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ABSTRACT
Object-oriented models are advocated as good ways to describe semantic-rich application
domains such as computer-aided design. We describe the role and limitations of conven-
tional type-instance inheritance for modeling CAD data, and propose a new semantics
based on instance-to-instance inheritance. New algorithms for object clustering, buffer
management, and on-line back-up are described that exploit the new inheritance semantics
for more efficient run-time performance.






1. Introduction

Object-oriented databases have become a popular research topic as the interest in
applying database technology has moved from conventional commercial environments into
new application areas. Object concepts from the programming language community are
being adopted in database systems to provide persistent object platforms for artificial
intelligence and programming language environments [ZDON84, ATWO85, MAIES6,
ROWES6, ROWES7].

Our work has concentrated on applying database techniques in the computer-aided
design environment [KATZ87]. CAD data is not well matched to formatted records, nor
do existing database models capture the rich interrelationships among CAD objects, such
as configurations, versions, and correspondences across representations of the design.
Object-oriented databases provide a more natural way to structure these semantic-rich
applications.

For us, the key aspect of an object-oriented system is the mapping of an
application’s data manipulation logic into a set of abstract data types, with associated
operations and attributes. In addition, these systems often support the concept of type
hierarchies, i.e., a taxonomic classification is applied to instances, which belong to types,
which in turn belong to supertypes, etc. Operation and attribute definitions can be pro-
pagated along the lattice formed by instances, types, and supertypes through tnheritance
mechapisms. Thus, operations and attributes defined within a type are callable and
usable by all its subtypes and instances, providing a short-hand specification of definitions
as well as information hiding.

Inheritance is a powerful mechanism, but as it is commonly implemented between
types and instances, it is not well-matched to computer-aided design applications. These
require information to be propagated among objects in more complex ways, such as
between an ancestor and a descendent version. Thus, we must reanalyze inheritance
semantics and its impact on the implementation of the components of a database system.
In this paper, we first describe a base level Version Data Model used by our prototype
object-oriented system for CAD data. In Section 3, we discuss conventional inheritance
semantics and an alternative that is better suited for CAD applications. This instance-
to-instance inheritance can be incorporated into the model of Section 2. New implemen-
tation algorithms for smart clustering and buffering, and tuned for the new inheritance
model and the complex space of interrelationships, are described in Section 4. Section 5
discusses related work, and our conclusions and status are given in Section 6.

2. Version Data Model

What sets CAD data apart from conventional commercial data is an overriding need
to model the complex hierarchical structure of designs (i.e., configurations) across time
(i.e., versions). In our model, objects are internally denoted by the triple namefi/.type,
where name is the object name, ¢ is the version number, and type is its design representa-
tion type, e.g., Adder{l].layout. Note that representation type and object-oriented type
are orthogonal concepts (see Figure 2.1). Adder[l].layout is a layout object, but also it
might be a functional unit object which is a kind of datapath object, etc. Besides
configurations and versions, it is necessary to identify equivalent (or corresponding) por-
tions of the design across different hierarchically structured representations.
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Figure 2.1 -- Type Hierarchy with Representation and User-defined Types

In CAD data, it is useful to make representation types, such as layout, netlist, etc., expli-
cit. There is no real difference between these representation types and other user-defined
types, such as the taxonomy of datapath objects being partitioned into functional unit

objects and storage objects.
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Figure 2.2 -- Version Data Model

Design data is organized as a collection of typed and versioned design objects, interrelat-
ed by configuration, version, and equivalence relationships. Only representational objects
are shown. For example, ALU[4].layout is descended from ALU[3].layout and is the
ancestor of ALU[5].layout. It is also a component of DATAPATH(2].layout and is com-
posed of CARRY-PROPAGATE[5|.layout. Additionally, ALU[4].layout is equivalent to
other objects, such as ALU[3].transistor.

A key requirement for CAD applications is that the database system be able to sup-
port the definition, storage, and retrieval of complex collections of objects that can be
treated as a single unit. These have many names, including composite objects
[KATZ86a], complex objects [LORI83|, aggregation hierarchies [ATWOS85], and molecu-
lar objects [BATO84, BATOS85a]. To support this, our model explicitly supports
composite/component relationships among objects.

Objects also evolve over time, and another way of organizing objects is along version
derivation histories. Coupling the concept of versions with composite objects leads to
con figurations. A configuration is a composite unit whose components are bound to
specific versions. For example, a composite datapath object may consist of an ALU, regis-
ter file, and shifter object components. A version of the datapath object becomes a
configuration consisting of specific versions of the ALU, register file, and shifter objects.

The third and final kind of relationship among objects denotes equivalences across
representations. For example, ALU[l].layout is equivalent to ALU[2].logic means that
both objects are different representations of the same real world entity, the ALU. The
model and its three distinguished structural relationships (configurations, version histories,
and equivalences) are summarized in Figure 2.2. The Version Data Model uses these
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distinguished structural relationships to logically organize objects within the design space
and physically place objects on disk (see Section 4).

An operational model is needed in addition to the logical model. Objects are
checked-out from shared archives into designers’ private workspaces. The modified object
can then be either returned as a new version to the shared archive or checked-sn to a
shared group workspace where the integration is made with other designers’ work
[KATZ87, KATZ86a,b]. The description of how a new instance is to inherit its definitions
occurs at check-out time, when the instance is first created as a new version. We will
have more to say about this in the next section.

3. Inheritance: What It Means

The purpose of inheritance is to propagate data definitions among database objects,
making it possible to make a definition once and have it apply to many instances. The
object-oriented type system usually constrains what can be inherited as well as which
interobject connections can be used for inheritance paths.

As a basis with which to explain these concepts, we will use Smalltalk-80 as our
canonical model of an object-oriented type system. Objects are uniquely identified
instances belonging to types. Type definitions are represented by a combination of attri-
butes (called class/instance variables) and operations (called methods). Attributes describe
static properties, while operations describe dynamic behavior. It is also possible to associ-
ate structural relationships (as we do) and constraints (as [BUCH86] does) with types to
be inherited by their instances, if the model supports them. Types are further arranged in
a lattice, inheriting attribute and operation definitions in turn from their supertypes. A
type can override or refine a definition inherited from its supertype.

Although it is not supported in Smalltalk-80, most object type systems allow
instances to be members of more than one type. For example, in Figure 2.1, we have
ALU[1].layout as an instance of both the layout and functional unit types. This intro-
duces the well known problem of multiple inheritance, i.e., if an instance inherits the
same information from more than one place, how can this be performed unambiguously.
Although there are many proposals as to how to handle multiple inheritance, they all
reduce to having the object definer disambiguate the inheritance for the system.

The model of inheritance as implemented in Smalltalk-80 has several desirable
features. New object types can be introduced into the lattice without the type definer
needing to know all aspects of its supertypes, since inherited definitions can always be
overriden within the new type. Thus, information hiding and independence are sup-
ported. Further, new types (or instances) can be created with many of their properties
and behavior inherited from their supertype (or type). Thus, inheritance provides defaults
for new type definitions and creation of instances.

Some aspects of CAD data complicate the Smalltalk-80 style of inheritance, in partic-
ular, the introduction of versions and composite objects. The issue is how to embed these
structures into type-instance models while extending the inheritance mechanisms to cover
them. For example, all versions of an object could be modeled as instances of the same
generic type [BATO85b]. Thus, certain properties and behaviors, common to all versions,
can be defined in the type definition and inherited by each version instance.

However, there are some properties and behaviors (as well as structural relationships
and constraints) that an offspring version might wish to inherit from its parent version
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Figure 3.1 -- Inheriting Instance Specific Correspondences

Correspondence relationships constraint two objects to be equivalent. A new version
typically inherits these relationships from its immediate ancestor. This is a good exam-
ple of inheritance along version relationships which are not easily modeled with conven-
tional type-instance inheritance.

directly rather than from its type. Consider the following example. If ALU{2].layout is
equivalent to ALU[3].netlist, then a new descendant of ALU[2].layout should inherit this
relationship as a default (see Figure 3.1). While it is possible to constrain all ALU layout
versions to be equivalent to some ALU netlist instance, it is not possible to specify specific
correspondences on an instance-by-instance basis without introducing a proliferation of
types (see Figure 3.2). ,

We can envision cases where it is desirable to inherit along relationships other than
version histories. For example, [BUCH886] describes how constraints on a composite object
can be inherited by its components. In fact, it should be possible to inherit information
along any kind of relationship known to the system, be it type-instance, ancestor-
descendent, composite-component, or even among equivalents. Standard type-instance
inheritance cannot model these kinds of information propagations by itself. While it is
possible to implement it using user-defined operations that can compute what to inherit at
run-time, it is not desirable to do so, since the inheritance semantics is not obvious from
the data model and cannot be exploited by the database system. Therefore, we propose to
support direct instance-to-instance inheritance.

Of course, instance-to-instance inheritance leads to even greater complexity in terms
of disambiguating multiple inheritance. Consider the version model introduced in the last
section. If a new instance is to inherit from a containing composite object or an
equivalent object, it is necessary to establish the relationships with these as part of a
check-out context. The format of the context-dependent check-out command is as follows:
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Figure 3.2 -- Handling Instance-to-Instance Inheritance with Subtypes

A subtype is created for each group of instances that shares a common attribute or con-
straint. Obviously this leads to an undesirable proliferation of subtypes.

check-out <object-name>
equivalent-to {<list of equivalent instances>}
contained-within { <list of composite instances>}
{list of the following:
<attribute-name > like
[GENERIC, ANCESTOR, EQUIVALENT, COMPOSITE]};

(NOTE: “GENERIC" is our terminology for the type of all versions of an object, e.g., the
type ALU.layout is the GENERIC of all ALU[i].layout instances). For example, assuming
that ALU layouts have three attributes, input-port, output-port, and behavior, the follow-
ing check-out command:

check-out ALU[3].layout
equivalent-to ALU[2].netlist,
contained-within Datapath(2].layout,
input-port like ANCESTOR,
output-port like COMPOSITE,
behavior like EQUIVALENT;

would create the version ALU[4].layout of Figure 1, whose input-port attribute would be
inherited from ALU[3].layout, whose output-port would come from Datapath{2].layout.
and whose behavior attribute would be from ALU[2].netlist. While it looks laborious to
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specify what should be inherited, note that the default is to have exactly the same inheri-
tance behavior as the instance's immediate ancestor. The detailed specifications are only
necessary if the default inheritance is to be overridden. The order of the instances within
the equivalent-to and contained-within lists is used to disambiguate multiple inheritances:
the first object found within the list that has the described attribute will furnish its value
in the new instance. The LIKE clause can mention a specific instance name if this simple
form of disambiguation is not sufficient.

The key implementation challenge for all inheritance mechanisms is how to pro-
pagate a changed attribute to all instances that inherit it. Inheritance can be imple-
mented by copy or by reference, i.e., the inherited value can be cached with the instance
or the inheriting instance can refer to the type (or source instance) that defines the value.
The former approach has the advantage of fast access, but slow propagation of changes
(i.e., the change must be propagated to all cached instances). The latter has better
update performance since changes are made in only one place, but exhibits slow access.
Note that in either case, it will be necessary to navigate across inheritance links, be it
from instance to attribute definer in an attribute access or from the attribute definer to
instance in a change of definition.

Why have systems preferred to implement type-instance rather than instance-to-
instance inheritance? The answer is due primarily to ease of implementation. In type-
instance inheritance, if inheritance is implemented solely by reference, then these refer-
ences are restricted to the type hierarchy, whose definitions can reside in a system catalog.
Thus, type-instance inheritance can exploit the known location of type information to
efficiently resolve the inheritance. Instance-to-instance inheritance presents more complex
implementation challenges, which will be described in the next section.

4. Instance-to-Instance Inheritance: Efficient Implementation

4.1. Introduction

In all actual systems known to us, conventional inheritance of attributes is performed
at instance creation time while operation look up is done at run-time. However, instance-
to-instance inheritance allows attributes to be selectively inherited at run-time. To
achieve good performance, this run-time flexibility requires more sophisticated approaches
for clustering and buffering. By choosing an appropriate clustering strategy, the system
can minimize the number of I/Os required to traverse inheritance links, either to satisfy
attribute accesses or to propagate changes. In this section, we discuss issues related to
complex object clustering and smart buffering. We also address how to perform on-line
backup of the richly interconnected design space.

4.2. Smart Clustering

Clustering is a well-known technique for improving referential locality. The objec-
tive is to place frequently co-referenced objects near each other in physical memory. The
partitioning of objects into clusters on disk can be done either statically, with the system
quiesced, or dynamically, as the system is running. We focus on the latter approach in
this section.
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4.2.1. Algorithm Overview

Many computer-aided design applications frequently use configuration relationships,
e.g. a design rule checker must walk the configuration from leaves to root as it performs
its checks. However, most inheritance references are along version history relationships,
since a descendant version typically obtains information from its ancestor. This observa-
tion illustrates the difficulty in capturing access patterns for use by the clustering algo-
rithm. In our algorithm, the inputs include users’s hints (e.g., access by configuration vs.
access by version), the structural relationships among objects, interobject access frequen-
cies, and the characteristics of inherited attributes.

The system could decide how to cluster instances based on instance specific statistics.
Unfortunately, statistics collection on an instance specific basis is simply too expensive.
Rather, interobject access frequencies are described at the type level for each kind of
structural relationship, e.g., 20% of accesses from ALU layouts are along version relation-
ships, 75% along configuration relationships, and 5% along equivalences. The user
specifies these frequencies at data type creation time. Should the frequencies change at a
later time, existing instances will not be reclustered, but the clustering strategy will be
affected for new instances.

Every instance inherits its access pattern frequencies at the time of its creation. If
the object could be an instance of more than one type, the user must disambiguate from
which type the frequencies are to be inherited from. Note that these inherited attributes
are always implemented by reference, i.e., no space is allocated at the instance level for
them. For the access frequencies described in the previous paragraph, the initial place-
ment of a new instance is likely to be on the same page with its composite object because
the frequency of accessing configuration relationships is higher than others. Similarly, the
target object will be placed on the same page with its ancestor object if the frequency of
accessing version history relationship is the highest.

The algorithm can be sketched as follows (the full algorithm is presented in Section
4.2.2). For each newly created instance, the clustering algorithm chooses an initial place-
ment based on which of the instance's relationships is most frequently traversed. Since
there is a tight interplay between access frequencies and choice of how to implement
inherited attributes, the algorithm also chooses between implementation by copy and by
reference for inherited attributes using an additional set of cost formulas. The augmented
access frequencies (i.e., relationship traversal frequencies plus inheritance traversal fre-
quencies) may change the initial placement choice.

A further complexity is introduced if there is insufficient space for the instance in its
preferred location. The clustering strategy actually chooses an ordered collection of candi-
date pages on which to place the new instance. If the preferred candidate is full, the
storage manager must either split this page to make room for the instance, or it must
choose the next best candidate page which has space. The page is split if the expected
access cost resulting from the split is an improvement over putting the new object in the
next best candidate page. Otherwise, the next candidate page is examined, and the deci-
sion process recurses if there is insufficient room on it.

Estimating the cost resulting from the page-split can be formulated as a graph parti-
tioning problem. Suppose object A inherits attribute X from object B (or there is a struc-
tural relationship between A and B). There will be an arc from A to B where the arc
value is the cost of the run-time lookup for attribute X and the node capacity wiil be the
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object size (similarly for the cost of traversing the relationship). However, graph parti-
tioning is known to be NP-complete and is not suitable for run-time clustering. Instead,
we use a greedy algorithm that partitions the nodes of the inheritance-dependency graph
into two subsets that can fit into a page individually. At the same time, the greedy algo-
rithm tries to minimize the total cost of broken arcs. Because it does not try to find the
optimal partition and omnly scans through the set of arcs once, the total running time is
guaranteed to be linear.

4.2.2. Algorithm Details

The clustering algorithm is presented in pseudo code in Figure 4.1. The procedure
cluster_object(} is called when the system wants to do clustering for a target object. The
target object could be a newly created object or an updated object. That is, if the change
is a structural or inheritance update to the target object, the system also calls
cluster_object() to do reclustering based on the latest statistics. Note that while cluster-
ing decisions are based on type-level statistics, choice of inheritance implementation is
based on instance-level update statistics (see Step 1 below).

For every step in the cluster_object(), a detailed description follows:

step 1: Before choosing a candidate page to place the target object, the algorithm needs
to know the clustering policy as defined by users. The choices are either to split
the candidate page if it is out of space or to choose the next best page instead.

By examining all the inherited attributes of the target object, the algorithm deter-
mines the implementation strategy for every inherited attribute. For each attri-
bute, a one-byte counter is used to monitor the update frequency. When the
counter is overflowed by the number of updates, it is permanently set to be 255
(i.e., 28). Using this one-byte counter, the system can make inheritance implemen-
tation decision on an instance basis. If an inherited attribute has been updated
frequently, by reference implementation is used. The ‘“‘update threshold’ can be
set by the type definer. Otherwise, the algorithm will use by copy to implement
this inherited attribute. These implementation decisions are made by calling
get_by_copy_set() and get_by_ref_set(), and the results are returned in copy_set
and ref_set.

Furthermore, the system needs to determine the placement strategy within the
physical space. All pages which contain source instances for these inherited attri-
butes are returned in inh_page_set by calling get_all_inh_page(). Similarly,
pages which contain the target object’s interrelated objects such as its ancestor
instance and component instances, are returned in struct_page_set by calling
get_all_struct_page(). The union of inh_page_set and struct_page_set creates a
set of candidate pages for placement in later steps.

step 2: If a by-reference attribute is not placed in a chosen candidate page p, the system
needs to dereference it at run-time. So an effort is made to place the instance on
the same pages as the sources of its inherited attributes, taking account of their
access frequencies. Therefore, the cost of storing a target object in page p,
modeled by Ref_LookUp( p ), is incremented by weight(p), which is a function of
the access frequency of structural relationship for page p.

step 3: For inherited attributes chosen to be implemented by copy, the system can either
copy it to a candidate page p or needs to look it up at run-time. Therefore, we
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PROCEDURE cluster_object(target_object)

BEGIN
/* step 1: get initial information */
cluster_policy := get_ policy(); /* Is page splitting enabled? */
copy_set := get_by_copy_set(); /* Inherited attributes implemented by copy.*/
ref_set := get_by_ref_set(); /* Inherited attributes implemented by reference.*/

inh_page_set := get_all_inh_page(); /* Source pages for inherited attributes.*/
struct_ page_set:= get_all_struct_page();/* Source pages for structural objects.*/
page_set :== inh_page_set + struct_page_set;

/* step 2: calculate ref_set lookup cost for each page */

FOR p IN page_set /* If by-reference attribute r is */
FOR r IN ref_set . /* not in page p, storing target object */

IF r NOT_IN p /* in page p requires one run-time */

BEGIN /* lookup for attribute r. */

weight(p) := 1/(prob(p,struct_rel));
Ref_LookUp(p):= Ref_LookUp(p)+weight(p);

END;
/* step 3: calculate copy_set lookup and storage cost for each page */
FOR c IN copy._set /* If by-copy attribute c is not in page*/
FOR p IN page_set /* p, we could either cache it in page p*/
IF ¢ NOT_IN p /* or change it implementation to be */
BEGIN /* by-reference. */

weight(p) := 1/(prob(p,struct_rel));
Copy_storage(p) :==Copy_storage(p)-+sizeof(c);
Copy._ LookUp(p):= Copy_LookUp(p)+weight(p);

END;
/* step 4: calculate total cost of every page. If by-copy attributes are */
/* implemented by reference, the total cost of storing target object */
/* in page p is represented by Total_cost(p,1). Otherwise, the cost */
/* is represented by Total_cost(p,2). */

FOR p IN page_set
Total_cost(p,1) := Ref_LookUp(p)*Lookup_cost + Copy_LookUp(p)*Lookup_cost;
Total_cost(p,2) := Ref_LookUp(p)*Lookup_cost + Copy_storage(p)*Storage_cost;
/* step 5: pick up best candidate page and try to insert the object */
candidate_page := Minimum (Total_cost);
IF (cluster_ policy EQ no_split)
WHILE (NOT_FIT(candidate_ page)
candidate_page := Next_Min (Total_cost);
IF ( (cluster_ policy EQ page_split) AND ( NOT_FIT(candidate_page))
Split_page(candidate_page);
END;
Figure 4.1 -- Psedo Code for cluster_object
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step 4:

step 5:

have two cost variables: Copy_storage( p ) is used to model the cost of storage
and is incremented by the size of the by-copy inherited attribute, whereas
Copy_LookUp( p )is used to model the cost of by-reference implementation and is
incremented by weight(p) as with Ref_lookup(p). The latter cost component is of
interest because it models the cost of propagating a change to the instance, which
is reduced if the instance and the source of the inheritance are placed on the same
page.

To determine the candidate page, the system needs to transform the costs {i.e.
lookup and storage costs) into the same scale for comparison. The lookup cost
Lookup_cost is represented by P,,*C, .+ (1-P,,)[C,,+P,*C, ]| where P,, is the
probability of buffer hit, P, is the probability of doing I/O during buffer replace-
ment, C, is the cost of 1/O, Chus is the cost of searching through buffers, and C ,
is the cost of getting free page from O.S. The storage cost Storage_cost is
represented by Lookup_cost* scale_factor where scale_factor is determined by
users.

If the clustering policy does not permit page splits and the candidate page is out
of space, the clustering algorithm chooses the next minimum cost candidate page
to insert the target object. Otherwise, the system tries to split the candidate page
to minimize the new run-time lookup cost.

The Split_page() procedure in step 5 tries to minimize the look up cost from the
page-split. If a page contains NN inherited attributes, its look up cost is represented as N *
Lookup_cost which is described in detail in step 4. The detailed algorithm for procedure
Split_page() is shown next:

Page_split Algorithm: Assume that the arc costs C, (i.e. run-time lookup cost)

are always maintained and sorted in the page header. The node capacity Cap, (i.e. the

object size) is available from the object header which is maintained by the systém. Sub-
set A and B represent the sets of objects assigned to the new pages after splitting. Both
subset A and B are empty at the beginning and the available capacity of A and B are set
to be (maximum_page_size * 0.75).

(1)
(2)

Select the maximum value arc from E as e, ., and set E to be (E - {€umes))- Let
Vpeas 30d v, to be the head and tail nodes of arc e, ..

Supposed both v,_, and v,, are new to subsets A and B. Insert v, , and v,
into subset A if Cap, plus Cap, is less than the remaining capacity of subset
Aad tad

A. Otherwise, insert v, , and v,, into subset B if subset B has space for these
nodes. If neither subset A or B could accommodate both v, , and v, ,, a broken

arc is found and C, is added into C,,,.
tarpat

Supposed v, , is in subset A and v, is not in subset A or B. Insert v, into
subset A if feasible. Otherwise, a broken arc is found and C, is added into

target
Clotat*
Supposed both v, , and v, , are visited before, a broken arc is found and C, 1s
tarpet
added into C, , ;.

Loop back to (1) until arc set E is empty.

-11-



Algorithm Analysis: This algorithm is greedy. Since we only scan through the
edges once, the total running time is guaranteed to be O(n) where n is the number of
edges in G.

A page split example is shown in Figure 4.2. The clustering algorithm described in
Figure 4.1 has chosen a candidate page shown in Figure 4.2 to store the target object X.
Supposed that the maximum page size is 4000 bytes and the clustering policy is to split
the page when it is out of space. Because the target object X is too large to fit into the
candidate page, the clustering algorithm invokes the page splitting algorithm to determine
a new page layout for these objects. The page splitting algorithm first places object B and
D in the same page since the look up cost from B to D is the largest one. Object E is then
chosen to be on the same page since arc cost from B to E is the next largest. However,
object A and F are placed in another page due to the limited page capacity. After scan-
ning through the arcs in the inheritance dependency graph, the page splitting algorithm
produced the final page layout shown in Figure 4.3. Notice that the look up cost of the

Target Object X
(500)

Candidate Page

N
A (650) /OB (400)

/ \ c
O ® 4 O (300)

F (1000) (goo) 2

QD (700)

Figure 4.2 -- Page Split Example

Each node represents an object and the number associated with it is the size of the
corresponding object. The arc represents either the inheritance dependency or structural
relationship, and the number associate with it is the run-time look up cost. All the nodes
within the box is on the same page and the target object X is too large to fit into the
candidate page in this example.
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new page layout is 1 (i.e. from object A to E) whereas the look up cost without splitting
is 2 (i.e. from object X to B). Therefore, splitting the candidate page has reduced the look
up cost by 1.

4.2.3. Discussion

To avoid the extra cpu time caused by the clustering mechanism, users may disable
automatic reclustering when the system is heavily loaded. Or they may enable/disable
clustering based on the characteristics of their operations and data. For instance, opera-
tions like check-in/out require a large amount of data to be inserted into workspaces.
Enabling clustering will provide better response time in the future at the expense of extra

Page 1 Page 2

/ Empty

Page 1 Page 2

AN -

Page 2
3 A
N
N\
LF
Page 2
F

Figure 4.3 -- New page layout after page splitting

After page splitting, objects A and F are in page 2 and the rest of objects are stored in
page 1. The dotted line between object A and E represents the new run-time look up
cost after page splitting.
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cpu time during check-in/out. Users can therefore tune the context-dependent clustering
policy to provide reasonable response time for their applications.

4.3. Smart Buffer Replacement

The Sun Benchmark proposed by [CATT87| clearly states that response time is more
important than throughput in computer-aided design applications. The most common
operations of CAD tools are navigation along the structural relationships and simple
retrieval of design objects. Unfortunately, these operations are poorly supported or
inefficiently implemented by most commercial database systems. Therefore, an object-
oriented buffer manager differs from its counterpart in a conventional database system in
the following ways: (1) the focus is on response time rather than throughput, and (2) extra
semantics can be exploited by the system.

To obtain better response time, the buffer manager must exploit knowledge about
the structural and inheritance relationships among objects. This can be used to determine
prefetching and buffer replacement strategies. Response time is improved if appropriate
objects can be prefetched before actually being accessed, or if related objects can be kept
in the buffer pool even if the relationships span disk pages. For instance, if buffer X con-
tains an object that references some attributes in buffer Y through an inheritance link, the
buffer manager should try to keep buffers Y and X in the buffer pool at the same time.
This kind of information cannot be exploited unless it is made known to the system, and
this is the primary rationale for why we have distinguished the three kinds of relation-
ships among objects.

4.3.1. Algorithm Overview

The implementation overview of an object-oriented buffer manager is presented here.
An unsophisticated buffer manager uses a simple LRU buffer replacement policy and
attempts no prefetching. A more sophisticated approach uses a priority scheme such that
the lowest priority pages are the ones to be replaced first. The key challenge is to use the
semantics of the interrelationships among objects on the buffered pages and hints about
the access patterns to set the priorities intelligently. Frequently accessed pages have their
priority increased. Infrequently accessed pages have their priority reduced, but this may
be modified by their interrelationships with other pages, especially if those are frequently
accessed. Whenever an object is accessed, its related pages (e.g., pages containing an
object’s components and its inherited attributes) might be in buffer pool already. Tradi-
tional LRU buffer replacement, which has no knowledge about these interrelationships,
could easily choose these pages to be replaced and thus invokes extra I/Os to bring them
in later.

Besides intelligent buffer replacement, another way to obtain good response time is to
be smart about prefetching. At the beginning of an interaction with the database, the
users provide the buffer manager with access hints, such as “‘my primary access is via
configuration relationships”. This information influences the buffer manager’'s prefetch
strategy. Touching an object causes the page containing it and the pages containing its
immediate subcomponents to be brought into the buffer pool and given the same high
priority. This achieves extremely good performance for applications that walk the
configuration-hierarchy. Similar prefetch hints can be used to obtain a version object, its
immediate ancestor, and its immediate descendents. Also, equivalence relationships can be
used to obtain all objects equivalent to the one being accessed. Inheritance is treated in a
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similar fashion for determining prefetch groups.

4.3.2. Algorithm Details

For every fetch object operation, users can provide access path information and pre-
fetch hints along with the target object identifier. The pseudo code of procedure
Fetch_Object() is shown in Figure 4.4 and a detailed description follows:

step 1: If the target object is in the buffer pool, the buffer manager sets the priority of
the containing buffer to be HighPri. Otherwise, the buffer manager allocates a
buffer frame, fetches the object into it, and sets the priority to be HighPri.

step 2: To avoid useful pages being replaced, the buffer manager tries to locate all buffer
frames which contain either structural or inheritance information which are
related to the target object, and sets these buffer frames to be HighPri.

step 3: If the prefetch option is enabled, the buffer manager does prefetching for all the
structural and inheritance related objects on behalf of the target object.

To illustrate more on these steps, an example is shown in Figure 4.5. Supposed the
target object X is located at page A and its component objects are in page B, C, and D.
The prefetch option of this Fetch_Object() call is disabled and the structural_rel parame-
ter is specified as configuration hierarchy. Before calling the Fetch_Object() to fetch the
target object X, the buffer pool already had pages B and D which are ready to be replaced
because of their low priority status. To fetch object X into buffer pool, the buffer
manager first allocates a free buffer. Since both page B and D have low priority status,
either one of them could be chosen to be replaced. However, this decision is not desirable
because object X may reference these pages very soon. To avoid this, the Fetch_Object()
procedure considers information provided by callers, e.g., the structural_rel parameter is
set to be configuration hierarchy, and contents of all buffers, e.g., page B and D contain
component objects of object X. It trie to keep page B and D in the buffer pool by
increasing their priority status. The final buffer pool layout after this Fetch_Object() call
is also shown in Figure 4.5.

4.3.3. Discussion

Note the close interplay between the clustering algorithm and buffer management. If
the clustering algorithm has dome a good job, then interrelated objects will be placed on
the same page or in a small collection of pages. If not, and if access along these relation-
ships are frequent, then the clustering algorithm will adapt to the access patterns by reor-
ganizing the placement of objects. The buffer manager can alert the clustering algorithm
about the need to reorganize.

4.4. Other Opportunities: On-line Backup

The structural relationships of Section 2 form a very complex web of interconnec-
tions among design objects. Added to this complexity is our proposed inheritance seman-
tics, yielding a very complex design space indeed. This presents a challenge to all existing
database utilities, especially the on-line backup service. We will concentrate on its imple-
mentation difficulties in this section.

As the database ages, older versions become less frequently accessed as ever more
recent versions are added. Some method for migration of very old versions to archival
storage is necessary. Back-up i3 usually necessary when the system runs short of disk
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PROCEDURE Fetch_Object(ObjID, structural_rel, prefetch)

BEGIN

/* step
IF (Obj
BEGIN

END;

/* step 2: get structural and inheritance links used by the target object.

/*
/*

1: fetch the base page of target object. */
ID NOT_IN BufferPool)

buffer_id := Get_bufferframe();
Get_page(ObjID, buffer_id, HighPri);

If their containing pages are in buffer pool, set their priority
to be HighPri.

structural_links := Get_struct_links(ObjID, structural_rel);
FOR link IN structural_links DO

IF (link IN BufferPool)
Set its bufferframe to be HighPri;

inh_links := Get_inh_links(ObjID);
FOR link IN inh_links DO

/ * step 3: If prefetch optlon is on, prefetch all related pages into memory.

IF (link IN BufferPool)
Set its bufferframe to be HighPri;

IF (prefetch)

BEGIN

END;

FOR link IN structural_links DO
IF (link NOT_IN BufferPool)
BEGIN
buffer_id := Get_bufferframe();
Get_page(link, buffer_id, HighPri);
END;
FOR link IN tnh_links DO
IF (link NOT_IN BufferPool)
BEGIN
buffer_id := Get_buflerframe();
Get_page(link, buffer_id, HighPri);
END;

Figure 4.4 -- Pseudo Code for Fetch_Object

*/
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Target Object Configuration
Page A

Page B P\age C \ Page D
< L

Buffer Pool before fetch_object(X)

Page | Page 7
B G Pa.ge Page

lowpri lowpri

New layout after fetch_object(X) without prefetching

Page | Page | Page Page Page
B G A D T
High High High
pri. pri. pri.

Figure 4.5 -- Smart Buffer Management Example

Each box represents a page frame and the circle within a box represents an individual ob-
ject. The arc between circles is the configuration relationship. In this example, object X
is composed of objects Y, Z and W. The replacement priority is represented as ‘low pri”
and ‘“high pri'”". Two buffer layouts are shown to illustrate the difference before and
after calling Fetch_Object().

space, or to provide a reliable copy of the design space to protect against media failure, or
when a new design release obsoletes an older one. When backing up a design object, the
system needs to ensure that the structural relationships that reference the object are well
maintained. For instance, consider the case where ALU[3].layout is composed of
Adder[1].layout and Reg[2].layout, and Adder[l].layout was backed up and is no longer
available on disk. When Adder{1].layout is referenced by ALU[3].layout later on, the sys-
tem should be able to return meaningful information (e.g. “Referred Object is not on-
line'"). At the same time, designers should continue to be able to browse through the
structural relationships of the design space, i.e., although some design objects are backed
up, the corresponding structural relationships should still be visible. Later on. when
backed-up objects are restored to the design space, the system should repair the references
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appropriately.

For instance-to-instance inheritance, the backup situation is more complicated, since
other objects depend on the backed-up object to obtain their inherited attributes. It is
not sufficient to return an error message in this case. The back-up manager must choose
between caching the referenced attribute in the instances or it could simply avoid backing
up the object in question. The usual clustering and access formulas come into play in
making this decision.

Algorithms like the backup manager need frequent and fast access to schema infor-
mation, to be able to interpret the attribute types and to traverse connections among
objects. To help it deal effectively with the interconnected design space, a special internal
data structure is used. The basic idea is to distribute the schema information (e.g., name
of the attributes, offset, and type) among the objects to make objects self-describing. Each
attribute of an object has an attribute descriptor that contains backup status (if inher-
ited), attribute type, and offset information. This is advantageous for fostering the local-
ity of schema lookup. Using encoding techniques, the information describing structural
relationships and inheritance links need not take up much space on the page.

5. Related Work

Existing object-oriented database management systems, either prototype or product,
have implemented only very primitive object-based clustering mechanisms [MAIES86,
ATWO85, ZDON84, KIM 87]. The common characteristics of these implementations are:
(1) a segment is the unit of clustering, and (2) user’s hints can be used at object creation
time. For instance, users may provide hints such as ‘“‘place near object XX''. The system
then tries to store the target object with object XX, in the same or an adjacent page.
Since these systems do not model structural relationships as first class object in their data
models, the storage component has no information to exploit during the clustering process.
That is, users’ hints are the only useful semantics which can be used by the storage com-
ponent. Moreover, these systems do not perform reclustering when object structures are
changed, e.g., when new components are included in a composite object. Neither do they
consider the clustering effects due to inheritance.

6. Summary and Conclusion

The object-oriented approach is a good match for computer-aided applications.
However, traditional inheritance semantics do not model all of the information propaga-
tion requirements of VLSI design environments. In this paper, we have shown examples
where a new inheritance semantics, instance-to-instance, is better matched to the needs of
computer-alded design applications.

Instance-to-instance inheritance introduces new implementation challenges in the
areas of physical database design, buffer management, and design back-up. We have
sketched new adaptive clustering algorithms, and have indicated how semantic informa-
tion and user hints can be exploited for more intelligent buffer management. There is
important an interplay between these activities: the buffer manager’s performance will
suffer from a bad clustering, but it can alert the clustering algorithm about changes in
access patterns to rectify the situation. We also investigated how the proposed inheri-
tance semantics affect applications such as on-line backup of the design space.
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At the present time, the aigorithms described in this paper are being evaluated and
will be implemented in a next generation Version Server [KATZ86b] for computer-aided
design data currently under design at U.C. Berkeley. We wish to acknowledge NSF grant
MIP-8708002, which is supporting this new work, and NSF grants MIP-8352227 and MIP-
8403004 which made it possible to build the initial Version Server prototype.
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