) to sort n elements using degree of
parallelism n/2. Bitonic sort is also easily implemented on an EREW comparison
PRAM. Again, it runs in time O(log®n) using n/2 processors. As an aside, we
mention that bitonic sort can also be implemented very neatly to run within these
time and processor bounds on certain fixed-degree networks, such as the butterfly
and shuffle-exchange network (cf. Chapter 21).
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Batcher’s bitonic sorting network requires 8 (nlogn) comparators. Since
there exist sequential sorting algorithms that require only O{nlogn) comparisons
in the worst case, it was natural to ask whether one could impreve on Batcher’s
construction by exhibiting sorting networks requiring only O(nlogn) comparators.
In 1983 this question was answered affirmatively by Ajtai, Komlos and Szemeredi
([AjK0Sz1], [AjKoSz2]). The family of sorting networks given by these three
authors also has theoretical advantages for parallel computation, since they exe-
cute in time O(logn) using degree of parallelism n/2. However, despite the sub-
stantial improvements obtained by later researchers [Pat], the constant implied by
the "big O" is so large that bitonic sort is preferable for all practical values of n.
Since the Ajtai-Komlos-Szemeredi networks are presented in detail in Chapter 22,
we shall not attempt to describe them here.

2.4.3 Sorting on a PRAM

Since the sequential complexity of sorting by comparisons is #{nlogn) it is of
interest to find methods for sorting on a comparison PRAM that run in polylog
time and have a processor-time product that is O(rnlogn). Randomized methods
that use O{(n) processors and run in Ologn) time with high probability are given
in [Re] and [ReVal. The first deterministic method to achieve such performance
was an EREW comparison PRAM algorithm based on the Ajtai-Komlos-Szemeredi
sorting network. It achieves an execution time of O(logn) using O(n) processors;
however, the constant factor in the time bound is so large as to render the method
impractical. Using a new version of bitonic merging, Bilardi and Nicolau [BiNi]
give a sorting algorithm for the EREW comparison PRAM that achieves a
processor-time product of O(nlogn) using Of{n/logn) processors, Moreover, the
constant factor in the time bound is small, so that the method is attractive for
practical use. Cole [Co] has given a practical deterministic method of sorting on
an EREW comparison PRAM in time O(logn) using O{(n) processors. His algo-
rithm can be viewed as a pipelined version of merge sorting. Finally, we point out
that, when the elements to be sorted are integers in a limited range, better bounds
are achievable by using bucket sorting methods rather than comparison algo-
rithms. Reif [Re5] gives a randomized methed for sorting n integers whose size is
bounded by a polynomial in n. The method uses O(n/logn) processors and, with
high probability, terminates in time O{logn).

The rest of this section is devoted to a presentation of Cole’s sorting algo-
rithm. For simplicity, we confine ourselves to describing a version of the algorithm
that runs on a CREW comparison PRAM. We assume for convenience that the
number of elements to be sorted is a power of 2. Let the 2* elements to be sorted
be placed in correspondence with the leaves of a rooted uniform binary tree T of
height n; hereafter, we make no distinction between a leaf and the corresponding
element. Each internal node v within T is the root of a subtree; let T, be the set
of leaves of that subtree. Then the task of node v is to arrange the elements of T,
into a sorted list.

An obvious method of creating the required lists would be to move up the tree
level-by-level from the leaves to the root, using the merging algorithm of Section
2.4.1 to create the list for each node by merging the lists for its two children.
Using the fact that the time to merge two lists of length ¢ using 2¢ processors is
Ofloglogt), a simple analysis shows that this obvious method runs in time
O(lognloglogn) using O(n) processors. Cole improves on this approach by having
the algorithm work on many levels of the tree at once, creating successively more
refined approximations to the lists that the nodes must eventually produce. The
method of approximation is chosen so that each approximation to the final list for a
node can be obtained from the preceding approximation in constant time.
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Associated with any time step s and internal node v is a list LIST, (s); this
list is an increasing sequence of elements drawn from T,. We say v is finished at
time s if LIST, (s) contains all the elements of T,. Node v is a frontier node when
v is finished but its parent is not. Initially, the leaves of T are its frontier nodes.
At any time s, all the frontier nodes are at the same distance from the root of T,

At every step, each frontier or unfinished node passes a subsequence of its list
up to its parent. For node v at step s we call this subsequence UP, (s). Node v
forms LIST, (s) by merging UP, (s) with UP, (s), where x and y are the children
of v. If x is unfinished at step s —1 then UPy (s) consists of every fourth element
of LIST, (s—1); i.e.,, elements 1,5,9,13,... . If x becomes finished at step s then
UpP, (s+1) consists of every fourth element of LIST, (s), UP, (s +2) consists of
every second element of LIST, (s) and UP, (s +3) is equal to LIST, (s). It follows
that a node becomes finished three steps after its children do. The sorting process
is completed after 3% steps, when the root becomes finished.

It remains to show that each step can be completed in constant time on a
CREW PRAM using O(n) processors. At each step the sum of the lengths of all
the lists associated with unfinished or frontier nodes is O(n). Thus it suffices to
give a method of merging the lists UP, (s) and UP, (s) in constant time, using one
processor per list element, The key idea is to use information from previous steps.
Given two ordered lists A and B, define a cross-link array from A into B to be an
array of pointers from A into B, such that each element a in A points to the least
element in B that is greater than a (or, if no such element exists, to a sentinel
placed at the end of the list B). If the ordered lists A and B are disjoint then, given
cross-links from A into B and from B into A, each element can quickly calculate
its rank order in the list that results from merging 4 and B, and thus A and B
can be merged in constant time. Cole’s algorithm maintains certain cross-link
arrays in order to speed up the merging process. If nodes x and y are siblingsin T
then, upon the completion of step s — 1, the algorithm maintains cross-links from
UP, (s—1) into UP, (s —1) and LIST, (s~—1) and, symmetrically, from UP, (s—1)
into UP, (s—1) and LIST, (s —1). leen the cross-links from UP, (s —1) into
LIST, (s —1) it is easy, in constant time, to create cross-links from UP (s—1) into
UP, (s) Similarly, cross-links can be constructed in constant time from UP,(s—1)
into UP, (s). Moreover, it can be shown that at most four elements of UP, (s —1)
pomt to any element of UP, (s). Given all this cross-link information, it is possible
in constant time on a CREW comparison PRAM to create cross-links between
UP, (s) and UP, (s), to merge those two sequences, and to create the cross-links
requlred for the next step. It follows that each step can be executed in constant
time using O(n) processors on a CREW comparison PRAM, and thus Cole’s algo-
rithm sorts in time O(logn) using O(n) processors on a CREW comparison PRAM.
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3. Models of Parallel Computation

3.1 Relations Between PRAM Models

Our primary model for parallel computation is the PRAM family [FoWy, Gol,
SaSt], which we defined in section 2.1. There, PRAMs were classified according to
restriction on global memory access as EREW, CREW, or CRCW, and CRCW
PRAMs were further classified as COMMON, ARBITRARY or PRIORITY. It
should be noted that this listing represents the PRAM family in increasing order of
their power. Thus, any algorithm that works on an EREW PRAM works on a
CREW PRAM, and in turn, any algorithm on a CREW PRAM works on a COM-
MON CRCW PRAM, and so on. The most powerful model in this spectrum is the
PRIORITY CRCW PRAM.

We now relate the power of a PRIORITY CRCW PRAM to that of an EREW
PRAM by showing that any algorithm that works on the former model can be
simulated by an EREW PRAM with the same number of processors and with the
parallel time increased by only a factor of O(logP), where P is the number of pro-
cessors [Ec2, Vil]. This is done as follows: Let P;,...,P, be the processors and
M,,...M, be the memory locations used by the PRIORITY algorithm. The simulat-
ing EREW PRAM uses r auxiliary memory locations N,....N, for simulating a
write or read step. If processor P; needs to access location M; in the PRIORITY
algorithm, then it writes the ordered pair (] i) in locatlon N;. The array
N;j=1,.,r is then sorted in lexicographically increasing order in O(logr) time
using the r processors (Col. Then, by reading adjacent entries in this sorted array,
the highest priority processor accessing any given location can be determined in
constant time. For a write instruction, these processors then execute the write as
specified in the PRIORITY algorithm. For a read instruction, these processors read
the specified locations, and then in additional O(logn) time, duplicate the value
read so that there are enough copies of each value for all the processors that need
to read it.

We also have the result that any algorithm for a PRIORITY PRAM can be
simulated by a COMMON PRAM with no loss in parallel time provided sufficiently
many processors are available [Kul: Let P,,...P, be the processors used by the
PRIORITY algorithm. The simulating COMMON algorithm uses auxiliary proces-
sors P;; and memory locations M;, 1=i,j=r. The locations M; are initialized to
zero. Processor P, ;,i<j determmes the memory addresses m; and m; that proces-
sors P; and P; were to access in the PRIORITY algorithm and writes a 1 in loca-
tion M if m;=m;, Now P; can ascertain if it is the lowest numbered processor that
needs to wnte mto m; by testing if M is still zero. If so, it writes into m; the
value it was supposed to write by the PRIORITY algorithm.

3.2 Lower Bounds for PRAMs

There is a substantial body of literature which explores lower bounds on the
time required by EREW, CREW or CRCW PRAMs to perform simple computa-
tional tasks. For the purpose of provmg such lower bounds it is customary to
adopt a model called the ideal PRAM, in which no limits are placed on the compu-
tational power of individual processors or on the capacity of a cell in the shared
memory. Each processor in a PRAM can compute an arbitrary function of the
values in its private memory at each step, and thus the ideal PRAM is much more
powerful than the ordinary PRAM, whose processors are restricted to executing
conventional RAM instructions. Lower bounds proved within such a powerful
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model of computation have great generality because they do not depend on par-
ticular assumptions about the instruction set or internal structure of the indivi-
dual processors. Such lower bounds capture the intrinsic limitations of global
memory as a means of communication between processors, and demonstrate
clear distinctions in power among the various concurrent-read and concurrent-
write arbitration mechanisms.

An ideal PRAM consists of processors which communicate through a global
memory divided into cells of unbounded storage capacity. Each processor has a
private memory of unbounded size and the ability to compute in unit time any
function of the contents of its private memory. The input data is assumed to be
stored in locations M, M,,..M, of the global memory, and the computation is
required to terminate with its output in location M,. The computation proceeds in
steps, with each step consisting of a read phase, a compute phase and a write
phase. In the read phase, each processor reads into its private memory the con-
tents of one cell in the global memory. In the compute phase, each processor com-
putes some function of the contents of its private memory. In the write
phase, each processor stores a value in some cell of global memory; since the cell
is of unlimited capacity, there is no loss of generality in assuming that each pro-
cessor stores the entire contents of its private memory. An ideal PRAM is desig-
nated as EREW, CREW or CRCW according to whether concurrent reading and/or
concurrent writing are permitted, and concurrent-write ideal PRAMs are
further classified as COMMON, ARBITRARY, PRIORITY, etc. according to the
method of write-conflict resclution, Even the weakest of these models, the
EREW ideal PRAM, is so powerful that any function of n variables can be com-
puted in time O(logn) using n processors, simply by assembling all the input data
together in the private memory of one processor, which can then use its
unlimited computation power to determine the output and store it in the global
memory.

In the paper [CoDwRel it is shown that the "OR" function requires time
Q(logn) on an ideal CREW PRAM, no matter how many processors or memory
cells are used. Here each input cell contains a bit. The output is 0 if all the
input bits are zero, and 1 otherwise. Since this function can be computed in con-
stant time by a COMMON CRCW PRAM with n processors and a very limited
instruction set, this result clearly demonstrates that the concurrent-write
mechanism is strictly more powerful than exclusive-write. This lower bound
may appear obvious, since, at first sight, there seems to be no method of solv-
ing the problem on a CREW PRAM better than halving the number of inputs at
each step by "OR"ing them together in pairs. But an alternate method can be
given which runs in time log; ;37 +0(1) on a CREW PRAM, and thus beats the
obvious halving method.

The lower bound proof requires the following definitions. Let us say that
input bit i affects processor P at time ¢ if the contents of the processor’s private
memory at time ¢ differ according to whether input ¢ is 1 or 0, when the other
input bits are fixed at 0. Similarly, we can speak of an input bit affecting global
memory cell M at time ¢. By induction on ¢, one can prove that the number of
input bits affecting any processor or memory cell at time ¢ is at most ¢!, where ¢ is
a suitable constant. Since every input bit must affect the output cell at the end of
the computation, it then follows that the computation time is at least log.n.

Extending the work of Cook, Dwork and Reischuk, N. Nisan [Ni] has recently
given the following very precise characterization of the time required by an ideal
CREW PRAM to compute a finite function f with domain B", where B ={0,1}. For
any w€B" and any subset S of the index set {1,2,...,n}, let us say that f is sensitive
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to S at w if the value of f changes when w is changed by flipping those input bits
with indices in 8. We say that f is k-block sensitive at w if f is sensitive at w to
each of k disjoint index sets. The block-sensitivity bs(f) is defined as the largest &
such that, for some w, f is k-block-sensitive at w. Then the time required to com-
pute f on an ideal CREW PRAM is bounded both above and below by bounds of
the form clog(bs{f))+d, where ¢ and d are constants.

The paper [Sn] studies the complexity of solving the following table-look-up
problem wusing p processors: given an array of distinct integers
<X, X9,.0%,,y > where x;<xy<..<x,, find the index i such that x;<y<x;., (by
definition, xy=—% and z,,;==). The problem can be solved on a CREW PRAM
with a conventional instruction set in time O(log,,,n) using a variant of binary
search, and a simple adversary argument shows that log,.;n is also a lower
bound for the problem on an ideal CREW PRAM. Snir proves that the problem
requires time {{(logn —logp) on an ideal EREW PRAM, thereby showing that the
concurrent-read PRAM is strictly more powerful than the exclusive-read PRAM.

One component of Snir’s proof is a Ramsey-theoretic argument showing that,
when the x; are allowed to be arbitrarily large integers, one can restrict attention
to algorithms in which the only information gathered about the x; is obtained
through comparing the x; directly with y; i.e., for each algorithm that violates this
restriction, there is another algorithm that respects the restriction and has equally
good worst-case behavior. In view of this restriction one can rephrase the problem
as the following zero-counting problem: given an array of m zeros followed by
n —m ones, determine m. Here a zero in position { means that x; <y, and a one in
position ¢ means that x;>y. At the end of the computation, cell M, is to contain a
1 if the answer is m, and a Q0 otherwise.

We sketch Snir’s proof of a lower bound on the time required to solve the
zero-counting problem on an ideal EREW PRAM with p processors. For any pro-
cessor P and time ¢, say that input coordinate m affects P at time ¢ if the contents
of the private memory of P at time ¢ is different on input 0™ ~'17~™*! than it is
on input 0™1" ™™, Let P(t) be the set of input coordinates that affect P at time ¢.
Similarly, let M(¢) be the set of input coordinates that affect global memory cell M
at time ¢, As a measure of the progress of the computation, define
c(t)=2|P(t)|+2max(0,|M(t)|—1), where the first summation is over all proces-

P M

sors, and the second is over all global memory cells. Then ¢(0) =0, and if the com-
putation halts at time T then ¢(T)=n+1 Snir proves the inequality
c(t+1)=4c(t)+p, and the lower bound 7' =Q(logn —logp) follows.

The paper [BeHal, improving an earlier result in [Beal, proves that, on an
ideal PRIORITY CRCW PRAM, the number of frocessors required to compute the
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parity of n bits in time T is at least 21(:; ) . It follows that the time required

to compute the parity of 2 bits on an ideal CRCW PRAM using a polynomial-
bounded number of processors is 2(logn/loglogn).

Many further lower bounds for ideal PRAMs can be cited. The papers
(FiMeRaWi, FiRaWi, GrRa, LiYe, MeWi, ViWi] study the effects of the size of glo-
bal memory and the choice of a write-conflict mechanism on the time required to
solve problems on an ideal CRCW PRAM. These results show that, in various set-
tings, the ARBITRARY model is strictly more powerful than the COMMON model,
but strictly less powerful than the PRIORITY model.
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3.3 Circuits

So far we have mainly considered the PRAM model. There are several other
models of parallel computation, and of these, the circuit model has emerged as an
important medium for defining parallel complexity classes. By a circuit we mean a
bounded fan-in combinational boolean circuit. More formally, a circuit is a labeled
acyclic directed graph (DAG). Nodes are labeled as input, constant, AND, OR,
NOT, or output nedes. Input and constant nodes have zero fan-in, AND and OR
nodes have fan-in of 2, NOT and output nodes have fan-in of 1. Qutput nodes have
fan-out zero.

Let B={0,1}. A circuit with n input nodes and m output nodes computes a
boolean function f:B"—B™, where we assume the input nodes to be ordered as
<Xy,...,%, > and similarly the output nodes as <yy,....yn>. The size of a circuit is
the number of edges in the circuit. The depth of the circuit is the length of a long-
est path from some input node to some output node. We note that the size of a cir-
cuit is a measure of its hardware content and its depth measures the time required
to compute the output, assuming unit delay at each gate.

A rather general formu‘atmn of a problem is as a fransducer of strings over B:
ie., as a function from B” to B". By using a suitable encoding scheme, we can
assume, without loss of generahty, that the size n of the input string determmes
the size, I{n), of the output string. Let C = {C;}, i=1,2,... be a family of circuits
for which C; has i input bits and I(i) output bits. Then the family of circuits C
solves a problem P if the function computed by C; as above defines precisely the
string transduction required by P for inputs of length i.

Given a family of circuits C={C;}, i =1, we say that C is in CKT(C(n),D(n)) if
the size of C, is O(C(n)) and its depth is O(D(n)), for each n.

When using a family of circuits as a model of computation, it is necessary to
introduce some notion of uniformity if we wish to correlate the size and depth of a
family C that solves a problem P with the parallel time and hardware complexity
of P. If not we could construct a family of circuits in CKT (0(1),0(1)) to solve an
undecidable problem (for which all inputs of a given length have the same one-bit
output; it is well-known that nonrecursive sets with this property exist). A notion
of uniformity that is commonly accepted for parallel computation is logspace uni-
formity [Ru2, Co3]: A family of circuits C is logspace uniform if the description of
the nth circuit C, can be generated by a Turing machine using O(logn) workspace.
By the description of a circuit, we mean a listing of its nodes, together with their
type, followed by a listing of the inputs to each node. A problem P is in
CKT(C(n),D(n)) if there is a logspace uniform family of circuits C in
CKT(C(n),D(n)) that solves P.

The class NC* £2>1 is the class of all functions that are comEutable by a
logspace uniform family of circuits in CKT(poly(n),0(og"n where
poly(n)= U O(n*). For k=1, for technical reasons we define NC to be

ATIME(logn) {(which we define later in this section), The class NC = UNC"@I is
k=1
generally accepted to characterize the class of problems that can be solved with a
high degree of parallelism using a feasible amount of hardware [Co2, Pi]. We will
see that this is a robust class whose hardware and time bounds remain invariant
under the commonly used models of parallel computatmn As mentioned in section
2, we refer to the quantity {J O(log®n) as polylog (n). Thus

k=1
NC=CKT(poly(n),polylog(n)).
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If we remove the fan-in restriction on AND and OR gates in the circuit model,
we obtain the unbounded fan-in circuit model, where, as before, the size of the cir-
cuit is the number of edges in the circuit, and the depth is the length of a longest
path from an input node to an output node in the unbounded fan-in circuit
[ChStVi, Co3, StVi]. A family of unbounded fan-in circuits is in UCKT(C(n),D(n))
if the n** circuit has O(C(n)) edges and its depth is O(D(n)). A family of
unbounded fan-in circuits is logspace uniform if the description of the ith circuit
can be generated in logspace. The class AC* k=1, is the class of all functions com-
putable by a logspace uniform family of unbounded fan-in circuits in
UCKT(poly(n),log*(n)). The class AC = | JAC*,

k=1

Since any gate in an unbounded fan-in circuit of size p(n) can have fan-in at
most p(n), each such gate can be converted into a tree of gates of the same type
with fan-in two, such that the output gate computes the same function as the origi-
nal gate. By applying this transformation to each gate in an unbounded fan-in cir-
cuit in UCKT(p(n),d{n)) we obtain a bounded fan-in circuit in
CKT(O(p(n)), O(d(n)logp(n))). It is straightforward to see that this transforma-
tion is in logspace. Thus AC*CNC**!, for k=1. Clearly NC* C AC*. Thus we
conclude that AC = NC. We also note that we can always compress O(loglogn)
levels of a bounded fan-in circuit into two levels of a polynomial size, unbounded
fan-in circuit ChStVi], and hence
CKT(poly(n),log* n)CUCKT(poly(n),log*n/loglogn).

3.4. Relations Between Circuits and PRAMs

If we assume a bounded amount of local computation per processor per unit
time, we can establish a strong correspondence between the computational power
of unbounded fan-in circuits and that of CRCW PRAMs [StVi]. More specifically,
assume the PRIORITY write model, and that the instruction set of the individual
RAMs consists of binary addition and subtraction of poly size numbers, binary
boolean operations, left and right shifts, and conditional branching on zero, and
that indirect memory access is allowed. The input to a problem of size n is specified
by n n-bit numbers. Let CRCW(P(r),T(n)) be the class of problems solvable on
such a PRAM in O(T'(n)) time with O(P(n)) processors.

Given any unbounded fan-in circuit in UCKT{(S(n),D(n)) we can simulate it

on a CRCW PRAM in time O(D(n)) with S(n) processors and n-+M(n) memory
~ locations, where M(n) is the number of gates in the circuit. Each processor is
assigned to an edge in the circuit and each memory location to a gate. Initially the
inputs are in memory locations 1 through n, and memory location n+i is assigned
to gate i in the circuit, i=1,...,M(n); these latter locations are initialized to 9 for
OR gates and to 1 for AND gates. At each instant of time, each processor deter-
mines the current value on its edge e =(u,v) (by reading memory location n + u)
and if v is an OR gate, writes its value in the memory location n +v if its value is
1; if v is an AND gate, it writes its value in location n +uv if its value is 0. Clearly
in time T{n) each memory location n+i,i=1,..,.M(n) has the value of the gate it
represents. Thus UCKT(S(n),D(n))CCRCW(S(n),D(n)).

For the reverse part, we note that each of the binary operations in the
instruction set of the PRAM can be implemented by depth 2, polynomial size,
unbounded fan-in circuits, as shown in section 4. It is also fairly easy to implement
the conditional branching by such circuits, by suitably updating the program
counter. The nontrivial part of the simulation of a CRCW PRAM by an unbounded
fan-in circuit lies in simulating the memory accesses. Since a combinational cir-
cuit has no memory, the simulation retains all values that are written into a given
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memory location during the computation, and has a bit associated with each such
value that indicates whether the value is current or not. With this system, it is not
difficult to construct a constant-depth unbounded fan-in circuit to implement reads
and writes into memory. Thus a single step of the PRIORITY CRCW PRAM can be
simulated by an unbounded fan-in circuit of polynomial size and constant depth,
and it follows that CRCW(P(n),T(n))CUCKT (poly(P(n)),T(n)).

Let us call a PRAM algorithm logspace uniform if there is a logspace Turing
machine that, on input n, generates the program executed by each processor on
inputs of size n. (We note that all of the PRAM algorithms we describe have pro-
grams that are parametnzed by n, and such algorithms are clearly logspace uni-
form.) Define CRCW* as the class of problems solvable by logspace uniform CRCW
PRAM algorithms in time O(log"n) using a polynomial-bounded number of proces-
sors; let CREW* and EREW* be the analogous classes for CREW PRAMs and
EREW PRAMs. We will show later in this section that NL (nondeterministic
logspace) is in CRCW!, and that L (deterministic logspace) is in EREW?, Thus by
the results of Stockmeyer and Vishkin we have just described, we have CRCW* =
AC* for k=1, and UCRCW(poly(n) log*n)= NC. Since we also noted earlier

that simulations between the various types of PRAM result in only an O(logP(r))
increase in time and a squaring of the processor count, we have
PRAM(poly(n),polylog(n)) = NC, where the PRAM processor and time bounds can
refer to any of the PRAM models.

It is shown in [HoKIPi] that any bounded fan-in circuit of size S{n) and depth
D{n) can be converted into an equivalent circuit of size O(S(n)) and depth 0(D(n))
having both bounded fan—m and bounded fan-out. Using this result, it is easy to
see that NC*CEREW?*, Thus we have the following chain of inclusions:

NC*CEREW*CCREW*CCRCW*=AC*CNC**1,
As noted earlier, we also have NC*CUCKT (poly(n),log*n/loglogn).

Earlier in this section, we referred to the lower bound of Q{logn/loglogn) for
computing parity on an ideal PRIORITY CRCW PRAM with a polynomial number
of processors [BeHal. This immediately gives the same lower bound for computing
parity with an unbounded fan-in circuit of polynomial size, Historically this lower
bound was first developed for the case of unbounded fan-in circuits in a sequence of
papers [FuSaSi, Aj, Ya, Hal, Ha2, Smo], thus implying the lower bound for CRCW
PRAMSs with restricted instruction set. The extension of the result to ideal PRAMs
requires a substantial refinement of the probabilistic restriction techniques
used to obtain the lower bounds for circuits. For bounded fan-in circuits, a lower
bound of Q(logn) for the depth required to compute any function whose value
depends on all n input bits is easily established by a simple fan-in argument.

3.5 Alternating Turing Machines

Another important model of parallel computation is the alternating Turing
machine (ATM) [ChKoSt, Ru2l. An ATM is a generalization of a nondeterministic
Turing machine whose states can be either existential or universal. Some of the
states are accepting states. As with regular Turing machines, we can represent the
configuration a of an ATM at a given stage in the computation by the current
state, together with the current contents of work tapes and the current positions of
the read and work tape heads. A configuration is accepting if it contains an accept-
ing state. The space required to encode a configuration is proportional to the space
used by the computation on the work tapes. Configuration 8 succeeds configuration
a if a can change to 8 in one move of the ATM. For convenience we assume that
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an accepting configuration has transitions only to itself, and that each nonaccept-
ing configuration can have at most two different configurations that succeed it.

We define the concept of an accepting computation from a given initial
configuration «. If a is an accepting configuration, then a itself comprises an
accepting computation. Otherwise, if a is existential, then there is an accepting
computation from a if and only if there is an accepting computation from some
configuration B that succeeds a; and if a is universal, then there is an accepting
computation for a« if and only if there is an accepting computation from every
configuration 8 that succeeds a. Thus we can represent an accepting computatien
of an ATM on input x as a rooted tree whose root is the initial configuration,
whose leaves are accepting configurations, and whose internal nodes are
configurations such that, if ¢ is a node in the tree representing a configuration
with an existential state, then ¢ has one child in the tree which is a configuration
that succeeds it, and if ¢ represents a configuration with a universal state, then the
children of ¢ are all configurations that succeed it. An ATM accepts input x if it
has an accepting computation on input x. A node a at depth ¢ in the computation
tree represents the event that the ATM can reach configuration a after ¢ steps of
the computation, and will be denoted by the ordered pair (a,t). The computation
DAG of an accepting computation of an ATM on input x is the DAG derived from
the computation tree by identifying together, all nodes in the tree that represent
the same ordered pair.

Alternating Turing machines are generally defined as acceptors of sets. We
can view them as transducers of strings by considering the input as an ordered
pair <w,i> and the output bit as specifying the ith bit of the output string when
the input string is w [Co2].

An ATM M operates in time T(n) if, for every accepted input of length n, M
has an accepting computation of depth O(T'(n}). Similarly, an ATM operates in
space S(n) if, for every accepted input of length 2, M has an accepting computa-
tion in which the configurations require at most O(S{(n})) space. We define
ATM(S(n),T(n)) to be the class of languages that are accepted by ATM’s operating
simultaneously in time O(T'(n)) and space O(S{n)).

In order to allow sublinear computation times, we use a random access model
to read the input tape: when in a specified read state, we allow the ATM to write a
number in binary which is then interpreted as the address of a location on the
input tape, whose symbol is then read onto the work tape in unit time. Thus logn
time suffices to read any input symbol.

By viewing existential states as OR gates and universal states as AND gates,
we can relate computation on an ATM with circuits [Ru2]. This can be seen as fol-
lows. Consider a language accepted by an ATM M in ATM(S(n),T(n)), with
S(n)=Rogn). The full computation DAG D of M for inputs of length n is obtained
by having a vertex for each pair (a,t), where a is a configuration of the ATM in
space O(S(n)), and 0=¢=<T(n), and there is an arc from vertex (a,f) to vertex
(8,t—=1) if @ succeeds 8. We can construct a circuit from D by replacing each
existential node in D by an OR gate, each universal node by an AND gate, each
accepting leaf by a constant input 1, each nonaccepting leaf by a constant input 0,
and each read node by the corresponding input. Then in additional log depth we
can select the output of the gate corresponding to vertex (a,0), where a is the ini-
tial configuration corresponding to the input. It is not difficult to see that the out-
put of this circuit is 1 if and only if the input is accepted by the ATM in the
prescribed time and space bounds. Further the depth of this circuit is exactly T'(n)
and its size is O0(c®™), for a suitable constant e. Thus, ATM(S(n),T(n))C
CKT(c3™ T(n)). Also, since the resulting family of circuits is easily shown to be
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logspace  uniform, we have ATM(ogn log*n)CNC*  for k=2, and
ATM(logn ,polylog(n))C NC.

For the reverse, consider any logspace uniform circuit family in
CKT(S(n},T(n)). Such a circuit can be converted in logspace into an equivalent
circuit of size O(S(n)) and depth O(T(n)) for which negations occur only at the
inputs. These negations can now be removed by supplying the complement value
as input. So we can assume that our input circuit C, on n inputs has no negations.

Let p be a sequence of L's and R’s, where L stands for left input and R stands
for right input. Given two gates g and A in the circuit C,, we say that A=g(p) if A
is the gate reached starting from g and following the sequence p. The ATM simu-
lating C, uses a procedure cv(n,g,p), which evaluates the output of g(p) by guess-
ing g{p), recursively evaluating cv(n,g,pL) and cv(n,g,pR), and combining the
results appropriately, depending on the gate type of g{p), to obtain cv(n,g,p). When
the length of p grows longer than logn, g is replaced by g(p) and p is truncated to
&; this allows the simulation to work in logspace and hence in ATIME(log?n)
[ChKoSt]. The initial call to the procedure is cv(n,outpuigate,e). Since the pro-
cedure performs O(1) work per gate and is logspace uniform, this represents a com-
putation in ATM(logS(n),T(n)) for T'(n)=log®n. This construction establishes that
CEKT(S(n), T(n))CATM (log(S{n)),T(n)) for k =2. For k=1 a stronger notion of uni-
formity, Up- is required for the above inclusion to hold [Ru2]; alternatively, follow-
ing [Bu, BuCoGuRa] we can define NC! to be ATM(logn,logn) (which is the same
as ATIME (logn) or alternating log time). Let ATM*= ATM (logn,log*n). The two
results outlined above relating ATM computations with uniform families of circuits
establish that ATM* = NC* and ATM (logn, polylog(n))= NC.

Computation on ATMs can also be related to unbounded fan-in circuits. A
computation on an ATM is said to be in ALT(S(n),f(n)), if the configurations
require O(S(n)) space, and if any path in an accepting computation DAG has at
most f(n) alternations between existential and universal states. The result
UCKT(c%™ D(n))=ALT((S(n),D(n)) is readily established by observing that the
unbounded fan-in circuit can be converted into a bounded fan-in circuit with the
same number of alternations between AND and OR gates, which can then be simu-
lated in a manner similar to the bounded fan-in case; and conversely the full com-
putation DAG of such a resource-bounded ATM has O(c5™) nodes, ¢ a constant.
Thus, defining ALT* to be ALT(logn,log*n), we have ALT*=AC* for k=1, and
ALT(logn polylog(n)) = NC.

3.6 Vector Machines

The last model of parallel computation that we consider is the vector machine
[PrSt], which consists of a collection of bit processors together with a collection of
registers that can hold bit vectors. All processors contain the same program whose
instruction set consists of binary boolean operations on the registers, complement-
ing the contents of a register, conditional jump on zero, the right or left shift of the
contents of a register by a shift parameter specified in a register and a mask
instruction that inhibits some processors from executing the next instruction. Some
of the registers are identified as input or output registers. The inputs to the compu-
tation are supplied in the input registers. At a given instant of time, the ith pro-
cessor reads the ith bit of the operands (if any) specified in the current instruction,
executes the prescribed instruction and writes the result in the ith position of the
output vector. In the case of a shift operation, the processor writes in the appropri-
ately shifted bit position; this is the means by which interprocessor communication
takes place. When the computation terminates, the results of the computation are
available in the output registers. A vector machine algorithm is logspace uniform
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is there is a deterministic Turing machine operating in space logn that on input n,
generates the program for inputs of length n. As in the case of PRAMs, in prac-
tice, we would expect vector machine code for a problem to be fixed, with n as a
parameter.

Let VM (8(n),T(n)) be the class of problems that can be solved on a vector
machine with O(S(n)) processors {and hence with vectors of length O(S(n))) in
O(T(n)) time, and let VM* be the class of problems that have logspace uniform
vector machine algorithms in  VM(poly(n), log*n). It is readily seen that
VM(S(n), T(n))CUCKT(poly(S(n)) T(n)) since the instruction set of vector
machines can be simulated in constant depth and polynomial size by unbounded
fan-in circuits. It can also be shown that CKT(S(n),T(n))C VM (poly(8(n)),T(n))
[Gil. Thus we have NC*CVM*CAC*, and VM(poly(n),polylog(n)) = NC.

Several other parallel models and complexity results can be found in [Bar,
Co2, Co3, DyCo, Pi, Rul, VeTol.

3.7 Randomized Complexity Classes

In discussing randomized algorithms, we limit ourselves to problems defined
in terms of a binary input-output relation S(x,y). On input x, the task is to find a
-y satisfying S(x,y), if such a y exists. A randomized algorithm will output one of
the following three answers: a) a suitable value for y; b) report that no suitable y
exists; c) report 'failure’, i.e., inakility to determine if a suitable y exists or not,

We distinguish between zero-error algorithms (also known as Las Vegas algo-
rithms) and algorithms with one-sided error (also known as Monte Carlo algo-
rithms). If, on input x, S{x,y) holds for some y, then the two types of algorithms
act alike: each type produces a suitable y with probability greater than 1/2, and
otherwise reports failure. On an input x such that there is no y satisfying S(x,y),
the two types of algorithms behave differently. A zero-error algorithm reports "No
suitable y exists" with probability greater than 1/2, and otherwise reports failure,
but a one-sided-error algorithm always reports failure.

Each of the complexity classes defined above has its zero-error and one-sided-
error randomized counterparts, indicated by the prefixes Z and R, respectively.
These are the classes of problems that have randomized algorithms with the
corresponding hardware and time bounds. For randomized algorithms on PRAMs
each processor is assumed to have the capability to generate logn-bit numbers; for
randomized computation on circuits, an n-input circuit is allowed {Joly(n ) addi-
tional random input bits. Thus, for example, a problem is in ZCREW" if 1t is solv-
able by a zerc-error randoxmzed algonthm that runs in time O(log*n) using
poly(n) processors on a CREW PRAM in which each processor can generate ran-
dom logn-bit numbers, and a problem is in RNC* if it is solvable with one-sided
error by a logspace-uniform family of bounded fan-in circuits which receive, in
addition to the problem input, poly{n) random input bits.

3.8 Arithmetic Models

For computation involving elements from an arbitrary domain D, it is con-
venient to assume that certain specified binary operations on the elements take
unit time. This leads to the definition of arithmetic PRAMs and arithmetic net-
works [Gatl]. An arithmetic PRAM is a regular PRAM which in addition can exe-
cute certain binary operations on elements over D in unit time. An arithmetic
network is analogous to a Boolean circuit except that the types of nodes is aug-
mented to include gates that compute the specified arithmetic operations on ele-
ments over D in unit time. The conversion from arithmetic to Boolean values is
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performed by gates that test for zero, detect the sign, ete. In the reverse direction,
Boolean selection circuits are used to select an output from among several arith-
metic inputs. A special case of an arithmetic network is an arithmetic circuit,
which has no Boolean gates. For unbounded fan-in arithmetic networks we allow
the Boolean gates to have unbounded fan-in while the arithmetic gates continue to
have fan-in two. The cornglexity classes arithmetic NC* and arithmetic AC* are
analogues of NC* and AC*® for arithmetic networks and unbounded fan-in arith-
metic networks respectively. Similarly we have the analogous PRAM classes arith-
metic EREW*, arithmetic CREW*, and arithmetic CRCWE.

When dealing with arithmetic computation invelving addition, subtraction
and multiplication of numbers represented in binary, there is an obvious conver-
sion from arithmetic circuits to Boolean ones, that maintains size to within a poly-
nomial, and increases depth by a factor of loglogs, where s is a bound on the size of
the arithmetic operands {and thus the number of bits needed to represent any
operand is no more than [logs]). The bounds on size and depth follow from well-
known poly size log depth circuits for addition, subtraction and multiplication of
two n-bit numbers (see section 4.2).

3.9 Parallel Computation Thesis

Finally, an important connection between sequential and parallel computation
is highlighted in the parallel computation thesis [Bo, ChKoSt, FoWy, Gol, PrSt],
which states that parallel time is equivalent to sequential space {to within a poly-
nomial). This relationship has been established in many ways. Parallel time on a
vector machine is related polynomially to sequential space [PrSt]. An ATM can be
viewed as a parallel machine, and the result follows since alternating time is poly-
nomially related to sequential space [ChKoSt]. Computation on a PRAM can be
simulated by a Turing machine with space polynomially bounded in the parallel
time, and conversely, provided the number of processors is no more than an
exponential in the parallel time [FoWy, Goll. Finally any computation in non-
deterministic space S(n) can be simulated by a circuit of depth S(n)? and any cir-
cuit of depth D(n) can be simulated in deterministic space D{(n) [Bol. We conclude
this section by illustrating the parallel computation thesis for some of the models
we have considered.

We first relate nondeterministic space to parallel time. Consider the computa-
tion of any nondeterministic S(n) space-bounded Turing machine M. Given an
input x to M, we can formulate the acceptance problem as a reachability problem
on a directed graph G, whose vertices are the configurations of M, and for which
there is an arc from vertex u to vertex v if and only if the configuration
represented by v can be reached in a single step from the configuration represented
by u. There is also a dummy vertex z with an arc into it from every vertex
corresponding to an accepting configuration. If s is the vertex corresponding to the
initial configuration of M on input x, then M accepts x if and only if z is reachable
from s in G. The size of G is O(csz")), for some constant ¢, since the number of
different configurations of an S(n) space bounded Turing machine is no more than
an exponential in S(n). The reachability problem can be solved by finding the tran-
sitive closure of the adjacency matrix of G. This is in CKTEcS("’,S %(n)) and in
UCKT(c¢5™,8(n)), and also in CRCW(c5™ S(n)) and EREW(c5'™ S%n)), as shown
in section 4. Thus, in these parallel models, nondeterministic space-bounded com-
putation can be parallelized to run in time at most the square of the space bound,
and using hardware at most exponential in the space bound.

A similar technique shows that deterministic space S(n) is in
EREW(cS™ S(n)). In this case the computation of the space bounded Turing
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machine can be modeled as a directed tree, and an input is accepted if and only if
the final configuration is reachable from the initial one. Since reachability in a
directed tree is a special case of expression evaluation, the tree contraction algo-
rithm of section 2.2 gives the required resuit.

For the reverse, consider a circuit in CKT(S(n),D}(n)). Given a description of
this circuit together with an input to it, a deterministic Turing machine can com-
pute its output in O(D(n)) space by starting at the output and working its way
back to the input, while using a stack to keep track of the path taken (using L for
left input and R for right input), first testing left inputs and then the right ones.
Since the depth of the circuit is D{n), the stack has at most D(n) entries, each of
which is a constant. Hence the value computed by the circuit can be evaluated in
O(D(n)) space. By using the results we described earlier in this section relating
parallel time on various models to depth on a corresponding uniform family of
bounded fan-in circuits, it is easy to verify that a parallel algorithm on all of the
models we have considered implies a deterministic sequential algorithm that uses
space at most the square of the parallel time,
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4, NC-Algorithms and P-Complete Problems

4,1 Introduction

In this section we show that several problems are in the class NC. We res-
trict ourselves to problems that are of central importance because they can be used
as subroutines in the solution of a wide range of other problems. Among these are
the basic arithmetic operations, Boolean matrix multiplication and transitive clo-
sure, the computation of the inverse and the rank of a matrix, the evaluation of
straight-line programs, and the computation of a maximal independent set and a
maximum matching in a graph. We also introduce the concept of P-completeness,
state the evidence that the P-complete problems are unlikely to lie in NC, and
give several examples of P-complete problems.

The algorithms we give are not necessarily efficient, in the sense of Section 2,
since their processor-time product may be asymptotically much larger than the
execution time of the best sequential algorithm for the same problem. In this
sense, our level of aspiration is lower than in Section 2, where we concerned our-
selves with efficient and optimal algorithms..

4.2 NC-Circuits for Arithmetic Operations

This section is concerned with boolean circuits for addition, subtraction, multi-
plication and division of integers. We shall show that addition and subtraction
are in AC?, that multiplication is in NC! but not AC?, and that division is realiz-
able by a famlly of bounded fan-in circuits that is of logarithmic depth and polyno-
mial size, but does not appear to be logspace uniform. Further information on cir-
cuits for arithmetic operations can be found in [Alt, Sal.

4.2.1 Addition and Subtraction

The addition problem takes as input two n-bit binary numbers and produces
as output their (n + 1)-bit sum. We represent numbers as tuples in binary nota-
tion. Let the input numbers be (x, _{, x, _3, ..., xg) and (yp—1, ¥n- 2 .» ¥o), and let
the output be (z,, z,, 1, - 520). Let ¢; denote the carry out of the j th' digit posmon
Let g; = x; i i and p; = x; \V y;; g 18 called the j* carry generate bit and p; i
called the J‘ carry propagate b{zt Then, letting A represent symmetric dlfference
and letting ¢_; =0, we have the recurrences ¢ =gV pj ;-1 and
zi=2x2;Ay;Aej_q,forj =0,1,..,n It follows that ¢; = v &i Pi+1 - Dj- These

formulas yield a polynomlal-sme constant-depth circuit for addltlon
Stage 1 Compute all carry generate bits g; and carry propagate bits p;;
Stage 2 Compute all products of the form g; p;+; ... pj;
Stage 3 Compute each ¢; as a union of products computed in stage 2;
Stage 4 Compute each output bit z; from x;, y; and ¢; _

This establishes the addition is in AC?, and hence also in NC1

A more economical NC!-circuit for addition can be obtained using the parallel
prefix algorithm of Section 2.2. That algorithm takes as input an array
{(ay, ag, ..., @) and produces the array {(a,, a,*as,..., a1 ¥aq *..* a,), where * is an
associative binary operation. Since the memory accesses are data independent in
the PRAM algorithm for prefix sums in Section 2.2, that algorithm can also be
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represented as a circuit of depth O(logn) and size O(n), with gates that compute *,
To apply this construction to addition, let T'; be the transformation that computes
carry bit ¢; from carry bit ¢;_;. This affine boolean transformation is specified by
the equation ¢; = g; Vv p; ¢;;. Then ¢; is obtained by evaluating the transforma-
tion T;*T;_,*..* Ty at the point 0; here the associative operation * is the composi-
tion ofL af’éne boolean transformations. Using a parallel prefix circuit to compute
the necessary compositions, one obtains a bounded fan-in Boolean circuit of size
O(n) and depth O(logn) which computes the carry bits ¢;, and then the output bits
z;. A variant of this construction gives bounded-fan-in circuits of linear size and
logarithmic depth for subtraction in either the 1’s complement or 2’s complement
representation.

In [ChFoLi] it is shown that, if the semigroup defined by * does not contain a
nontrivial group as a subset then, for any strictly increasing primitive recursive
function f, the parallel prefix problem can be sclved by an unbounded fan-in cir-
cuit family of constant depth and size O(n f~'(n)). Each gate in such a circuit
computes the semigroue product of its inputs. It follows from this result that addi-
tion is in UCKT (n f™"(n), const) for any strictly increasing primitive recursive
function f.

4.2.2 Multiplication

The multiplication problem takes as input two n-bit binary numbers and pro-
duces as output their 2n-bit product. Let the inputs be (x,_i, x,_g, ..., ¥g) and
(¥n—-1s ¥n-2> - ¥o), and let the output be (25, ¢, 23, _3, ..., 2¢). The standard shift-
and-add algorithm for multiplication can be implemented in the time required to
add n binary numbers, each of length 2a. This latter problem can be solved by a
bounded-fan-in circuit of depth O(logn) and polynomial size using the following
three-for-two trick which reduces the problem of adding three n-bit numbers te the
problem of adding twe (n+1)-bit numbers [Of,Wa]. Let a = (a,_y, @5—2, ..., Gg),
b = (by—y, by_g, ..., by) and ¢ = (¢, _1, €, 9, ..., €¢y) be the three n-bit numbers to
be added. If we add the three bits a;, b, and ¢; in the i** position, for
i =0,1,..,n—1, we will obtain in each case a two-bit number whose upper and
lower bits are denoted u; and v;, The u; and v; can be generated by a linear-size
constant-depth circuit that, for each i, adds the three 1-bit numbers a;, b; and ¢;.
Then a+b+c=u+yv, where U = (Upoy, Up—9, cony Ug, O) and
v = (Vp_1, Up—3, ..., Vg). The addition of n numbers, each of length 2n, can be
achieved by O(log n) iterations in which the three-for-two trick is applied to reduce
the number of numbers by a factor of 2/3, followed by a final stage of adding two
O(n)-bit numbers. This establishes that multiplication is in NC1.

The best bounded-fan-in circuit known for multiplication achieves O(logn)
depth with O(nlogn loglogn) size {ScSt]. The construction is logspace-uniform; it
is based on circuits for computing the Discrete Fourier Transform over certain
finite rings. :

The paper [FuSaSi] was the first to establish that multiplication is not in
AC®. This was done by showing that the n-input parity function, which is equal to
1 if and only if an odd number of its inputs are 1, does not lie in AC? and then
showing that, if multiplication were in AC®, then parity would also lie in AC?,
These results are presented in Chapter 18. As mentioned in Section 3, parity, and
hence multiplication, requires unbounded-fan-in circuits of depth Q(logn/loglogn)
if the size is to be polynomial. The circuit of [ScSt] can be converted into an
O (logn/loglogn)-depth unbounded-fan-in circuit for multiplication of size O(n'*¢)
for any € > 0, using a standard technique of compressing O (loglogn) levels of a
bounded-fan-in circuit [ChStVi].
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4.2.3 Division

The input to the division problem is a pair of n-bit binary strings representing
integers x and y, with y # 0. The output is the binary representation of the

integer part of X we present a simplified version of a construction due to Beame,

Cook and Hoover {(BeCoHol, which yields a family of bounded-fan-in division cir-
cuits of polynomial size and logarithmic depth. The construction appears not to be
logspace uniform, and thus does not establish that division lies in NC,

To describe the construction we require the concept of NCl-reducibility. Let
A and B be functions from {0,1}° into {0,1}°, each having the property that the
length of the output is determined by the length of the input. For each positive
integer n we may derive from B a function B, from {0,1}* into {0,1}™, where m is
the length of the string B(x) whenever the string x is of length n. Similarly, we
may derive from A a family of functions A,. The function A is said to be NC!-
reducible to B (denoted A < yo1 B) if the family of functions {A,} can be realized
by a logspace-uniform family of circuits of polynomial size and logarithmic depth,
composed of inverters, 2-input AND-gates and OR-gates, together with "oracle
gates” realizing functions in the family {B,}, subject to the restriction that no two
oracle gates lie on the same input-output path. It follows from this definition that,
if A < yo1 B and B is realizable by a bounded-fan-in circuit family of polynomial
size and logarithmic depth, then A is also realizable by such a circuit family;
moreover, if the circuit family for B is logspace uniform, then the circuit family for
A will also be logspace uniform.

We shall show that Division < yq: Reciprocal < o1 Powering < yq:1 lterated

 Product, where the Reciprocal, Powering and Iterated Product problems are defined
as follows: :

Reciprocal

Input A nonzero n-bit integer y
OQutput An n-bit binary fraction y~
such that y™! =277 s 5y ' = 47!

1

Powering

Input An r-bit integer x and an integer i, wherel =i = n
OQutput x’, expressed as an n2bit integer.

Iterated Product

Input n-bit binary integers w,, wq,..., W,
Output The n2-bit product w, wy... wy,

The reductions are as follows:

Division < yo1 Reciprocal

1. Using an oracle gate for Reciprocal, compute y -1,

2. Using an NC!-circuit, compute the product xy ',

3. Hary Hy=zx

then |x y !} = x5!
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else [xy™Y = x5y~ ! —1.

Reciprocal < g, Powering

1. Lety = 2 w,where 1/2 < w < 1, and let ¢ be such that w = 1 — ¢,

2. In parallel, using oracle gates for powering, compute ¢2, £, ..., t*.

3. Using an NClcircuit for iterated addition, compute 1 + ¢ + &2 +...+ ¢*
4 yl=2770+t+ 2 +..+¢t"

Powering < yc1 Iterated Product

This is immediate, since powering is a special case of iterated product.

Given these reductions, the task remaining is to give a polynomial-size
logarithmic-depth bounded- fan-in circuit for iterated product. The method used by
Beame, Cook and Hoover for constructing this circuit depends on the following
ancient theorem:

Chinese Remainder Theorem. Let ¢y, ¢y, ..., ¢, be pairwise relatively prime
and let ¢ = ﬂ ¢;. Then

i=1
i) there exist integers vy, vs,..., U,, such that, fori, ..., mandj = 1, 2, ..., m,
1ifi =
vi mod & = 1g i =

(ii)  for any integer u, umodc = i u; v; modc, where u; = umodc;.
i=1

The circuit for computing the product w; ws... w,, where the w; are n-bit integers,
is as follows:

(i) Let ¢y, ¢y, ..., ¢, be distinct primes less than n? whose product is greater

than 2% (for all n > 5 such a set of primes exists), Letc = ﬁ cj.
i=1

(i) Fori=1,2 .,nandj =12, ., mcompute w; mod c;

(i) Forj = 1,2, .., n compute wy wy ... w,modc;

(iv) Using the Chinese Remainder Theorem, compute w, w4 ... w,modc.

Each of the steps is carried out by a polynomial-size, logarithmic-depth circuit
which has access to certain number-theoretic constants. We illustrate by describ-
ing step iii), in which the essential task is to multlply together n elements x;, each
of which is a residue modulo a prime p which is less than n % (here p corresponds to

and x;, to w; mod ¢;). Let Z be the field of nonzero residues modulo p. Then
Z has a generator i.e., an element g such that every element of Z is a power of
g If x = g? then y is called the (discrete) iogarithm of x, and « 15 the antiloga-
rithm of y. With the help of precomputed circuits of depth GU(logn) for computing
logarithms and antilogarithms, we can replace iterated product mod p by iterated
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summation mod p—1. The circuit for computing x;x5...x, modp has the following
parts:

(1) Fori = 1, 2, ..., n compute y;, the logarithm of x;;

(ii)  Using an NC?-circuit for iterated addition, compute
y=y1+ys+ ..+ y,mod(p—1)

(iii) Compute x, the antilogarithm of y. Then x = x; x5 ... x, modp

This completes our deseription of a polynomial-size, logarithmic-depth
bounded-fan-in circuit for division. Because of the precomputed constants the cir-
cuit appears not to be logspace-uniform, and it remains an open questmn whether
Division is in NC!. Reif [Re6] has shown that division is "almost" in NC? by giv-
ing a logspace uniform family of division circuits of polynomial size and depth
O (lognloglogn). Shankar and Ramachandran [ShRa] refined the constructions of
[BeCoHo] and [Re6] by showing that in each case the size can be reduced to
O(n'*%), where 8 is an arbitrarily small positive constant.

4.3 Circuits for Expression Evaluation

In section 2.2.3 we described a tree contraction algorithm and used it to derive
a simple, optimal O(log n)-time EREW PRAM algorithm for the expression evalua-
tion problem. Since the expression evaluation problem is an important one, consid--
erable work has been done on solving the problem efficiently for a different model
of paralle! computation, the arithmetic network.

The problem has both a static version and a dynamic version. In the static
version we are given an n-variable expression over an algebraic structure, and our
task is to construct an arithmetic circuit of small size and depth for that particular
expression. The inputs to the circuit will be the values of the n variables in the
expression, and the output will be the value of the expression. In the more general
dynamic version we wish to construct an arithmetic network that takes as inputs
an n-variable arithmetic expression, presented as a well-formed string of operators,
operands and left and right parentheses together w1th the values of the variables,
and produces the value of the expression.

Historically, the early circuits for static expression evaluation are based on
methods of decomposing a binary tree into two subtrees of approximately equal
size by deleting a single edge. Let T be a tree representing an expression on n
variables over a ring. Then T has m = 2n — 1 vertices. It is easy to see that T
has an edge e whose removal breaks it into two subtrees, T'; and T, each of which
has no more than 2n/3 vertices. Let e be directed from node u to its parent v.
Then the subtree rooted at u is one of the two operands for the operator at v. Let
T, be the subtree containing v and T, the subtree containing uz. Then we can
write the value of the expression computed by T as Ax+B, where x is the value of
u, which is also the value of the expression computed by T5. The method of Brent
[Br] recursively computes the coefficients A and B for T, and the value x for Ty,
and, using a constant-size circuit, combines the outputs of the two subtrees to
obtain Ax + B, the value of the expression. This leads to a log-depth linear-size
arithmetic circuit for the static expression evaluation problem. The tree contrac-
tion algorithm of section 2.2.3 gives another optimal O(logn)-depth circuit for the
same problem.

Brent’s method leads to an NC? arithmetic network for the dynamic expres-
sion evaluation problem since, at each recursive stage, the separating edge for each
subtree at that level of recursion can be found in log-depth by a fairly easy con-
struction. Similarly, since EREW! C NC?, the tree contraction algorithm gives
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another NC? arithmetic network for the dynamic expression evaluation problem.

In [Bu,BuCoGuRa}, an NC! arithmetic network is given for the problem. As
in [Br], the method is based on recursively computing the value of the expression
by decomposing the tree into subtrees; a factor of logn in depth is saved by com-
puting all the decompositions simultaneously, instead of doing it separately at each
of the logn recursive stages. The algorithm first transforms the expression into a
postfix expression with the property that, for each operator, the length of the
second operand is no greater than that of the first. This expression E is then
recursively segmented into three equal-sized, overlapping strings of half its length,
consisting of the first half of E, the middle half of E and the last half of E. Each
of these strings represents a collection of subtrees of E, and the algorithm chooses
the roots of the first two subtrees in each string to be the positions at which the
expression is to be decomposed. It can be shown that this method of decomposition
leads to a log-depth recursive algorithm for evaluating E. The method has the
advantage that the positions where decomposition takes place at all levels of recur-
sion can be determined in log-depth by suitably parsing the string representing the
expressmn E, and this leads to an NC! arithmetic network for the dynamic expres-
sion evaluatmn problem.

The NC! circuits for static and dynamm expression evaluation work for
expressions over a field, ring or semiring. In partlcular, the boolean expressmn
evaluation problem, in which each input value is 0 or 1, is complete for NC* under
deterministic log-time reductmns, and can be con51dered in some sense, to be the
canonical problem for NC.

44 Boolean Matrix Multiplication and Transitive Closure

We show that the boolean matrix multiplication problem is in AC? and the
transitive closure problem is in ACl. Let A = (g ;) and B ={b;) be n X n
matrices of zeros and ones, Then the (boolean) product of A and B s the n X n

matrix C = (cy), where ¢; = V ai, - by;. The boolean product of A and B can be

computed by a two-level unbounded fan-in circuit. At the first level there are n?

and-gates, each of which computes one of the products a;; - b;;. At the second level

2

n
there are n® n-input or-gates, each of which computes V a;;, - by; for a specific i

and j. The spec1ﬁcat10n of these circuits is clearly logspace-unlform Thus boolean
matrix multiplication is in AC® and hence in NC!. The number of gates can be
reduced asymptotically to O(n*¥"%) by inbedding the problem in an appropriate
ring and using fast matrix multiplication {CoWi].

Let A = (a;;) be an n X n matrix of zeros and ones. Let I denote the n X n
identity matrix. For k = 0,1,2,... let A*, the k‘ power of A, be defined induc-
tively as follows: A®? = I; for * = 1 2,. ,A = A*“T. A, Define A*, the reflexive

transitive closure of A as follows: A* = kVOA". It is not difficult to show that
| =

A* = (JUA)? ", Hence A* can be computed by initializing the matrix B to the

value TUA, and successwely squaring the matrix B [logyn] times. Since matrix

multlphcatlon is in ACY, it follows that transitive closure lies in AC?, and hence in

NC2,

4.5 Matrix Computations

In discussing matrix computations, we work with arithmetic circuits as
defined in Section 3: acyclic circuits in which the inputs are elements of a field F
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and the gates perform the four field operations: +.-,* and /. It 1s clear from its
defining formula that matrix multiplication 1s in arlthm_etlc NC!. Similarly, the
problem of computing A" is in arithmetic NC?, since it is posmble to corngute A"
in at most 2 [logzn] matrix multiplications by first computing A2, A%, A®,... via
re&eated squaring, and then multiplying together appropriate matr:ces of the form

The problem of computing the inverse of a lower triangular matrix illustrates
a divide-and-conquer technique that is often used for the construction of parallel
algorithms. Let A be a square lower triangular matrix whose number of rows is a
power of two (square matrices of other dimensions can easily be handled by adding
additional rows and columns, whose entries are zero except for ones on the diago-
nal, to pad the dimension out to a power of two). Then we can block-decompose A
into four matrices of half its dimension, as follows:

Ay 0

A= 2
A21 A22

Because A is lower triangular, it follows that the upper right-hand submatrix
is the zero matrix, and that A;; and Ay, are lower triangular. The inverse of A is
given by

—AGAARY T AG

This formula for the inverse suggests a recursive parallel algonthm for com-
puting A ™, Fu-st ALl and A22 are computed recursively in parallel. Then
—Ag' Ay A7 is computed via two matrix multiplications. Thls recursive algo-
rithm leads to a uniform family of arithmetic circuits with O(n®) gates and depth
O(log?n); hence the problem of inverting a lower triangular matrix lies in arith-
metic NC2,

4.5.1 Computing the Determinanit

We turn next to the problem of computing the determinant of an n X n
matrix. This problem presents an interesting challenge because Gaussian elimina-
tion, the standard sequential algorithm for this problem, does not lead to an NC-
algorithm. Gaussian elimination computes the determinant in a series of n stages,
each of which transforms the given matrix without changing its determinant.
Each stage requires O{(n?) operations which can be performed in parallel, but it
appears that the stages must be performed in sequence, so that the running time
cannot be reduced below O(n).

The characteristic polynomial of a square matrix A is the n'*.degree polyno-
mial det(A — xI}, In 1976 Csanky [Cs] showed that, for matrices over a field of
cha.racterlstlc zero, the problem of computing the characteristic polynomial lies in
algebraic AC% The result was extended to matrices over an arbitrary ring by Ber-

kowitz [Ber] and Chistov [Chi]. Let the characteristic polynomial be 2 ¢; x°.
i=0
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Then det A = ¢g; and, since a matrix satisfies its own characteristic equation,

—(cy+egA +.+ec, A®TY)
Co ’

A™l=

This equation yields an arithmetic NCZ2-algorithm for computing A ™! from
the characteristic polynomial.

We present Chistov’s algorithm for computing the characteristic polynomial.
The following lemma will be required.

Lemma. Let B be a n X n matrix. Let B, be the £ X k matrix in the lower
right-hand corner of B; ie, (Bp)y; = B)y_ptin-k+;r Assume that, for

k =1,2, .., n, B, is nonsingular. Then 3ot B :k=1 By Y11

Let M(n) be the number of processors required in order to perform n X n
matrix multiplication in time O(logn); then M(n) will depend on the ring in which
the matrix elements lie, but will not exceed n3. Chistov’ 5 algorithm computes the
polynomial det I — xA) in time O(log?n) using a2 M(n) processors. The
coefficients of the polynomial det (I — xA) are those of the characteristic polyno-
mial, but in reverse order and with their signs reversed. The algorithm performs
computations on power series in x; however, since the finzl result of the computa-
tion is a polynomial of degree n, these power series can be computed modulo x**
i.e., they can be truncated to polynomials of degree n. We require the following
fact: if A(x) is a square matrix in which each element is a power series in x with

constant term zero, then (I — A(x)) ™! mod x* ! = 2 Ax) mod x**!. By using
repeated squaring, the powers of A(x) up to the n“E can be computed in time

O(log?n) using O(nM(n)) processors, and hence (I — A(x))” ~! mod z**! can be
computed in time O(log%n) using O(nM(n)) processors.

Qur goal is to compute det B, where B = I — xA. Henceforth, all the objects
computed are power series modulo £"*1 or matrices whose elements are such
power series. We shall apply the lemma. For k = 1, 2, ..., n, B, is a nonsingular
matrix of the form I, — x A;, where I, is the k X k identity matrix. Then

By = (I, — z A;)~ % and, modulo x®*1, this guantity is equal to 2 (x Ap).
i=0

Chistov’s algorithm proceeds as follows:
i) for k = 1, 2, ..., n compute By ! and extract the element (B;™%);;;

(i1) Multéply together the n elements extracted in step (i); the resulting product

% QetB '

(iii) Compute det B by taking the inverse of the power series obtained in step
(i1).

Chistov’s algorithm requires O(n? M(n)) processors. For fields of characteris-
tic zero, a variant of Csanky’s algorlthm due to Preparata and Sarwate [PrSal com-
putes the characteristic polynomlal in time O(log®n) using O(n3%) processors. Even
this algorithm is not efficient, since, over a field of charactenstz.c zero, the charac-
teristic polynormal can be calculated in time O(n2379), where the constant implied
by the "big O" is enormous, or, more practically, in O(n%) steps, where the implied
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constant is small,

Borodin, Cook and Plp})enger [BoCoPi] have shown that, for each fixed k, the
following problem is in NC*: compute the determinant of a matrix A whose entrles
are rational functions of the k variables xj, x5, ..., x;, where each entry is
presented as a pair of polynomials of degree at most » in which each coefficient is
an n-bit integer. The same problem but with the coefficients taken from an arbi-
trary field, is in arithmetic NC2,

452 Computing the Rank

The problem of computing the rank of a matrix A with elements in a field F
has been treated in [IbMoRo, BoGaHo, Chi, Mu]. If A is diagonalizable then its
rank can be read off from the characteristic polynomial: it is simply n — m, where

™ is the highest power of x that divides the characteristic polynomial. If A is not
diagonalizable, however, then this rule does not correctly give the rank. For exam-
ple, the matrix g (1)] has rank 1, but its characteristic polynomial is % In
{IbMoRo] it is shown that, if F is a subfield of the reals, then
rank {(AA') = rank(A) and the matrix AA* is diagonalizable. Hence, in this case,
the rank may be read off from the characteristic polynomial.

In {Chi] and {Mu] it is shown that the problem of computing the rank of
matrix A over an arbitrary field F is in arithmetic NC% Mulmuley’s algorithm is
remarkably simple. Assume that A is square and symmetric; for, if not, one may
work instead with the square, symmetric matrix

.

whose rank is twice the rank of A. Let Z be a diagonal matrix in an indeter-
minate z such that Z; = z'~!. Using the algorithm of [BoHoPi] compute
Q(x) = det(xl — ZA), the characteristic polynomial of the matrix ZA. Then the
rank of A is n — m, where x™ is the highest power of x that divides the charac-
teristic polynomial Q(x).

4.6 Dynamic Evaluation of Straight-Line Code

A commutative semiring (R, + ,*,0,1) is an arithmetic structure with
domain R and two commutative, associative binary operations + and *, such that
0 is an additive identity, 1 is a multiplicative identity, and the distributive law
a*(b + ¢) = a*b + a*c holds. In conformity with the definition of Section 8 an
arithmetic circuit over this semiring is an acyclic connection of input nodes of in-
degree zero and addition and multiplication nodes of in-degree 2, together with an
assignment to each input node of a value from the domain R. The execution of the
indicated multiplication and addition operations assigns a value from R to each
node of the circuit, and the problem of computing these values is known as the
evaluation problem. It is equivalent to the problem of evaluating straight-line pro-
grams with operations from a commutative semiring.

The performance of algorithms for this problem is stated in terms of two
parameters: n, the size of the circuit C, and d, the degree of C. The degree of C is
defined as the maximum degree of a node in €, where the degrees of the nodes are
defined inductively: the degree of an input node is 1, the degree of an addition node
is the larger of the degrees of its two inputs, and the degree of a multiplication
node is the sum of the degrees of its two inputs. The paper [VaSkBeRa] gives a
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method of converting any arithmetic circuit of size n and depth d into one of size
poly (n) and depth O(logn ' logd). The paper [MiRaKa] considers the more gen-
eral dynamic version of the problem, in which the input to the evaluation algo-
rithm consists of the arithmetic circuit C and the values of its inputs; thus no
preprocessing based on C alone is allowed. The algorithm of [MiRaKa] runs in
time O (logn leg(nd)) using M{(n) processors.

In order to describe the algorithm of [MiRaKa] we require the concept of a
weighted arithmetic circuit over the semiring R. Such a circuit is a directed acy-
clic graph in which each edge (x,v) has a weight W(u,v) which is an element of R.
The nodes are of three types: leaves, multiplication nodes and addition nodes. A
leaf has in-degree zero, a multiplication node has in-degree 2, and an addition node
has in-degree greater than zero. Associated with each leaf is a value in R. It is
required that no edge be directed from a multiplication node to a multiplication
node.

Associated with each node v in a weighted arithmetic circuit is a value
VAL(v). The values of the leaves are given as part of the specification. If an addi-
‘tion node v has edges directed inte it from mnodes vy, vy, ..., vs, then

VAL(v) = VAL(v;) W(v;, v). If a multiplication node has edges directed into it
i=1
from nodes vy and vy then VAL(v) = VAL{(v{)*W(v;, v)*VAL(v)*W(u,, v).

We see that an ordinary arithmetic circuit over R can be viewed as a
weighted arithmetic circuit in which every weight is equal to 1. The requirement
that no edge runs from one multiplication node to another is easily met by insert-
ing extra addition nodes of in-degree 1. Starting with the given arithmetic circuit,
the algorithm constructs a sequence of weighted arithmetic circuits, all of which
have the same set of nodes. Moreover, the iteration that produces each weighted
arithmetic circuit from its predecessor in the sequence preserves the values of all
nodes.

The iteration is accomplished in three steps:

(1) (MM) Compress subcircuits consisting of additions only; the nature of this
operation is indicated in figure 4.1;

(2) (Rake) Simultaneously evaluate every node for which all direct predecessors
are leaves, and delete the edges directed into those nodes;

(3) (Shunt) Simultaneously replace all edges directed from leaves to multiplica-
tion nodes. The nature of this operation is indicated in figure 4.2,
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w(u,v,)*w(vy,w)
w(u,vz)*w(vz,w)

Figure 4.1. The MM Operation

—Pp Val(WM*e(x.Y)

Figure 4.2. The Shunt Operation

The cost of executing this iteration is dominated by the first step, which can
be organized as a matrix multiplication. Thus each iteration can be performed in
time O(logn) using M(n) processors. It can be shown that all nodes get evaluated
within O(log(nd)) iterations of this transformation.

The paper [MiTe] extends the result of [MiRaKa] to a wider class of algebraic
structures, and [Kal] gives a randomized algorithm for the static problem in the
case where division is allowed.
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4.7 The Maximal Independent Set Problem

A set of vertices S in a graph G is called independent if no two vertices in S
are adjacent, and maximal independent if it is independent and not properly con-
tained in any independent set. Noting that the most obvious methods of creating a
maximal independent set do not parallelize, the paper [Va2] suggested the possibil-
ity that the problem of constructing such a set might be inherently resistant to
solution in parallel. This was shown to be false in 1984, when Karp and Wigder-
son [KaWi] showed that the ?roblem of constructing a maximal independent set of
vertices in a graph is in NC*. Soon thereafter, efficient randomized parallel algo-
rithms for the problem were presented in [Lub AlBaIt] On a graph with n ver-
tices and m edges, these algorithms run in time O(log?n) on an EREW PRAM, and
require O(m + n) processors. Goldberg and Spencer [GoSp] give a deterrmmstlc
algonthm for constructmg a maximal independent set that runs on an EREW
PRAM in time O(log*n) using O{(m + n) processors.

All of these algorithms for constructing a maximal independent set in a graph
= (V', E’) have the following overall structure.

begin
-G, VeV
while V = g do
begin
G « the subgraph of G' induced by the vertex set V;
S « IN(G);
VeV - (SUNS)
I«<ITUS
end
end

Here IN(G) is an independent set in the graph G, and N(S) denotes the set of
vertices in V' that are adjacent to one or more vertices in S. It is easy to check
that, upon termination of this algerithm, S is a maximal independent set in G.

The algorithms differ in the way they construct the independent set IN(G).
Luby’s randomized method is as follows. Let dg (v) denote the degree of vertex v
in G. Then IN(G) is constructed as follows:

X« O
in parallel for all v € V do

insert v into X with probablhty P dG(v)

. in parallel for all 2-element sets {u v} C X do
if dg(u) < dg(v) then delete u from X;
if dg(v) < dy(u) then delete v from X;

if dg(u) = dy(v) then randomly choose either u or v and delete it from X
IN(G) « X

The crucial lemma in Luby’s analysis of his algorithm is as follows.

Lemma. Let E be the edge set of G. Then the expected number of edges of G
incident with vertices in IN(G) is at least %|E|
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From the lemma, it follows easily that the expected number of calls on pro-
cedure IN(G) required to construct a maximal independent set in the original
graph G’ is O(logn), where n is the number of vertices in G’.

The algorithm of Goldberg and Spencer is based on a deterministic method of
constructing an independent set S in a graph G = (V,E). Let |V| = p and
|E| = q. Then, on an EREW PRAM their method runs in time O(log’p) using
O(p + q) processors, and guarantees that |S U Ny, | = p/3logp, where Ny, is
the set of vertices adjacent to G in §. If procedure IN is implemented using their
method then the total number of calls on the procedure will be 0og?n), and the

overall algorithm will require n + m processors and run in time O(log*n) on an
EREW PRAM.

Thus we see that there is a polylog-time deterministic algorithm to construct
a maximal independent set using a linear number of processors; perhaps, in future
work, the power of log n in the time bound will be reduced below 4.

4.8 Applications

The algorithms given above for computing the transitive closure of a boolean
matrix, for computing the characteristic polynomial and the rank of a matrix with
entries drawn from a field, and for the fast parallel evaluation of functions
specified by straight-line programs, provide fundamental tools for placing problems
in NC. In this section we describe several of these applications.

4.8.1 Applications of Transitive Closure Techniques

The following is a list of six basic computational problems regarding digraphs.
Each of these problems can be solved sequentially in time O(rn + m), where n is
the number of vertices in the given digraph, and m is the number of edges.

(i) Computing the strong components of a digraph G;
(i) Determining whether G is acyclic;

(iii) Constructing a tree rooted at a given vertex v of G and containing all ver-
tices reachable from v;

(iv) Comstructing a breadth-first search tree rooted at a given vertex v;

(v)  Computing the shortest paths from a given root vertex v to all other ver-
tices, in a digraph G whose edges have nonnegative weights;

(vi) Constructing a topological ordering of the vertices of an acyclic digraph G;
i.e., a bijection h from the set of n vertices onto the integers 1, 2, ..., n such
that, for every directed edge (u,v), hl(u) < h{v);

All of these problems can be placed in NC? using techniques related to transi-
tive closure. The solutions of i) and ii) can be read off directly from the transitive
closure. An NC*algorithm for problem (v) is easily constructed, based on the well-
known technique of iterated min/+ matrix multiplication. Problem (iv) is a spe-
cial case of problem (v), and a solution to (iv) also solves (iii). Problem (vi) can be
solved by introducing a dummy vertex of in-degree zero from which an edge is
directed to each original vertex of in-degree 0, constructing a breadth-first search
tree rooted at that dummy vertex, sorting the vertices in increasing order of their
distance from the root (ties being broken arbitrarily), and then assigning each ver-
tex a number equal to its rank in this sorted order.

Using techniques related to transitive closure, we have exhibited NC2
algorithms for six elementary problems related to digraphs. Unfortunately, none of
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these algorithms are efficient. On a graph with n vertices and m edges, each of
these problems can be solved sequentially in time O(n + m), whereas our parallel
algorithms run in time O(log?n) using M(n) processors. Thus, we see that the
processor-time product for each of our algorithms is far in excess of the time
required to solve the same problem sequentially. In order to construct efficient
parallel algorithms for these problems, it will be necessary to avoid the use of
matrix powering or transitive closure as a subroutine; our inability to do so is
sometimes called the transitive closure bottleneck.

4.8.2 Problems Reducible to the Solution of Linear Equations

We have shown that the problems of inverting a matrix and computing the
rank of a matrix are in arithmetic NC2, It follows easily that the problem of solv-
ing the linear system Ax = b (where A is not necessarily of full rank) is alse in
arithmetic NC2,

Many problems can be reduced to the solution of a system of linear equations.
As an example , we consider the problem of computing the greatest common divisor
of two univariate polynomials, f and g, of degree n [BoGaHo]. It can be shown
that ged(f,g) is of degree = | if and only if there exist polynomials s and ¢ of
degree less than n — i such that sf + g is of degree i. The condition that such
polynomials exist is expressed by a nonsingular system of 2n — 2i linear equa-
tions in which the unknowns are the 2n — 2i coefficients of s and ¢£. Each entry in
the matrix of this system is either 0, a coefficient of f, or a coefficient of g.

As a second example, consider the problem of drawing a 3-connected planar
graph in the plane without crossing edges, in such a way that all the edges are
line segments. Call a cycle C of G a bounding cycle if there exists a plane embed-
ding of G in which the cycle C bounds a face. If T is any spanning tree of G then
each edge e not in T forms a unique "fundamental cycle” when added to T': at least
one of these fundamental cycles is a bounding cycle. In an interesting paper enti-
tled "How to Draw a Graph" {Tu], Tutte gives the following result: Let G be a 3-
connected planar graph, and let C be a bounding cycle. Let the successive vertices
of C in cyclic order be vy, vy, ..., v3. Let py, py, ..., pp be points in the plane such
that the line segments p;p,y, pops, ... .04 determine a convex polygon. Let the
vertices of G be placed in the plane s¢ that v; is placed at p;, i = 1, 2, ..., k, and
each vertex not on C is located at the center of gravity of the vertices adjacent to it
in G. For each edge {u,v}, let the points corresponding to u and v be joined by a
line segment. Then no two of these line segments will intersect except at a com-
mon end point; i.e., the process produces a straight-line embedding of G. Thus, as
Ja'Ja and Simon [JaSi] have observed, a straight-line embedding of G can be con-
structed by identifying a bounding cycle C, and then constructing the associated
placement. Once the vertices of C have been placed at the vertices of a convex
polygon, the placement of the remaining points can be obtained by solving a non-
singular system of linear equations. The unknowns are the x- and y-coordinates of
the vertices not on C, and the linear equations express the condition that each ver-
tex lies at the center of gravity of its neighbors. This approach leads to an NC-
algorithm for constructing a straight-line embedding.

4.8.3 Applications of Mulmuley's Rank Algorithm

Mulmuley’s algorithm for computing the rank of a matrix over an arbitrary
field is also a powerful tool for placing problems in NC. Among these are the prob-
lem of solving a (possibly singular) system of linear equations, the problem of fac-
toring polynomials over finite fields, and a number of problems about permutation
groups presented by generators [BaLuSe]. These include the problems of determin-
ing the order, finding the derived series or a composition series, testing
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membership, testing if the perrhutation group is solvable, finding the center,
finding a central composition series, and finding pointwise stabilizers of sets when
the permutation group is nilpotent.

4.8.4 Context —Free Recognition — an Application of the Technique of
Miller, Ramachandran and Kaltofen

The technique of Miller, Ramachandran and Kaltofen for parallel evaluation
of straight-line code enables several particular problems to be placed in NC. It is
especlally applicable to problems that can be solved in polynomial sequent1a1 tlme
using dynamic programming. We shall illustrate the approach by giving an AC!
algorithm for the problem of deciding whether a given string is in the language
generated by a given context-free grammar in Chomsky Normal Form.

Our starting point is the well-known Cocke-Kasami-Younger dynamic pro-
gramming algorithm for context-free recognition [Kas, Yol. Let (V, X, P, S) be a
context-free grammar, where V denotes the set of symbols, 2 denotes the set of ter-
minal symbols, P denotes the set of productions, and § denotes the initial symbol.
Since the grammar is in Chomsky Normal Form, each production is of the form
A - BC or A — a, where A,B and C denote nonterminal symbols e;End a denotes a

nonterminal symbol. For A € V — Z and w € Z°, we say that A _ w (A derives
w) if the nonterminal symbol A can generate the string w.

Let z(i,j) be the substring a; a;4; ... a;.

nonterminal symbol A, let the predicate A(i,j) be true if A &= x(ij). The Cocke-

For 1 =i =j =< n, and for every
#*

Kasami-Younger algorithm algorithm evaluates all such predicates; the string x is
accepted if and only if the predicate S(1,n) is true.

The evaluation of these predicates is based on the following rules:

(i) Fori=1,2, .., n A(,) is true if and only if there is a production of the
form A — q;;

(ii) Forl =i <j=n,A(,) is true if and only if there exists a &, { = &k < J,
and a production A — BC, such that B(i,k) and C(k + 1,j) are true.

The resulting algorithm can be represented as an arithmetic circuit over the
semiring ({0,1}, +, *, 0, 1), where + is boolean "or" and * is boolean "and". The
circuit contains O(n?% nodes , and the node that computes the predicate A(i,j) is of
degree j — i + 1. Thus d, the maximum degree of any node, is » + 1, and it fol-
lows that the number of iterations required by the parallel evaluation method of
Miller, Ramachandran and Kaltofen is O(logn). The time for each iteration is
dominated by the matrix multiplication required in the MM step of the algorlthm
Since the semiring in this case is boolean, matrix multiplication is in ACY and
thus the time for the entire algorithm is O(logn), using a polynomial- bounded
number of processors. It follows that the problem of deciding whether a given
string is in the language generated by a given context-free grammar in ChOmsky
normal form is in AC. In [Rull, Ruzzo proved the static version of this result in a
different way by showing that every context-free language can be recognized by an
alternating Turing machine operating within space logn and logn alternations. It
follows that every context-free language is in AC?.

4.9 Randomized NC-Algorithms
491 Testing Whether a Symbolic Determinant is Nonzero
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The following lemma is an important tool for the design of randomized paral-
lel algorithms.

Lemma. Let F(x,, x5, ..., X,) be a polynomial of degree d. If F is not identically
zero then, for at least half of the (2d + 1)" n-tuples in which each component is an
integer between —d and d, Flay, ay, ..., a,) # 0.

We omit the proof, which goes by induction on n, with the case n =1
corresponding to the Fundamental Theorem of Algebra (see, e.g., [Sc]).

The lemma suggests a randomized algorithm for testing whether a polynomial
of degree d is not identically zero: simply substitute independent random integers
between d and —d for the variables, If the polynomial is not identically zero then,
with probability greater than 1/2, a nonzero value will result. For any class of
polynomials which can be evaluated by an NC-algorithm, we obtain in this way a
RNC-algorithm for testing whether a polynomial is not identically zero.

4.9.2 The Maiching Problem

We give an RNC%algorithm for recognizing the graphs that possess perfect
matchings (recall that a perfect matching in a graph G is a set of edges M, such
that each vertex of G is incident with exactly one vertex of M.). The algorithm is
based on the following theorem of Tutte.

Theorem. Let G be a simple graph (no loops or multiple edges) with vertex set
{1, 2, ..., n} and edge set E. Let A = (a;;) be the following n X n matrix, in which
the variables x;; are indeterminates:

x;iffijl€ Eandi <j
e =1 —x;iffijl€ Eandi >
0if fij} € E

Then G has a perfect matching if and only if the determinant of A is not identi-
cally 0.

The matrix A is called the Tutte matrix of the graph G. The determinant of
A is a polynomial of degree n in the indeterminates x;;. Combining Tutte’s
Theorem, the lemma, and the existence of an NCZ.algorithm for computing the
determinant of an n X n matrix with integer entries in [—n,n], we obtain the
desired one-sided-error algorithm for deciding whether a graph has a perfect
matching.

This result does not directly yield a RNC%algorithm for constructing a perfect
matching when one exists. Such an algorithm was first provided in [(KaUpWil].
We present here a particularly elegant RNC?2-algorithm for the problem, due to
Mulmuley, Vazirani and Vazirani [MuVaVa]. Their algorithm is based on the fol-
lowing probabilistic lemma.

Lemma. Let C be any nonempty collection of subsets of {1,2,.., N} Let
w(l), w(2), ... ,w(N) be independent random variables, each with the uniform dis-
tribution over {0, 1, 2, ....2N}. Associate with each set S C {1, 2, ..., N} a weight

w(S) = 3 wii).
i€S
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Then, with probability greater than 1/2, the family C contains a unique set of
minimum weight.

The lemma can be applied to the matching problem by taking C to be the set
of perfect matchings in a graph with N edges. If each edge is given a weight
drawn from the uniform distribution over {0, 1, ..., 2N}, and the weight of a match-
ing is the sum of the weights of its edges, then, with probability > 1/2, there will
be a unique perfect matching of minimum weight.

Mulmuley, Vazirani and Vazirani go on to show that, when there is a unique
perfect matching of minimum weight, it can be constructed at the cost of a single
matrix inversion by the following algorithm.

1.  For each edge {i,j} draw a weight w;; from the uniform distribution over
0,1,..2|E|}

2. Form the Tutte matrix of G and,for each indeterminate x; occurring in the
Tutte matrix, substitute the constant 2“Y; let the resulting matrlx be B.

3. Using a parallel matrix inversion algorithm that yields the determinant and
the adjoint, such as the one in [Pan], compute |B| and adj(B). The i — j
entry of adj(B) is the minor |B;;].

Bl 2
4. In parallel, for all edges {i,j}, compute I—;—Lw—. Let M be the set of edges

for which this quantity is odd.
5. If M is a perfect matching then output M

Whenever the weights w,; are such that there is a unique perfect matching of
minimum weight, the algorithm will produce this matching. Thus each execution
of the algorithm produces a perfect matching with probability > 1/2, provided that
a perfect matching exists. The algorithm runs in O(log?s) time using a
polynomial-bounded number of processors. Thus we can conclude that the problem
of constructing a perfect matchmg is m RNC? Further results by Karloff [Kar]
establish that the problem lies in ZNC?2.

We have discussed two problems related to perfect matchings: the decision
problem, in which the task is to decide whether a perfect matching exists, and the
search problem, in which the task is to construct a perfect matching when one
exists. The paper [KaUpWiZ2] studies the general question of how to construct a
parallel algorithm for a search problem, given a subroutine for the corresponding
decision problem.

493 Applications of Matching

(KaUpWil] have shown that the following problems related to matching and
network flows are in RNC:

(i Constructing a perfect matching of maximum weight in a graph whose edge
weights are given in unary notation;

(ii)  Constructing a matching of maximum cardinality;

(iii) Constructing a matching that covers a set of vertices of maximum weight in
a graph whose vertex weights are given in binary;

(iv) Comnstructing a maximum s—¢ flow in a directed or undirected network
whose edge weights are given in unary notation,
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Each of these results is obtained by a reduction of the given problem to the
problem of constructing a perfect matching, or by a closely related algorithmic
technique. In view of the above result of Mulmuley, Vazirani and Vazirani, these
four problems lie in RNCZ.

494 Depth—First Search

Let G = (V,E) be a connected graph. Let T be a spanning tree of G rooted at
r. Then T is called a depth-first-search tree if, for every edge e € E, one of the two
end points of e is an ancestor of the other.

There is a sequential algorithm running in time O(|E |) for the construction of
a depth-first-search tree rooted at a given vertex. This algorithm is the backbone
of linear-time sequential algorithms for testing whether a graph is planar, comput-
ing the biconnected components of a graph, and many other important problems.

Although the goal of finding an efficient parallel algorithm for depth-first
search has not been reached, some progress has been made. Define a splitting path
as a simple path having the root as an end point, with the property that its dele-
tion breaks the remaining vertices into connected components of size less than or
equal to crn, for a suitable constant ¢. Once such a splitting path is found, a
depth-first search tree for the overall graph can be constructed recursively out of
the splitting path together with depth-first search trees for these connected com-
ponents. This approach is used in [{Smi] to solve the depth-first-search problem in
the case of planar graphs (see also [GoPISh, HeYe, JaKo] for efficient implementa-
tions of this algorithm), and by [Raml in the case of directed acyclic graphs and
reducible flow graphs.

it remained an open question whether the depth-first-search problem for gen-
eral graphs was in ZNC. Aggarwal and Anderson [AgAn] settled this question by
giving a ZNC?3-algorithm that constructs a depth«ﬁrst search tree in an n.vertex
graph. The algorithm has Of(logn) levels of recursion, in each of which it con-
structs a splitting path; in order to construct such a path, it makes O(log’n) suc-
cessive calls to a subroutine for the following problem: given a bipartite graph in
which each edge has weight zero or one, find a perfect matching of minimum
weight. Kach of the bipartite graphs presented to the subroutine has at most n
vertices. Since this matching problem is in ZNC? it follows that the depth-first-
search problem is in ZNCS5. The algorithm of Aggarwal and Anderson is quite
intricate, and we shall not attempt to describe it here.

4.10 Further Results

Our treatment of NC-algorithms has focused on methods and results that
appear to be of general utlhty for placing problems in the cIasses NC ; RNC or
ZNC, or for locating them in the hierarchies such as {AC k] and {NC*}). Many
further probiems have been analyzed from this point of view. The following refer-
ences give a representative sample of such results,

Graph Theory

[Bab, CoRaTo, DaKa, GaMi, GaPa, GiKaMiSe, GrKa, Jo, Ka, KaShSo, KIRe, KoVaVa,
LePiVa, LiKa, Lo, NaNaSc, NiSo, Re3, Red, SaJa, Sol, So2, TsCh, Vazj

Scheduling Theory [HeMa]

Algebra
[BaLuSe, BoGaHo, Eb, FiTo, GaPa, Gatl, Gat2, Gat3, IbMoRo,
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Luk, LuMc¢, LuMeRa, McCo, Pan, PaRe, Re]
Number Theory {KaMiRu]
Language Theory [Rel]

Logic Programming [Ma, UIVG]
Analysis [B-OKoRe, B-OFeKoTi, KoYa, Pal, Pa2]

411 P-Complete Problems

Let P denote the set of decision problems solvable by deterministic Turing
machines in polynomial time. Every decision problem in NC lies in P. A funda-
mental open question is whether every problem in P lies in NC. If this were so, it
would mean, roughly speaking, that every problem that is efficiently solvable in a
sequential model of computation can be solved very fast in parallel, using a
polynomial-bounded number of processors (this interpretation is disputed in the
interesting paper [ViSi]). Using a reducibility technique, we shall identify a set of
problems within P called the P-complete problems; a P-complete problem lies in
NC if and only if P = NC. Thus the P-complete problems can be viewed as the
problems in P most resistant to parallelization.

We adopt the usual convention of representing a decision problem as a subset
of {0,1}". Decision problem A is said to be logspace reducible to decision problem B
if there is a function £:{0,1}] — (0,1} such that f is computable by a logspace Tur-
ing machine and, for all x €{0,1}°, x€A if and only if f(x)€B. A decision problem
in P is called P-complete if every problem in P is logspace-reducible to it. The
relation of logspace-reducibility is transitive and has the following further pro-
perty: if A is logspace-reducible to B and B is in NC*, where k¥ = 2, then A is in
NC*. Our interest in P-completeness stems from the following consequence of this
observation: let A be a P-complete problem; then P = NC if and only if A lies in
NC, and, for £ = 2, P C NC* if and only if A lies in NC*.

Our official definition of a P-complete problem requires that it be specified as
a function from strings over one alphabet to strings over another. In practice, the
inputs and outputs to a problem are often other kinds of symbolic objects: graphs,
formulas, circuits, grammars, families of sets and the like. In describing such
problems and proving them P-complete we often will not specify how their inputs
and outputs are encoded as strings, since the details of that encoding are seldom of
interest,

The usual method of proving a problem P-complete is to show that it lies in P
and that some standard P-complete problem is logspace-reducible to it. The stan-
dard problem most often used for this purpose is the monotone circuit value prob-
lem (MCVP) [Go2]. Informally, the input to this problem is an acyclic network of
two-input AND gates and two-input OR-gates, together with an assignment of a
constant value (zero or one) to each input line, and the output is the output of a
specified gate. More precisely, the input is given as a sequence of equations, speci-
fying the outputs of the gates in a monotone circuit. The first two equations are
g9 =90 and g, = 1, and for each {,i = 2, 3, ..., n, there is either an equation of
the form g; = g; \V g; or an equation of the form g; = g; /A g;, where j and % are
nonnegative indices less than i. The first of these two equations corresponds to the
case where gate i is an OR-gate with inputs from gates j and k; similarly, the
second equation corresponds to the case where gate { is an AND-gate. The output
is the value of g, in the unique solution of this system of equations.
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We sketch the proof that MCVP is P-complete. Let A be a decision problem
in P, Then A is accepted by a deterministic one-tape Turing machine M which
has a unique accepting state ¢* and operates within the polynomial time bound
T(n). For a given input string x, let T = T(|x|). Then T is an upper bound on
the execution time of M on x, and the only tape squares whose contents can
change during the computation are within distance T of the home square. Intro-
duce the following Boolean variables to represent the computation of M on input x:

h{i,t), meaning "the head is on tape square i at time ¢";
a(i,t), meaning "the symbol on square i at time ¢ is a";
g(¢), meaning "the state at time ¢ is ¢".

Here a ranges over the tape alphabet of M, ¢ ranges over the state set of
M,-T=i=<T and 0 <t =<7T. The input x is accepted if and only if
g* (T) = 1.

Then, given input x and the description of the transition function of M, there
is a logspace algorithm to generate a system of monotone Boolean equations, in the
format of the MCVP problem, specifying the values of these variables. This is the
required logspace reduction from problem A to the MCVP. Since A is an arbitrary
problem in P, it follows that MCVP is P-complete.

We shall give two further examples of P-completeness proofs, each involving a
reduction from MCVP. The first example involves a certain "greedy" sequential
algorithm for constructing a maximal independent set of vertices in a graph. Let
G be a graph with vertex set V, and let a linear ordering of V be given. The fol-
lowing algorithm constructs a maximal independent set in G.

GREEDY INDEPENDENT SET ALGORITHM
S « &
fori =1,2,..,|V]do
begin
let v be the i** element in the linear ordering of V;
if v is adjacent to no vertex in § then
S« 8 U v}

end

The following decision problem related to this algorithm is P-complete [Co2].

GREEDY INDEPENDENT SET
INPUT: Graph G = (V,E) where V is linearly ordered;

PROPERTY: The last vertex in the linear ordering of V is in the independent set
constructed by the greedy independent set algorithm.

We give a reduction from MCVP. Let an instance of MCVP be specified, as
described above, by equations for the gate outputs gg, g1, -, £,- The reduction will
produce a graph G with vertex set V = {v, vy, ..., v} {J {wg, wy, ..., w,}, together
with a linear ordering of V. The linear ordering is such that, whenever i < j, y;
and w; precede v; and w;. The relative ordering of »; and w; and the specification
of the edges incident with v; and w; depend on the nature of the equation for g; as
follows: w, precedes vg; vy precedes wy; if the equation for g; is g; = g; v g then
w; precedes v; and the graph contains the edges {v;, w;} and {v;, w}; if the equation



- 55 -

is g; = g; N\ g; then v; precedes w; and the graph contains the edges {w;, v;} and
{wh Ui}'

The construction of the graph from the circuit can be performed by a logspace
algorithm, It is easy to prove by induction that v; lies in the greedy independent
set if and only if the output of g; is 1, and w; lies in the greedy independent set if
and only if the output of g; is 0. Thus we have a logspace-reduction from the
monotone circuit value problem to the Iexicographically-first-independent-set prob-
lem, showing that the latter problem is P-complete. The P-completeness of this
problem stands in contrast to the result that the problem of constructing some

maximal independent set, not necessarily the one produced by the greedy algo-
rithm, is in EREW*,

As a final example, we show that the following problem is P-complete,

MAX-FLOW

INPUT: A directed graph G = (V,E), a pair of distinct vertices s and ¢ called the
source and sink, respectively, and a function ¢ from E into the nonnegative
integers, assigning to each edge e a capacity c(e).

PROPERTY: The value of the maximum flow from s to ¢ is an odd integer.

We give a reduction from the MCVP to MAX-FLOW. Let C be a monotone
circuit. We may assume without loss of generality that the following properties
hold:

(i) each gate has fan-out at most two (i.e., each variable g; occurs on the right-
hand side of at most two equations);

‘(ii) g, is the output of an OR-gate.

We refer to the edges of the circuit as wires in order to distinguish them from
the edges of the network produced by the reduction. The network has vertex set
{s,t,ug, Uy, --vy U,nt, and its edges and capacities are specified as follows:

(1) For each wire of C connecting the output of g; to the input of g;, there is an
edge of capacity 2"~/ from v; to v;;

(ii)  There is an edge of capacity 2" *! from s to v;;

(i) There is an edge of capacity 1 from v, to ¢;

(iv) If g; is an OR-gate then there is an edge from v; to s;
{v) If g; is an AND-gate, there is an edge from v; to £ and

(vi) The capacities of the edges specified in iv) and v) are such that the sum of
the capacities of the edges directed into any vertex v; is equal to the sum of
the capacities of the edges directed out of that vertex.

It is easy to prove by induction that there is a maximum flow in G having the
following properties:

(i)  If a wire of C carries the signal 0 then the flow in the corresponding edge of
G is 0;

(i) If a wire in C carries the signal 1, then the flow in the corresponding edge of
G is equal to the capacity of that edge;



- 56 -

(iii) With the exception of the edges from g, to s and ¢, the flow in every edge of
G is an even integer;

(iv) The flow in the edge from gg to ¢ is 0 if the output of C is 0, and 1 if the out-
put of C is 1.

It follows that the value of a maximum flow in G is odd if and only if the out-
put of C is 1. This establishes that the reduction is correct.

Thus we see that the max-flow problem is P-complete. In contrast to this is
the result, given in Section 4.9.3 that, when the capacities of the edges are

bounged by a polynomial in the number of vertices, the max-flow problem is in
RNC”,

The seminal results on P-complete problems are given in [Col, JoLa, Lal.
More recent P-completeness results can be found in [AnMa, AvMa, DoLiRe,
DwKaMi, KaRu, Re2].

4.11. Open Problems

The following is a list of problems, solvable in sequential polynomial time,
whose parallel complexity remains unknown despite the efforts of many research-
ers. It is not known whether these problems lie in NC, and they have not been
proven to be P-complete.

(i) EXISTENCE OF A PERFECT MATCHING
INPUT: A graph G
QUESTION: Does G have a perfect matching?
This problem is in RNC, as is the related problem of constructing a perfect
matching when one exists. See Section 4.9.2, In the bipartite case, an algorithm

running in O(n3’* polylog n)-time using a polynomial-bounded number of processes
is known [Vail.

(if) UNDIRECTED DEPTH-FIRST SEARCH
INPUT: A connected graph G and a vertex v

OQUTPUT: A spanning tree T of G, rooted at v and having the following pro-

perty: for each non-tree edge {u,w}, u is either an ancestor or a descendant of w in
T

This problem is in RNC. See Section 4.9.4. A \f;polylog(n)-time algorithm
using poly(n) processors is known [Vail.
(tit) DIRECTED DEPTH-FIRST SEARCH
INPUT: A digraph G and a vertex v from which all vertices of G are reachable

OUTPUT: An oriented tree T, rooted at v and containing a directed path from v
to each vertex of G, such that T is a subgraph of G and has the following directed
depth-first search property: there is a preorder numbering of G such that, if (u,w)
is an edge of G — T then w precedes u in the preorder numbering.

(iv) WEIGHTED MATCHING
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INPUT: A graph G with n vertices and, for each edge e, a positive integer
weight wie)

OUTPUT: A matching of maximum total weight

The status of the problem is also unknown in the case where the weights are
required to be less than or equal to n.

(v) MAXIMAL INDEPENDENT SET IN A HYPERGRAPH
INPUT: A collection € of finite sets

OUTPUT: A subcollection C’ such that no two sets in C' have a non-empty
intersection, and every set in C — C' has a non-empty intersection with some set in

C!

The case where C is a collection of 2-element sets is the maximal independent
set problem for graphs, which is in NC. See Section 4.7.

{v)) TWO-VARIABLE LINEAR PROGRAMMING

INPUT: A linear system of inequalities Ax = b over the rationals, such that
each row of A has at most two nonzero elements.

OUTPUT: A feasible solution, if one exists.

This problem has a polylog-time parallel algorithm with nP?"&®) processors
[LuMeRa].

(vii) INTEGER GCD
INPUT: Integers a and b
OUTPUT: The greatest common divisor of ¢ and b

A sublinear-time algorithm using a polynomial-bounded number of processors
is given in [KaMiRu]. The problem of computing the greatest common divisor of
two polynomials is in NC. See Section 4.8.2.

(viit) MODULAR INTEGER EXPONENTIATION
INPUT: n-bit integers a,b and m
OUTPUT: a® modm

(ix) MODULAR POLYNOMIAL EXPONENTIATION

INPUT: Polynomials a(x) and mi{x) with integer coefficients, and a positive
integer e

QUTPUT: a(x)® mod mix).
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5. Conclusion

The examples we have given in this survey of parallel algorithms are of
interest not only for their theoretical significance, but also as illustrations of typi-
cal methods of exploiting the parallelism inherent in problems. Basic algorithms
for such problems as parallel prefix computation, list ranking, sorting, and graph
searching can serve as fundamental building blocks for further algorithm construc-
tion. As parallel computation grows in importance such algorithms will find their
way into the undergraduate textbooks, and will become part of the general lore of
computer science.

We have seen that, within many different abstract models, the class NC
represents the collection of problems solvable in polylog time with a polynomial-
bounded number of computing elements, and we have identified many basic prob-
lems as lying in NC. The robustness of this class suggests that it is of fundamen-
tal importance, and lends interest to the question of whether NC coincides with the
familiar complexity class P. We have also seen the usefulness of the concept of P-
completeness in identifying the problems in P least likely to lie in NC.

So far, the studies of complexity within the PRAM model have been somewhat
unrealistic because of the assumption that the number of processors is allowed to
grow as a function of the size of the input. It would be useful to complement this
line of research with studies in which the number of processors remains fixed as
the input size grows; this assumption is closer to the typical situation in practice.

Although the PRAM model neglects communication issues it is a very con-
venient vehicle for the logical design of parallel algorithms. For this reason, there
has been intense interest in the simulation of PRAMs on more feasible models of
computation. The chief components of such a simulation are: the choice of a proces-
sor interconnection pattern; the mapping of the address space of the PRAM onto
the set of memory cells of the simulating machine; and the algorithm for routing
read and write requests, and the replies to read requests, through the network of
PTOCessors.

A series of more and more refined PRAM simulations [MeVi, UpWi, Up,
KaUp, AlHaMePr] have culminated in Ranade’s efficient randomized simulation of
an n-processor CRCW PRAM on an n-processor butterfly network [Ran]. The
simulation time per PRAM step is only logarithmic in the number of processors.
This simulation opens the way for a programming environment in which algo-
rithms are designed within the convenient PRAM model and then simulated
efficiently on a network of processors, and thus underscores the value of the PRAM
model, and the applicability of algorithms designed within it.
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