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ABSTRACT

The SOAR (Smalltalk On A RISC) project at Berkeley has developed a
RISC-style processor designed to execute the Smalltalk-80 language efficiently.
This document describes the translator that converts Smalltalk bytecodes into
SOAR instructions. Experience with the translator justifies early SOAR assump-
tions and design decisions.






Smalltalk-80 to SOAR Code!

This document describes the Smalltalk-80% to SOAR code translator. The first
section discusses the implementation of the translator. Section two presents
performance results for the translator. The third section describes issues in register
allocation, one of the most important aspects of the translator. Section four deals
with the experience of developing a moderate system in Smalltalk. The reader is
assumed to be comfortable with Smalltalk-80 language concepts and terminology, and

have some understanding of the Smalltalk-80 virtual machine.

1. Translation

The purpose of the SOAR (Smalltalk On A RISC) project is to produce an

efficient Smalltalk implementation through minimal extensions to the Berkeley RISC
architecture [SOAR-Arch]. The SOAR processor has the basic structure of RISC? as

well as RISC-style register windows.* Smalltalk processing is enhanced through
tagging basic data items (small integers and pointers) and trapping on certain
exceptional conditions (which allows register-to-register integer operations and efficient
garbage collection). The SOAR architecture does not implement the Smalltalk-80
virtual machine [BlueBook]; it therefore does not interpret Smalltalk-80 bytecodes.

The Smalltalk-80 language must instead be translated into SOAR instructions.

Three approaches to translation were possible: produce a new compiler that
would take Smalltalk-80 source and produce SOAR code; modify the existing
Smalltalk compiler to produce SOAR instructions rather than Smalltalk-80 bytecodes;

or add a backend stage to the existing Smalltalk-80 compiler that would take compiled

IThis work was supported in part by Xerox PARC.
2Smalltalk-80 is a trademark of Xerox Corporation.

3The RISC architecture is register-oriented, with loads and stores for moving data between registers
and memory, and register-to-register instructions for all operations on data [RISCs).

*Each procedure invocation has its own set of registers, allocated in a stack discipline and overlapped
with both the last invocation and the next one (for passing parameters) [VLSI-RISC].



bytecode methods and produce SOAR methods. The backend approach was chosen
for several reasons. First, the stack-based bytecodes that the Smalltalk-80 compiler
emits are the basis of the Smalltalk-80 virtual machine, which is the semantic
specification of the Smalltalk-80 language. Thus the bytecodes are well-defined and

provide a good interface. Second, the semantics of Smalltalk preclude most standard

optimizations. For example, expressions cannot even be reordered,’ since the identity
of the receiver must be preserved. Also, bytecode operation is relied on by the

Smalltalk system; in particular, copies of variable values are assumed to be made as if

the bytecode stack were present.® The result of these optimization constraints is that
bytecodes are an acceptable intermediate representation. Third, the Smalltalk-80
virtual image is quite malleable, and tracking changes in it to keep a new or modified
standard compiler current could pose a maintenance problem. At Xerox, for example,
a new image used by about 20 researchers is released roughly every two months, and
the changes in a new image can be substantial and subtle. Fourth, keeping bytecode
methods allows mixed-mode debugging, with some methods interpreted as bytecodes
and some compiled to SOAR. The main disadvantage of the bytecode-to-SOAR
conversion approach is compilation speed -- it is guaranteed to be slower than the
standard compiler alone. However, the decision to build a converter was justified by

later experience.

1.1. Conversion

The basic idea behind the converter is to simulate a method’s runtime stack
during conversion. This is a conventional idea that is found in p-code translators
([Sopaipilla], for example). Stack operations can be divided into two classes: those
that only manipulate the stack (for example, push a local variable on the stack, or add
the top two stack elements and push the result), and those that store or otherwise use

stack elements (for example, pop the top of stack into a local variable, or jump if the

5To be precise, neither operand nor operator evaluation can be reordered. Both arguments to a send
and a sequence of sends must be evaluated in a predefined order.

®For example, a method can temporarily preserve values (from receiver variables) from modification
during a send (if they are altered as a side effect of the send) by using the stack.



top of stack is equal to true). Only operations of the latter type require actual values
and provide concrete non-stack destinations, so they trigger code generation.
Consider, for example, the sequence

push A
pop into B

During conversion, the push causes the source to be remembered. The pop supplies a

destination, so the description of the source on the top of the stack is retrieved and

the appropriate transfer code, based on the nature of the source and sink, is

generated.” Now consider

push A

push B

send + (add)
pop into C

When the add is encountered the two top clements on the simulated stack are
combined into one new element that contains the two source operands and the add
operator. When the pop is encountered and the destination of the add is finally
known, the add instruction is generated.® Code is not generated when the add is
encountered because its ultimate destination is not then known; since that destination
may be a register, it would be foolish to put the result of the addition into a
temporary register, only then to move it to its final location. Bytecodes that only
affect the simulated stack are the pushes of various types of variables, and in-line
sends -- operators that are sends in Smalitalk but are register-to-register instructions

in SOAR (arithmetic, logical, and relational operators). All other bytecodes (pop into,

If A and B were both registers, the resulting SOAR code would be

add rzero,rA,rB
which causes the contents of register A to be moved into register B by adding zero (the special register
rzero always contains zero) to A and putting the result in B. If A and B were both receiver variables {in
memory), the resulting SOAR code would be

load (rR)oAT

store 1T, (rR)oB
where IR is a register holding the object pointer of the receiver, oA and oB are the offsets of A and B in
the receiver, and rT is a temporary register.

3¢ A and B were both registers, the resulting SOAR code would be
add rArB,rC



store into, send, return, jump, and conditional jump) cause code to be generated and
either provide destinations (implicitly in the case of send -- the arguments go in

certain registers) or use temporaries.

The converter knows the best code sequences for transferring every variable
(receiver, literal, method) into and out of a register. Given this knowledge, when
moving a value from a source to a destination the converter considers whether either
or both are registers. If both are, a register-to-register move is produced; if one is, it
is used as the source or destination in the optimal register transfer code of the other;
if neither are, a temporary register is allocated and used in the optimal register
transfer code of both. This technique, combined with the generate-no-code-before-its-
time (before its destination is known) approach discussed above, results in optimal

code for data movement and in-line send expression evaluation.

Sometimes values must be copied before their final destination is known. This
occurs for two reasonms. First, the Smalltalk system occasionally assumes a stack
implementation and modifies variable values presuming that stack copies exist. This
requires that all values on the simulated stack be in actual temporaries before a send
is done. Second, jumps require the merging of threads of control, which is
accomplished by forcing the simulated stack elements into temporaries before the

jump. Since the temporaries are allocated in a stack discipline, uniformity 1Is

achieved.?

%For example, since Smalltalk is an expression language and ifTrue:ifFalse: is expanded inline, the
fragment
vl <- (al if True: [ v2 <- al ] ifFalse: | v2 <- a2 ]) + a2.
(where al and a2 are method argments, and v1 and v2 are receiver variables) translates into the bytecode
sequence
push al
jump-if-false L1
push al
store into v2
jump L2
L1: push a2
store into v2
L2: push a2
send +
pop into v1
At L2 either al or a2 is on the top of the stack, depending on the value of al. With arguments al in rl13
and a2 in r12, and with receiver variables vl in (rR)}4 and v2 in (rR)5, the following SOAR code is



The generate-no-code-before-its-time approach does assume that physical copies
of values need not be made for every push and pop. For example, the sequence
push A
store into B
push C
pop into A
pop into D
must not occur,!? since it relies on the stack copy of A for the pop into D. With the

converter, A is not copied but simply moved into D when the pop is encountered.

The converter is essentially one pass, but occasionally must make two passes over
the bytecodes. This occurs when the number of converter temporaries exceeds the
number of available SOAR registers and a spill area in memory must be created for
them. Since spill areas are created only at the beginning of methods and the number
of temporaries can only be known after conversion, a few methods must be converted
again when the number of temporaries is known. This number is the only information
kept from one pass to the next, and if a spill area for the temporaries need not be

created, then the first pass is complete in itself.

Blocks are processed with the same lazy look-behind approach that is used for
producing optimal register transfer code. Blocks, and their surrounding code, have

the form

generated. Note that r11 holds the first operand to the addition (the equivalent to the top of the stack).
skip ne r13,#false
jump L1
store  rl12,(rR)5
add rzero,r13 il

jump L2
L1: store  r12,(rR)5
add rzero,r12,rit
L2: add ril,r12,r0

store  r0,(rR)4

0The sequence ‘must not occur’ in the sense that, if it should occur, incorrect SOAR code will be
generated. The bytecode compiler does not currently generate such segences, nor do they make sense with
the current Smalltalk-80 semantics.



push N

send blockCopy

jump L

<code for block>
L:

where N is the number of block arguments. As N and the blockCopy operation are
encountered they are pushed on the simulated stack. When a jump is seen the top of
the stack is examined; if it is a blockCopy then block copy code is produced and the
block is processed. Block code is handled like method code, except than each block
requires its own simulated stack (equivalent to its block context), and receiver and

method variables are accessed differently.

1.2. Optimizations

7 Although, as mentioned above, many optimizations are not allowed, a few
straightforward optimizations are performed. Omne involves comparisons and
conditional jumps. Consider the bytecode sequence

push A

push B

send < (compare)
jump-if-true L

When the jump is encountered the top of the stack is either true or false, depending
on the result of the comparison. This behavior could be duplicated in SOAR code,
with the result of the comparison being either a true or false, which would in turn be
tested for the jump. It is simpler, however, to combine the comparison and the jump
test, and avoid the intermediate boolean result. Thus

add  rzero,#truerT

skipl rArB

add  rzero,#falserT

skip n rT,#true
jump L

(assuming A and B are in registers) becomes



skip ge rA,rB
jump L

This optimization is done using look-behind. No code is generated when the compare
is encountered; it is simply put on the simulated stack. When the conditional jump is
encountered the top of stack is checked for a relational operation. The optimized code
is then generated, reversing the skip test. If the top of stack had not been a relational
operation it would have been moved into a temporary register and then tested against

true.

Another optimization involves using registers when possible. Consider

push A

store into B

pop into C
‘where A is a receiver variable that resides in memory and B is a local register variable
(the nature of C is irrelevant). Rather than fetch A twice, once for B and once for C,
the converter fetches A once into B and then uses B as the source for the move into C.
This optimization requires that B not be changed after the first fetch of A. For
example, the sequence

push A

store into B

push Z

pop into B
pop into C

must not occur.

The converter also puts small (plus or minus 128) integer constants in-line
because the SOAR instruction format allows it. The Smalltalk-80 bytecode set only
treats a few values (-1, 0, 1, 2) as special, putting all other integer constants in the
literal frame. Inserting moderate-sized integers in-line avoids references to the literal
frame, which require a load in SOAR. It is possible to generate the special small

integer code because the literal frame is read-only.

In addition, the converter generates in-line cache code for sends, which avoids

most send lookups. See [SOAR-Daedalus] for details.



1.3. Implementation

The converter is written in Smalltalk and consists of five main pieces, which

correspond to five class hierarchies under class Object.

Converter
SymbolicEmitter
CodeEmitter <
BinaryEmitter
Evaluator ——— BlockEvaluator
Window ArithmethicOrLogical
Operator < Relational
BlockCopy
ReceiverVariable— BlockReceiverVariable
StackElement MethodVariable — BlockMethodVariable
LiteralVariable
Literal <
LiteralConstant
Operand SpecialConstant
StackVariable
ActualParameter
Register
ActiveContext

Figure 1: Smalltalk Class Structure of the Converter




The Converter class understands bytecode methods. It is responsible for parsing
and interpreting the bytecodes in a source method. It also controls the overall
conversion process, and manages method-based information (such as method size

statistics).

The Emitter classes understand SOAR instructions and methods. They produce
either a symbolic method that can be given to the SOAR assembler, or a binary

method compatible with the SOAR debugger.

The Evaluator class knows what individual bytecodes do. It manipulates the
simulation stack, pushing and popping elements, and generates code for send, return,
and jump. Its subclass understands blocks -- in particular it knows about method and

block register windows and how to generate special block code.

The Window class manages information about register windows. It knows about
window dimensions and special purpose registers, and does register allocation. It
knows when there are too many variables to put in registers, and decides which are to

be put in memory.

The StackElement class hierarchy knows how to generate code to move data
into, between, and out of registers. The evaluateTo: method in StackElement
determines the optimal movement path (based on whether the source and destination
are in registers or memory), and then either generates a register-to-register transfer or
invokes the appropriate register-based getlnto: or putFrom: method defined in the

corresponding element subclass.

2. Converter Performance

Three performance results of the converter are of particular interest: conversion
speed, the ease of modifying the converter to run in a new virtual image, and code

expansion. In general, the design decisions made appear to be justified by the

results.!! The measurements in this section were made using two different virtual

11A]] results were obtained on a Dorado [Dorado|, a very fast personal workstation developed at
Xerox.
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images -- the one licensed by Xerox and the one used daily by researchers at Xerox.

There are two measures of converter speed, objective and subjective. Objectively

the converter is reasonably fast.

1mage mean time (in milliseconds] | total number of methods
licensed 50 4770
experimental 68 8069

These times are for the converter only, operating on existing bytecode methods.!? In

comparison, the compile macro benchmark provides statistics for the other phases of

compilation.’®
phase cumulative time [milliseconds)
syntax 320
bytecode method generation 450
SOAR converter pass one 610
SOAR method generation 760

‘Note that most methods (94% for the licensed image, 91% for the experimental image)

require only one pass.

Subjectively, the converter does not intrude on interactive system use; most of
the time compilation is invoked interactively one method at a time. The standard
compiler was modified to include an invocation of the converter (which generated a
SOAR method and then discarded it, returning the bytecode method), and the
slowdown was not perceived (on a Dorado). A special cursor indicated when the

converter was running, noticeable only on long methods.

Modifying the converter to run in the experimental Xerox image was trivial. A
few simple changes were necessary to produce symbolic output and converter statistics
output. One unexpected problem arose, however. The Smalltalk compiler in the
experimental image occasionally produced incorrect code that did not affect the
running system but broke the decompiler and the converter. This points up a
weakness in the backend approach -- dependence on the standard compiler’s output

code. This is generally a reasonable assumption, however, since the system depends on

12The difference between the licensed and experimental image times is probably due to the longer
average length of the experimental image’s methods and the greater number of its two-pass methods.

3These times were obtained with the licensed image.
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it. In contrast, the language in the experimental image is still considered by the
researchers to be experimental and is in the process of changing in subtle ways that
would require subtle changes to a pure SOAR compiler or a modified standard

compiler.

One of the virtues of bytecodes is that they are a compact representation. A
major concern with the converter was the explosion in method size that could result
from moving to four-byte word-sized instructions. Preliminary results with a trial

SOAR compiler indicated potential expansion of up to 1000% [SOAR-292R-Citrin].

Fortunately, observed expansion with the converter is considerably lower*
image bytes (mean) | words (mean) | expansion
licensed 32.5 40.6 500%
experimental 38.3 468.9 490%

The 10% difference may be significant. SOAR methods have a relatively high fixed
overhead, and as methods become larger, as they did on average in the experimental

image, the bytecode advantage becomes less.

3. Register Allocation

A SOAR register window consists of 16 registers, divided into two sets of 8,
called the high set and the low set. Two registers in each set are used by the
hardware for the receiver and return address, leaving 6 for the converter and runtime
system to use for arguments, local variables, and temporaries. The high 6 belong to
the executing method (persist during the method’s dynamic existence). Currently the
converter uses up to 4 of these for arguments and locals, and the remainder for
temporaries. The low 6 are used for arguments to called methods and for transitory
temporaries that will not persist during a send (because they become the callee

method’s high registers).

“The method lengths include literals and in-line cache instructions. To put these averages in
perspective, total method storage for the bytecode licensed image is 155025 bytes, 774648 bytes for the
SOAR version, while the total for the experimental image is 309043 bytes, and 1513744 for the SOAR
version. Total image sizes are not available.
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15
Receiver and Return Address
14
13
Arguments and Locals l
Register
Numbers [ e
Temporaries l
8
7 Direction
Callee and Return Address of
6 Allocation
5
Callee Arguments v
. A
Transitory Temporaries
0

Figure 2: Register Allocation in a SOAR Register Window

All but the transitory temporaries need not be registers, and in fact may not be.
An area of memory is available to hold excess arguments, local variables, and
temporaries -- called spills in general. Three rules determine when to spill which
values. First, if there are more than four arguments they are all spilled (otherwise
none are). Second, if there are more local variables than will fit in the unused
argument registers, they (the locals) are all spilled (otherwise nome are). Third,
whatever registers remain are used for temporaries; if there are more temporaries than
registers only the excess temporaries are spilled. These spill rules are governed by two
principles, simplicity (spilling entire classes of variables) and avoidance of moving
established values (keeping arguments in registers if possible). For blocks, the block

arguments are moved to the method’s local variables, at which point all the block
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window's registers are available for temporaries.

The transitory temporaries are used for expression evaluation, indirect pointers,
and values that must be moved between two memory locations. They must be
registers. They are allocated from the pool of low registers that are not being used to
hold arguments for the next send. Some invariants are maintained in the converter
code to insure optimal allocation: indirection temporaries are only used briefly (in a
single sequence of instructions emitted at once), and other transitory temporaries are
held only during the fetch phase of code generation (because destinations are always

known before code generation is started).

A major concern was the extent to which values would have to be spilled, since
memory operations are more expensive than register operations. Preliminary results
indicated that 8 registers per method (16 to a window, overlapping caller and callee)
‘would be adequate [SOAR-292R-Blakken|, but the study did not take into account
compiler temporaries. Static results from the converter support the current window

size. In the licensed image only 9% of the methods spill, rising to 11% in the

experimental image. For the licensed image,'®

number of registers | methods using no more than that number
2970
4 65%
8 92%
16 99%
32 100%%

One method would need 30 registers to avoid spilling (31 in the experimental image).

Given that the window size must be fixed, 8 registers per method is a reasonable

choice.!®

These numbers include the 2 special receiver and return address registers. Note that the
percentage of methods that spill is higher than the percentage of methods that require more than 8
registers because the registers are divided up into two regions (arguments and locals, and temporaries)
that have different spill disciplines.

An alternative that would avoid spilling entirely would be variable sized windows, the sizes of
which could be based on powers of two for hardware speed. It can be argued that low absolute limits
should be put on the number of arguments, locals, and converter temporaries, since good Smalltalk code is
(or should be) highly modular.
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Some investigation was done (with the licensed image) into the effect of changing

the number of registers used for arguments and local variables.

pumber | nonspilling | mean number mean
of regs methods of spills method size

860 .59 41.06

4 90% 45 40.64

5 92% .35 40.32

This indicates that 5 registers may be better than the current 4. Both the mean
number of spilled values per method and the mean method size are smallest for 5.
These results are only indicative, however, since dynamic referencing behavior is more
important -- if temporaries are referenced more frequently than the arguments and

locals then they should be put in registers.

Another issue relates to the management of the spill area. Currently there is one
large area of memory for spills, allocated in a stack discipline. Each method that
7spills values allocates a 32 word frame from the spill area through a global register.
Another technique is to allocate a separate spill object for each method that spills.
Each object would contain exactly the number of spills for its associated method.
This scheme would require that one high register be used to point to the spill object.
The effect of this change was explored, with the results indicating that, from the point
of view of register use, there is no appreciable difference. The scheme does not change
the number of methods that spill; rather it increases by one the number of spilled
values for some of those methods that do spill. The mean spill size increased from .45

for the current technique to .48 for the spill object technique.

Since fixed-size memory allocation is typically faster, it is probably adequate.

4. Experience with Smalltalk

The converter is an implementation of a known solution to a well-understood
problem. What I found interesting during the project was the Smalltalk-80 language

and environment in which the converter was developed.

The Smalltalk-80 user interface is, as advertised, easy to learn, simple to use, and
powerful in functionality. It is highly uniform (for example, each of the mouse

buttons controls the same type of activity in all contexts, and there are a few basic
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types of windows, such as editable text and lists), and has well-chosen primitives. I
have never enjoyed the process of programming as much as I did using Smalltalk on a

Dorado.

The Smalltalk-80 language strongly encourages a distinctive, elegant
programming style. This style takes some time to acquire (about six months in my

case), and is hard to appreciate without the Smalltalk environment.

In a conventional language, the code in a module often provides a service that
defines a few data structures (not just one), and case and else-if statements encourage
large procedures. Smalltalk programs tend to be super-modularized [Interfaces], with
classes and methods being smaller and more limited in effect than their equivalents in
a traditional procedural-stew language. My experience with the converter is not
uncommon for neophyte Smalltalk-80 programmers. The first converter
implementation was an (unwitting) attempt to use Smalltalk in the style of a
conventional procedural language. The simulation stack elements were implemented
as tagged symbols, and their processing was done through a case-like dispatch. The
converter was one class. It worked, but clearly did not take advantage of Smalltalk’s
organizing features. The second implementation did away with the dispatch; instead,
each type of stack element was represented by a separate class, and at the appropriate
time was sent a message to convert itself. Deliberately, however, all code generation
was centralized for maintainability. This proved to be clumsy, and the converter was
reorganized (with virtually no changes to the methods) into its final form. Exposure
to Smalltalk-80 system code undoubtedly affected my style, but I also feel that the
language itself (much more than any other I've used) makes one aware of the
difference between good code (clear, well-organized) and bad code (confusing, poorly

organized).

The current converter is reasonably well-structured Smalltalk. The average
method body is small (4 lines of code), and the system is evenly distributed among the

class hierarchies.
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class group | number ol methods in the group lines of code
converter 34 360
evaluator 69 413
emitter 59 247
window 45 227
operand 89 440
total 276 1692

A major consequence of Smalltalk’s super-modularized style and polymorphism is
that the Smalltalk-80 environment [OrangeBook] is needed to understand readily any
substantial amount of code. In a conventional language procedures are larger, making
the context in which one must understand a statement more localized and linear. In
Smalltalk, methods are typically small, connectivity with other methods is high, and
selectors can be ambiguous. The browser, through its senders-implementors-messages
functions, and the debugger, via locus of control, are necessary to connect,
disambiguate, and to a certain extent linearize Smalltalk program fragments. A large
paper listing of Smalltalk code is almost intractable. My first experience with the
virtual image was on paper, and it reminded me of the U.S. Internal Revenue Code. 1
have a law degree, and studying the tax code involved the same bewildering collection
of small, interconnected fragments. One doesn't find a substantial piece that solves
the problem one is concerned with; rather, one skims quantities of fragments,
remembering vaguely what they do. When a critical mass has been scanned, one
experiences the legal epiphany, and sees the framework and the relevance of the
pieces, understanding in the process much more than the solution to the original
problem. With the Smalltalk environment, on the other hand, one can easily find the

set, of relevant fragments -- but the system can only be easily studied interactively.

Unfortunately, the Smalltalk vehicle used for much of the converter’s

development was BS on a Sun 1.5, which could be used to get a sense of the Smalltalk

system, but was too slow!” (and unreliable, due to various Sun problems)'® for

¢ should be noted that BS was not intended to be fast, but rather an elegant UN*X
implementation in C that would serve as a vehicle for testing storage management strategies.
p g & & g

18An amusing one beset a Sun named Phoenix, which caught fire. Interestingly, no workstation I've
used (Dorado, Sun, or Apollo) has been as reliable as mainframe timesharing. I've lost nontrivial amounts
of work (taking more than an hour to replace) on each.
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substantial development!® (the converter took as long as 6 hours to compile, about 5
lines per minute). The major impact that slow speed has on program development is
inhibiting revision. When trivial errors take hours to repair, needed changes are often

not undertaken.

Slow speed can also make a truly interactive system slower than an equivalent
traditional one from the user’s point of view. In particular, Smalltalk requires actual
interactive mouse input (there is no mouse-ahead), while a conventional time-sharing
system provides some input buffering, so that the user can ignore the machine for
intervals when the machine is heavily loaded.?® On the other hand, a fast interactive
system really does provide more leverage. The BS Smalltalk-80 implementation is
roughly 10 times slower thar a Dorado, and I found my productivity roughly increase

by that amount when I moved from one to the other.

Smalltalk on a Dorado is just plain fun.
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¥Dye to bugs in the Sun 1.5 paging routines (causing the system to hang) and the disk software
(resulting in corrupted files), making and keeping Smalltalk images was not feasible. Instead, the ASCI
source of the converter was the basis of development. Each session was started with a pure image, into
which the converter was loaded. When bugs were found corrections were made both to the code in the
image and the code in the source. When BS ran out of space after four to eight hours, or when the
system hung, the image was discarded and the process repeated.

2[4 is important for a highly interactive system to handle input fast enough that the user’s mind
doesn’t wander. Greater speed is not necessary. A quarter to half a Dorado is adequate for Smalltalk.
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Appendix: Converter Output

This appendix contains an extended conversion example. It is intended to give a

sense of the code the converter produces.

The

source for the example consists of 13 lines of Smalltalk-80 containing 15

statements. The method is named example:. It uses a receiver variable r, an

argument

a, and a local temporary l. It sends the messages m, m:, 4, >,

if True:ifF alse, ifProbable:ifPossible:ifUnlikely:, whileTrue:, and to:do:.

example: a

11

l_a.r_1.1_r.

self m. super m. a m: 1.

self =; m.

r_avlearr.

r_(a*1)+ (a*r).

r_a>1l.

(a 1) ifTrue: [ 1 _a ] itFalse: [ " r].
(s = 1) ifProbable: [ = 1 ] ifPossible: [ - 10 ] ifUnlikely: [ - 1000 ].
[ false ] whileTrue: { 1 * 2 ].

1to: 10do: [ :1(1+2].

© self

The source code compiles to 120 bytes (including literals). The bytecode listing

presented

is Revr 0,

17
18
19
20
21
22
28
24
26
28
27
20
30
31
32
a3
34
36
36
37
38
39
40

here was produced by the Smalltalk InstructionPrinter. Receiver variable r

argument a is Temp 0, and local variable | is Temp 1.

<10> pushTemp: 0
<89> poplntoTemp: 1
<11> pushTemp: 1
<83> poplntoRcyr: 0
<03> pushRcyr: 0
<89> popIntoTemp: 1
<70> self

<D0> send: =

<87> pop

<70> self

<86 00> superSend: =
<87> pop

<10> pushTemp: O
<11> pushTemp: 1
CE1> sond: m:

<87> pop

<70> selt

<88> dup

<D0> sond: =

<87> pop

<D0> send: =

<87> pop

<10> pushTemp: O



41 <11> pushTemp: 1

42 <B8> send: *

43 <10> pushTemp: 0

44 <BO> pend: +

45 <03> pushRcyr: 0

48 <B8> send: *

47 <83» poplntoRcyr: O
48 <10> pushTemp: 0

48 <11> pushTemp: 1

60 <B8> send: *

61 <10> pushTemp: O

52 <03> pushRcvr: 0

653 <B8> send: *

654 <BO> send: +

B6 <83> poplntoRcyr: O
68 <10> pushTemp: O

67 <11> pushTemp: 1

68 <B3> send: >

69 ¢83> poplntoRcyr: 0
80 <10> pushTemp: O

81 <11> pushTemp: 1

82 <B3> send: ?

83 <9B> jumpFalge: 88

84 <10> pushTemp: 0

85 <81 41> storelntoTemp: 1
87 <91> jumpTo: 70

88 <03> pushRcvyr: 0

69 <7C> returnlop

70 <87> pop

71 <10> pushTemp: 0

72 <11> pushTemp: 1

73 <B8> gend: =

74 <89> pushThisContext:
76 <76> pushConstant: 0
78 <C8> send: blockCopy:
77 <A4 02> jumpTo: 81

79 <785 pushConstant: 1
80 <7C> returnTop

81 <89> pushThisContext:
82 <76> pushConstant: O
83 <C8> send: blockCopy:
B84 <A4 02> jumpTo: 88

88 <23> pushConstant: 10
87 <7C> returnTop

88 <89> pushThisContext:
89 <75> pushConstant: O
90 <C8> send: blockCopy:
91 <A4 02> jumpTo: 95

93 <24> pushConstant: 1000
94 <7C> returnTop

96 <83 82> send: ifProbable:ifPossible:ifUnlikely:
97 <87> pop

98 <72> pushConstant: false
99 <8D> jumpFalse: 108
100 <11> pushTemp: 1

101 <77> pushConstant: 2
102 <B8> send: *

103 <87> pop

104 <A3 F8> jumpTo: 68
108 <78> pushConstant: 1
107 <23> pushConstant: 10
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108 <89> pushThisContext:
109 <76> pushConstant: 1
110 <C8> send: blockCopy:
111 <A4 06> jumpTo: 118
113 <89> popIntoTemp: 1
114 <11> pushTemp: 1

116 <77> pushConstant: 2
118 <B8> send: *

117 <7D> bdlockReturn

118 <F6> send: to:do:

119 <87> pop

120 <78> returnSelf

The bytecodes translate into 122 SOAR words. Self, the receiver, is in register
14. Receiver variable r is offset 4 indexed from the receiver (symbolically (r14)4).
Argument a is in register 13, and the local variable | is in register 12. The receiver of
a send, and the result it returns, are put in register 6, with the arguments of the send
put in lower registers, starting with register 5. Two system routines are called,
InitLookup and InitSuperLookup, which set up the inline cache, and two system
rroutines are jumped to, methodBlockCopy and BlockMethodReturnTop. Four macros
are used, MethodHeader, MethodPrologue, LoadLiteral, and WindowReturn. For and

understanding of the runtime system, see [SOAR-Daedalus].

MethodHeader
BEGIN
MethodPrologue (SOARTest,example:)
$literals:
n
| §
ifProbable:ifPossible:ifUnlikely:
10
1000
to:do:
SOARTest
$Bytel7:
$Bytel8:
-= evaluate
¥add ri3,constant0,ri2
$Bytel9:
$8yte20:
-- evaluate
== -- putReceiverVariable 0
store ri2, (r1d4)4
$Byte2!:
$Byte22:
-- evaluate
-~ == getReceiverVariable O
load (r14)4,r12
$Byte23:
$Byte24:
-- Send » (0)



-- evaluate
Kadd
%call
2
$Byte2b:
$Byte26:
$Byte27:

ri4,constant0,r8
InitLookup

-- Send Super m (O

~-=- evaluate
%add
skip

SOARTest

fcall
»
$Byte28:
$Byte29:
$Byte30:
$Byte31:
$Byte32:
-- Send m: (1)
-- evaluate
%add
~- evaluate
¥add
%¥call
n:
$Byte33:
$Byte3d:
$Byte36:
$Byte38:
-~ ovaluate
¥add
-- Send m (0)
-- evaluate
%add
%call
3
$Byte37:
$Byte38:
-~ Send m (0
-- evaluate
¥add
%¥call
[
$Byte39:
$Byte40:
$Bytedt:
$Byted2:
~=- Send * (1)
-- evaluate
¥add
-- evaluate
%add
%call
»
$Byteds:
$Byteds:
$Bytedb:
$Byteds:
-- Send * (1)
-- evaluate

ri4,constant0,r8
always r0,r0

InitSuperLookup

ri2,constant0, rb

r13,constant0,r8
InitLookup

ri4,constant0,ril

ri4,constant0,r8
InitLookup

rii,constant0,ré
InitLookup

ri2,constant0, rb

ri3,constant0,ré
InitLookup
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-- -~ getReceiverVariable 0

load
~~ gvaluate
-- == add

add

fcall

L

$Byted7:
~- ovaluate

(r14)4,rb6

r8,r18,r8
InitLookup

-- -~ putReceiverVariable 0

store
$Byteds:
$Bytedsd:
$Byteb0:
-~ Send * (1)
-- evaluate
%add
~-- evaluate
Xadd
%call
.
$Bytebi:
$Byteb2:
$Byteb3:
-- evaluate
Xadd
-~ Send * (1)
-- evaluate

r8, (r14)4

ri2,constant0,rb

ri3,constant0,ré
InitLookup

r8,constant0,rii

-- -~ getReceiverVariable O

load
-- evaluate
%add
%call
*
$Bytebd:
$Byteb5:
~-- svaluate
-- == add
add

(r14)4.,rb

ri3,constant0,r8
InitLookup

ri1,r8,r0

~~ == putReceiverVariable O

store
$Byteb8:
$Byteb7:
$Byteb8:
$Byteb0:
~= evaluate
-= == compare
%add
skip
%add

r0, (r14)4

rzero, truelop, r0
gt r13,ri12
rzero,false0op, r0

-- —- putReceiverVariable O

store
$ByteB80:
$Byte81:
$Byte82:
$Byte83:

-- jumpIfFalse 4

skip

jump
$Bytes4:
$Byte85:

r0, (r14)4

gt r13,ri12
$Byte88
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-- evaluate
%add

$Byte8s:

$Byte87:

== jump 2

-~ evaluate
%¥add
jusp

$Bytes8:

$Byte89:

ri8,constant0,ri2

r13,constant0,riil
$Byte70

-- methodReturnTop

-- evaluate

== <= getReceiverVariable 0

load

(ri4)4,ri4

MethodReturnTop2

$Byte70:
$Byte71:
$Byte72:
$Byte73:
$Byte74:
$Byte75:
$Byte786:
$Byte77:
== blockCopy
-- evaluate
-= == compare
%add
skip
%add
-- BleockCopy
-- evaluate

rzero,truelop,ril
sq rid,ri12
rzero,falseOop,ril

-- == getSpecialConstant b

¥add
%add
%jump
Jump
$Byte78:
$Byte70:
$Byte80:

rzaro,constant0,rb
pc.constantl, rd
methodBlockCopy
$Byte81

~-- methodReturaTop

-- evaluate

-- -=- getSpecialConstant 6

¥add

% jump
$Byte81:
$Byte82:
$Byte83:
$Byte84:
~-- blockCopy
-- evaluate

Xadd
-~ BlockCopy
-- evaluste

rzero,plusi,rid
BlockMethodReturnTop

r8,constant0,ri0

-- -- getSpecialConstant b

%add
¥add
X jump
jump
$Byte86:
$Byte86:
$Byte87:

rzero,constant0,rb
pc.constantl,rd
asthodBlockCopy
$Byte88
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-- methodReturnTop
== evaluate
-~ -- getLiteralConstant 4
¥add rzero,10,r14
%jump BlockMethodReturnTop

$Byte88:

$Byte89:

$Byte80:

$Bytedl:

-- blockCopy

== evaluate
%add ré,constant0,r9

-- BlockCopy

-- evaluate

~- -- getSpecialConstant &
%add rzero,constant0,rb
%add pc,constantl, rd
%jump methodBlockCopy
jump $Byte0b

$Byted2:

$Byte03:

$Byted4:

-- methodReturnTop

-= evaluate

== -- getLiteralConstant b
LoadLiteral(rid, 4)
%jump  BlockMethodReturnTop

$Byte85:
-~ Send ifProbable:ifPossible:ifUnlikely:
-- evaluate
%add r6,constant0,r3
-~ svaluate
¥add r9,constantO, rd
-- evaluate
¥add r10,constant0,rb
-- evaluate

%add ri1,constant0, ré
%call InitLookup

ifProbable:ifPossible:ifUnlikely:

$Byte0s:
$Byte07:
$Byte08:
$Byte0Q:
-- jumpIfFalse 8
~-- -- getSpecialConstant 2
¥add rzero,falselop,r0
%skip ne r0,false0op
jump $Byte108
$Byte100:
$Byte101:
$Byte102:
-- Send * (1)
== evaluate
-- -- getSpecialConstant 7
¥add rzero,plus2, rb
-~ svaluate
Xadd ri2,constant0,ré
¥call InitLookup
"
$Byte103:
$Byte104:

(3)
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-- jump -8
juap $Byted8
$Byte106:
$Byte108:
$Byte107:
$Byte108:
$Byte109:
$Byte110:
$Bytelil:
-- blockCopy
-- evaluate
-~ == getSpecialConstant 8
%add rzero,plusi,rit
-- evaluate
-- ~- getLiteralConstant 4
¥add rzero,10,r10
-- BlockCopy
-- evaluate
-- -- getSpecialConstant 8
¥add rzero,plusi,rb
%add pc.constantl,rd
%jump  methodBlockCopy
jump $Byte118
$Byte112:
$Byte113:
-- svaluate
== -- putTemporaryVariable 1
store ri3,(r14)5
$Bytelid:
$Byte116:
$Bytel18:
-=- Send * (1)
-- evaluate
-- -- getSpecialConstant 7
%add rzero,plus2, rb
-= svaluate
-- == getTemporaryVariable 1
load (r14)6,r6
%call InitLookup
*
$Bytel17:
-- blockReturnTop
~=- evaluste
¥add r8,constant0,ri4

WindowReturn
$Bytel18:
~- Send to:do: (2)
-- evaluate

%add r8,constant0,r4
-- evaluate
%add r10,constant0, rb
-~ evaluate
%add ril, constant0,r8
¥call  InitLookup
to:do:
$Bytel119:
$Byte120:
-~ methodReturnReceiver
WindowReturn
-= 7 literals
== 1 arguments
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-- 2 temporaries
-- 3 stackoids
-- 120 bytes

-- 122 words

This is the symbolic output of the converter; all comments were generated
automatically. Compare the operator sequence * + * (bytes 40-47) with the sequence
* * 4 (bytes 48-55) -- the latter requires that the result of the first * be saved in a
temporary (register 11). Compare the inline ifTrue:ifFalse: (bytes 60-70) with the
ifProbable:... send (bytes 71-97), and the inline whileTrue: (bytes 98-104) with the
to:do: send (bytes 106-119).



27

Appendix: Converter Statistics

This appendix contains the statistics obtained from the conversion of the licensed
image; 4770 methods were converted in 238 seconds, 1137 containing blocks and 296
requiring 2 passes. The general form of each table entry is <value>:<number of

methods with that value>.

This table displays the distribution of the lengths, in bytes, of the bytecode
methods. These lengths are exclusive of the object header but include the literal

frame.

Bytecode Method Sizes (bytes) 32.4776 mean

2.305 3:81 4:11 5:127 6:194 7:152 8:220 9:152 10:160
12:178 13:183  14:121  15:116 16:113 17:109 18:105 19:102 20:66
22:76 23:58 24:62 25:53 26:70 27:58 28:63 29:42 30:368
32:28 33:31 34:40 35:51 36:37 37:35 38:26 39:26 40:38
| 42:17 43:25 44:26 45:17 46:31 47:31 48:24 49:22 50:18
52:21 53:18 54:21 55:25 56:16 57:15 58:16 59:14 60:14
62:16 63:6 64:19 65:13 66:23 67:21 68:13 69:13 70:15
72:11 73:12 74:10 75:10 76:13 77:9 78:13 79:8 80:6

82:12 83:7 84:9 85:10 26:8 87:3 88:7 89:8 90:10
92:5 93:8 94:5 95:6 96:8 97:7 98:6 99:2 100:4
102:7 103:8 104:5 105:4 106:2 107:6 108:2 109:5 110:6
112:1 113:1 114:4 115:4 116:6 117:3 118:3 119:4 120:5
122:4 123:2 124:3 125:2 126:4 127:3 128:4 129:4 130:2
132:3 133:2 134:5 135:3 136:5 137:4 138:2 139:1 140:2
142:2 143:1 144:3 145:2 147:3 148:2 149:4 150:1 151:1
153:1 154:2 155:4 157:4 158:2 159:2 160:3 161:1 162:2
164:2 165:2 166:1 167:1 168:1 170:1 171:3 175:1 176:1
178:3 179:2 180:2 181:5 182:1 184:2 189:1 190:2 191:1
196:1 197:1 198:1 200:2 201:1 202:2 203:1 204:2 205:1
208:2 210:1 212:1 214:1 216:1 217:2 222:1 223:1 224:1
229:2 230:1 238:1 239:1 240:2 242:1 245:1 246:2 251:1
256:2 260:1 261:1 265:1 268:1 270:2 272:1 279:1 280:1
285:1 289:1 301:1 302:1 309:1 324:2 337:1 349:1 353:1
402:1 487:1 637:1

11:193
21:89
31:44
41:30
51:19
61:15
71:13
81:7
91:8
101:6
111:4
121:6
131:2
141:4
152:4
163:2
177:2
192:2
207:1
227:1
253:1
281:2
388:1
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This table displays the distribution of the lengths, in words, of the SOAR

methods produced by the converter. These lengths are exclusive of the object header,

but include the literal frame and all code, including the method prologue.

SOAR Method Sizes {words) 40.645] mean
7:325 8178 9:59 10:50 11207 12:114  13:239 14:166 15:133  16:117
17:151  18:144 19:152  20:126  21:118 22:75 23:82 24:92 25:96 26:77
27.83 28:76 29:49 30:65 31:50 32:75 33:35 34:54 35:42 36:40
37:43 38:40 39:34 40:31 41:37 42:14 43:34 44:24 45:27 46:21
47:25 48:39 49:30 50:29 51:24 52:32 53:22 54:19 55:19 56:21
57:19 58:23 59:25 60:20 61:21 62:18 63:11 64:15 65:19 66:19
67:16 68:20 69:14 70:13 71:8 72:8 73:10 74:17 75:16 76:12
77:8 78:13 79:18 80:13 81:10 82:13 83:13 84:12 85:11 86:6
87:6 88.7 89:8 90:2 91:8 92:8 93:6 94:4 95:6 96:9
97:13 98:4 99:5 100:8 101:5 102:13 103:7 104:4 105:3 106:5
107:12 108:3 109:5 110:7 111:3 112:10 113:6 114:5 115:7 116:3
117:5 118:6 119:5 120:5 121:4 122:3 123:2 124:5 125:4 127:8
128:3 129:5 130:4 131:5 132:3 134:4 135:4 136:3 137:3 139:1
140:4 141:4 142:2 143:1 144:3 145:4 146:5 147:3 148:4 149:2
150:2 151:2 152:5 153:1 154:2 155:5 156:1 157:3 158:2 159:1
160:2 161:2 162:3 163:3 164:2 165:1 166:2 167:3 169:1 170:1
171:2 172:1 173:1 175:2 176:3 177:2 178:3 179:1 180:2 182:2
1 183:2 184:3 185:1 186:2 187:1 189:1 190:1 191:4 192:3 193:1
194:3 195:3 196:2 197:3 198:4 199:1 200:3 201:1 202:2 204:1
205:2 206:2 207:1 208:2 209:1 210:1 211:1 212:1 213:2 214:1
215:1 217:2 218:1 219:1 220:1 222:1 226:1 227:1 228:1 229:1
231:2 232:2 233:2 234:2 236:1 237:1 238:1 241:2 244:1 245:1
246:1 247:1 248:2 250:1 254:1 258:2 261:1 262:1 263:1 265:1
267:1 272:1 277:1 278:1 280:1 281:1 283:1 284:1 286:1 288:1
291:1 294:2 296:1 299:1 305:2 309:1 312:1 316:2 317:1 321:1
322:1 328:1 333:1 335:1 339:1 341:1 342:1 350:1 359:1 364:1
367:2 374:1 376:1 383:1 410:1 447:1 452:1 611:1 684:1

This table presents the distribution of the number of literals in the literal frame.

Literal Frame Sizes 4.77841 mean
0776 1:873 2729 3:595 4:.410 5:244 6:190 7:186 8:131 0:88
10:75 11:76  12:74  13:47  14:33  15:38  16:29 17:21  18:256 19:21
20:14 21:22 22:10 23:9 24:12 25:6 26:9 277 28:4 29:3
30:3 31:1 32:2 33:6 34:3 35:1 374 38:1 39:2 41:1
42:2 44:1 45:2 50:1 58:1 61:1 62:1
This table presents the distribution of the number of method arguments.
Argument Counts 0.82914 mean
09993 1-1630 2:495 3:187 4:75 5:51 6:18 7.7 &5 121 13:1
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This table presents the distribution of the number of named local method
variables (the number of Smalltalk method temporaries minus the number of

arguments).

Local Counts 0.675262 mean
I414 1583 92:351 3171 498 558 6:32 7:25 812 910
10:9 11:2 12:2 15:1 18:1  19:1

This table presents the distribution of the number of Smalltalk method

temporaries.

Method Temporaries 1.5044 mean
01347 11306 2636 3:393 4:231 5:134 6770 7:57 837 9:22
10:18 11:7 12:3 13:3 14:5 15:1 17:2 181 21:1  22:1

This table presents the distribution of the number of unnamed converter

temporaries.

Converter Temporary Counts 0.821174 mean
TE3% 11940 2.655 3:206 458 500  6:06 711 87 92 10:2

This table presents the distribution of total register requirements (Smalltalk

method temporaries plus converter temporaries).

Register Requirements 2.32558 mean
1407 11040 2:665 3:498 4:360 5:268 6:189 7:99 883 90l
10:39 11:31 12:21 13:11 14:7 15:7 16:3 17:1 181 19:1
22:1 23:1 25:1 26:1 28:1

This table presents the distribution of spill area sizes.

Spill Sizes 0.449497 mean
04394 154 243 3:36 4:73 5:103 6:53 730 821  9:3
10:10 11:3 12:2  13:1  14:4 16:1 19:2 20:1  22:1
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