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ABSTRACT

We present an algorithm to recover three-dimensional shape 1.e. surface
orientation and relative depth from a single segmented image. It is assumed
that the scene is composed of opaque regular solid objects bounded by
piecewise smooth surfaces with no markings or texture. Also it is assumed
that the reflectance map E=R(n) is known. For the canonical case of
lambertian surfaces illuminated by a point light source, this implies knowing
the light source direction.

Solutions for simplified versions of this problem have been proposed by
Sugihara for the case of polyhedra, and by Horn et al for the case of a single
smooth surface patch given the surface orientation on the patch boundary.
This work presents the first solution for the general case.

A variational formulation of line drawing and shading constraints in
a common framework is developed. Finding the 3-D shape which best
satisfies these constraints is a difficult global optimization problem. The
problem is made tractable by precomputing line labels at junctions using
the algorithm developed in [Malik ’85]. The global constraints are parti-
tioned into constraint sets corresponding to the faces, edges and vertices in
the scene. For a face the constraints are given by Horn’s image irradiance
equation. We develop a variational formulation of the constraints at an
edge-both from the known direction of the image curve corresponding to
the edge and the shading. The associated Euler-Lagrange differential equa-
tion completely captures the local information. At a vertex, the constraints
are modelled by a system of non-linear equations.

An algorithm has been developed to solve this system of constraints.
We are now studying various refinements intended to make the algorithm
robust in the presence of image noise.



1 Introduction

In this paper, we study the problem of recovering the three-dimensional
shape of the visible surfaces in a scene from a single two—dimensional im-
age. We restrict our attention to scenes composed of opaque solid objects
bounded by piecewise smooth surfaces with no markings or texture on them.
By three-dimensional shape we mean a map of surface normal vectors—or
equivalently relative depth—along the lines of Marr’s 2 %D sketch, Horn’s
needle diagram, or Barrow and Tennenbaum’s intrinsic images proposal.

As in the dominant paradigm of computational vision, the first stage of
processing is edge detection resulting in the construction of a line drawing.
The decomposition induced by the line drawing is referred to as the seg-
mented image. Currently available edge detectors operating on a real image
would typically result in missing lines, spurious lines, missing and improp-
erly classified junctions. However we will ignore the resulting difficulties
and assume an idealized result.

The two sources of information about 3-D shape in a segmented image
are (a) the line drawing, and (b) the pixel brightness values. Both have
been the subject of considerable research in computational vision. Work
on line drawing interpretation of scenes containing curved objects has been
most successful in qualitative characterization, e.g., in terms of line labels
[16] or sign of gaussian curvature [13]. Attempts to obtain numerical surface
orientation information by making additional assumptions, e.g. Brady and
Yuille’s [2] search for the shape maximizing the ratio of area to perimeter
squared, have been successful only on a few well-chosen examples. Other
work on determining numerical shape includes that of Barrow and Tennen-
baum [1], and work on qualitative characterization includes that of Stevens
[21].

Use of pixel brightness values in a single smooth surface patch has been
the theme of the shape-from—shading work of Horn and his colleagues (9],
(11], [8], [3]. Here the goal has been to solve the image irradiance equation—
an equation relating surface orientation to brightness-by supplying the
surface normal direction along the boundary of the patch. It 1s possible
to do this if the patch happens to be bounded by limbs (called occlud-
ing contours by some authors) which makes the boundary surface normal
calculation easy. No use is made of other kinds of lines e.g. projections of
edges(tangent plane discontinuities). Consequently the approach cannot be
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directly employed on images of general piecewise smooth curved objects.

The question which can then be posed is—are there any schemes which
try to exploit all the information in a segmented image, i.e., both line draw-
ing and shading constraints, in order to recover quantitative 3-D shape.
This has been done for the special case of polyhedra by Sugihara [23]. He
represented the line drawing information as a system of linear constraints
and incorporated the shading (one value for each face) information in an
objective function to be minimized subject to the linear constraints. For
scenes containing curved objects, the problem is significantly harder and
Sugihara’s approach does not have a natural generalization. To the best
of our knowledge there is yet no method for 3-D shape recovery for the
general class of curved objects bounded by piecewise smooth surfaces.

In this paper, we develop such a method. The algorithm builds upon,
and exploits, past work on line drawing interpretation—specifically the line
labelling work of Malik (16], [15], [17],—and the work of Horn and his col-
leagues on shape-from-shading. Shape—from-shading is reviewed in Sec-
tion 2. In section 3 we analyze the constraints from a line drawing on solid
shape, and point out the importance of line labels for this analysis. In
sections 4 and 5 a representation of line drawing and shading constraints in
a common framework is developed. In sections 6-10, we develop an algo-
rithm for recovering the three dimensional shape which best satisfies these
constraints. Some examples of objects that our scheme can handle may be
found in Figures 6, 7 and 8 in Section 10.



2 Shape from Shading

The shape-from-shading problem is the problem of recovering numerical
shape of a single smooth surface patch given

1. The brightness value E(z,y) at each pixel

2. The reflectance map R(n) which specifies the radiance of a surface
patch as a function of its orientation.

3. The direction of the surface normal along the boundary of the patch

Note that the reflectance map encodes information about the reflecting
properties of the surface and the distribution and intensity of the light
sources. In the case of a lambertian surface illuminated by a point light
source in the direction s, the reflectance map R(n) =n -s.

The first study of shape-from-shading was by Horn [9]. There a par-
tial differential equation relating surface elevation to image brightness was
solved by converting it to an equivalent set of characteristic strip ODEs.
Numerical solution of the discrete approximations of these equations had
difficulty with unavoidable noise in image data. In order to address this
and other difficulties, Ikeuchi and Horn [11] developed an alternative for-
mulation of shape-from-shading as that of finding a surface orientation field
which minimizes a certain functional. While Ikeuchi and Horn used stero-
graphic coordinates f and g to specify surface orientation, subsequently
Horn and Brooks [8], [3] reworked this formulation using the unit surface
normal vector n directly.

The goal is to compute the surface normals n(z, y) from the (possibly
noisy) brightness data E(z,y). Enforcing the image irradiance equation
R(n(z,y)) = E(z,y) gives one constraint. The second is obtained by as-
suming the surface to be smooth: points which are physically close to each
other will have similar normal vectors. There are several ways of defining
smoothness. Brooks and Horn [3] chose n2 + n?, the sum of the squares
of the directional derivatives of n in the z and y directions. This may be
viewed as a regularization' term [20], [24] intended to select one among a
possibly infinite set of solutions.

I The term regularization is used here in a somewhat loose fashion following Poggio et.
al.[20]. It does not seem to be the precise definition as introduced by Tikhonov. [24]
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This gives the composite functional

[[1E@,v) - Rin(z, )Y + Mol + 1) + (2, y) (0 ~ 1)dz dy

Determining the Euler equation and then discretizing enabled Brooks
and Horn to obtain the scheme

{ m}! = uf + 5(E; — R(n;;))Ra(ny;)

af' = mi/ | mi |

tj ij

3 Constraints from a line drawing

In order to study the constraints imposed by a line drawing on the shape
of the scene, it is convenient first to obtain a qualitative characterization
of each line i.e. its ‘label’. Image curves which have different line labels
correspond to different constraints on 3-D shape.

3.1 Line labelling—definition and notation

Each point on an image curve in a drawing can have one of 6 possible labels
which provide a qualitative characterization of three—dimensional physical
shape at the point in the scene.

1. A “4” label represents a convex edge-an orientation discontinuity
such that the two surfaces meeting along the edge in the scene enclose
a filled volume corresponding to a dihedral angle greater than .

2. A “=" label represents a concave edge-an orientation discontinuity
such that the two surfaces meeting along the edge in the scene enclose
a filled volume corresponding to a dihedral angle less than .

3. A “—” or a “—” represents an occluding convex edge. When viewed
from the camera, both the surface patches which meet along the edge
lie on the same side, one oc¢cluding the other. As one moves in the
direction of the arrow, these surfaces are to the right.

4. A “—+" or a “——" represents a limb. Here the surface curves
smoothly around to occlude itself. As one moves in the direction of
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Figure 1: Different kinds of Line Labels

the twin arrows, the surface lies to the right. The line of sight 1s
tangential to the surface for all points on the limb. Limbs move on
the surface of the object as the viewpoint changes.

We will use the term connect edge to mean either a convex or concave edge
such that both the surfaces meeting along the edge are visible. The notation
for different kinds of labels is illustrated in Figure 1.

In line drawings of polyhedral scenes, the label is necessarily the same
at all points on a single line segment. This permits us to use the term ‘line
label’ as opposed to label at a point on a line. For curved objects the label
can change along a line as can be seen on edge AB in Figure 2. Because
of this phenomenon, we need to distinguish between two different senses of
line labelling.

A dense labelling is a function which maps the set of all points on curves
in the drawing into the set of labels. The dense labelling problem is to find
all the dense labellings of a drawing which can correspond to a projection
of some scene. Such a dense labelling is said to be legal. The set of legal
dense labellings can be infinite (even uncountably infinite).



Instead of trying to find the label at each point on a curve, we could
restrict our attention to sufficiently small neighborhoods of the junctions of
the line drawing. For each line segment (between junctions) we now have to
specify only two labels-one at each end. Of the 62" combinatorially possible
label assignments to the n lines in a drawing only a small subset correspond
to physically possible scenes. We refer to these as legal sparse labellings.
The determination of all legal sparse labellings of a particular line drawing
is the sparse labelling problem. Note that the set of legal sparse labellings 1s
always a finite set (usually small). Figure 2 shows the legal sparse labellings
of a curved object as computed by the algorithm in Malik [16]. Note that
these labellings correspond to intuitive interpretations-the object floating
in air, stuck to a wall or resting on a table.

In the case of polyhedra, a legal sparse labelling uniquely determines a
legal dense labelling and vice versa. For drawings of curved objects, the set
of dense labellings can be partitioned into equivalence classes where each
equivalence class corresponds to a single sparse labelling.

Currently no algorithm is known for finding the dense labelling of a line
drawing of curved objects using only the information available in a line
drawing. In the context of Figure 2, it means that there is no algorithm for
exactly locating X, the point of transition from convex to occluding. The
sparse labelling problem has been tackled successfully-by Huffman([10] and
Clowes [5] for trihedral objects, by Mackworth [14] and Sugihara [22] for
arbitrary polyhedra, and by Malik [16],{15], [17] for curved objects.

3.2 How does a line labelling constrain solid shape?

Lines with different labels correspond to different types of constraints. In
this section we study the system of position and orientation constraints as-
sociated with a dense labelling of a line drawing. Some of these constraints
are well known and have been used before; some others have been expressed
in gradient-space (p, q) notation. Our purpose is to provide a coherent list
of the ‘fundamental’ constraints using unit surface normal vectors. The
motivation is to be able to cousider line drawing and shading constraints
in a common framework. Gradient-space coordinates are inadequate for
representing surface orientation for curved objects with limbs.

It is assumed that the line drawing has been formed by orthographic
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Figure 2: Legal labellings of a curved object



projection, with the eye along the z—axis at z = +oo. We now consider the
constraints from the different elements of a labelled line drawing.

1. Shape constraint at a limb: At limbs one can determine the surface
orientation uniquely. Let n be the unit surface normal, and 1 the
unit tangent vector at a point on the limb. Obviously, n1 = 0. As
a limb corresponds to points on the surface where the line of sight
vector z lies in the tangent plane to the surface, we also haven.z = 0
for points on the limb(equivalently n, = 0). n therefore lies in the
image plane and is in the direction of N. — the outward pointing
unit vector in the image plane drawn perpendicular to the projection
of the limb. See Figure 3.

What is stated above is the orientation constraint for the surface on
which the limb lies i.e. the surface on the right of the twin arrows. We
also have a position constraint—the surface on the right of the twin
arrows is nearer, implying a linear inequality between the z values on
either side of the limb.

The surface orientation constraint due to limbs is well-known and has
been used in {1}, [11], [8].

2. Shape constrainl al an edge: Let & be the unit tangent vector to the
edge at a point, and let m, and n, be the unit surface normals to
the tangent planes to the two faces f; and f; at the point. Let &
be oriented such that when one walks on the edge in the direction of
é , the face f, is to the left (see Figure 3). Now & is perpendicular
to n, because & lies in the tangent plane to the face f;. Similarly
é is perpendicular to n,. Therefore é is parallel to m; x n,. We do
not know the vector &, but from a line drawing we can determine
its orthographic projection into the image plane. We thus have the
constraint (N, X Ng)pe; = Aépo;. Here the notation V,,.; is used for
the orthographic projection of v into the image plane. A is a positive
scalar if the edge is convex, negative if the edge is concave. Note that
this constraint is equally valid for occluding convex edges, where one
of the surface normals corresponds to a hidden face.

This constraint when expressed using p, g-the gradient space coordinates—
gives the rule used by Mackworth [14] and many other researchers in
their gradient space constructions.
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Figure 3: Orientation constraints at limbs and edges
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The position constraint at an edge is trivial—the depth z is continuous
across a convex or concave edge and is discontinuous at an occluding

edge.

For later use, it is convenient to develop an alternative version of the
orientation constraint. Let N. be a unit vector in the image plane
perpendicular to &,r;. As (m; X N2)proj = Aéproj, it follows that

(ny X N3)proj - Ne =0

As N, has no component in the z-direction, this is equivalent to saying
that (n, x ny) - N. = 0, or using the vector triple product notation

mn,NJ=0

3. Shape consiraint inside an area: If each area in the image is to be the
projection of a connected part of a smooth surface, the functions that
map each image point to its position and orientation must be smooth
within a single area. Also the surface normals at all the visible surface
patches must have positive n, components.

Note that as the surface normal in a smooth patch can be written in
terms of the partial derivatives of z with respect to z and y, these two
functions are not independent. If we specify a C? function z(z, y), the
orientation function n(z, y) is automatically determined and smooth.

We feel that it is appropriate to regard the position and orientation
constraints listed above as the fundamental system of constraints associated
with a dense labelling of a line drawing. We’ll refer to this constraint set
as the DL-system corresponding to a dense labelling. A candidate solution
to this set of constraints is obtained by specifying

1. A piecewise smooth function z(z,y) corresponding to the depth at
each visible point in the scene.

2. A smooth function nu(z,y) defined on all points on the lines in the
drawing which are labelled — or —. This function corresponds to
the surface normal on the hidden face at that point on the occluding
edge.
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As pointed out earlier, the surface normal at each visible point is then
automatically determined.

It is obvious that for a dense labelling of a line drawing to correspond
to a legal scene, it is necessary that there exist a candidate solution which
satisfies its DL-system.

4 Recovering 3-D shape given a dense la-
belling

If the dense labelling of a line drawing is known, the problem of three-
dimensional shape recovery becomes that of finding a shape such that:

1. It satisfies the constraints in the DL-system.

2. In the interior of each surface patch, the image irradiance equation
E(z,y) = R(n(z,y)) is satisfied.

We adopt the following strategy:
1. Find the surface normal n(z, y) using the orientation constraints.

2. Break up the image into components which correspond to connected
surfaces in the scene. In each component, depth can be found by
integration. Note that the solution for each component will have an
as yet undetermined constant of integration.

3. The position constraints in the DL-system can be used to find a set of
linear inequalities among these constants of integration. If a feasible
solution exists, we are done.

The problem of finding the surface normal can be formulated as that
of finding a piecewise smooth function n(z, y) which minimizes the sum of
the following four terms:

o [[,(E(z,y) — R(n(z,y)))* dz dy which measures the error in satisfying
the image irradiance equation. Here I is the entire image.

12



o [g[ni(s)na(s) N.(3)]*ds where E is the set of image curves which
have been labelled as convex or concave edges and 3 is the arc length
parameter along the edge. n,(s) and n,(s) are the two limits of the
discontinuous function n(z, y) when a point on an edge is approached
on its two faces. This term measures the error in satisfying the edge
constraint.

e [ (n(s)—N(s))? ds where E is the set of all limbs. N_.(3) has a sense
determined by the direction of the line labelling-if one walks on the
limb in the direction of the double arrows, N.(s) points to the left.
See Figure 3.

o [[_p(n(z,y) + ni(z,y))dzdy which is a ‘regularization term’ in-
tended to select a particularly smooth solution. Here B denotes the
set of all curves in the line drawing.

The weighted sum of these terms gives us the composite functional

A //’(E — R(n))? dz dy + A, /E[nl ny N2 ds + Ay /L(n ~N.)?ds +

As //I_B(ni +n?) dz dy

One could find the Euler equation and develop a numerical scheme for
minimizing this functional-however that would be a futile exercise as there
is no available algorithm for determining the dense labelling in advance.
Indeed one might argue that the determination of the dense labelling occurs
as part of the process of trying to satisfy the image constraints. This
approach is developed further in the next section.

5 Simultaneous recovery of 3—D shape and
the dense labelling

We now drop the unrealistic assumption that the dense labelling is known
in advance, but instead seek to recover it as part of the process of finding
the shape n(z,y). Introduce binary (0 or 1) valued ‘indicator functions’ ey,
es, Iy, and I, that code the label at a point on the line drawing as follows:
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Let f, and f, be the two faces corresponding to the two areas bordering
the image curve c. Then

ep, = 1 iff ¢ is an edge on f;
ea = 1 iff ¢ is an edge on f,
L =1 iff cis a limb on f;
Iy 1 iff ¢ is a limb on f,

It may be observed that e;e; = 1 iff ¢ is a convex or concave edge. Alsoif c
is a limb, then exactly one of I}, I, is equal to 1-the direction of the double
arrows determines which one.

Using these indicator functions we can formulate shape recovery as a
problem of finding n(z,y) , e1(3), ea(s), l1(s), l,(s) such that the following
functional is minimized:

AL //I(E — R(n))? dz dy + A, /B erealn ny NoJ? + [ (m, = No)? + Ly(m, + N.)? ds
+3 //I_B(ni+n§)da: dy (1)

subject to the constraints

Vs.ei(s) +ez(s) + li(s) +la(s) > 1
Vs.e (s) +li(s) +12(s) £ 1
Vs.eo(s) +1i(s) +1l(s) < 1

and, of course the constraint that n?=1.

The side constraints enforce the basic properties of line labels—a curve
can not be both a limb and an edge etc. One can generalize this idea to
incorporate constraints due to restrictions on local labelling possibilities at
junctions.

To the best of our knowledge, the above formulation is the first to
attempt to include all the constraints in a single image of curved objects
in a coherent framework. For polyhedral objects Sugihara (23] has solved
this problem, but for curved objects shading and line drawing constraints
had not previously been studied in a common framework.

Trying to minimize globally the functional (1) is a formidable task. Here
are two possible approaches:
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1. Gradient Descent: Starting from some initial guessed shape, itera-
tively adjust n, ey, €3, hi, I so as to lower the cost measured by (1).
One could use algorithms from optimization theory or code this prob-
lem onto a Hopfield ‘neural’ network [7] by suitably defining T;;. The
hard part of course is in coming up with an initial guess good enough
to avoid local minima. A modification of this approach which has
been tried by Witkin et al [27] is to introduce a scale parameter o
and thus embed the problem in a larger space. Gradient descent is
first used to solve a smoothed version of the minimization problem
and then track the minimum continuously as o tends to zero. While
there is no guarantee that the global minimum will be found, Witkin
et al found their empirical results satisfactory.

2. Simulated Annealing: We refer here to the class of global optimiza-
tion algorithms inspired by ideas from statistical physics e.g. Kirk-
patrick et al [12] and Geman and Geman [6]. By allowing steps which
may increase energy, the system can avoid getting trapped in local
minima—the bane of simple-minded gradient descent. However the
computational costs of these algorithms are extremely high.

Clearly further work is needed to flesh out these approaches. In this
paper we will develop a third approach based on precomputing the sparse
labelling.

6 Recovering 3—D shape using a partitioned
constraint set approach

The problem of recovering three-dimensional shape from a single image
becomes more tractable if one notes the following:

o The set of legal sparse labellings of the drawing can be determined
before examining in detail the constraints associated with possible
DL-systems and the shading. An algorithm for doing this, based on
constructing a catalog of legal labelling possibilities for each kind of
junction, was developed in [16]. The scheme developed in the rest of
this paper exploits this.
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e The objective of the global minimization suggested in Sections 4 and
5 is to attempt to satisfy the shading and line drawing constraints
over the entire image simultaneously. Instead of trying to do it in one
fell swoop, one could partition these constraints into the following
three classes:

1. Constraints in the interior of an image area.
2. Constraints in the neighborhood of an image curve.

3. Constraints in the neighborhood of a junction.

Surface continuity requirements provide the cross—coupling among the
solutions of these constraint sets.

In the next three sections we do the following analysis for each type of
constraint set:

e Formulate the constraints.
e Examine the conditions for unique solvability.
e Develop a numerical scheme for finding the solution.

Finally in section 10, we study how local shape recovery procedures can
be combined to find the global shape.

7 Shape constraints inside an area

The only source of constraint is the shading and we wish to find the
‘smoothest’ surface consistent with the pixel brightness values. This is ex-
actly the shape from shading problem which has been studied by Horn and
his colleagues and we can adopt their analyses and algorithms unchanged.
Specifically, we use the relaxation scheme suggested by Horn and Brooks
which is stated in section 2 of this paper.

The cuestion of the existence of a unique solution for (a) the shape-
from-shading problem, and, (b) the numerical scheme, does not seem to
have a c.ean theoretical answer-though partial results were obtained by
Bruss in [4]. Simulation results e.g. [11] indicate no problems in practice.
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The Horn-Brooks relaxation scheme, just like the other algorithms for
this problem, requires knowledge of the direction of the surface normal
along the boundary of the patch. Empirical evidence suggests that knowing
the surface normal along a significant fraction of the boundary is adequate
in practice.

8 Shape constraints along an image curve

At a limb, the surface normal is uniquely determined by the direction of
the projected curve. So the interesting case is that of an edge, where there
are both shading and line drawing constraints. We want to use these to
determine the surface normals n;(s) and ny(s) on the two faces f; and f; as
a function of the arc length parameter s along the edge. To do this, we have
to measure the brightness values E(s) , E2(s) on the two sides of the edge
in the line drawing. As edges are typically not neatly aligned with pixel
boundaries, this would entail taking the weighted average of neighbouring
pixels which lie entirely on a single face. As defined in section 3, N.(s)isa
unit length vector drawn normal to the projection of the edge in the image
plane.

First we do some equation counting. To determine n, and n; one has
to solve for 4 independent parameters. (While there are 3 components of
n, the unit length constraint means that only two are independent.) If
the edge is connect (convex or concave), there are two equations due to
shading: E, = R(m,) and E; = R(nz). The direction of the edge gives us
one more equation [n; n; N = 0, still leaving us one equation short. We
conclude that it is not possible to solve for my, n, by just looking at the
neighborhood of a point on an edge, just as in the standard shape-from-
shading problem it is not possible to compute n locally. We need to make
use of boundary conditions, and maximize smoothness-points which are
physically close should have similar surface normals .

To satisfy the image irradiance equation on both faces, we seek to min-
imize

J(Bats) = R(mi())? + (Ea(s) = Rlna(2)))" ds

To satisfy the constraint due to the observed direction of the projection of
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the edge, minimize
[ m1(5) mae) Ne(o)] ds

Next we add a ‘regularization term’ by incorporating the ex ression
g g p

() + (m5(2))* ds

Here n/(3), n(s) are the derivatives of n;(s) and ny(s) with respect to arc
length. Finally we insist that the normals n,(s) and ny(s) have unit length.
Combining these constraints we have the composite functional

JAA(B = R@))? + (B2 — R(ng)?} o+ dalmy ma NeJ?
hs{(nL)? + (0)7} + (0] = 1) + palnf = 1) ds @)

p1(8), pa(s) are Lagrange multipliers.
This is a functional of the form

! !
/F(s,nl,ng,nl,nQ)ds

which gives rise to the Euler equations

d

Fay— —Fp =0

ds' ™
d
FBT_E‘;FH,3=0

and the ‘natural’ boundary conditions Fy; = 0 and Fy; = 0.
It follows that the edge constraint functional (2) has the Euler equations

—2A1(E - R(nl))Rn, + 2/\2[111 0 NC](ng X Nc) - 2A3n'1' + 2p1n1 =0 (3)
'—2/\1(E - R(n2))Rn.‘ - 2/\2[n1 j13)) Nc](nl X Nc) - 2/\311’2' <+ 2[12112 =0 (4)

and the ‘natural’ boundary conditions nj = 0 and n, = 0.
We can find the Lagrange multiplier z; by taking the dot product of
equation (3) with n, and noting that n, -m; =1

B = /\I(E - R(nl))Rnl 20 | Sl /\g[nl n, NC]2 4 /\311,1' - Iy
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We can now eliminate g, by substituting it back, giving

—A(E — R(n,)){Ra, — (Rn, - n,)n, }
+Ag[my ny NJ{(n2 x No) = [mymp NeJmy } = As{n] — (0} -m)m } =0 (5)

A similar manipulation for the other Euler equation gives

_’\I(E - R(“?)){Rm - (an ) n2)n2}
— X[y 0y N J{(n; x N.) + [n; n; N.Jn;} — As{nj - (nj -ny)n,} =0 (6)

Note that the equation (5) is an equation in components perpendicular to
n, and is thus equivalent to only two independent scalar equations. This
can be seen by taking the dot product of the left hand side with n; and
observing that it is identically 0. Similarly equation (6) is an equation in
components perpendicular to n,.

The additional constraints that are needed come from the fact that n,
and n, are of unit length.

Subsequent analysis will be facilitated by noting the following identities.
x can be any vector, n is a unit length vector, p 1s any vector perpendicular
tonie. n-p=20.

I-nn")n = 0
(I-nn")p = p (7)
(I-nnT)x = x—(x-n)n

Using the third of these identities and introducing a = % ,and B = }i we
can transform equation (5) to

(I-mnT)n” = —o(E - R(ny)){Ra, — (R, -ni)n;}
+8[n 0y N J{(ny x N.) — [m; ny N.Jn,} | (8) .

In order *o develop a numerical scheme, we use the discrete approximation

+1 ' i-1
oM~ 2n} +m;
' (As)?
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to obiain
ni*! — 2n! +nj™"
(As)?

(I—-nin,")( ) = —a(E — R(n})){ R}, — (R}, -mi)ni}
+B[n} ny Ni]{(n} x N?) — [0} n; N{Jn}} (9)
It is convenient to introduce notation corresponding to the components of

ni~! and n{*' along n} and perpendicular to ni

=1

- -1 '
n, c;ny +q
i+l + .t t
n, = ¢y + Py

Using these substitutions for ni"! and n{*! in (9) and simplifying using the
identities in (7), we get
pi = —a — a(As)*(E - R(n})){ Ry, = (Bp, -my)mi}
+B(As)[n] ny NJ{(n; x N) — [n; 03 Nijnj } (10)
Now q} = ni~! — (i7" n!)n} is known, enabling us to calculate pi. Next
note that

ni* n{*' = (cfm]+pj) - (cimi+pi)
() + (1)’
1

which implies that
cf; =1 - (pi)’
Theoretically there are two solutions for c{;, one positive and one negative.
Obviously, the positive root is to be used — the negative root would result
in a ni*! in almost the opposite direction to n} . .
We thus have the following scheme for computing n{*! given knowledge

of n{™! , n! and nj:
q = m7'=(mom)my S
pi = —a - a(As)*(E — R(n)){R, — (R, -ni)ni}+
B(As)*[n} ny NJ{(ny x N) — [n; n Nim} } (11)
n"' = pi+myl-(pi)’
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Figure 4: Dealing with edge label transitions

By an analagous analysis starting from (6) we obtain

g = ny'—(ny'-nyn;
pi = —q— a(As)X(E - R(n})){Ri, — (R, -m3)n3} —
BA(As)[ni nj Ni]{(n} x Ni) + [nf nj Nin3} (12)

it = p;+may/1-(ph)?

If n%, n!, n, n} are known, these schemes tell us how to ‘grow’ the solution.
The iteration can in fact be started just given the values of n;, n; at the
initial point. As n| and n) are both equal to 0 at the initial point (natural
boundary conditions), we assume n} = n{ and n; = nj .

It should be pointed out that the analysis in this section has been for
connect edges—if the edge is occluding, we do not know the brightness
values for the occluded face and thus have one less constraint. For curved
objects, an edge can change its label from convex to occluding between
junctions e.g. at point X in Figure 4. However we know [16] that such points
correspond to invisible limbs, and therefore can be detected by checking if
n, is sufficiently small. In Figure 4, n,, = 0 at X. The iterations in (11)
and (12) should be stopped at this point.

Now we consider a case when more information is available. Suppose
that in addition to knowing n;, n, at the initial point, ny(s) is also known
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along the edge {as a result of some previous computation). In this case,
just use (11).

When n(s) is known along the edge, it is possible to recover n,(s) even
when n, unknown at initial point. Use Newton’s method to compute n,
at initial point. This can be done because we now have two constraints
on ny viz. Ey = R(m;) and [ny nyN.] = 0. As these constraints are non-
linear, there is no guarantee of a unique solution. However it can be proved
that for a reflectance map arising from a lambertian surface illuminated
with a pnint light source, there can only be one or two solutions. We use
the iteraiive scheme in (11) above to propagate each of the solutions, and
pick the one which corresponds to the smaller error as measured by the
functional in (2).

9 Shape constraints at a vertex

At a vertex we have (a) shading constraints from the brightness values on
the faces which meet at the vertex, and (b) line drawing constraints from
the projections of the edges incident at a vertex. Under certain conditions,
there are enough constraints to uniquely determine the surface normals on
each of the faces purely from the local information. We assume that the
line labels of the edges meeting at the vertex have been determined earlier.

Consider vertex A in Figure 5 and enumerate the constraints on n;, ng,
and nj;-the surface normals to the three faces fi, f2, fa which meet at the
vertex:

EI—R(nl) =0 EQ—R(ng) =0 Ea—R(n3)=O
[n1 Ny N12] =0 [n2 ng Nz;;] =0 [n;, n, N31] =10
n=1 n}=1 ni=1

There are as many independent equations as unknowns. However as the
equations are nonlinear, we are not guaranteed a unique solution. We
can however put an upper bound on the number of solutions for typical
reflectance maps. e.g. for R(n) = n.s , there can be a maximum of 8
solutions 2. Note that so far we have only used the information that each

2This result is true for any reflectance map whose level sets in p, g-space are conic
sections
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Figure 5: Shape recovery at a vertex

of the edges is connect (either convex or concave), but in fact we also know
whether it is convex or concave. Pruning using this additional knowledge
typically leaves only one solution.

For numerical computation, it is convenient to reduce the number of
parameters by transforming to p, g-space and then use Newton’s method to
iteratively solve the system of nonlinear equations. A good initial guess can
be obtained as follows: Assume that at each edge, the intersecting faces are
mutually orthogonal. One can then determine the three surface normals in
closed form. The solution/s which correspond to the known line labels at
the vertex is/are used as starting values for Newton’s method.

It can be seen that the method described above works for any vertex
with n > 3 faces if and only if they are all visible. Alternatively, all the
edges are either convex or concave. If any of the faces at the vertex is
hidden, the constraint due to the brightness value on that face is missing,
and there are fewer equations than unknowns.

However if there is exactly one hidden face, and the surface normal
on one of the faces at the vertex is known (perhaps by propagation of
information on one of the faces/edges that it lies on), then the number of
independent equations again becomes equal to the number of unknowns
and one can solve for the rest of the surface normals. In Figure 5, once n,
is known, ns and ng can be determined.
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10 Shape Recovery given the Sparse Labelling

In sections 7, 8 and 9 we studied the constraint sets for image areas, curves
and junctions, and developed numerical schemes for local shape recovery.
For completeness, let us name these schemes and list them here:

1. solve_face: If n is known on a significant fraction of the boundary of
an area, n can be computed in the interior of the area.

2. solve_limb: If an image curve is known to be the projection of a limb,
then n can be determined along the limb.

3. solve_conneci_edgel: m,, n, known at initial point. Schemes (11) and
(12) enable the computation of n;(s) and n,(s) along the edge, until
either a vertex is reached or the edge becomes an occluding edge e.g.
in Figure 4.

4. solve_connect_edge?: If ny(s) is already known along the edge, then
n,(s) can be computed along the edge even if the initial value of n,
is not known. (This is as explained in the last paragraph of Section

8)

5. solve.allvisible_vertez: If all incident faces at a vertex with k > 3
faces are visible, then n,, ..., n, can be computed on the k faces at
the vertex.

6. solve.almost_all visible_vertez: If only one of the faces at a vertex with
k > 3 faces is hidden, then if any of my, ..., M is known , the rest can
be computed.

Of these only solve_limb and solve_all_visible_veriez are ‘self starting’.
The others need to make use of results of previous computations. For ex-
ample, solve_face needs n on its boundary, computed by either solve_limb
or one of the solve_conneci_edge procedures. In turn, solve_connect_edge_1
needs initial value information computed by one of the vertex solution pro-
cedures.

We now illustrate the process of global shape recovery with some ex-
amples. The hatched parts of the figures denote what has been freshly
computed in a particular iteration. In figure 6, the computation starts with
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Figure 6: Sequence of steps in global shape recovery
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Figure 7: Sequence of steps in global shape recovery
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1 2 3

Figure 8: Sequence of steps in global shape recovery

determination of the surface normals to the three faces at A, followed by
the computation of the surface normals along AB, AC and AD. Finally
solve_face is applied to each of the three faces. Figures 7 and 8 are self-
explanatory.

In the examples just considered, we started from the correct labelling.
What is actually available to us are a set of sparse labellings e.g. Figure 2
among which only one is correct>. When we start from an incorrect sparse
labelling, the 3-D shape computed will be incorrect and hence will not
satisfy the line drawing and shading constraints within the margin of error
permitted by the inaccuracies in the data ( i.e. noise in pixel brightness
values, errors in estimates of edge direction etc. }. This gives us a way to
prune away the shapes resulting from incorrect labellings. We now have
the following scheme:

algorithm global_shape_recovery PCS

1. Find applicable local shape recovery procedures.
2. Execute in parallel.

3. Check result (computed n) for consistency with image data within
margin-of-error. If failure, terminate ‘Wrong labelling’.

3In the sense that it corresponds to the particular scene being imaged. They are all
consistent with the line drawing information.
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4. If two or more local shape recovery procedures have independently
computed n for the same location, check for consistency within margin-
of-error. If failure, terminate ‘Wrong labelling’.

5. If n known everywhere, or no more applicable procedures, terminate
‘Solution’. Else go to 1.

The naive way to use this procedure is to run it , one labelling at a time.
We can actually do much better. In Figure 2, and in the more extensive list
of examples in [16], one notices that usually different labellings correspond
to the same labels for inner curves-the outer curves have different labels
corresponding to objects floating in air, resting on some support surface
etc. To exploit this, the possible sparse labellings of a line drawing can
be organized into a ‘label inheritance tree’, with the root corresponding to
the set of curves which have the same labels, and branches corresponding
to choices for curves which have multiple labelling possibilities. A least
commitment strategy can then be used to avoid pursuing futile paths.

We have been somewhat glib in using the phrase margin-of-error in the
algorithm for global shape recovery. Its exact specification is a difficult
problem which we have not yet resolved to our satisfaction. There are two
components of the error:

1. Error due to intrinsic noise in the image data. Consider the functional
(1) in Section 5 without the regularization term. Even if we had
determined the correct n(z,y), this functional would be non-zero.
However we can come up with reasonable estimates. The first term
would be equal to X, 02 A; where o7 is the variance of the noise in the
brightness values and A; is the area of the image. Similar estimates
car. be made for the other terms.

2. Error accumulated during the numerical computation. This is of par-
ticular concern for the two solve_connect_edge procedures. In order to
reduce this effect, the schemes in section 8 were chosen with stability
as the primary concern. We need to estimate the magnitude of the
accumulated error at the end point. We have been able to come up
with upper bounds, which are however unduly pessimistic. We hope
to have better luck with numerical simulations.
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We are in the process of developing a computer implementation of the
scheme proposed in this paper. There are several potential improvements
that we are considering-solve at the edges as a boundary value problem
rather than as an initial value problem, use a global minimization scheme
once a crude shape has been obtained, use multi-grid methods to speed
things up and help propagate global information etc.

To conclude, in this paper we have presented a coherent framework for
representing the line drawing and shading constraints in a single image of
curved objects. We also propose a scheme for computing the shape that
satisfies these constraints. While the scheme needs further testing and
development, it does demonstrate the inferential adequacy of our represen-
tation.
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