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ABSTRACT

Electrical performance and area improvement are important parts of the overall VLSI
design task. Given designer specified constraints on area, delay, and power, EPOXY will
size a circuit’s transistors and will attempt small circuit changes to help meet the con-
straints. In addition, the system provides a flexible framework within which to evaluate
the effects of different area and electrical models, as well as different optimization algo-
rithms. Since the sum of transistor area is a better measure of dynamic power than cell
area, an area model for standard—cell layout is presented. Optimization of a CMOS
eight—stage inverter chain illustrates this difference; a typical minimum power implemen-
tation is 32.3% larger than the one for minimum area. The combination of a
TILOS—style heuristic and augmented Lagrangian optimization algorithm yields quality
results rapidly. EPOXY’s circuit analysis is from 5 to 56 times faster than Crystal.
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1. Introduction

The task of VLSI IC designers is to produce functional circuits with a specified
electrical performance within defined physical limitations. Typically the design process is
broken into stages: define the functional specification, generate a circuit that implements
the function, and produce a VLSI implementation that meets the performance goals.
Transistor sizing is one technique to help achieve the performance objective. EPOXY
(the design tool described in this paper) sizes transistors and considers different circuit
modifications for meeting the performance goals. It also employs a more accurate area
model and provides a flexible framework for comparing different optimization algorithms.

A design’s performance is based on electrical information derived from a net-list
and layout. From this information, EPOXY constructs symbolic polynomial equations that
model the circuit’s performance. The optimization techniques use these equations to
resize the transistors. If the overall design constraints are still not satisfied, structural
changes to the circuit are considered (e.g., inserting buffer stages). The information
describing the improved circuit is output as a new net-list and modified layout.

EPOXY provides a flexible framework for evaluating the effects of different electri-
cal and area models, optimization algorithms, and circuit modification heuristics. The
system is composed of three parts: performance modeling, optimization, and circuit res-
tructuring as illustrated by Figure 1.

Modeling Optimization Restructuring

net-list —> Electrical
time
parameters —?  power

Jacobian aug. Lagrange init. assign.

equations TILOS buffer insert

layout — Area

model I / net—list

> User layout

A

library

Figure 1. EPOXY system architecture. The net-list, layout, and circuit parameters are con-
verted into symbolic polynomial equations. Additional equations that describe the
sparse Jacobian matrix are then derived. An optimization technique is applied to
these equations to produce feasible numerical values while minimizing a user
specified objective function. Circuit modifications are made by altering the symbol-
ic equations and internal net-list. The optimal numeric values (transistor sizes) and
modified circuit layout are returned.

The first section, modeling, derives symbolic equations that compute a circuit’s
electrical performance and area. EPOXY currently employs an accurate area model for
standard—cell layout and the distributed RC worst—case electrical models (described in
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Section 2).

Symbolic polynomial equations allow circuit performance models to be applied inter-
changeably so that the effects of modeling accuracy and speed of evaluation on the the
overall optimization process can be assessed. That is, model developers can determine
the effect of new models on the resulting solution. Better quality optimization can be
obtained by changing to more accurate (but more computationally expensive) models
within EPOXY’s uniform framework.

Abstracting circuit performance by symbolic equations also reduces computation.
Any update in the input variables can trigger evaluation of only the effected equations
thereby providing model independent incremental simulation. Or these equations can be
directly compiled into an optimized object module for each circuit. When common cir-
cuit blocks are used, the compiled equations can be rapidly evaluated since the object
module can be executed directly. Finally, the expense of computing finite difference
approximations of the Jacobian matrix are avoided since the partial differential equations
are statically derived.

The next stage, optimization, attempts to find an assignment for the input. variables
of the equations to meet the constraints while minimizing the user defined objective func-
tion. The optimization problem is formulated so as to find an assignment for the transis-
tor sizes that satisfies the specified performance requirements. However, the relationship
between size and delay is non—linear even for the simple lumped RC model. The system
can make use of several different non—linear optimization algorithms. The convergence
rate and accuracy for a few non-linear programming algorithms are evaluated in Section
3.

Many optimization techniques rely on information provided by a Jacobian matrix.
An entry in the Jacobian matrix is defined by a partial derivative equation for each con-
straint equation with respect to each input. The equations that define the Jacobian matrix
are symbolically derived from the performance equations. A parameter file specifies
information used in the derivation of the Jacobian matrix such as declared input and out-
put nodes, and transistors of fixed size. The Jacobian matrix is never explicitly stored;
rather it is represented by the few derived equations.

The final stage, restructuring, alters the optimization problem by making limited cir-
cuit changes if constraints cannot be met. These include inserting or removing buffer
stages, rearranging transistors within a pull-down or pull-up tree, and splitting large
transistors so that cell height and width can be traded off. This level handles the discrete
decisions of proposing circuit alternatives while the two other levels determine the best
possible implementation for this alternative. (Restructuring techniques are evaluated in
Section 4.)

Global changes in circuit structure such as boolean resynthesis are best made earlier
in the design process. EPOXY deals with the remaining complexity of detailed circuit
performance improvement. Therefore, the limited circuit structural changes necessary can
be made at a level where the results of these changes can be accurately assessed.

VLSI designs typically incorporate large sections of combinational logic. The equa-
tions that model combinational logic can be linearly ordered and evaluated. Circuits with
feedback require sets (one for each path) of equations to be solved simultaneously.

2.



Rather than deal with the extra complexity of feedback, the present version of EPOXY
restricts its attention to strictly combinational logic. After the equations are generated,
they are linearly ordered so that only a single pass is required to provide a valid numeri-
cal assignment. Adding feedback requires a more complex equation ordering and solution
package.

EPOXY offers a unique approach to performance optimization. Most transistor siz-
ing programs integrate fixed electrical models with a fixed optimization technique (ANDY
[Trim83], TV [Joup83], COP [Marp86], TILOS [Fish85]). Other programs that permit a
selection of models and optimization algorithms are usually computationally expensive
because the two phases are handled by separate programs (DELIGHT [Nye83], APLSTAP
[Bray81]). Separation of modeling and optimization routines results in extra storage and
communication expense to maintain essentially equivalent information. EPOXY’s use of
symbolic performance equations combines the execution speed comparable to integrated
systems with the flexibility of applying different performance models.

Section 1 details some of the models currently available in EPOXY. The following
section (Section 2) describes the optimization algorithms implemented within the tool and
a comparison of their results. Next (Section 3), some circuit alternatives are presented
which can be applied in example circuits to improve their performance. A discussion of
the general issues such a space/time analysis of the EPOXY system follow in Section 4.
The final section summarizes the contributions this work offers.



2. Modeling Circuit Performance

A VLSI designer is interested in total area, height, width, maximum delay (time),
and total power dissipaton. Input parameters include physical parameters such as the
placement of transistors, their width and lengths, and parasitic capacitance. Electrical
models relate these physical parameters to the electrical performance metrics, ie., delay
and power. The area model provides total height and width and an estimation of layout
parasitics.

Abstracting the performance of a circuit by a set of equations gives us the flexibility
to evaluate and select the best area and electrical models. The choice of the appropriate
model must carefully balance the conflicting requirements of accuracy and computational
expense. The effects of modeling accuracy on the resulting optimization are presented
below.

The models can be viewed as a set of templates for constructing the equations that
compute values for the design metrics (see Figure 2). The models are discussed in the
following subsections.

Circuit
,mfm —{ Models [ Equations
Description

Figure 2. A performance model is a template for producing equations that specify design per-
formance metrics, given a circuit description (e.g. a net—list).

2.1. Time

An appropriate design metric for delay must be selected. A VLSI designer is faced
with many node delays of potential interest. The worst—case input arrival times and
required output response times are usually specified. Therefore, the input node times are
fixed (constant) while the output node times are constrained.

Ousterhout has outlined several value—independent models for calculating worst—case
delays given layout parasitics and transistor widths and lengths [Oust85]. These include
the lumped RC, lumped slope RC, and the distributed slope RC models. The lumped and
distributed models differ in how the transistor resistance and capacitance values are com-
bined to produce a worst—case node time. These models determine the effect of each
transistor switching independently from all others. ‘‘Slope’ refers to a more accurate
transistor model used for the single switching transistor while all others use the simple
linearly—interpolated default transistor model. This more accurate transistor model takes
into account the input waveform and fanout effects.

Simple models typically provide less accuracy than more complex models. The sim-
ple lumped RC model is usually within 24 percent of SPICE [Vlad81]. Although simple
models may be sufficient for ordering critical paths, they are not likely to be accurate
enough for optimization which requires absolute comparisons. A few of the electrical
modeling issues are outlined in the table below.



Summary of Electrical Model Issues

Model Eval. Accuracy Features Problems
Time (Error to SPICE)  (Considers) (Neglects)
Lumped RC Extremely  Average 24% Continuously Overestimates delays
fast differentiable Input waveform
and convex Fanout effects
Lumped slope RC Very fast Average 8% Input waveform Fanout effects
Distributed RC Fast - Fanout effects Input waveform
Distributed slope RC  Slower Average 6% Input waveform
Fanout effects

Numerical (SPICE) Very slow -

Equations for the response time of a node are derived using the template:
toutput node = MAX(Linput node + delay ()) where  tinpus node is the time the input
changes. A worst—case distributed RC electrical model for delay () is currently supported,
although other models could be substituted. EPOXY is not restricted to transistor trees as
Figure 3 demonstrates.

vdd

v y wi

r—‘.
_ n3 n4
x <C z 45 )
nS n5
vib A x4 o Ryg
nl L n2 Y~

w L z {' Ry Cn1-|— Coz= R, Cos=

GND [

Figure 3. A static CMOS combinational logic gate and the corresponding RC tree for deriving
one possible discharge path for node n3 caused by a rising signal on node y, the
gate of the transistor (y). Ry, is the on—resistance of the transistor (fer) and C,pq, 1S
the total capacitance on the node.

The equations which determine the worst—case response time of node nS due to a
rising transition on node y are:

trall,n5= trise,y +(Ry +R,)Cp2+ (R, +Ry +R,, )Chps

Ifall,n5= trise, y +(Ry +R)Cn1 + (R, +Ry +R;)Cns

The transistor model provides the on-resistances and parasitic capacitances for a
given width, length and type (n— or p—channel). EPOXY currently supports a first—order
approximation of a transistor’s performance. The constants, Krype, Kgype, and Ksdiype
are automatically determined by a least squares fit of these modeling equations to SPICE
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simulations of small representative circuits. Equal values for the source and drain capaci-
tances (Cgq,fer) are used.

!
Ruype fer =KTiype {"&]

Weet

Cgate fer =Kgiype Wfet lfer Csd fet =Ksdiype Wrer

Finally, node capacitance is determined by adding the parasitic capacitance and the
capacitance of attached transistor gates, sources, and drains. The variables appearing in
the node capacitance equation are determined by the interconnection of transistors within
the circuit. For the example CMOS circuit, the capacitance of node nl is given below.

Crode = Cparasitic + Cgate. fa ¥ Csd., fea T Cload

Cn1= Cparasitic n1+Csd,v +Csd,x + Csd.y

One might ask why accurate models are necessary, as long as the ordering of critical
paths is maintained. The reason is that aggressive designs are typically forced into the
region where a designer must balance minimum delay (maximum speed) with an overall
area limitation. A small error in estimating delay to meet a fixed time constraint can
have a large impact on overall area. Figure 4 clearly shows this for the minimization of
area (and time) and power for an eight-stage CMOS inverter chain (MOSIS SCMOS
A=0.7um). A 1ns time error results in a 3,956 um (8,074 A°) error for area minimiza-
tion and 2,636 um”~ (5,380 ).2) error for power minimization. Therefore, if the model
underestimates the delay by 16% (lIns), a circuit 100.4% larger than necessary will be
reported for a minimum are implementation and 50.1% for a minimum power implemen-
tation. Since the lumped RC model has an average error of 25%, transistor sizing tools
based on this model such as AESOP [Hedl87] would exhibit even larger area and power
€ITOTS.

One way to avoid this type of error is to use simpler models to rapidly determine
the neighborhood of the potential optimum. Then more accurate models refine the param-
eter assignment to provide precise values. The following section demonstrates how the
optimization code takes advantage of well chosen initial assignments for the input param-
eters.

2.2. Power

The maximum power constraint for the entire design is usually determined by the IC
package. Total power has dynamic and static components. Static power usually dom-
inates for nMOS and pseudo-nMOS design styles, while dynamic power dominates for
most other CMOS design styles [West85]. Since dynamic power is a function of the
operating frequency, a maximum operating frequency must be defined along with the
maximum allowable power.

The static component is determined by the minimum resistance between the power
supply signal lines. For NMOS, the smallest resistance occurs when all the transistors are
on. Since the static current is mainly determined by the depletion-mode pull-up of each
gate, the static maximum power can be approximated by;
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Figure 4. The graphs indicate the area (Area) required by an eight—stage inverter chain
(MOSIS SCMOS A=0.71m) to meet a maximum delay constraint (¢ < Time, where ¢
is the response time of the output node and Time is the constraint value on the
x—axis). The graph on the left shows the minimum area implementation while the
one on the right gives the minimum power conﬁguranon The smallest circuit that
meets a 7.09ns time constraint requires an area of 8 0447\. (3,942 umz) The smal-
lest circuit that meets a 6.09ns time constraint requires an area of 16,21 187»2 (7,898
umz) Therefore, a 1ns variation translates into an 8,074A° (3,956 um®) area differ-

ence. Similarly, the smallest power circuit that meet the 7.09ns time constramt Te-
quires an area of 10, 738K (5,262 umz) This translates into a 35, 3807» (2,636 um )
difference for a lns variation. (Minimization of area subject to a maximum time
constraint is equivalent to minimization of time subject to a maximum area con-
straint. The output has an additional 1pf capacitance load.)

2
_ dd
DOWergatic NMOS = 23, | —

gates R depletion , gate

For CMOS, the only significant static power component is due to the reverse bias
leakage between diffusion regions and the substrate. The power due to leakage current as
described by the diode equation is:

Vv
. =V . KT
powersaic cmos =Vad 2, s |e” " -1
transistors _14
The saturation current, i , is a function of the junction area, but typically 10 A.

The maximum dynamic power required by a circuit is defined by the capacitance it
drives. The power to drive the input nodes comes from external circuitry. Cyriven 1S the
total capacitance of all nodes that the circuitry drives excluding the capacitance of the
supply nodes.

2
DOWET dynamic = Cariven Vda frequency max

For the CMOS example, the total power will be z{pproximated by the maximum
dynamic power component. The following equations result:
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Cariven =Cn1+ Cna+ Cp3+ Chat Chns

powercMos = POWEr dynamic

2.3. Area

There are many possible choices for representing the area design metric. A VLSI
designer usually needs to generate layout to fit within a given space in an existing design.
Or the aspect ratio (ratio of height to width) of a circuit must be maintained so that it
can be placed in a realistic package. Therefore, a more appropriate area metric for an
optimization program should include cell height and width.

Cell height and width are not determined simply by transistor and routing dimensions
alone. The overlap between routing area and total transistor area, significantly impacts
the overall area and performance. Therefore, an important element in characterizing lay-
out is how well the area under the routing channel is utilized before the overall dimen-
sions must change. In a structured design environment such as standard cells, this factor
can be identified as free transistor width. Free width is the width that a transistor can
grow without affecting the area of the cell. If a transistor width falls within the
minimum and free width, then the overall cell width will not change. The free transistor
width is determined by local routing and connections. If one transistor has exceeded its
free width, then all transistors that share its routing track also benefit from the additional
width. This simple factor can rapidly relate transistor size changes to cell height and
width changes. Figure 5 illustrates the effects of free transistor width on overall cell
area.

Given a circuit architectural style, total height and width can be used as the area
metric rather than a simple sum of transistor area. The area model takes into account
routing effects on each transistor by determining its free transistor width. Since typical
standard—cell layout styles employ columns of n— and p—channel transistors, the formula-
tion of the area equations is straightforward.



O ] XKa-
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Figure 5. The effect of transistor widths on total cell height and width are illustrated by layout
fragments of a standard—cell inverter. The layout on the left contains transistors of
minimum width (3 A, 2.1um). As long as the transistor width falls below the free
limit, the layout area will not change (center layout fragment). The layout on the
right illustrates the additional cell area required if the transistors increase well
above their free limit.

area =height width

heig ht =max hehannels hehannel = hinterconnect + Zl fet

width =3 Wchannels Wehannel =Wrouting channel +Wn channel *Wp channel
Wiype channel = 0

Wiype channel ZWfet = Wfree fet

Wiype ,channel 2 Wpower buss channel — Wpower buss min

An aspect often neglected by transistor sizing programs is that the power busses may
need to be widened to accommodate the extra current required by the larger transistors.
Wider busses reduce electromigration problems (mainly in NMOS) and transient induced
voltage drops (especially in CMOS). Electromigration is related to the average sustained
current density, J. When synchronous circuits switch, the power supply lines are required
to carry a great deal of current. The transient induced voltage drops are caused by these
large currents passing through the resistance drop of the supply lines. The width of the
supply lines is no longer a constant; instead it is a function of the loads that the transis-
tors must drive. If the circuit structure is known, a more accurate model can be used to
insure the maximum current density is not exceeded. For example, the model for a
standard—cell style layout is formulated as:

Wrouting , channel = Wfixed routing , channel + Wpower busses , channel

-9.



Wpower busses , channel 2 W min busses, channel

~

power statzc
. VaaJ

r

Wpower busses , channel 2 (electromigration)

Ipeak Rspeer lengthypyss
L Vpeak tolerated

Wpower busses , channel 2 (reduce supply transients)

Previous transistor sizing tools (AESOP, MOST [Pinc86], TILOS, TV, XTRAS
[Kao85]) usually do not model layout height and width. Instead, they use total active
transistor area which is actually a better measure of dynamic power than total cell area.
The optimization section will show the difference in area, delay and power resulting from
a change in the objective function. Typically this can be as much as 32.3% for even the
simple eight inverter chain.

Another consequence of choosing a realistic area metric is that there is no longer
any need to artificially constrain the maximum size on every transistor as in AESOP.
Instead, transistors take on the appropriate size necessary to meet the design constraints.

2.4. Noise Margins

Digital circuits require immunity from noise in order to produce logic results. Noise
margins specify the allowable noise voltage on the input which still produce acceptable
logic voltage values on the output. The noise margin for a gate is directly related the
ratio of the pull up resistance to the pull down resistance [West85]. Since changes in
transistor size effect this ratio, we may wish to restrict the ratio to assure an acceptable
noise margin. NMOS circuits are much more sensitive to variations in this ratio than
CMOS circuits.

NM i < Rput up_ <NM

Rpull down

2.5. Other issues

The choice of models for any of the design parameters should depend on the accu-
racy and error margin of the underlying transistor parameters and parasitic values. These
values can be based on real layout or they can be estimated. Clearly, highly accurate
analysis is of little use if the parameters have a large margin of error. Given a layout
style, the parasitic values can also be estimated.

- 10 -



3. Optimization

Area, delay, and power optimization can be formulated as a classical non-linear
optimization problem (NLP):

min fix)
subjectto g(x)<0

The objective function, f{x), defines the quality of a configuration represented by the
independent vector of variables, x. For electrical performance optimization, a design may
be specified by an input parameter assignment such as the widths of transistors. Minimi-
zation of a cost function is equivalent to maximizing a corresponding quality function.
The constraint functions, g(x), define requirements on the independent variables such as
minimum transistor width, overall maximum cell width, and delay constraints.

Performance optimization is inherently non-linear since transistor width (an area
metric) is inversely proportional to delay, even for a simple lumped RC electrical model.
This non-linear relationship will appear in at least one of the constraint equations. In
general, NLP’s are difficult to solve.

All optimization techniques used to solve this type of problem share a common
approach. An initial assignment is either given by the user or generated by the program.
Usually minimum sizes are assigned to all devices. Next the assignment is analyzed by
estimating parasitics and then performing a timing analysis or circuit simulation. This is
often the slowest step in the optimization process. If the assignment is feasible (meets
the constraints) and the objective function has reached a minimum, then the loop ter-
minates. The loop may also terminate if a maximum iteration limit has been reached.
Otherwise, another assignment often based on previous assignments is generated and
passed to the analysis section, completing the loop.

First we will describe the design space for a CMOS example to illustrate the typical
performance tradeoffs available. Then a comparison of some algorithms and heuristics
will be presented.

3.1. Performance Envelope

Formulation of the circuit design problem as a general optimization problem allows
us to apply a variety of objective functions. All designs of interest to a VLSI designer
lie within a performance envelope. Figure 6 describes the performance envelope for an
eight—stage inverter chain.

The graph on the left shows the area required to implement an eight inverter chain
to meet a given time constraint. The X on the upper left part of the graph marks the
performance of the fastest (minimum time) implementation regardless of power consump-
tion and area. The lower right X indicates the performance of the implementation with
minimum device sizes. This configuration needs the smallest area and power. These two
points are connected by curves which give the minimum area and minimum power imple-
mentations for a given time constraint. For the area versus time graph, there exists no
circuit smaller than the minimum area implementation that meets the time constraint.
Circuits that draw more than the minimum power implementation would not be of
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Figure 6. Graphs of the area required (left graph) and power required (right graph) to imple-
ment the minimum power (min p) and minimum area (min a) configurations of an
eight—stage CMOS inverter chain subject to a maximum time constraint (¢ < Time,
where ¢ is the response time of the output node and Time is the constraint value on
the x—axis). The output has an additional 1 pf capacitance load.

interest. Therefore, the only circuits of interest lie between the two curves. The power
versus time graph describes a similar situation. Circuits between the two curves represent
a tradeoff between the requirements of area, power and time.

These graphs clearly show the effects of the more accurate area model. As the cir-
cuit delay decreases, the required area does not change above the minimum size imple-
mentation (the flat portion) until at least one transistor exceeds its free width. Thereafter,
additional area is required for circuit with less delay.

minimization  constraint area power
A2 (um®) W

min power time < 10ns | 6188.35  3032.39  21.22

min area time < 10ns | 4677.26 2291.86  23.48

The table (above) contains data extracted from the graphs of Figure 6. For a 10ns
implementation, the minimum power implementation is 32.3% larger than the minimum
area implementation. Therefore if one uses total transistor area to approximate total cell
area, the resulting solution may be as much as 32.3% larger than necessary.

3.2. Comparison of Optimization Techniques

EPOXY’s flexible architecture allows a comparison of the different optimization
techniques, independent of performance models. We will compare an augmented Lagran-
gian algorithm similar the one used in COP [Marp86] and a heuristic technique used in
TILOS.

-12 -



3.2.1. Augmented Lagrangian Method

Augmented Lagrangian methods convert a constrained minimization problem into an
unconstrained sub—problem [Gill81]. The implemented augmented Lagrangian algorithm
handles non-linear inequality constraints by smoothing discontinuous derivates at the solu-
tion (if any constraints are active) by the function, Ly (x, A, p).

minf (x) s.t. g;(x)<0 = max minL4(x,A,p)
A x
[ 2
A g,-(x)+£g‘—2(xl—, ifA; +pgi(x)>0; active
La(x,Ap)=fx)+34 )
‘ —l’;-, ifA; +pgix)<0; inactive
2p

Note that the function and its gradient are continuous at any point where a constraint
changes from active to inactive. Associated with each constraint equation, g; (x), is an
extended Lagrange multiplier, A;. The parameter, p, is a penalty factor.

The inner loop, the minimization of L, (x,A,p) with respect to x, is performed by
an iterative Golden—rule line search that follows the steepest descent direction, d ;. The
input vector, x is updated after each minimization iteration, k.

Bg-(x)[ :
—l }"i+pgi(x)}, ifA; +pgi(x)>0;
djz_af_(.ﬂ+z 0x;

! 0, ifA; +pgi(x)<0;

k+1 k
xj =Xxj -odj;

If the search direction, d;, is too small (nearly a zero vector) or the traversal in the
search direction, @, is too small, an outer maximization iteration is performed by updating
A (iteration count v). If the rate at which the constraints become satisfied is too slow,
the penalty factor, p is slightly increased. Similarly, if the average value of A is growing
too quickly, p is slightly decreased.

A +pgix), if A +pgi(x)>0;
0, ifA +pgi(x)<0;

The augmented Lagrangian method converges reasonably fast (linearly) to the
optimum solution (if one exists) [Marp86]. Its primary advantage is that progress toward
the optimum solution can be guaranteed regardless of the initial solution.

3.2.2. TILOS Heuristic

Another approach to solving the minimization problem is to apply heuristics that
encode previous knowledge. Convergence to an optimal value cannot be assured; how-
ever, they provide rapid improvement toward a potentially better assignment.. Therefore,
they can be used to rapidly locate a feasible solution. Also, heuristics can assure integral
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widths and lengths required by lambda—based design styles. Since heuristics are generally
problem specific, the types of objective functions permitted would also be restricted.

TILOS is a heuristic transistor sizing program that iteratively increases the transistor
width along the worst critical path. This heuristic selects the transistor that reduces the
delay most while incurring the least total transistor area increase. The process terminates
when all delay constraints are satisfied or when no transistor exists that will decrease the
delay. TILOS is essentially restricted to power (sum of transistor area) minimization sub-
ject to delay constraints.

We extend the TILOS heuristic for use in general optimization problems by general-
izing the notion of critical paths in terms of the underlying performance equations. A set
of dependent limiting or failing constraints (g;(x)20.0) and the equations which interre-
late them, will be considered a critical path within the generalized TILOS-style heuristic.
Only the input variables to these critical equations can improve the failing constraints.
Therefore, while there are failing constraints, the input variable that improves the worst
failing constraint the most will be increased. After all constraints are satisfied, the input
variable that best improves the objective function while maintaining feasibility (satisfied
constraints), will then be increased.

TILOS relies on the general convex nature of the power/delay relationship. How-
ever, the point at which other paths become critical causes discontinuities that degrade the
results TILOS can produce. One way to overcome this problem is to factor near—critical
paths into the sensitivity calculations. For the equation abstraction, this simply means
combining Jacobian matrix rows for constraints on the same output variable that are
within some € (e.g. g;(x) + € 2 0).

Since TILOS only increases transistor sizes by a fixed amount, it usually overshoots
the minimum possible implementation. If the algorithm were generalized so that decreas-
ing transistors sizes were considered to improve the overall power/delay savings, better
solutions should result. However, endless cycling between increasing and decreasing
transistors may result. Also, the fixed small increment size usually results in many itera-
tions.

3.2.3. Comparison of Results

To compare these optimization algorithms, we should first establish a set of optimal
values for various CMOS minimization problems (for a fixed set of CMOS technology
parameters):
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Circuit Performance
Metric A H w P T Itr
Units ' 7&2 A A uW ns
Improvement (%0A) (%H) (%W) (%P) (%T)
inv.8 =w_. 4288 134 32.0 19.0 29.82 1
C=1pf min t 11709 134 87.4 32.4 6.46 12414
(173) (0)] (173) (70) (-78)
min a 8331 134 62.2 31.6 7.00 43103
t<7ns (94) (V)] (94) (66) 77
min p 11296 134 84.3 26.9 7.00 32572
t<7ns (163) (0)) (163) 41) -77)
rand.20 w=w 7,140 140 51 31.8 26.6 1
C=1.0pf min t 10,276 140 73.7 41.3 642 11031
44 0) (44) (30) (-76)
min a 9,180 140 65.6 40.7 7.11 13862
t<7.11ns (29) (V)] (29) (28) (-73)
min p 9,709 140 69.4 40.2 7.11 17911
t<7.11ns (36) ()] (36) (26) (-73)

The table lists three optimization problems for each static CMOS circuit: an uncon-
strained minimization of of delay (min t), and time constrained minimization of area (min
a s.t. t< ...) and power (min p s.t. t< ..). The first row, (w = wmin)’ gives the perfor-
mance of the circuit with all devices of minimum size. Performance is defined as the
total cell area (A), height (H), width (W), power (P), maximum delay (T) and number of
iterations (Itr) that the augmented Lagrangian algorithm took to produce the result. The
numbers inside parenthesis gives the percentage increase or decrease over the minimum
sized implementation for each of the design parameters. The extra load capacitance that
is added to the outputs is listed as (C=..pf). A maximum frequency of 500 kHz was
used to calculate the maximum dynamic power (P) for each of these examples.

The table shows the significant performance improvement transistor sizing offers. It
also illustrates the minimum required sacrifice in the other design metrics to achieve the
desired performance. For example, 7,421?»2 additional area is required to achieve the
fastest implementation, 6.46ns. This translates into a 173 percent increase in area and a
70 percent increase in power for a 78 percent decrease in delay.

These problems present a mix of optimization criteria whose solution is non—trivial.
Even thought the eight—stage inverter chain (inv.8) is a small circuit, the values of the
resulting performance metrics for each optimization require a greater degree of accuracy
than for larger circuits. In other words, a small change in the input for a smaller circuit
will have a larger impact on the design metrics than for a larger ones.

A graphical comparison of the convergence rate for the augmented Lagrangian algo-
rithm and the heuristic approach used in TILOS is given in Figure 7. The convergence
of an area minimization subject to a 10ns time constraint (min a t<10ns) for the
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eight—stage inverter chain is shown in Figure 7.

20 20]
TILOS Maximum

] Failing ™ |
Area Constraint1
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. 0.5 1

: (max(g(x))z) o l aug. Lagrangian
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Figure 7. These graphs illustrate the convergence rate for an area minimization subject to a
10ns time constraint of a CMOS eight—stage inverter chain with a 1pf load. The
graph on the left gives the worst-case output response time for the inverter chain at
every 50 iterations of each optimization routine. On the right, the amount by which
the worst constraint fails (max g(x)) is also plotted against the iteration number for
each optimization algorithm. In fact, the constraints are satisfied rapidly.

Figure 7 shows ‘the convergence rate for the eight-stage inverter chain. Even
thought the augmented Lagrangian method satisfies the constraints rapidly, the minimiza-
tion of the objective function (time) is slower. The heuristic used by TILOS reduces the
delay constraint faster; however, it produces a larger implementation.

Figure 8 shows the convergence rate for the power minimization of the eight-stage
inverter chain. Again, the generalized TILOS heuristic produces a feasible solution
rapidly, but with a much larger power requirement. When used as a starting point for
the augmented Lagrangian algorithm, the objective function is reduced first at the expense
of the maximum failing constraint. When the results of generalized TILOS heuristic are
used as a starting point for the augmented Lagrangian method, results comparable to the
original augmented Lagrangian method are eventually obtained. For this example, the
augmented Lagrangian achieved similar quality results using fewer iterations than the
combination of both algorithms. Using the generalized TILOS heuristic for establishing a
initial solution rapidly may not be a good strategy for problems that are very aggressive
since the heuristic tends to over-shoot the optimum solution.

The computation to achieve quality results can be reduced further by using simple
models to locate the probable region of the global minimum. Then accurate models
could refine the search further. Simple models are rapidly evaluated and lead to a fast
solution since the design space is convex. Convexity implies that a local minimum is a
global minimum. Accurate models take longer to evaluate and represent a more complex
design space that may exhibit local minima. This approach also avoids getting trapped in
local minima early in the optimization.
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Figure 8. These graphs show the convergence rate for a power minimization subject to a 7ns
time constraint for the CMOS eight—stage inverter chain with a 1pf load. The graph
on the left shows the maximum power for the inverter chain using the augmented
Lagrangian alone (thin line) and when the generalized TILOS heuristic proceeds the
augmented Lagrangian (thicker line). The cross indicates the point where the aug-
mented Lagrangian uses the results of the generalized TILOS heuristic for further
optimization. The graph on the right gives the value of the worst failing constraint.
The convergence criterion for this optimization (0.5%) is not as tight as those used
to generate the table of optimized results.

4. Circuit Alternatives and Performance Improvement Heuristics

Optimization techniques involve systematically generating and analyzing different
solutions. Given a functional description and desired performance, there are many ways
to generate alternatives. The standard approach is to change the widths and lengths of
transistors. An alternative is to modify the circuit structure. For example, the number of
stages can be changed to drive output capacitances faster. Splitting stages (replicating a
logic gate) can reduce the capacitance on a critical path. Other circuit structures such as
superbuffers (in nMOS), differential sensing, cascode connections, and clocked drivers can
be employed [Glas84].

Even though there may be many implementations that meet the given functional
description, many may not meet the performance specification. The optimization section
has shown algorithms for handling the transistor sizing aspect of design improvement. A
NLP could be formulated to included (integral) circuit structural changes, however, integer
NLPs are difficult to solve. Therefore, EPOXY separates the transistor sizing aspects
(optimization) from the circuit restructing section.

Heuristics provide a mechanism for encoding previous design knowledge in circuit
improvement techniques. These usually alter the circuit structure so that some failing
design constraint can be met. Therefore, if a circuit cannot meet the design constraints
with transistor sizing, then the circuit structure will be altered.

Many heuristics are motivated by a critical path analysis. Although a critical path
usually refers to a limiting delay path from input to output nodes through transistors, the
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concept can be generalized to all design metrics. The equation abstract allows EPOXY
to uniformly provide critical path information. A critical path is identified as a list of
limiting (or unsatisfied) constraints and their variables.

Another advantage of the equation abstraction is that limited circuit modifications
result in limited changes in the equations. Since EPOXY constructs performance equa-
tions in memory, circuit modifications are quick and equation evaluation times are still
small. Therefore, EPOXY modifies the underlying equations instead of the actual circuit.

4.1. Buffer Insertion Heuristics

Circuit delay can be reduced by inserting buffers (inverter pairs). Also, cell area
and power may be reduced by the resulting balance of load capacitance among the
number of logic levels. Two strategies for inserting buffers are outlined below.

4.1.1. Load Reduction Heuristic

Circuit speed can be increased by reducing the capacitance load on nodes along the
critical delay paths. Figure 9 illustrates two techniques that reduce the effect of this load
by isolating non—critical circuitry. '

If a node along a critical delay path has a large capacitance load due to non—critical
gate inputs, these inputs can be isolated from the critical node by a buffer. The buffer
will contribute additional delay to the isolated inputs possibly creating new additional crit-
ical paths. Therefore, the only nodes that can be clearly isolated are those that are not
within a buffer delay of the critical path.

Although the technique illustrated in part ¢ of Figure 9 does not insert a buffer, it
does fall within the load reduction heuristic. Replicating the nand gate will increase the
load on nodes a and b but will decrease the load on node k considerably.

Which of these two techniques to use depends on the available slack in delay for the
non—critical inputs and the area, height and width limitations that a particular problem
imposes. These decision parameters can be determined for each supported technology.
The performance metrics for these CMOS circuit fragments are given by the following
table (all input nodes switch at Ons and freqmax = 500kHz). Since any additional circui-
try may increase the area requirement, circuitry is inserted at the most loaded critical
nodes first.
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Figure 9. Circuitry along part of a critical delay path is shown in parr a. (The critical path is
highlighted. The parasitic wiring capacitance in pF is also listed.) One way to iso-
late the non—critical inputs on node k is insert a buffer as shown in part b. Another
is to replicate the logic gate for driving non—critical inputs as part ¢ illustrates.

circuit Are2a Height Width Time (ti) Power
pm pm pm ns uw

a) original 4269 50.4 84.7 232 15.3

b) buffer insertion 5503.7 50.4 109.2 18.9 16.8

¢) logic replication | 5606.6 56.0 100.1 20.7 18.5

4.1.2. Increased Drive Heuristic

Another buffer insertion strategy is to increase the current drive capability (sourcing
and sinking) of a gate with large capacitance loads. Several authors have shown that an
optimal number of stages and stage size ratio are required to drive a large capacitance
with minimum delay [Mead80] [Neme84] [Hede87].

This strategy works as follows; transistors and nodes along the critical delay path are
examined. If space permits (height and width restrictions are not exceeded) buffers are
inserted at a high capacitance node which is driven by an input on a low capacitance
node. The delay for each stage will be better balanced thereby decreasing the overall
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path delay.

4.2. Reordering of Transistors

Reordering transistors along a pull-down or pull-up path can dramatically affect the
delay of the output node. Transistors inputs (gate nodes) that switch relatively early
should be placed near the supply rails so that the sources and drains of the remaining
transistors can be properly set. Alternatively, transistor inputs that switch later should be
placed near the output nodes so that the delay of driving successive intermediate node
capacitance is reduced.

Rearrangement of transistors must preserve the logical function of the gate (ie.
series and parallel groups). However, dynamic gates impose a restriction on the max-
imum parasitic capacitance on the non-—output nodes. This is to avoid potential charge
sharing problems. However, this is not an issue for static CMOS logic.
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5. Space / Time Tradeoff

Circuit optimization programs spend most of the time in the analysis portion, since
many devices must be reevaluated for each major circuit change. Crystal [Oust85] deter-
mines worst—case node delays by constructing the RC paths dynamically. After a node
delay is determined, the data structures corresponding to the path are released. Therefore,
an optimization tool built directly into Crystal would constantly recreate and destroy the
same data structures.

Instead, EPOXY builds a static set of performance equations for the circuit. The
models for EPOXY can be built dynamically and .interpreted or compiled to form an exe-
cutable binary. The decision to statically derive the equations instead of a dynamic
derivation results in an increase in storage for a decrease in evaluation time. The first
table (below) gives statistics for each static CMOS circuit. The second table shows the
execution time savings and extra storage requirements for determining the worst—case
delay times for all circuit nodes. The time required to perform 1,000 circuit evaluations
is given.

Circuit Statistics

Circuit nodes fets vars eqs cnstr.  Jin %enzle
inv.8 11 16 594 586 43 30 10.6
inv.10 13 20 782 776 51 36 9.2

rand.20 16 20 559 563 65 36 8.5
adder.1 22 34 1360 1692 108 57 11.5
adder.8 131 224 7891 10321 663 342 2.2

The number of nodes and transistors (fets) for each of the circuits is given. The
number of equations (eqs) and variables (vars) EPOXY constructs to evaluate circuit per-
formance using the worst—case distributed RC electrical model and the standard cell area
model. The table also includes the size of the Jacobian matrix as the number of con-
straints (cnstr) and number of Jacobian input variables (Jin). The last column is a meas-
ure of the sparsity of the Jacobian matrix. The sparsity of the Jacobian matrix is meas-
ured as the maximum percentage of entries (%nzle) that can be non—zero (i.e., have
defining equations).

A Comparison of Crystal and EPOXY

Circuit | Crystal EPOXY
compile interpret
build cc run build run
bytes sec bytes sec sec sec bytes sec sec
inv.8 48000 75.4 32768 1.1 8.2 3.0 46150 0.9 38.3

inv.10 56000 97.5 32768 1.4 9.8 3.7 53750 1.1 47.4
rand.20 32000 87.4 40960 1.8 10.8 39 54901 1.4 48.2
adder.1 32000 360.6 40960 3.4 214 7.7 87826 2.7 86.9
adder.8 | 104000 7327.6 | 114688 11.6 151.7 459 | 441029 7.6 508.6
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The table (above) gives the execution times for simulating each static CMOS circuit
1,000 times, using Crystal and EPOXY. All times (sec) are for a Sun-3/140% with a
68881 co—processor and 8Mbytes of memory runing Sun UNIXY 4.2 Release 3.2. Crystal
only lists the maximum heap storage for the circuit. Therefore, the number of bytes
reported is rounded to the nearest block size. The compiled version produced by EPOXY
gives the size of the executable binary (bytes), time to produce the C file (build), time to
compile (cc) and run (run) the program. The interpreted version gives the allocated
storage (bytes) for the circuit and its running time (run).

Since this table shows that EPOXY always runs faster than Crystal (average of 56
times faster for compiled and 5 times faster for interpreted), we feel that the decision to
statically derive the equations is indeed justified. It also shows that compiling the perfor-
mance equations is always desirable even when the construction (build) and compile (cc)
time are included. Compile time can be substantially reduced if object modules are avail-
able for frequently used circuits. However, compilation of the equations sacrifices the
possibility of modifying the circuit structure since the equations are fixed.

The storage requirements for even the interpreted version of EPOXY suggest that an
8Mbyte Sun—3 can handle a circuit of at least 1000 transistors without paging.

+ UNIX is a trademark of Bell Laboratories.
$ Sun-3 is a trademark of Sun Microsystems, Inc.
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6. Conclusions

EPOXY provides a unique flexible framework for evaluating the effects of different
electrical and area models, optimization algorithms and circuit modification heuristics.
Design performance is determined by generating and evaluating symbolic polynomial
equations. When these equations are interpreted, EPOXY is (on average) 5 times faster
than Crystal. However, when the equations are compiled, EPOXY achieves an average
speedup factor of 56 over Crystal. For the present implementation, a circuit with 1000
transistors should adequately fit within 8 Mbytes.

Accurate models are crucial in performance optimization since a small error in meet-
ing a time constraint (16%) can typically result in much larger area (100% more area)
and power dissipation (50%) than necessary.

The sum of transistor areas is not an appropriate measure of total cell area. Rather
it is a better approximation of dynamic power. The optimization of an eight-stage
inverter chain shows that the minimum power implementation is 32.3% larger than the
one for minimum area for a 10ns time constraint. A more accurate area model takes into
account local routing and connections.

The flexibility of the optimization routines is demonstrated by applying several dif-
ferent objective functions to derive the performance envelope for a circuit. The envelope
defines the maximum region of circuit performance available through transistor sizing.
Even though the convergence of the augmented Lagrangian algorithm is slower than
heuristic based techniques, the resulting circuits have better performance characteristics.

A list of circuit alternatives is presented for meeting difficult design constraints.
These techniques are applied rapidly by altering the performance equations for the circuit.

We intend to add the slope models to EPOXY to provide a richer set of accurate
electrical models. Crystal implements the more accurate transistor resistance model as an
interpolated table of values. The required partial derivatives of this function can be
efficiently implemented by another table which represents a staric finite difference analysis
of these data values.

David Marple provided us with an example formulation of the augmented Lagrangian
algorithm. The inner loop minimization loop of the augmented Lagrangian algorithm uses
the Golden rule line search. However, a line search based on the Armijo step size can
reduce the number of iterations and resulting computation by a factor of 3, and we intend
to incorporate this change.
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