A Software Architecture for Network Communication 1

David P. Anderson

Computer Science Division
EECS Department
University of California, Berkeley

November 30, 1987

ABSTRACT

A distributed system is based on a layered set of abstractions of network com-
munication. At a low level, current distributed systems use primitives such as
datagrams, request/reply message-passing, reliable virtual circuits, or a combina-
tion of these. Future distributed systems will use high-performance large-scale
communication networks, and will support a range of communication-intensive
applications. What are the appropriate communication abstractions for such sys-
tems?

In answer to this question, we have developed a communication abstraction called
Real-Time Message Streams (RMS). An RMS is a simplex (unidirectional)
stream with several performance and security parameters. These parameters
express 1) the needs of RMS clients (user programs and communication proto-
cols), and 2) the capabilities of the RMS provider (network and higher layers).
This information can be used in two ways. First, RMS providers can eliminate
unnecessary or redundant work, and can optimally schedule resources such as
network bandwidth and CPU. Second, the RMS client can use the parameters to
select optimal methods for achieving whatever reliability and flow control are
needed.

RMS is the communication primitive of the DASH distributed system currently
being developed at UC Berkeley. This paper describes 1) the RMS abstraction
itself, 2) the role of RMS in the DASH communication architecture, and 3) tech-
niques and algorithms for providing RMS at various system levels.

1Sponsored by MICRO, IBM, Olivetti, MICOM-Interlan, Defense Advanced Research Projects Agency (DoD) Arpa Order No.
4871. Monitored by Naval Electronic Systems Command under Contract No. N00039-84-C-0089.

1. INTRODUCTION

Progress in low-level software mechanisms for distributed systems (virtual memory, pro-
cess control, kernel structure, and communication software architecture) has not kept
pace with that at higher levels (distributed data, distributed computation, transactions,
and so forth). The focus of the DASH project at UC Berkeley [1] is on the development
of low-level mechanisms for next-generation distributed computer systems.

The DASH distributed system is intended to run on multiple types of computer architec-
tures and communication networks. To accommodate multiple network types, a large
part of the DASH network communication system is network independent. The lower-
level network dependent part has a network-independent interface (see Figure 1).

In existing distributed systems, the corresponding interface has typically provided a sim-
ple abstraction such as unreliable, insecure datagrams. Higher software layers then use
this facility to provide higher-level abstractions such as reliable request/reply message-
passing [5], reliable secure typed message streams [12], or reliable byte streams [9]. This
approach simplifies the task of porting the system to different network types. However,
it suffers from several basic problems, stemming from the overly simple nature of the
basic abstraction (such as datagrams):

e Communication clients cannot express their performance, reliability and security
needs to the communication provider. Some applications, for example, may not
need data integrity, and therefore do not need data checksumming. Typically, how-
ever, data integrity is a mandatory part of the primitive. Conversely, a network
interface might do link-level data checksumming in hardware; there is no means for
software layers to learn of this and avoid doing checksumming themselves.

e It does not provide a well-defined means for the communication provider to dictate
limits on client behavior, such as the amount of client data outstanding within the

DASH kernel

network-independent part

A ﬂ\ N

network-dependent part

network network
interface interface

Figure 1: The Interface to the Network-Dependent Part of the DASH Kernel

network. This makes congestion control in large networks difficult.

e It makes no provision for real-time performance guarantees. Such guarantees are
needed for interactive high-bandwidth traffic such as digitized audio [3] and video.
This shortcoming leads to restricted, hardware-expensive solutions.

Finally, in future large-scale general-purpose systems, request/reply communication
primitives will not be sufficient, because they cannot efficiently provide stream-style
communication (as is needed for digitized audio and video) on high-delay long-distance
networks.

Work in the area of real-time distributed systems for robot control has led to the develop-
ment of communication primitives that are parameterized by real-time constraints or reli-
ability needs [13,14]. This work is in the same spirit as that described here, but
addresses a restricted domain: request/reply communication, small networks, and no
security concerns.

In an attempt to solve these problems, the DASH network communication system has
been based on an abstraction called real-time message streams (RMS). An RMS is a
simplex stream with several performance, reliability, and security parameters. The RMS
abstraction appears in the interface to the network-dependent part, and at higher levels of
the DASH system as well. RMS also is the basis for a request/reply communication
facility, and the RMS features serve to optimize request/reply performance.

The use of RMS in DASH is based on anticipated needs and on projections of future net-
work technology; RMS are not supported on current networks, and they cannot be built
on top of simpler abstractions such as datagrams or virtual ciruits. However, we feel that
our approach is necessary for exploiting the advances in communication technology that
will occur in the near- and long-term future.

This paper is organized as follows: Section 2 defines the RMS abstraction and lists some
possible uses. Section 3 describes the DASH communication architecture, which is
based on RMS. Section 4 discusses implementation techniques for RMS in the areas of
multiplexing, flow control, and process scheduling. Section 5 summarizes the work.

2. REAL-TIME MESSAGE STREAMS

A real-time message stream (RMS) is a simplex communication channel between a
sender and a receiver. The sender is a process or set of processes that can invoke a send
operation on the RMS. The receiver is typically a passive object such as a port; a mes-
sage is considered delivered when it is enqueued on the port or given to a process waiting
at the port. Messages are untyped byte arrays. They may in addition have source and
target labels identifying the sender and receiver. The sender and receiver are RMS
clients. The hardware and software system supporting the creation and use of RMS is the
RMS provider. A client at one level may be a provider at a higher level.

An RMS has the following basic properties: 1) message boundaries are preserved; 2)
messages are delivered in sequence; 3) client are notified of an RMS failure. In addition,
an RMS has other parameters as described in the following sections.

2.1. Reliability and Security Parameters
An RMS has the following Boolean parameters:

Reliability: if true, then all messages that are sent on the RMS are delivered, unless the
RMS fails.

Authentication: if true, then impersonation (delivery of a message with incorrect source
label) is impossible.

Privacy: if true, then eavesdropping (access to a message by a host or process other than
that specified by the target label) is impossible.

2.2. Performance Parameters
An RMS has the following performance parameters:

Capacity: an upper bound on the amount of data outstanding within the RMS at any point
(i.e., sent but not yet delivered). This limit is enforced by the RMS clients, not by the
provider (see section 3.4).

Maximum message size: an upper bound (enforced by the sender) on the size of indivi-
dual messages. This limit cannot be greater than the RMS capacity.

Delay bound parameters: message delay is the elapsed real time between the start of the
send operation and the moment of delivery. An RMS has an upper bound (guaranteed by
the RMS provider) on message delay. The components of the delay may include network
transmission delay, queueing and processing delays at the sender and at intermediate
switches, and processing at the receiver. The bound is expressed as

A + B*(message size),

where A and B are parameters of the RMS. This bound may be deterministic, statistical,
or best-effort (see section 2.3).

Statistical workload parameters: if the delay bound is statistical, an RMS has average
load and burstiness parameters (supplied by the client) and a delay probability parameter
(guaranteed by the provider).

Average bit error rate: this parameter reflect the combination of 1) the error rate of the
underlying transmission medium, 2) the effectiveness of the checksumming algorithm,
and 3) the expected rate of packet loss from buffer overrun. It is guaranteed by the RMS
provider.

Initally it might seem that an RMS should have a ‘‘guaranteed bandwidth’’ parameter.
However, this is implied by the other parameters. If M is the maximum message size, D
is the maximum delay of a message of size M, and C is the RMS capacity, then a client
can send a message of size M every DM/C seconds without violating the capacity rule,
since at any point at most C/M messages (of total size C) will have been sent within the
previous D seconds, and all earlier messages are guaranteed to have been delivered
already. This will provide a bandwidth of about C/D bytes per second. The actual max-
imum bandwidth may either be lower (because of errors and protocol overhead) or higher
(if actual delays are smaller than the upper bound).

2.3. Delay Bound Types
The delay bound parameters of an RMS have the following types:

Deterministic: the delay bounds are ‘‘hard’’; only an RMS failure will cause them to be
violated. System resources (buffer space, media bandwidth) are allocated to individual

4
RMS’s. The RMS provider rejects an RMS request if its worst-case demands cannot be
met with free resources.

Statistical: the delay bounds hold probabilistically, and may require a statistical descrip-
tion (average load and burstiness) of the offered workload. An RMS creation request is
rejected if either its expected message delay or its expected bit error rate (which is
affected by the possibility of buffer overruns) is higher than acceptable. Failure to
observe the delay bounds is not necessarily reported to the clients.

Best-Effort: RMS creation requests are never rejected. Delay bound parameters are used
only to schedule resources based on message delivery deadlines (see Section 4.1).

2.4. RMS Creation and Ownership

RMS creation operations (offered by RMS providers) specify the direction of the RMS;
the creator of an RMS may act as either the sender or the receiver. If there is accounting,
the creator owns the RMS in the sense of being responsible for paying for its use.

RMS parameters are established at the time of creation. A set of actual RMS parameters
is said to be compatible with a set of request parameters if

(1) the actual reliability and security properties include those requested;

(2) the actual capacity and maximum message size parameters are no less than those
requested, and

(3) the actual delay bound and error rate parameters are no greater than those requested.

An RMS creation request includes desired and acceptable parameter sets. The actual
parameters of the resulting RMS (if any) are returned to the client. These parameters
must be compatible with the request’s acceptable parameters. The RMS creation request
is rejected if this is not possible. The RMS provider tries to match the desired parame-
ters as closely as possible.

2.5. RMS Examples

To see the importance of RMS parameters, consider the case of a client (say a transport
protocol serving a user program) that requires data privacy. The protocol requests an
RMS from the subtransport layer (see Section 3.2). The desired and acceptable parame-
ter sets both request privacy. Depending on the network, the following situations are
possible:

(1) Privacy is provided by data encryption in the subtransport layer.

(2) The network has link-level encryption hardware; The subtransport layer learns this
(it is a property of network-level RMS’s) and does no data encryption;

(3) The network is considered secure, so no data encryption is done.

In any case, the optimal mechanism is used for privacy. If a client does not require
privacy, no mechanism is used (which is again optimal). Without the RMS security
parameters, this optimization would not be possible. A similar situation exists for data
integrity: the optimal checksumming mechanism can be used based on RMS parameters.

The following examples illustrate the uses of the RMS capacity and performance param-
eters:

e Initial request and reply messages in a request/reply protocol should use RMS’s
with low delay bound. The precise delay bound and the delay bound type are deter-
mined by application needs. The RMS capacity may be large, unless it is known
that request or reply messages will be small and infrequent.

e A stream protocol for bulk data transfer should use a high capacity, high delay RMS
for data. RMS’s for acknowledgements are discussed below.

e Reliability acknowledgements should use low capacity, high delay RMS’s.

e Flow control acknowledgements should use a low delay, low capacity RMS. In
DASH, the subtransport layer provides a ‘‘fast acknowledgement’ service to
reduce response time and RMS establishment overhead.

e Real-time communication may require deterministic or statistical delay bounds.

e Digitized voice should use a high capacity, low delay RMS, perhaps with a statisti-
cal delay bound. A high bit error rate may be acceptable.

e Communication involving a human user interface traffic (such as for network win-
dow systems [7]) can tolerate a moderate amount of delay because of human per-
ceptual limitations. The RMS from user to application carries mouse and keyboard
events, and can have low capacity. The RMS in the opposite direction carries
graphic information, and generally requires higher capacity.

In all these cases the specification of client needs increases the likelihood that the pro-
vider can accommodate them. For example, if packet queueing in an internetwork gate-
way is done using RMS-specified deadlines, then a low-delay packet can be sent before
high-delay packets that would otherwise cause it to be delivered late. A network may be
capable of providing low delay or high capacity, but not both. The RMS parameters
allow the client to choose.

3. THE DASH COMMUNICATION ARCHITECTURE

In this section we briefly describe the DASH communication architecture. This is done
primarily to motivate the material in Section 4. Details of addressing, naming, encryp-
tion schemes, and specific operations are omitted. The structure of the DASH network
communication architecture is shown in Figure 2.

3.1. The Network Layer

DASH allows multiple network types. Each network type to which a DASH host is con-
nected is represented in its kernel by a software module with a standard RMS-based
interface. These network objects provide host-to-host network RMS’s. They encapsulate
network-specific protocols for RMS creation, deletion, and transmission, and for non-
RMS network maintenance tasks such as routing.

Networks are abstract entities, and need not be physically or logically disjoint. For
example, the DARPA Internet and a local Ethernet (both with the addition of an RMS
protocol) could be separate DASH networks, although they might share host interfaces
and network media.

A network object has the following parameters:

e Whether all hosts on the network are trusted. If so, optimizations by the subtran-
sport layer (see below) are possible.

. stream
stream protocols
protocols
Q RKOM RKOM
T‘ 1577 RKOMchannel ~ ——f- -T‘u
subtransport layer subtransport layer
l < e - ST control channel L S e '
4 ‘
network network network network
object object object object

Figure 2: The DASH Communication Architecture.

e Whether the network has the ‘‘physical broadcast property’’: that if an eavesdropper
receives an entire message, then so does its intended recipient. If so, optimizations
by the subtransport layer are possible.

e For each combination of security and reliability parameters, the limits of the
network’s performance parameters for that combination (this may be zero if the
combination cannot be directly supported).

3.2. The Subtransport Layer

The subtransport layer (ST) provides a variety of host-to-host functions. All upper-level
network communication in DASH passes through the ST. The ST provides ST RMS’s to
its clients. ST RMS’s are multiplexed onto network RMS’s. The basic functions of the
ST are to provide security [2], to do deadline-based message queueing, to multiplex ST
RMS’s onto network RMS’s, and to arrange for ‘‘fast acknowledgement’” of messages
sent on ST RMS’s.

For each active peer host, the ST maintains a control channel consisting of two low capa-
city, low delay network RMS’s, one per direction. The ST uses a simple request/reply
protocol on this channel to do authentication and ST RMS establishment. The first ST
RMS creation request to a given peer triggers the creation of the ST control channel to
that peer.

In addition, the ST maintains a set of data network RMS’s to the peer. These are used to
carry ST RMS traffic. Their ownership, direction and multiplicity are dynamically deter-
mined by ST client demand; see section 4.2.

3.3. Transport Protocols

All request/reply communication uses the DASH Remote Kernel Operation Mechanism
(RKOM). RKOM provides kernel-level request/reply communication, and is used as a
basis for user-level request/reply communication. The RKOM module maintains an
RKOM channel to each active peer. Such a channel consists of four ST RMS’s, one
low-delay and one high-delay RMS in each direction. The low-delay RMS’s are used for
initial request and reply messages, and the high-delay RMS’s are used for retransmis-
sions and acknowledgements.

In addition to communication using RKOM, user- and kernel-level clients can establish
their own communication sessions. These sessions typically consist of 1) a set of ST
RMS’s and 2) a set of stream protocols, each of which is a kernel-level process.

3.4. RMS Levels in DASH

In addition to the network- and ST-level RMS’s described above, DASH provides the
following RMS types (see Figure 3):

Subuser RMS: this spans communication protocol processes. Message sending and
delivery are defined as the moments when message arrive from, or are passed to, user

kernel A kernel B
user-level RMS Q
user processes - --- ---
sub-user RMS
protocol processes
ST RMS

- e o o wm] am - = e - - = ee = = —

subtransport layer

network layer

network RMS

Figure 3: RMS Levels in DASH

processes. The delay bounds include protocol processing time, and their enforcement
includes deadline-based process scheduling (see Section 4.1).

User-level RMS: this spans user processes. The moments of message sending and
delivery are defined by the user process, and end-process CPU time is included in the
RMS delay. Scheduling of these user processes must be deadline-based.

4. IMPLEMENTATION TECHNIQUES FOR RMS

This section describes a set of techniques, algorithms, and issues that arise in providing
low-level RMS and in building high-level RMS out of low-level RMS. These techniques
are presented in the context of the DASH architecture described in the previous section.

4.1. Process and Interface Scheduling

When an upper-level RMS is created, its total delay is divided among its various stages
(send protocol processing, ST RMS delay, network RMS delay, and receive protocol pro-
cessing). When a message is sent on an RMS, there is a deadline by which it must be
handled (i.e., processed by a protocol, sent on a lower-level RMS, or transmitted on a
network medium). This deadline is the current real time plus the delay allocated to the
next stage of the RMS.

For subuser and user-level RMS, these deadlines are used by the short-term scheduler to
determine the execution order of protocol or user processes. These scheduling deadlines
are “‘hard’’ or ‘‘soft’’ depending on the delay bound type of the RMS. For network
RMS, the deadlines are used to determine the order in which packets are queued for
transmission on a network interface.

4.2. RMS Caching and Multiplexing

The ST caches network RMS’s; i.e., it may retain a network RMS even while it is not
being used by any ST RMS. This caching is motivated by two assumptions: 1) during a
given time period a host will tend to communicate repeatedy with a small set of remote
hosts; 2) it is slow and costly to create network RMS’s.

The ST also does upwards multiplexing of multiple ST RMS’s onto a single network
RMS (see Figure 4). The motivations for this multiplexing (as opposed to simply creat-
ing a network RMS for each ST RMS) are that 1) it can eliminate the need to create a
new network RMS, and 2) messages from multiple ST RMS’s can potentially be pig-
gybacked, i.e., combined and sent as a single network message, with a possible reduction
in overhead. Multiplexing of ST RMS’s increases the potential frequency of piggyback-
ing.

Among the rules that govern RMS multiplexing are:

e A deterministic ST RMS can only be multiplexed onto a deterministic network
RMS, and a statistical ST can be multiplexed only onto a deterministic or statistical
network RMS.

e The delay bound parameters of the ST RMS’s must be at least those of the network
RMS; the difference is a potential queueing delay during which the ST can attempt
to piggyback additional messages with the outgoing message.

ST RMS

i/

multiplexing, subtransport layer demultiplexing

queueing

network RMS

Figure 4: RMS Multiplexing

e The capacity of the network RMS must be at least the sum of the capacities of the
ST RMS’s.

e The maximum message size of the ST RMS’s may exceed that of the network RMS.
This requires fragmentation and reassembly by the ST (see below).

Tt would also be possible to downwards-multiplex an ST RMS across several network
RMS’s. If there were multiple networks paths between the hosts, this technique could be
used to increase capacity beyond that available in a single network RMS. However, this
has not been included in the DASH design because the expected gain may not outweigh
the additional ST protocol complexity.

4.3. Increased Maximum Message Size

It is an issue whether the ST should offer a much larger maximum message size to its
clients than that provided by the network layer. This is done, for example, in VMTP [6].
At the network level there will always be a message size limit (e.g., the 1.5KB Ethernet
packet size limit) because of hardware restrictions, RMS capacity, nonzero bit error rate,
or the need for fairness.

To offer its clients much larger message lengths, the ST would have to use a transport
protocol providing both reliability and RMS capacity enforcement. In general, this
places an undesirable burden on the ST, and may duplicate work being done at higher
levels. On the other hand, providing a somewhat larger maximum message than that pro-
vided by the network layer may reduce protocol process context switching and other
overhead.

For these reasons, the ST may provide a larger maximum message size than the network
layer. A maximum message size is chosen with the object of maximizing potential

10

throughput based on the combination of network RMS error rate and context switch time.
The ST does fragmentation and reassembly to support this larger message size. It does
not retransmit fragments; if a message is incomplete when a fragment of the next mes-
sage arrives, the partial message is discarded.

4.3.1. Message Queueing and Ordering

When the ST sends a fragment for transmission on a network RMS, a transmission dead-
line parameter is passed to the network RMS send routine. If the network interface has a
nonempty transmission queue, transmission deadlines determines the order in which mes-
sages are sent. In any case, the network layer must guarantee that if message A is sent
after message B, and has a transmission deadline greater than or equal to that of B, then B
is delivered first (note: this is a refinement, particular to network RMS, of the sequential
delivery property of RMS)

If the ST does no piggybacking, and immediately sends each client message on the asso-
ciated network RMS using transmission deadlines that are monotonically increasing for a
particular ST RMS, then ST RMS messages will be delivered in the correct order. The
current real time could be used as the transmission deadline. However, it would be
preferable to use

(current real time) + (ST RMS delay bound) - (network RMS delay bound)
since this would better reflect the true deadlines.

It is also possible (and perhaps desirable) for the ST to internally queue messages in the
hope of piggybacking. In doing this, care must be taken to preserve the ordering of ST
RMS messages while still honoring deadlines. The following set of policies can be used
to achieve this:

e For each outgoing network RMS, the ST maintains a piggybacking queue of client
messages awaiting transmission. This queue never exceeds the network RMS max-
imum message size. ST client messages that require fragmentation are not pig-
gybacked.

e The maximum transmission deadline of an ST client message is its arrival time plus
the ST RMS delay bound minus the network RMS delay bound.

e The minimum transmission deadline of a client message is the actual transmission
deadline of the previous message on the same ST RMS. This ensures that messages
on the ST RMS are delivered in order.

e The minimum (maximum) transmission deadline of a piggybacking queue is the
minimum (maximum) of the corresponding deadlines of its component messages.

e When a piggybacking queue is finally sent on the network RMS (either because its
maximum transmission deadline is reached or because it overflows) the transmis-
sion deadline passed to the network layer is the queue’s maximum transmission
deadline.

e If a client submits a message whose maximum transmission deadline precedes the
minimum transmission deadline of the corresponding queue, then it is sent on the
network RMS immediately. Otherwise it is appended to the piggybacking queue if
possible.

11

This algorithm maximizes the possibility of piggybacking, while ensuring correct order-
ing and optimal interface scheduling.

4.4. Flow Control and RMS Capacity Enforcement

Where there is a limited buffer space in a communication system, flow control can be
used to avoid performance loss from buffer overrun and dropped packets. Flow control
mechanisms are often necessary for even minimal performance levels. On the other
hand, flow control mechanisms may not be needed in certain situations (for example, if
the data rate of the sender is known to be low) and in that case may impose an unneces-
sary overhead.

It is useful to factor communication system buffers into three groups:
(1) Buffers between the sending process and the send protocol.

(2) Buffers in the network switches and gateways, and in the receiver’s network inter-
face and low-level driver.

(3) Buffers between the receive protocol and the receiver.

The RMS approach to flow control treats these buffer groups separately. The capacity
parameter of an RMS prevents overrunning buffers in group (2). Since there is no RMS
capacity adjustment, it is assumbed that the sizes of these buffer do not change dynami-
cally. If they do, the RMS provider must delete the RMS, and the clients must establish a
new RMS. In contrast, the flow control of TCP does not protect gateway buffers; ICMP
source quench messages [8, 10] provide an ad hoc and often ineffective solution to this
flow control problem.

RMS clients are responsible for enforcing the RMS capacity. If they fail to do so, the
provider’s guarantees are voided; messages may be delivered late or discarded. The
RMS provider is not responsible for detecting potential capacity violations and blocking
the sender. This simplifies the task of RMS providers, and it means that in cases where
no flow control is necessary (perhaps because the sender is known to be sufficiently slow)
there is no wasted overhead for capacity enforcement.

If a capacity-enforcement mechanism is needed, the following approaches are possible:

e Rate-based: using timers, the sender ensures that during any time period of duration
A + CB, the number of bytes sent does not exceed C. This approach is pessimistic
in the sense that it assumes the maximum delay for all messages.

e Acknowledgement-based: the sender receives flow control acknowledgements for
messages received. This may achieve higher maximum throughput at the cost of
the reverse message traffic.

If the receiver can, on the average, process incoming data faster than it arrives, then it is
possible that no flow control is needed (a large receive buffer may be needed; the size is
determined by several factors, including the variability of the receiver’s speed). If not,
then a receiver flow control mechanism is needed; the protocol must stop sending data
when the limit of the receive buffer is reached. The need for this flow control mechan-
ism is independent of the need for RMS capacity enforcement; if both are needed they
could be integrated into a single protocol.

There are no capacity-enforcement mechanisms in the DASH ST or network layers.
Where needed, transport protocols can enforce RMS capacity using either rate-based or

12

acknowledgement-based mechanisms. In addition, they may provide a receiver flow
control mechanism if needed.

If the sender can produce data faster than it can be sent on the ST RMS (because of capa-
city enforcement, receiver flow control, or both) then there must be a sender flow control
mechanism. This is done in the DASH kernel using a flow controlled local IPC port for
message-passing between the sender and the send protocol. A sender blocks when a port
queue size limit is reached. The sending transport protocol stops reading messages from
the port while it is prevented from sending because of RMS capacity enforcement or
receiver flow control.

If mechanisms for sender flow control, RMS capacity enforcement, and receiver flow
control are all present, then there is end-to-end flow control ([11]). However, in cases
when this is not necessary, performance optimizations (simpler protocols and fewer mes-
sages) may be possible. Figure 5 shows the different options for flow control.

5. CONCLUSION

We have proposed the real-ime message stream (RMS) abstraction as a network-
independent communication primitive in future distributed systems. RMS allows the
client and the provider to negotiate parameters. Client can specify their performance,
reliability and security requirements to the provider, and the provider can dictate limita-
tions on the behavior of the client. Compared to simpler abstractions, this has the follow-
ing benefits:
e The solution of the congestion control problem is simplified by the availability of
(and control over) network load information. This may be critical in the design of
large-scale high-performance networks.

sender receiver

send buffer receive buffer

send protocol receive protocol

. Y H "~
0 L ' o

v * N network buffers v e

RMS capacity enforcement

Figure 5: Flow Control Options.

13

Real-time deadlines can be used to schedule both network bandwidth and CPU
time. Compared to systems that use only priorities (or no information at all), this
optimizes usage and makes real-time communication possible. A system cannot
provide real-time communication unless it is supported at the lowest level.

RMS capacity enforcement is separated from sender and receiver flow control.
Based on the values of RMS parameters it can be determined what flow control
mechanisms are needed, and unnecessary mechanisms can be avoided.

Flow control protocols can be simpler (because of the fixed window size determined
by RMS capacity) and more efficient (because of the fast acknowledgement service
provided by the ST) than those in traditional protocol hierarchies.

Clients may have better control over network costs. RMS parameters correspond
roughly to the network resources (buffer space and bandwidth) consumed. A net-
work might charge a fixed RMS setup cost, plus a charge determined by the RMS
parameters, the number of bytes sent, and the RMS connect time.

In addition, we have described the DASH network communication architecture. It illus-
trates the following points:

It may be desirable to introduce a subtransport layer that does piggybacking, RMS
caching, and other functions.

A request/reply facility can be built on RMS, and can exploit its features.

An operating system can provide higher-level RMS’s that provide real-time proper-
ties similar to those of lower-level RMS’s, but which take into account protocol and
perhaps user processing time at each end.

Many questions related to RMS remain to be investigated, including:

How can RMS’s be supported on existing and future networks? In particular, how
can it be determined whether a request for a new set of RMS’s should be granted or
not? Solutions may vary in complexity according to the underlying network and the
types of RMS supported. An Ethernet RMS protocol supporting only the best effort
type is being implemented in the DASH prototype.

How can RMS’s be supported in internetworks? A design for a best-effort RMS
protocol for the DARPA Internet is given in [4].

How should the workload of an RMS with a statistical delay bound be parameter-
ized, and how can these parameters be used to determine rules for multiplexing such
RMS’s?

How can deterministic, statistical and best-effort RMS’s be intermixed on the same
network?

What are the optimal RMS transport protocols for providing various combinations
of reliability, RMS capacity enforcement, and receiver flow control?

These and other issues are currently being investigated in the DASH research project,
under the direction of Professor Domenico Ferrari and myself.

6. Acknowledgement

I would like to thank the members of the DASH project, especially Robert Wahbe, for
their involvement in this work. G. Scott Graham and Domenico Ferrari gave valuable

critical readings of this paper.

14

10.

11.

12.

13.

14.

15

REFERENCES

D. P. Anderson, D. Ferrari, P. V. Rangan and S. Tzou, ‘“The DASH Project: Issues
in the Design of Very Large Distributed Systems’’, Report No. UCB/Computer
Science Dpt. 87/338, CS Division (EECS Dept.), UC Berkeley, January 1987.

D. P. Anderson, D. Ferrari, P. V. Rangan and B. Sartirana, ‘A Protocol for Secure
Communication in Large Distributed Systems’’, Report No. UCB/Computer
Science Dpt. 87/342, CS Division (EECS Dept.) UC Berkeley, February 1987.

M. Bastian, ‘“Voice-Data Integration: An Architecture Perspective’’, JEEE
Commun. Mag. 24, 7 (July 1986), 8-12.

J. R. Betten, ‘‘IRMSP: A Protocol for Real-Time Communication in the DARPA
Internet’’, Master’s Project Report, CS Division, US Berkeley, Decemeber 1987.
D. R. Cheriton and W. Zwaenepoel, ‘“The Distributed V Kernel and its
Performance for Diskless Workstations’’, Proceedings of the 9th Symp. on
Operating System Prin., Operating Systems Review 17, 5 (October 1983), 128-140.
D. R. Cheriton, ‘““VMTP: A Transport Protocol for the Next Generation of
Communication Systems’’, 1986 SIGCOMM Symposium, , 406-415.

J. Gettys, ‘‘Problems Implementing Window Systems in UNIX"’, USENIX Winter
Conference Proceedings, January 1986, 89-97.

J. Nagle, ‘‘Congestion Control in IP/TCP Internetworks’’, Internet RFC 896,
January 1984.

J. Postel, ““Transmission Control Protocol’’, DARPA Internet RFC 793, September
1981.

J. Postel, “‘Internet Control Message Protocol’’, DARPA Internet RFC 792,
September 1981.

J. H. Saltzer, D. P. Reed and D. D. Clark, ‘‘End-To-End Arguments in System
Design’’, ACM Trans. Comput. Syst. 2, 4 (Nov. 1984), 277-288.

R. D. Sansom, D. P. Julin and R. F. Rashid, ‘‘Extending a Capability Based
System into a Network Environment”’, 1986 SIGCOMM Symposium, , 265-274.

K. Schwan, T. Bihari, B. W. Weide and G. Taulbee, ‘‘High-Performance
Operating System Primitives for Robotics and Real-Time Control Systems’’, ACM
Transactions on Computer Systems 5, 3 (August 1987), 189-231.

K. G. Shin and M. E. Epstein, ‘‘Communication Primitives for a Distributed

Multi-Robot System’’, Proceedings of the IEEE International Conference on
Robotics and Automation, March 1986, 910-917.

