Query Optimization in Distributed Databases
Through Load Balancing

by

Rafael Alonso

Coprright © 1986 Rafael Alonso

Query Optimization in Distributed Databases
Through Load Balancing

Rafael Alonso

Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Sciences
University of California, Berkeley
Berkeley, CA 94720

ABSTRACT

As technology advances, computing environments composed of large numbers of
workstations and mainframes connected by a high bandwidth local area network become
attractive. These systems typically support a large number of application classes, and
the heterogeneity of their workload, coupled with the decentralization of the systems,
can lead to load imbalances across the network. This work attempts to study the
benefits of load balancing strategies in the context of a particular application, distri-
buted database systems. It was felt that, by focusing on a specific area, the problem
would become more tractable. The choice of database management systems can be
justified not only by their intrinsic importance, but also by the adaptability of load
balancing s_trategies to query optimization algorithms.

In order to determine whether load balancing strategies can indeed be adapted to
current optimizers with a moderate amount of effort and to see whether the resulting
performance benefits are sizable, both benchmarking and simulation experiments were
carried out. The approach taken was first to construct a simple model in order to gain
some insight into the problem. This was followed by some benchmarking experiments
on a running system, the R* distributed database at the IBM San Jose Research Labora-
tory. Finally. a model of distributed INGRES was constructed and validated by meas-
urements of INGRES queries and of U.C. Berkeley's TCP/IP implementation. It was
hoped that, by utilizing two different techniques, simulation and measurement. and by
examining two very different distributed database systems, R* and distributed INGRES,
the results of this thesis would be of both greater reliability and wider applicability.

The conslusions of this study are that query optimizers are relatively easy to
modify in order to incorporate load balancing strategies, and that the increase in the
running time of the algorithms is negligible. Furthermore, load balancing results in a

sizable performance improvement even in environments with a moderate load imbal-
ance. It sbould be pointed out that the results of this work are important not only from
the viewpaint of load balancing studies, but also provide useful insights into the con-
struction of distributed database systems.

ACKNOWLEDGEMENTS

I wauld like to thank my thesis committee for their guidance in completing this
work. Licien LeCam made many valuable comments concerning the statistical aspects
of my tas=sis. Mike Stonebraker had many insights on the truly important aspects of
the prom=m. and was invaluable in defining the scope of my thesis in the early stages of
the wor-. Most of all, I would like to thank my thesis advisor, Domenico Ferrari, who
led me w=rouch numerous rewrites, and always made time for me even when he was

RYSSRN,

overloade=: with pressing matters.

The working environment at Berkeley was extremely supportive for carrying out
research. [would like to thank the members of the Computer Science department for
having czught me so much in so many ways. I would specially like to thank the
members =f the PROGRES and CSR groups, who sat through many trial talks.

A larze part of the work involved in my thesis was carried out at the [BM Research
Laboratcr— in San Jose. The members of the R* group deserve special thanks for allow-
ing me . use their facilities for experimentation. In particular I would like to ack-
nowlede= zhe help of Robert Yost, Bruce Lindsay and Guy Lohman.

Thic work was supported by an IBM Fellowship and by the Defense Advanced
Research “rojects Agency (DoD), ARPA Order No. 4031, monitored by the Naval Elec-
tronics = stems Command under contract No. N00039-82-C-0235. The views and con-
clusions ~ntained in this document are those of the author and should not be inter-
preted a= representing official policies, either expressed or implied, of the Defense
Research “rojects Agency or of the US Government.

I war!d like to thank my parents, Maria Luisa and Matias, for all they have taught
me durimr= the years. Most of all, I would like to thank my wife, Marilin, who endured
the mam~ hardships that this thesis caused her without complaining, and was always
there to mcourage me when I needed it most. To her, [dedicate this work.

it

TABLE OF CONTENTS

ACkROWIEdEOMENESoruimiaiiiircccit s e i
Table Of COMUEENLS ...oooiiieeeceeieiiiiiiiisesaoresti s nasasaa et ee st s s s st s st it
Crapter 1. Introduction ... 1
1.1 Load Balancingcccoceeeeiiciinnnnns i 2
12 Distributed Databases and Query OptimizZationcoccooriviucencinnenmnneess 2
1= The PrODICII .eemeieeeeeececeeeeeaeasseeeeacsesammmmmnessssssarasssebras st s e st e s sanns st e 4
14 QUL APPIOACh .ottt e)
i3 Outline of the TRESIS ..oviiiiiriereeieiiiim et eeec e 5
Chapter 2. Survey of Load Balancing Strategies ... 6
1 Task Assignment: Graph Theoretic Methods ..o 7
S Task Assignment: Dyvnamic Programming Approaches ... 8
3 Task Assignment: Integer 0-1 Programmingcocooveiemeroinimminsnanecencaces 8
I4 Job Routing: Queuing Network Approachesccoeveniiciiirimaminsniccee: 9
P Job Routing: Load Broadcasting Methodsoccoirniiiiiiinrinnninicenee 9
i€ Job Routing: Implementations ..ot 10
vy OLBOT WOTK ooeeeeeeeeeeeeeiieereseee e eessamemanes e s et e seeenc o s s s n e st e b n s e s s aa o s ma e 11
s SUITLINIATY evveuvveseeemcecseeseensnssaesereseseeams s s ea s sas 2 e EEeh Lt et st st 12
Chapter 3. The Preliminary Simulation Model ... 13
21 IRETOAUCLION oevneeeeeeeeneinnenensemneenssssanmenmnnssrssanteanassasnnssaaasasasttesateotsannnsnnnns 13
iz The MOAEL oo eeeceeearaeeceeessenemmaaaaas see s aes et es s b st e s e et e nes s smnn e 14
Iz Preliminary Experiment #1: the benefits of load balancingcccceeeeeeee. 18

4 Prel:minary Experiment #2: update frequency of load information 22
z COD AIUSIONS evreereeeeeeeeeiaasseaesmseeeceeesassmmmnnssnanseesaasssannnnaaasassstsassesnsnnsamannas 26

Chapter 4. The R* Experiments
4.1 Introductionccccocieiinimiminnneieneaeenes
4.1.1 Background ...
4.1.2 Query Processingin R* ...
4.1.3 Why R* e,
4.2 Experiment Design ...ccoeeeeeeecciininnnnnnes
4.2.1 Objectives .ceeovrireiiieiinieneiiieneeiaees
4.2.2 Experimental Methodccccccoeeiiinnns
4.2.2.1 The Database ..o
4.2.2.2 The Workload ..ot
4.2.2.3 Generating the System Load
4.2.2.4 Medifying the Optimizer Plans
4.2.2.5 Renning the Queriesc.coooiviiemncn.
423 System Configurationcceeceeceenanen.
4.3 Results oo
4.3.1 R* Experiment #1 .ooiiiiiiiiiiinn.
4.3.2 R=* Experiment #2 ..o
41.3.3 Experimental Problems ...
4.4 Implementation Considerations
4.5 Conclusionscooveeecccccaiemrnnniieeeeecenaans

Chapter 5. Distributed INGRES
5.1 Introduction ..ocoeeceeccccranniieeeeeeeeee s
5.2 The Modelooooiiiiiiiceiicii e
5.3 Experimental Resultscooccoiinee.
5.3.1 Performance of the Algorithms
5.3.2 Increased Local Datacccceeceeieieen.
5.3.3 The Effect of a Larger Network
5.3.4 The Effect of Workload Changes
5.3.5 Tkhe Stability of the Algorithm
5.4 Conclusions ..ccceceeeeeeccoormmimieeenarineeeee

Chapter 6. Conclusions and Future Work

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

..

...

...

..

il

3

)
-1

EHERRYEESBREREY

n

Uy
o O Wn

60

.1 COonClUSIONS ..ovrvuneeennerennnirnnaanronsasenes e eerieesessnssenctsesesansnraennannsrrsanmmmmmnesot
£.2 FRUUre WOTK .onooeeceeiieeieeeeeceeecseesaessenseeteessans e sassssnastans s ssn s s sa s s e e
TN 1T 4 R Y +) 5 ARSI RSN

iv

CHAPTER 1

Introduction

In recent years, advances in technology have made possible distributed computing
environments composed of a large number of loosely coupled heterogeneous processors
connected by a high bandwidth communication network. These environmenis are par-
ticularly desirable to many users for a variety of reasozs which have been widely dis-
cussed in the literature (see [LeLann1981] for example). These motivations ixzlude giv-
int groups of users the ability to tailor their working environment, gradually Increasing
the total computational power available, and achieving greater availability. resource
sharing, as well as increased performance. Many of the currently existing distributed
systems are decentralized, use a local area network (LAN) [Clark1978; as the communi-
cation mechanism, and are composed of a large number (but usually less thzn 100) of
workstations and mainframes. These systems typically support a wide varietr of appli-
casions. Such heterogeneity of the workload, coupled with the decentralization of
resource management in the system, can lead to a situation where, most of the time, the
svstem load is quite unbalanced across the nodes of the network. For examp:=. at U.C.
Berkeley, experience has shown that, while some processors are so heavily lczded as to
be unusable. other machines are underutilized. Althougt often users could ther log onto
another machine, the resulting control system may be unstable, and nalve uszrs cannot
be expected to cope effectively with these potential instabilities. In order to remedy this
problem in a general way, load balancing techniques that can be used transperently by
the system are required, much in the same way that virtual memory techriques are
currently employed on the users’ behalf to manage their memory space automatically.
It is the study of automatic load balancing strategies that motivated this research.

In order to make the problem tractable, this work focuses on one particular appli-
cation, distributed database management systems (DDBMS’s). The problem area that
thi thesis addresses is that of integrating load balancing strategies with the zizorithms
cu-tently used by DDBMS's so as to improve their performance. Not only are DDBMS's
an extremely important application but, as will be showr later, the algorithms employed
by query optimizers work particularly well in conjunction with load balancinr schemes.
Fu-thermore. there is somewhat more user experience with DDBMS’s {(althouch not a
larze amount) than with other types of distributed svstems. It should alsc be noted
th=t the work in this dissertation cannot only be justified from a load balancizr point of
view, but also for the insights it brings into the development of DDBMS querr optimiz-

ers

The rest of this chapter provides some background information. First, some of the
attributes of load leveling are summarized, and its benefits detailed. This is followed by
an introduction to the relevant features of DDBMS’s and their query optimizers. Next,
there is a section providing an extended statement of the problem and commenting on
the adaptability of load balancing strategies to the query optimization problem. The
subsequent section explains the experimental approach followed. The chapter concludes
by presenting an outline of the dissertation.

1.1. Load Balancing

A load balancing strategy is composed of two parts, a load metric and a load pol-
icy. The former is an estimator of the level of load of a given processor, and is typially

a function of one or more system variables. For example, in Berkeley UNIX! 4.2 BSD
[Leffler19832, Ritchie and Thompson 78|, the load metric used is the load average
(given by both the la and the w commands), which is loosely defined as the number of
jobs in the run queue. The values of the load metric are used by the policy in order to
make load balancing decisions. An example of a load policy would be to send incoming
jobs to the processor with the smallest load (as defined by the appropriate metric)
except for word processing jobs (which always go to a batch machine) and for line-
printer jobs {which are always executed locally). There are many possible criteria by
which to judge a load balancing strategy, for example, the ease and cost of implementa-
tion, and the stability of the algorithms. The purpose of this thesis is not to examine in
detail the problem of choosing the load metric and the load policy, but rather to deter-
mine the suitability of load balancing strategies for DDBMS’s.

A condition of load imbalance is undesirable for many reasons. Apart from the
inherent unfairness of that situation (since many jobs are suffering degradation of ser-
vice while others enjoy the use of underutilized resources), an imbalance may cause a
decrease in the global system’s throughput and an increase In the system’s mean
response time. Misused resources represent a waste of money and typically result in
installations buying more hardware than they really need. It should be made clesr that
the load imbalance problem exists not only in environments where there is a3 large
number of distributed applications, but even where processes run more or less indepen-
dently in a single processor, since in the latter case too many processes may be assicned
to a given processor. Of course the problem is worse in the former case since a single
resource bottleneck can potentially affect many distributed applications; it is also a
much more difficult problem to solve.

1.2. Distributed Databases and Query Optimization

In the past few years much research has been done in the area of distributed data-
base management systems (DDBMS’s): see [Rothnie1980, Williams1932,

IUNIX s a trademark of Bell Laboratories

Stonebraker1977] for some examples. DDBMS’s are attractive for a variety of reasons:
they allow greater security by letting groups within an organization retain control over
access to their data; sharing of data and other resources is simpler than in a collection of
single site databases; there is the possibility of physical parallelism in the processing of
queries; data may be placed closer to where it is used, thereby enhancing performance.
While the usefulness of DDBMS'’s is clear, many of their implementation issues have not
been fully resolved, partly because of their complexity, but also because there is limited
real experience with their use.

Two of the main decisions to be made in the design of a DDBMS are: how should
the data be partitioned among the nodes in the system; and, secondly, how should query
processing take place. The answers to both questions are of critical importance t< the
performance of the DDBMS. The first topic deals with the issues of data replication,
availability. access patterns, and consistency, among others. In the present study this
area will ot be considered, in the sense that data allocation strategies will not be inves-
tigated, bu: of course how the data is partitioned will affect our work in the second area.
It is the se~ond issue which concerns us, namely, given that the data is distribute? in
some “‘reasonable” form, how should the DDBMS handle a user inquiry involving dsta
that is at perhaps widely separate locations so as to satisfy the inquiry with reasonable
performance. It should be noted that the physical location of the data is, in most sys-
tems, deciéed upon at database generation time, while query processing is done oz a
query by query basis throughout the lifetime of the system.

To bezier understand the optimization problem, we will focus our attention fzr a
moment or the role of a DDBMS query optimizer (we will also refer to it as a query
planner). The query optimizer in a DDBMS is presented with a complex query that may
deal with multi-site data. The planner’s job is to determine the best way to decompose
it into a partially ordered sequence of simpler single-site queries and generate the
sequence of data moves that may be required before executing each of these single-site
queries. In the case of a relational DDBMS, the optimizer is presented with a query that
concerns a multiple number of tables. (Throughout the rest of this work a relatronal
database m~del will be assumed, although the ideas presented here apply in a wider con-
text. See ;['atel975] for a description of the relational model.) The planner then tries to
plit the query into a set of simpler tasks (i.e., ones that deal with a smaller number of
relations). The number of pieces into which the query can be broken, and the order in
which the lanner decides to execute them, may have a tremendous impact on the sp=2d
of executior of the multi-site query. The algorithms for query decomposition are ustally
beuristic in nature (see [Wong1976, Youssefil978; for more details). Once the optim:zer
bas broken up the multi-site query, it needs to assign the single-site queries to different
processors znd to decide whick relations (or pieces of relations) to move in order to exe-
cute the queries. Thus, the DDBMS has to answer the following interrelated questizas:
how to brezt up complex queries into simpler ones, which data to transfer over the com-
munication mechanism, and in which node(s) to do the processing.

There are many factors involved in making the above decisions. Typicaly, a query
planner will try to minimize a given function of the resource demands for = query (the
cost function). Some of those demands are the number of messages sent, ths amount of
I/O generated, and the CPU time utilized. For example, in R* [William=1982], the
optimizer tries to minimize a weighted sum of the three resources just menzioned. It is
by modifying the cost functions used by the planners that load balancing wii be imple-
mented. It is worth mentioning that none of the currently implemented tw proposed
systems has made use of load balancing as a means to improve the performance of the
DDBMS. This is unfortunate, especially since much of the earlier work = DDBMS
optimizers has made assumptions about processor loads which were ofter anrealistic.
Some of the simplifications have been: considering the available processors = identical,
assuming that differences in load among systems can be disregarded; 3xcusing on
transmission delays as the primary cost factor. The last simplification mat be valid in
some point-to-point networks like the ARPANET [McQuillan1977], but seex= incorrect
in a local area network [Clark1978| environment. The first two simplificzzons essen-
tially assume that a given task will generate the same amount of work in wiatever pro-
cessor it is executed. This neglects the queuing effects present in all systems ‘ie., effects
like thrashing [Denningl968] in virtual memory systems) that we are familiz with: in a
heavily loaded system, a small job will degrade system performance far bevond 1its
intrinsic weight. It is clear that, by considering the actual computationa! ipad of the
available processors, one can attempt, through load leveling techniques, to mprove the

execution time of queries.

In the following chapters, the query optimizers for two running DDBA= s, R* and
distributed INGRES |[Stonebraker1977, Stonebraker1976., will be descril»= in more
detail.

1.3. The Problem

This study focuses on the following question: can the performance of a DDBMS be
improved by using load balancing techniques? It is clear that some degree =f improve-
ment could always be achieved by giving more knowledge about the system =: the query
planner, but only if the gains are sizable will this proposal be of more thz academic
interest. Note that system designers, who have sunk many person-years a effort into
their query optimizers, might be reluctant to discard their current software 1ad develop
new code that incorporates load balancing. Thus, it would be desirable tc —=duce to a
minimum the changes the introduction of a load balancing scheme will requre. Also, it
must be shown that, using easily implementable load metrics, and in envirorments that
are not extremely imbalanced, load balancing still makes sense, even wher accounting
for the overhead of the scheme. Hence, a better statement of the problem wnild be: can
load balancing strategies be easily introduced into current optimizers in suci a way that
the performance of the system will be substantially improved in realistic s~uations of
imbalance and under reasonable conditions?

1.4. Our Approach A

In order to answer the questions posed in the previous section, the following
approach was taken: First, some exploratory simulation studies were performed in order
to get some initial insights into the problem; then, an experiment was run with an exist-
ing system. the R* DDBMS at the IBM Research Laboratory in San Jose finally, a
second simulation model was completed, this one of distributed INGRES, which was
calibrated by measurements performed on existing software. It is hoped that, by utiliz-
ing two different techniques, measurement and simulation, and by looking at two very
different svstems (R* and distributed INGRES), the results of this work will be regarded
as havinc both greater reliability and wider applicability than if they were only based
on a singi: system and a single evaluation technique.

1.5. Outline of the Thesis

This thesis consists of five more chapters. The next surveys the existing load
balancing literature, and is followed by a chapter on the preliminary simulaidon model-
ing study. Chapters 4 and 5 describe the work performed on R* and on distributed
INGRES, respectively. The final chapter presents the conclusions that car be drawn
form the results, and outlines our plans for future research.

CHAPTER 2

Survey of Load Balancing Strategies

In this =napter, some of the previous work in the area of load balancing is summar-
ized. Since =he load balancing literature is extensive, not all of the papers that have
been publisz:ed on the subject are described here. However, the most widely used
approaches z—¢ discussed in some detail, and references are given to a large number of
studies. M=s: of the work surveyed has been found to be somewhat inappropriate for
practical immiementations, due to the restrictive nature of the assumptions made by the
authors. Somme actual implementations do exist, and they are also surveyed.

There ze various ways to categorize the available literature: on the basis of the
svstem confzruration and topology assumed by the study (two processors ¥s. an arbi-
trary numb=- of processors, broadcast vs. point-to-point network, heterogeneous vs.
homogeneors nodes), of the preemptive vs. non-preemptive nature of the policies, of the
tvpe of solu=ion proposed {optimal vs. heuristic), of the solution method (minimal cut-
maximal fia= . dynamic programming, queuing networks, simulations), and so on. We
chose to struaoture this survey on the basis of the observation that, in general, one of
two somewra: related problems motivates a research effort in the load bal:ncing area:
either task zssignment or job routing. The first involves breaking up a process Into
multiple sut-units (tasks), which will run in parallel in a distributed system. The second
entails scheculing the (usually independent) jobs that enter (at possibly different places)
a distributez system. As we describe more fully in Section 3.1, it is the job routing
approach thzx is of most interest for our work.

Task 2ssignment policies try to achieve maximal parallelism, while taking interpro-
cessor comrmnication (IPC) delays, and maybe other constraints {such as memory size),
into accoun:i. Papers on task assignment typically assume that all tasks are available at
the same tire, and that their running times, as well as their [PC patterns, are known in
advance. Tziese assumptions do not hold in general for distributed systems. but are par-
tially justif =€ in the context of those studies for the following two reasons: (1) since a
single process is being broken up into many tasks, all the pieces are ready to be
ccheduled 2: the same time, and (2) presumably the program has been sufficiently stu-
died before = is divided into subunits that the execution time behavior of the tasks can
be predictez One major flaw of these approaches is that, in general, they do not reflect
certain nor—imear effects such as multiprogramming interference. On the positive side,
this kind of #work results in optimal policies for the models considered. Task assignment
models have been studied by three different approaches: by graph theoretica! techniques,
ty dynami: programming, and by integer 0-1 programming. The first three sections of

this chapter deal with these topics.

In job routing, the goal is to offload overutilized resources in a system with. wsually,
excess capacity, by balancing requests among the available resources. Much of the work
in this area is similar in flavor to the queue scheduling problem, and indeed some of the
approaches have consisted of modeling a distributed system as a set of queues with no
interprocessor communication overhead or delays modeled. This is the subject of the
fourth section of the chapter. The fifth section describes further work in job routing,
where a load balancing decision is made based on some information about thke global
state of the system, this information usually being broadcast by the processors mvolved.
Next. the best known existing implementations of load balancing are described. The fol-
lowing section consists of a brief guide to work not surveyed in previous sectizzs. The
chapter concludes by presenting a summary of our comments on the various apyroaches.

2.1. Task Assignment: Graph Theoretic Methods

The first work in this area was done by Stone [Stonel9%7], whose studies were
motivated by the processor-satellite installation described in Michell976]. Stone first
considered the two processor case. Both tasks and processors are drawn as podes in a
graph; a link appears between two tasks if they communicate, and the link’s weight is
the communication cost. A link is created between each processor and all the tasks;
each link is labeled with the cost of executing the task at the other processor. A maxi-
mal flow-minimal cost cut in this graph represents an optimal assignmen:. In
[Stonel@77| Stone also was able to generalize this approach to the n processor case.
However. there are no efficient methods to solve the n-way minimal cut probler: hence,
the algorithm can only be used as an off-line processing technique. There are other
deficiencies in this model, such as the absence of any task ordering assumption, and the
need for much information about the tasks to be available. In a later paper [Stor=1978],
Stone presented the following existence proof: for the two processor case, there exists a
load metric (which he called the eritical load parameter) such that, if a module is
assigned to the ‘‘less loaded” processor (as defined by the critical load parameterj. 2s the
load increases in the more loaded processor, there is at least one optimal assiznment
that also schedules that module in the less loaded processor. In essence this mezns that
a stable policy was found (since, as the load becomes more imbalanced, previous deci-
sions do not have to be revised). Rao et dl. [Rao1979] extended the graph-theoretic
method to account for memory limitations in one of the two processors. Wu and Liu
(Wul930_ considered more complicated communication costs {i.e., the IPC costs are
related to the distance separating the processors) while assuming that the comprtational
costs were identical for all machines. Bokhari [Bokharil979] extended Stone's madel by
adding two pew factors: (1) the cost of reassigning tasks, and (2) the cost of task
residence. Lo and Liu [Lol1981] considered a group of near optimal heuristics to solve
the maximal flow-minimal cost problem for n processors. For a more detailed sarvey of
the graphical method see [Chu1980], where a program flow method to estimate IPC

costs &= also described.

2.2. Task Assignment: Dynamic Programming Approaches
For the special class of tree-structured programs, Bokhari [Bokharil981] was able to

find an O{mg=)} algorithm for scheduling m tasks among n processors. He first con-
sidered scheduling in a system where computational costs are machine dependent, but
time-invariant (bis model includes [PC costs as well). Bokhari’s approach consists of
constructing a graph, where the nodes are labeled with a tuple (i,j), representing the
assigement of task i to processor j. The link between nodes {i,j) and (k,I) has a weight
properticnal to the IPC cost between tasks i and k (when they are assigned to proces-
sors j an L respectively), plus the cost of running task k at processor 1. The shortest
path berween the beginning and the end of the graph represents the optimal assignment,
and ean be computed by a dynamic programming algorithm. Next, he considers
schedeling across time, i.e., he assumes that the computational costs are time varying,
and one can delay a task so that it runs when a CPU is less loaded, but there are dead-
lines tha: mus: be met, or a penalty paid. This problem turns out to be solvable by
essentiailv the same method as the previous one. Although this extension is more gen-
eral than the approaches in the previous section, since computational costs can change
with time. there is still no way to model the increased delays due to many tasks being
assignad to the same processor.

2.3. Task Assignment: Integer 0-1 Programming

Chu et al. |[Chul980] described a model which can be resolved by an integer pro-
gramming tecknique. Their approach consists of setting up a cost equation and some
constrain: equations; tasks are assigned to minimize the cost equation, while still satisfy-
ing the requirements of the constraint equations. The cost equation has terms of the
form a *c .. where a; is 1 if task i is assigned to processor j, and ¢ is the cost of run-
ning task i at processor j; for a given task assignment, the sum of these terms equals the
total ecost of the assignment. The equations can be set up to include not only these
computagional costs, but also the costs due to IPC, and to model various constraints,
such as real time deadlines, limited memory and task ordering. This method requires
the avaiiability of extensive workload information and is computationally expensive as
well. Chi ef ¢’ mention that an assignment problem with 15 processors and 25 tasks
would generate 8000 constraints and 2500 unknowuns, and they cite a study that found
that the required calculations would take on the order of a few minutes on a CDC 6000
series machine. While this is appropriate as an offi-line method, it is unsuitable for a
runtim= approach. Ma, Lee and Tsuchiya [Mal982] explored branch-and-bound solution
methods tc the 0-1 integer programming problem. Although their approaches were
more efficient, they still required about a second of CPU time on a2 CDC 6600. It should
also be mentioned that a 0-1 integer programming approach was taken in ‘Ceril 982} for
optimal query processing in DDBMS's. Ceri and Pelagatti focused on data transfer costs

for join operations and neglected load considerations. However, since these authors
claim that for queries with a small number of joins their approach is suitable for imple-
mentation, perhaps it would be worthwhile to extend their model to include load balanc-

ing considerations.

2.4. Job Routing: Queuing Network Approaches

Chow and Kohler [Chow1977] first studied the job routing problem by examining
the two homogeneous processors case. They compared the turn-around times of jobs
esing various queuing models. A recursive solution technique was used to solve the
=guations describing a distributed system model composed of two queues and a com-
— unication channel. the latter being used for load balancing. When the load is unbal-
zaced, jobs are preempted, and the channel is used to reassign the jobs from the more
iaaded processor to the other one. The models studied included: (1) two M/M/1 sys-
tems (no load balancing at all), (2) same as the first, but arriving jobs join the shortest
aueue, (3) like the second, but with the communication channel, (4) two M/M/1 queues
with the communication channel (ie., in the fourth model, jobs initially join a queue
randomly, whereas in the third model they arrive at the shorter queue first), (5) an
M /M/2 system and (6) a single queue with twice the arrival and departure rates of the
other cases. The authors show that the turn-around times degrade from model (1) to
:£), with the behavior of model (4} depending on the channel speed. Chow and Kohler
extended their results in [Chow1679 to include multiple heterogeneous processors. They
~ompared a pon-deterministic policy. where jobs were assigned to processors with some
2xed probability proportional to processing power, with three deterministic policies.
where the routing decision was based on the current state of the system. The goals of
:ne three deterministic policies were: minimum response time {for the job currently
z.eing scheduled), minimum system time (the time for all the jobs in the system to
£nish), and maximum throughput (maximize the system throughput, but only for the
:nterval between the current time and the time the next job is expected to arrive at the
svstem). Recursive techniques were used to find approximate solutions for the deter-
ministic policies (for the two processor case only). The authors found that maximum
zaroughput was the best policy from the viewpoint of achieving minimum mean job
-urn-around time:; this was ascrited to the fact that the maximum throughput policy
- akes arrival rates into account. Kohler and Chow could not extend their approach to
—ore than two processors. Ni and Hwang [Ni1981] found that the non-deterministic
zolicy suggested by Chow and Kobler was non-optimal. In the same paper, Ni and
“iwang also explored load balancizz in networks with multiple job classes.

s.5. Job Routing: Load Broadcasting Methods

Various authors have approached the load balancing problem by considering a net-
=->rk where nodes are fairly autonomous, and jobs can enter the system at various
laces. Decentralized load balancing schemes are suitable for such environments, and

10

the policies that have been suggested involve making routing decisions bassd on some
information about the loads existing elsewhere in the network. This load information is
broadcast by each processor to all or some of the other nodes in the system. Bryant and
Finkel [Bryant1981] considered a point-to-point network composed of homogeneous
nodes. Their load balancing strategy consists of using load estimates to form pairs of
processors that differ widely in load. The more loaded processor in a pair th=z migrates
some jobs to the other. Jobs are chosen to be migrated if their estimated remaining
running time is greater in their present processor than in the less loaded one. even when
takizg the time required for migration into account. Possible differences ir file access
costs are neglected. Four policies for compiling the running time estimate were stu-
di=: as well as two variations of the pairing scheme. A similar algorithm % =5 studied
by rlrueger and Finkel [Krueger1984]. They described the Above Averac: strategy,
whish is as follows: when a node thinks that its current load is “‘above average” (by a
giver threshold amount), it broadcasts that fact, and processors less loadeZ than the
averaze respond. If no processors respond, the querying processor informs the others
tha: a new average load estimate is needed. Similarly, if, in a given intervz. no node
broadzasts that it is overloaded, the consensus average load must be revised &>wnwards.
The strategy was studied by simulations, which showed that it improves the mean pro-
cess response time, without significantly overloading the communication char=el. Livny
and Melman [Livny1982] have also studied load balancing in broadcast CSM% networks
by tie use of simulations. They explored three different policies: (1) state breadcast, (2)
brosi-ast when idle, and (3) poll when idle. It was found that, as the network grows
larg=r. the mean response time of the jobs decreases, until the effects of corzention on
the communication channel begin to be felt, and then the mean response tir: mncreases.
Depzading on a variety of system parameters, any of the three policies 1xvestigated
coul: be the best. However, in all cases, sizable improvements over the no kad balanc-
ing case were found. More details about this work, as well as further work &= the con-
text of point-to-point networks, can be found in [Livny1983]. Chuanshan, Lz and Rai-
lev ‘Chuanshan1984] have studied load balancing algorithms that use load broadcasting
in p=:works of homogeneous processors.

2.6. Job Routing: Implementations

There have been a few attempts at implementing load balancing in distr=uted sys-
tems. The Purdue implementation, rre [Hwangl982|, consists of modifying =xtensively
use: commands that are CPU intensive (such as compilations or text proxassing), so
tha:. when a user runs the modified version of the commands, the work is ¢>ne on the
leas: loaded machine. The system keeps track of various measurements (su:Z as swap-
pinz rate, memory contention, number of processes, and so on), to determir= the least
loai=d machine. At Berkeley, a distributed shell, dsh [Presotto1982], was ir-lemented
undz- Berkelev UNIX 4.2 BSD [Leffler1983a. In this approach, there are server
pro~esses at the available processors that keep track of every CPU’s lori average
(de€z=d in 4.2 BSD as an exponentially smoothed estimate of the number of *=bs in the

11

run queue during the last minute), to determine the least loaded machine. A user sub-
mits a job to dsh, and the program decides where to run it. Only non-interactive jobs
can be handled by the system, and the lack of a distributed file system makes load
balancing less effective than would be possible. The implementation s not very
eficient: it takes several seconds to transmit even a small job, with no data, to another
machine over a ten megabit Ethernet [Metcalfe1976], using Berkeley’s TCP/IP imple-
mentation [Postel1980b, Postel1980a, Leffler1983b, Leffler1983¢c]. At Brown Univer-
sity, a main processor-satellite system [Michel1976] was built for graphics research. All
tb= modules composing a program were compiled in both systems. Load balancing is
implemented by having the flow of control of a program switch between tte version of
t-: code in the main processor and the equivalent version in the satellite, ¢2pending oL
wiich of the two processors has the least load. Adesse Corporation [McGrith1983] has
desicned a load balancing mechanism for IBM VM systems. Their software assigns
in~oming jobs to the processor with the least amount of load.

While there have been relatively few implementations in the past, many of the
ceorent research projects in distributed computing intend to explore the subject. For
example, the designers of the Crystal [Cook1983, Cook1983] project at the University of
W isconsin-Madison will soon experiment with a load balancing scheme Finkell1984 .
Tie designers of LOCUS [Popek1981] at UCLA have built into their system many of the
canabilities needed for a load balancing scheme (i.e., transparent remote exe:ution and 2
diztributed file svstem). While they have not currently explored different loid balancing
si-ztegics, they are interested in doing so in the future [Popek1984]. Finally, the
d=signers of Berkeley UNIX 4.2 BSD are actively involved in load balancing research for
U Di-oriented distributed systems running in CSMA-CD local area neiworks [Fer-

rasi1983|.

2.7. Other Work

There has been much work in load balancing not covered by the elassification
scheme of this chapter, and only brief surveys of the work done in each particular area
were presented in the previous sections. In this section some further pointers to the
liz=rature are provided.

Coffman et al. {Coffman1977] describe applications of bin-packing to lozd balancing.
Ctu and Abraham [Chou1982] have described an approach based on Markov decisior
tL=ory. Jain Jain1978] details a control theory methodology for the prcblem. Levy
Levy1982] gives an example of the benefits of load balancing for a logic and timing
sirzulation application running in a network of VAXes and a Cray-1. Statkovic [Stan-
kevic1981, Stankovic1983] has discussed approaches to load balancing based on Baye-
siz= decision theory. Kratzer and Hammerstrom [Kratzer1980] developed z cost mode!
of joad balancing which was used to show that, under their assumptions, tk= problem iz
NT-complete. Tantawi and Towsley [Tantawil984] use product-form queuizg networks
t- model a distributed system, and consider two algorithms for finding an 2ptimal load

balancing strategy.

2.8. Summary

Many of the papers surveyed in this chapter deal with optimal or near optimal
solutions to a model of load balancing. However, the deficiencies of the models invclved
make those approaches less than fruitful from an implementation point of view. The
heuristic approaches do not seem to come from a detailed and systematic study of the
behavior of processes in a distributed system, but rather from some intuition about
what such processes should be doing. A further point is that, although many authors
consider preemptive schemes, practically no existing systems support process migration;
the only implementations of which we have knowledge are [Powell1983] and
[Popek19S1 . There is much work to be done in this area to develop policies that are
implementable and perform well, but that, at the same time, rely on a firm theoretical
foundation. Although the work described in this thesis does not directly deal with the
question of how best to implement load balancing, the methods presented in the follow-
ing chapters should shed some light on the subject, at least for the case of distributed

database systems.

13

CHAPTER 3

The Preliminary Simulation Model

As described in the introductory chapter, a need was felt for an exploratory set of
simulations, which could be used to gain some insight into the problem of integrating
load balancing strategies into DDBMS’s. In this chapter, those experiments and their
results are described.

3.1. Introduction

In the literature survey chapter, two different conceptual views of load balancing
were described: task assignment and job routing. In the context of DDBMS's, the
former approach would be appropriate under either of two conditions: (1} if the problem
of interest were to allocate among the network nodes the different subqueries arising
from a sicele complex query, or (2) if one desired to schedule all the queries from a sin-
gle high level language program. However, if instead we were interested in scheduling
all the queries arriving at a DDBMS, job routing would be the correct framework. In a
DDBMS the workload is actually composed of independent requests, which arrive at
different sites in the network, and each request may be a complex one. Hence, both load
balancing approaches may be of interest to DDBMS designers: one would focus on
system-wide concerns, the other on a particular user's needs. However, since we were
interested in global scheduling strategies, the job routing viewpoint was taken in the
simulations described in this chapter (as well as in the rest of this dissertatior).

Since some of the load balancing strategies to be explored led to models which were
too complex to be analytically tractable, we chose to use simulation models. Our
models were constructed using SIMPAS [Bryant, Bryant1980], a simulation package
developed at the University of Wisconsin at Madison. SIMPAS enables the construction
of event-driven simulations by providing a pre-processor that translates the simulation
language statements into PASCAL commands.

The mode! used in the experiments is a simple one, mainly because the simulation
results are not meant to be accurately predictive, but rather to reflect broad differences
in performance if they exist. A second reason for this decision is that a complex model,
when its many parameters cannot be measured or validated, is less useful than a more
tractable and simple one. Other reasons for avoiding complexity were the desire to run
relativelv inexpensive simulations, and the lack of comprehensive workload information.
It should also be pointed out that the model used is fairly general, and is not meant to
represent any particular DDBMS, but rather to reflect the most relevant features of
those systems. For this reason, the results presented in this chapter should have wide

14

applicability.

The second section of this chapter describes the model used for the experiments.
The next two sections detail the two experiments performed: the first simulition tries to
gauge the benefits of load balancing, and the other experiment focuses on tke frequency
requirements of load information updates. The last section presents some closing
remarks. '

3.2. The Model

For this thesis, the environment of interest is one composed of a pumb=r of hetero-
geneous processors (i.e., processors that differ in architecture, processing p>wer and in
the attached 1/O devices). connected by a local area network. We will sttiy a system
where users demand some service from the DDBMS and then exit. Thu:. since users
leave the system after their requests are met, an open simulation model is uzed.

In the experiments, each processor was simulated by a central server model of a
computer system |Ferraril978]. The model of the processor used is shown & Figure 3.1.

The jobs! arrive with an exponential inter-arrival rate. They may come mto the sys-
tem at any processor, and are sent to the local CPU queue if there is no load balancing;
otherwise, the jobs are sent wherever the load balancing algorithm chooses. Processes
can then request disk or terminal I/O. If jobs exhaust their CPU time sice, they are
rescheduled. Processes are also able to send messages to other machines on the petwork.
The most interesting actions jobs can perform are to request remote data (FEAD), or to
WRITE information to a non-local portion of the database. This is modelel by sending
message tokens to all the sites that have the data to be read or written, ani by making
the requesting job wait for acknowledgements from the other sites involvid. When a
message token arrives at its destination, it generates a new job that will pecform locally
the appropriate I/O. When that remote job is finished, a new message is sent back to
the original site, containing either the desired data (in the case of a READ.. or an ack-
nowledgement (if 2 WRITE was initiated). When the messages from all the remote sites
involved in the operation return to the original site, the waiting job is rescheduled.
Finally, as jobs terminate their actions, they are taken off the system. In the simulation
runs described in this chapter, jobs did not perform terminal I/O, or locilly mnitiated
disk 1/0O, except for the local disk 1O resulting from “remote” I/O request: {whose des-
tination could be any site, including the local one).

The DDBMS was modeled as a collection of the processors described in the previous
paragraph, all interconnected via an Ethernet network. The Ethernet war represented
as a queue with an exponential service time. Ethernet models like the one Z=veloped by
Almes and Lazowska [Almesl1979} could have been used, but they wer: fei to be
unnecessarily complex for these simple simulations (especially given the hight loads

Yy this chapter, we depote as “quenes” the actaal database interactions (the requests typically expressed 3v qu=T langrage
statements) and by “jobs” we mean the execution of 2 bigh level language program with embedded query languaes requests

15

back to CPU queue

data/ack back

data request

1

send message

N N
7/ 7
to NET
TERMINALS QUEUE
AN
\E)// 7 ,
from NET
% QUEUE
A Lo [
hVg
A AV N/
N
/7
RESCHED z
£ u
N
y
N
Figure 3.1: Modelof a Single Processor

present on the fthernet in the model). Figure

database netwoTi.

3.2 shows the modecl of the distributed

16

HOST
#1

HOST
#2

HOST TNET
#3 QUEUE

HOST
#n

/N

Figure 3.2: Model of the DDBMS

The parameters used in the model are shown i Figure 3.3, together with their
values. These values were determined from measurements previously made in U.C.
Berieley’s computing environment. The network resporse time was measured by timing
the TCP/IP implementation in Berkeley UNIX 4.2 BSD. Communications between two
precesses were benchmarked [Hunter1984]; each process was running on a separate DEC
\'AX 11/750, and communicated over a 3 megabits = Ethernet (which, because of
sof-ware overhead, had an effective bandwidth of about 1 megabits). We modeled rela-
tiv-1v simple jobs, each requiring about 50,000 VAX izstructions to complete; we felt

17

this to be a reasonable number of instructions to access and process a pag= or two of
database information. Each remote read (or write) resulted in a fixed-size 25¢ by<e mes-
sage being sent across the network. The values of the other parameters wers measared,
or estimated, in a previous modeling study of DEC VAX 11/780’s running a: Berkeley
[Alonso1982;.

Simulation runs were performed that lasted from 10000 to 100000 milizeconds of
simulation time; it was found that a simulation time of 50000 milliseconds was
sufficiently long for the simulation results to converge (by this we mean tha: the values
of the performance indices used varied by less than 10% between runs as th¢ simuiation
length was increased past 50000 milliseconds). This is the simulation lengtk wsed n the
experiments reported in this chapter.

parameter value

Nodes in network 5
Network service 1 Mbit/s
time
User think time 1250 ms
Disk service time 30 ms
(11/780)
Disk service time 50 ms
(11/750!
CPU service time 10 ms
(11/780)
CPU service time 15 ms
(11/750)
CPU quanta used 5
Branching
probabilities:

rescheduling .8

remote /O 2
Data sent per 256 bytes
remote 1’0

Figure 3.3: Parameters for the Simulation Model

18

3.3. Preliminary Experiment #1: the benefits of load balancing

The goal of this experiment was to gain an appreciation for the possible benefits of
load balancing. This issue was explored by examining the effect of load balancing on
two performance indices: mean job turn-around time and mean system throughput.
The &rst index is defined as the mean time elapsed between job initiation and job com-
pletioz. The system throughput is defined here as the total number of jobs completed
per second by the system during the simulation run.

The simulations were performed for a variety of job arrival rates, both with and
withomt load balancing. The values of both indices were measured under two scheduling
algori=hms. Specifically, the two scheduling policies compared were: (1) iccoming jobs
run a- the node at which they entered the system, and {2) new jobs are routed to “less
loade< ” processors (as defined by the load balancing strategy). The load metric used for
each machine was defined to be the number of jobs waiting in the CPU queue (i.e., the
load zverage defined in a previous chapter), which is similar to the metric displayed by
the w command in Berkeley UNIX 4.2 BSD. The load balancing policy consisted of
sendizc the incoming jobs to the processor with the smallest value of the load metric
(even i the difference between the remote and local host was small). No preemption
was modeled (i.e., once a process was assigned to a node, it was never migrated again),
most!> because few existing systems support job migration (due to the complexity of the
implernentation), and this study focuses on easily implementable alternatives.

The results of this simulation were expected to show optimistic improvements in
performance while using load balancing. This was so because, although the overhead of
movizr a job was modeled, two optimistic simplifications were made: (1} the cost of
gathering and sharing the load information was not accounted for, and (2) it was
assured that this information was always up to date. The first assumption can be
justifi-=d for many systems, since load information is routinely shared in many local area
netwcrk based systems. For example, in Berkeley UNIX, load information is shared
amonr the network hosts, and can be displayed via the ruptime command
[Lefller1983a!. This command is implemented by creating daemons (rwhod daemons) in
all aporopriate processors, which will periodically send each other the value of the load
existizz in their local systems (as defined by the w command previously mentioned).
Since processors incur this overhead regardless of whether the load is beirg automati-
cally b:alanced, the cost of information sharing can be neglected. The second assump-
tion is more questionable; stale load data can lead to performance degradations. This
issue will be addressed more fully in the next section.

The simulation whose results are described in this section models a neswork of five
hosts: three DEC VAX 11/750’s and two VAX 11/780's (see Figure 3.4). The five sys-
tems zre joined by a 3 Mbits/s Ethernet. Jobs arrive at each of the three VAX 11/750's
with =qual probabilities. None originated at the VAX 11/780’s; however, since jobs
requir=d data from all systems with equal probabilities. some 1/O work has to be done
at the 11/780’s. When there is no load balancing, there is no other work performed by

19

the 11/750'5. When the load is being balanced, some of the jobs that originate at the
11/750's may be routed to one of the 11/780’s (as well as to a less loaded 11/750). '

The mean arrival rate at each 11/750 of incoming DDBMS jobs was varied from 2
to 33 jobs per second (thus, the total system arrival rate changed from 6 to 99 jobs per
second). Figure 3.5 shows the effect of load balancing on the average job turn-around
time. for a variety of arrival rates. The throughput achieved (by the entire system) in
the simulations s depicted in Figure 3.6. As can be seen, load balancing dramatically

3 Mbit Ethernet

b

750 750 750 780 780

faster deska

o=w jobs arrive bere

Figure 3.4: Model Used in Experiment #1

ms

10000 _1.
9000 _}
goOC _§ without koad
balancing
7000
600Cc ! \\
with load
5000 _21 balanang
4000 _)_
3000 _3_
2000 5
1000 _1_
— { {
10 20 30

arrival rate

jobs/s

Figure 3.5: Turnaround Time vs. Arrival Rate - Experiment # 1

pobis/s

g0 _1_ with load
balanang
{
70 4 \
SO
60 _}
50 4
40 _1-
30 _1_
/
20 _1_ without load /
balanang
10 _1_
1 ! i
{ t i
10 20 3¢
arnival
rals
jobsfs

Figure 3.6: Throughput vs. Arrival Rate - Experiment £ 1

22

improved both job turn-around time and the system throughput. Clearly, the network
bandwidih is high enough that, for the simulated conditions, the overhead of transfer-
ring jobs to less loaded processors is dominated by the running time improvement due
to load balancing. As a matter of fact, in the simulations performed, network wutiliza-
tion never even reached 40 per cent.

It should again be pointed out that the actual improvements are somewkhat optimis-
tic. When the results of actual experiments performed on real systems are Bdescribed in
later chapters, the effects of load balancing will be seen to be less draman=. but the
benefits obtained to be still sizable.

Or: fina! comment needs to be made about the load balancing straizzy. Even
though =« have stated that we are not concerned with finding the “best” loz: balzncing
scheme. one may wonder as to the effectiveness of the one we employed her=. In order
to address this issue, the load imbalance factor was measured. This factor = the stan-
dard deviation of the (time average) mean values of the load metric for =ach of the
nodes ir the network. The load imbalance factor is meant to refiect how wel a strategy
is balancing the load (that is, the “load” as defined by the load metric). 1z thrs case,
the load imbalance is defined as the standard deviation of the mean lengths <f the CPU
queues iz all the hosts. For all the values of the arrival rate employed, the i>ad imbal-
ance faczor was small when load balancing was applied; it was less than 3.0 for the
fastest a-rival rate, and less than 1.0 for all the others, signifving that the kad balanc-
ing strategv was being successful in its aim. This would indicate that the lazd average,
as define=3 in UNIX {see Chapter 2), would be a likely candidate for a load metric in a
load balzncing implementation; it is both simple to use and inexpensive to im:lement.

3.4. Preliminary Experiment #2: update frequency of load informazon

As was mentioned in the previous section, a flaw in the first experimezt was the
assumption that up-to-date load information is always available to all mschines. In
order to examine load balancing in a more realistic light, load sharing with an “imper-
fect’ loz4 metric must be considered. In this section, the effects of stale £ita orn the
performznce of the load balancing strategy are explored. The same model isee Figure
3.4) an< parameters (see Figure 3.3) employed in the previous experiment ar: used. but
now the load information (i.e., the values of the load metric) lags behinc the actual
values. This is modeled by having the system periodically refresh each procsssor’s esti-
mates of the load existing at other nodes. For a given mean job arrival rate. zs the time
between load information updates increases, more jobs arrive during that irzerval. and
more assitnment decisions must be made, with data that becomes increasizgly out of
date witt each decision. Hence, the system may be making wrong decisiors for more
and mor= jobs, and the benefits of load balancing may decrease. In particular. we would
expect that the following unstable situation might arise: the system routes & new jobs
to a site that was idle (relative to the other processors) the last time that losZ statistics
were brezdeast; that site becomes overloaded (while all other sites have little 2> do? and,

at the mext broadcast, some other processor is chosen as the “victim” for the duration of
that update interval. Thus, the system is constantly changing its choice of victim and
the efia=tive throughput of the entire system is scarcely more than that of a single host.

For this experiment, the mean job arrival rate was kept fixed at 12.5 jobs per
second for each of the three 11/750’s; no jobs entered the system at the two 11/780’s.
The update interval was varied from 0 to 5000 milliseconds. Figure 3.7 shows the effect
of decreasing the refresh rate on the mean turn-around time experienced by jobs in the
syste. The abscissa of the graph is labeled in two ways: by the update mterval, and
by the mumber of jobs that entered each machine during the update interval (the latter
quartics equals the update interval times the machine job arrival rate; the total number
of jot: 1hat entered the system is three times ths: amount). As would be expected,
wher. iz« update interval increases, the mean turz-around time degrades. In order to
unders:znd the significance of the graph, an additional line is shown in the figure. The
hatche: line marks the mean turn-around time for jobs in the system if no load balanc-
ing tak=s place. As is evident from the graph, when the update interval izcreases, the
perfor—ance of the system begins to degrade from its best result (with perfsct informa-
tioni. =1til, at around 1500 ms, the mean turn-around time is worse with load balancing
thar without it. Figure 3.8 shows that a similar result holds for the system throughput,
althoue= at a somewhat higher threshold (an update interval of about 2800 ms).

Ti- results of this experiment show that, in order to implement a lozd balancing
scheme. load information must be broadcast at 2 sufficiently rapid rate This rate
depenc: on the number (and type) of incoming jobs: for a system similar to the one
beinc rndeled, the refresh rate must be rapid enouch that less than about 36 jobs enter
the svsz2=m during the update interval. Since the update rate must be fairly rapid, it
meaps 122t one must look to inexpensive communication mechanisms to broadcast load
informszion. For example, in running early versiors of the rwhod daemors, the over-
head irvoived in sending and receiving system load information was high enough that
the upiate interval was increased from one minute (in the initial implemantation) to
three minutes. For a medium-sized network of single user workstations, that interval
may be small enough, but certainly there are systems where a sufficient number of jobs
enter ér-ing a three minute period that load broadcasting must be undertaken at more
frequez: intervals. In order to implement load balancing in such systems, various alter-
natives =xist: (1) increase the update rate, (2) limit the number of processors mnvolved in
load bzlzncing (so that communication overhead is smaller), (3) look for polizies that are
more sizble in the face of uncertainty, (4) use a faster communication mechanism.
Regzri=c the last alternative. it should be pointed out that the early implementation of
rwhod mentioned above (whose overhead motivated the extension of the tpdate inter-
val} diZ pot use the broadcasting characteristics of the Ethernet, but, rathsr, relied on
eack provessor establishing a virtual circuit with every other processor (usizg the TCP
protoci. . Thus, the communication overhead was not proportional to th: number of
networy nodes, but to the square of their number.

aumber of jobs arciving

during update interval

i0 20 30 40
] 1 — 1 [l
L L | L L

5000 _§_

{000 1

3000 L

2000

no load bal.

1000 §_

1000 2000 3000

update interval

ms

4000

Figure 3.7: Turnaround Time vs. Update Rate - Experiment £ 2

24

38]

37

3¢]

31

aumber of jobs arriviag

during updatc interval

10 20 30 40 0
|] | (] 1
| g ¥ | 1

no load bal.

1000 2000 3000 4000

update interval

ms

Figmre 3.8: Throughput vs. Update Rate - Experiment # 2

25

26

Actually, selecting the appropriate size of the update interval in a real situation can
be extremely complex. It is clear that the main factor determining the minimum fre-
quency of updates is the dynamic behavior of loads in the system. In our model, where
jobs arrived in a fairly static pattern (with a given distribution whose moments were
fixed for the duration of the simulation), the total number of job arrivals during a given
interval may be sufficient to characterize the behavior of the loads in the system. How-
ever, in more complex situations, where the job arrival patterns are not easily discerned,
it is hard to make a more specific comment than that the loads must not change
significantly during the duration of an update interval. To quantify this statement, it is
necessary to consider the nature of the jobs entering the system (their resource
demand:. lenzth of residence, and so on), the kind of processor statistics available (what
they are. how accurate they are, how often they are gathered, and so on), and the
specific load metric used, to name only a few of the obviously relevant factors. All this
would require a serious study of load balancing mechanisms per se, which, as we stated
previously, is not the central thrust of this thesis. However, such a study is a logical
continuation point for studies in this area, and we hope to carry it out at a future date.

One final comment on this subject is that, although it is still not clear to us how
often loads change in real systems, we have conducted some preliminary empirical stu-
dies of the values that the load average metric (described in a previous chapter) takes in
4.2 BSD systems. The results were encouraging in that the load average {of a single
processor} seemed to change slowly (by plus or minus one) from one sample to the next
(samples were taken every five seconds). All the large increases (say, increases of five or
more) in the load average that were measured disappeared by the next sample (i.e., the
load average would return to the value that it had before the large increase). We did
not carry out sufficiently long measurements to feel confident enough to draw any
strong conclusions from these observations.

3.5. Conclusions

This chapter was intended to present some of the preliminary results obtained by
coarse simulations. As was seen, those results were indeed encouraging for load balanc-
ing. In the next chapter, we describe an experiment performed on a running system, the
R* DDBMS developed at the IBM Research Laboratory in San Jose. Although the
models used in this chapter were not designed to simulate R*, it will be seen that the
benefits of load sharing suggested by the results of these simulations still hold true in a
real system such as R*.

27

CHAPTER 4

The R* Experiments

After performing the simulation studies described in the previous chapter. we car-
ried ou: a set of experiments on a running system. This allowed our ideas tc ke tested
in the real world. and our simulation results to be validated. This chapter s-rtains a
descripzion of the experiments performed and of their results.

4.1. Introduction

Tk experiments described in this chapter were carried out using the F.* DDBMS
developed at IBM's San Jose Research Laboratory. R* has been sufficiently dx=zssed in
the open literature [Williams1982] that we need not do so here in detail. Hows-=, com-

menting on a few aspects of the system is in order!. In this section we will ©£~e some
background information about R*, describe its query processing strategy, ac explain
why we chose that particular system for our experiments. The rest of the ckazzer com-
pletes cur description of the experiments: the next section gives the details of ©= experi-
mental setup, the third section describes the experimental results obtained. ta= fourth
explores the feasibility of actually adapting load balancing schemes to the R* cC simizer,
and the last presents our conclusions.

4.1.1. Background

The R* DDBMS is the result of efforts to extend to a distributed envirczment the
functionality of System R [Astrahanl976, Blasgen1979], a single-site DBMS tzat had
been previously developed at San Jose. Like System R, R* is a relational datzbase sys-
tem, ar.d runs on IBM processors. R* currently presents two interfaces t¢ s users.
The firet is an interactive front end that checks and executes user queries; thx interface
is mear: to be used for on-line single queries (called “ad hoc™ queries). The second is
implem=nted by means of a pre-processor, which takes as its input high-levs language
programs with embedded user queries written in SQL [Chamberlin1974 . 2 catabase
query language. Both interfaces employ the same query compilation algorzams. It
should zlso be pointed out that R* is an experimental prototype, and not ar =M pro-
duct. Thus, the svstem is not entirely free of bugs, and all its performance e als have
not yet been met. The current research effort involving R* at San Jose is emected to
produce further refinements of the system.

1Al sue details ¢f B* prosented in this chapter wers current as of Spnng 1984

4.1.2. Query Processing in R*

Wken the system is presented with a query (through either of the izterfaces), it
attempts to produce a query execution plan. The actual mechanism used & quite com-
plex, apd has been detailed in [Selinger1979, Selinger1980] and [Daniels1@22], but will
be sket=hed here for completeness. The query optimizer first generates a large number
of possible query plans, based on the semantics of the query. The candidate plans are
compared at various stages, and the less attractive ones are pruned, until oaly one plan
remains. It should be noted that the plan chosen may no longer be feasible at the time
the query is executed, since the state of the database might have changed. For example,
a plan might make use of a secondary index that is deleted between the tize the query
is comp Z:ed and the time it is executed. Hence, the system must be prepare: to cancel a
given plan at run time, and re-compile the query.

In order to compare the alternative plans, the optimizer must assess their respective
costs. Iz does this by estimating the amount of system resources that will b= utilized by
each particular query plan. As was mentioned in Chapter 1, the query optizizer consid-
ers the wtilization of the following three resources: the CPU, the communization chan-
nel, and the I/O sub-system. The optimizer tries to minimize the total system resource
utilization of the query to be executed; for each plan, three estimates are ccmputed: (1)
how mu=h time the query will spend in the CPU, (2) how long will it take to move the
required data across the network, and (3) how much time will elapse whilz doing disk
1/0. The optimizer then chooses the plan with the smallest sum of the estimated times.
Note thst the chosen plan might not have the smallest turn-around time, sic:e the three
activities considered above may occur at least partially in parallel.

4.1.3. Why R*

There were many reasons why R* was a particularly good choice for our experi-
ments. The most important one is that R* has been implemented and is rconing, and
thus our results carry more weight than if they had been obtained based solely on a
paper d=sign. Also, R* has an extremely complex query optimizer; if we caz show that
our idea: about load balancing can be easily implemented in such a syste. we can be
more comfident that we can adapt them to less sophisticated DDBMS's. Furthermore, a
lot of eSort has been expended in the R* project on algorithms for compil: time query
optimizazion. When we selected R*, we hoped to show that runtime considzrations can
be at lezst as important to the performance of queries as compile time or=, and thus
point ou: that, in future work on query optimization, more attention shoulZ be paid to
the former. An added benefit of working with R* is that we were able to g=t valuable
feedback about the database side of our ideas from some of the project researchers.
Two firzl (and practical) reasons for studying R* were that (1) the system was gra-
ciously made available for our experiments, and that (2) among the few DI3MS's that
were in existence, R* was the one with the most powerful functionality and the greatest
dependazility.

3

4.2. Experiment Design

In this section we describe the goals of the experiments, the experimental method
followed, and the hardware and software configurations used.

4.2.1. Objectives

We had two main goals in these experiments: (1) to show that load balancing can
indeed make a sizable difference in the performance of database queries, and (2) to show
that, in order for such improvements to be possible, the system in question need not be
inordinately unbalanced. Furthermore, as a secondary goal of our study, we wanted to
study the algorithms used in the system, in order to gauge the difficulty of actually
implementing load balancing in real systems; it was clear to us that any lozd balan:ing
schemes that could be seriously proposed as alternatives to be considered by sysiem
designers would have to be simple and straightforward to implement. We cannot expect
designers of current DDBMS’s to re-code a large part of their existing software, evexn if
the reward for them were that their systems could reap substantial performaxnce
improvements. Thus, we wanted to be able to develop easily implementable load
balancing strategies that would provide most of the performance improvement obiain-
able through load balancing (i.e., gain a lot by working a little). Also, we wanted to
avoid schemes that consumed a lot of CPU cycles in order to determine the least loaded
sites and make the load balancing decision. In this, we were guided by oze of Baxler
Lampson’s dictums: “In allocating resources strive to avoid disaster, ratker thar to
attain an optimum” [Lampson1983]. Hence, another secondary goal of our study was to
show that, even without trying to apply an “optimal” strategy (however that may be
defined for a particular application), we could obtain sizable performance improvements.

4.2.2. Experimental Method

Our approach essentially consisted of timing the execution speed of a set of query
ni.ns for a given query under a variety of network loads. That is, first, we impzsed
:yerent load levels on different sites. Then, the different plans were executed, and. of
exuarse, they performed differently as the system load changed. Under some load eondi-
tions, the pian chosen by the optimizer as the “best” did not perform optimally (tlus,
=n optimizer that took into account the load in the system could possibiy construct
better-performing query plans). By this method, we were able to gauge the impact tiat
svstem load can have on the choice of a query plan.

Specifically, the experimental method consisted of the following series of steps:

i1) Creating a distributed database of sufficiently large size.

{?) Developing a synthetic database workload.

{3) Coding a series of dummy programs that would artificially load the syst=m.

{1) Modifying the cost estimates used by the R* optimizer in order to for:e the seiec-

tion of different plans.

(5) Timing the database queries as they ran under a variety of system loads while
using different query execution plans.

The following sub-sections provide further detail about each of the steps cutlined
aborve.

4.2.2.1. The Database

In the Summer of 1983, we created a distributed database in two of the computers
of the Highly Available Systems Laboratory at IBM's San Jose Research Labumtory.
Thi= database was then used for a preliminary performance study of R¥, which involved
vari~us members of the R* group. We decided to use this synthetic database for our
new experiments because a real-world database was not available.

Two processors were used in our experiments, and they each contain=d igentical
loca! databases, although that was pot a prerequisite for our study; the stratemes we
studied did not depend on the homogeneity of the local databases. Each database con-
sisted of 8 relations, ranging in size from 10Kbytes to 14.4 Mbytes, and from 25 to
144.000 tuples. The total local database size was 45 Mbytes, of which 34 Mbytves were
user data, and the rest was dedicated to secondary indices.

Further information about the relations used in the experiments described m this
charter is provided in Figure 4.1. The column labeled indices lists the tuple fieids on
whi=h secondary indices were created. The indices on fields Al and Bl are “clustared”
indi=es: the order in which the tuples are physically stored on the disks corr==ponds
approximately to the value of the tuple field on which the index is created. The mdices
on £elds C1 and D1 are not only clustered but “unique” secondary indices: tzer= can be
at most one tuple for any given value of the index field. Relations R1 axd EZ were
locazed in one database: R2 and R4 in the other. In Figures 4.2, 4.3, 4.4, and 1.5 we
show the format of the tuples in each relation.

relation | indices | record | number user total
name length of data size
(bvtes) tuples (bytes) (bytes!}
R1 Al, A2 100 144,000 14,400,000 | 19,200.02C
R2 BI1, B2 100 144.000 14,400,000 | 19,200,073
R3 C1, C2 400 18.000 7,200,000 9,600,020
R4 D1, D2 400 18.000 7,200,000 9,600.0x2

Figure 4.1: Relation Information

field | size (bytes) contents
Al 10 string, sequentially assigned in range
20000000010 to "0000600000” (by 10’s)
A2 10 string, randomly assigned in the same range
as Al
A3 4 random integer in the range 1 to 300
76 7 additional fields
Figure 4.2: Relation R1
| field | size (bytes) contents
B1 10 string, sequentially assigned in range
»0000000010” to ”0000600000” (by 10's)
B2 10 string, randomly assigned in the same range
as Al
B3 4 random integer in the range 1 to 300
76 7 additional fields

Figure 4.3: Relation R2

31

field | size (bytes) contents
C1 10 string, sequentially assigned in range
70000000010” to ®0000600000” (by 10's)
C2 2 random integer in the range 1 to 30
C3 25 a fixed string for all the tuples
C4 4 random integer in the range 0 to 29999
359 11 additional fields
Figure 4.4: Relation R3
field | size (bytes) contents
D1 10 string, sequentially assigned in range
' »0000000010” to ”0000600000™ {by 10’s)
D2 2 random integer in the range 1 to 30
D3 25 a fixed string for all the tuples
D4 4 random integer in the range 0 to 29999
- 359 11 additional fields

Figure 4.5: Relation R4

4.2.2.2. The Workload

In order to generate a database workload, a special tool was created. It consisted
of a menu-driven PL/1 program that was able to perform any of a number of queries.
The program made available to the user three general types of queries:

(1) local quenes.

For these queries, al
‘“Yocal” site in this context is the processor where the user is logged on).

| the data required to answer them is available locally (the
We

assume that all the work done on behalf of these queries is performed at the local
machine. This need not be so; for example, in a DDBMS that supports replicated

a3

data, the process of updating a local file may reduire some work to be performed at
the= other locations where copies of the data reside.

(2) remote queries.
In these cases, all the data queried is stored at a remote site (or at a collection of
remote sites). Most of the work involved in the query is done remotely; however,
some local work has to be performed. For example, the local system may have to
spend processor cycles sending messages to the remote site(s) to set up the query
an< displaying information on the user’s screen.

(3) mixed queries.
Tk=se queries require both local and remote information. Different queries may
ha== widely dissimilar ratios of local to remote data. It is clear that for taese
qu=ries non-trivial amounts of work are done at all the sites containing the data.
Tk= actual amount of work done at each site depends not only on the size of tie
rel=vant data stored there, but also on the physical storage of the data (e.z.
clestered versus non-clustered data), the availability of secondary indices. tae
dezsils of the local query plan (e.g., which join method is used), and the actual
serzantics of the query (e.g., some query predicates are more selective than others),
tc mame a few of the variables that affect the total work required.

Tk= workload program can execute any given number of the available queries. or
some random mix of them. The turn-around time of each query (or set of queries) was
measurs> using an assembly language utility (coded by Robert Yost of IB\ San Jos=i,
since tk= PL/1 procedure available in the system did not have sufficient accuracy. For
these experiments, query turp-around time is defined as the time that passes between
the poiz: at which the first R* utility is invoked to the point at which al the answer
tuples 2=¢ received by the workload program. We chose query turn-around time as Qe
performznce index of interest for a variety of reasons: (1) it was one of the indices we
had used in the simulation experiments described in the previous chapter, (211t 1s a very
relevan: criterion in many environments of interest (such as in local area metworks of
single-zser workstations), and (3) its measurement was relatively straichtforward. To
expand further on the last point, it must be mentioned that we considered measuring
system zhroughput as well as response time, but the construction of the appropriate
experim=nts was too time-consuming a task (given the time for which we had tae
laborat==v available). The reasons for this difficulty lie partly in the existence of
obscure interactions among the different pieces of software that make up thke operating
system t<.g., how does the scheduling policy of the CICS subsystem in which R* rins
affect tk= performance of the multiple query streams one would need in order to concuct
througkzut experiments?), and partly in the complexities inherent in understanding :ae
software of R¥ itself (e.g., how does the fact that multiple query streams are sharing tae
R* buf:r pool affect our results?). Although the use of turn-around time as a pericr-
mance retric avoided some of the complexities mentioned above, the fact that the &*

34

system itsell (=s well as the underlying communication mechanism) was designed with
throughput in mind affected our results in various ways. We will come back to this
point in Sectiom 4.3.3.

The workload tool also accepted commands for computing the mean and variance
of a sequence of experimental runs. This did not prove very useful for us because, some-
times, the idiosyncrasies of the communication mechanism created obvious outliers in
our data, which could not be discarded automatically by the program (this will be
further explaimed in Section 4.3.3). The program also implemented various other com-
mands which were not used in the particular set of experiments described in this
chapter. Any -database errors that occurred while executing the queries were reported to
the user of th= tool.

A crucial point to be made is that, in order to obtain meaningful results, the cach-
ing ability of R* had to be minimized. In other words, since R* caches locally the
tuples used in the queries that it has executed in the recent past, repeating a particular
query many times (which is clearly peeded to obtain a valid average turn-around time)
could result in copies of the needed remote-site tuples residing in local storage. Instead
of flushing the buffer area after each query, we made sure that each query would require
different tuples each time it was executed. For example, in the case of a query that
requests the salary of an employee having a particular employee number, the workload
tool would normally choose the employee number randomly (although the program
could be forced to select the same one; this was very useful for debugging purposes). It
could be argwed that these caching eflects do exist in real query streams, ard that,
furthermore, the designers of the system took them into account. However, since the
buffer pool for any R* site is shared among all the query streams in the system, and
since the size of that pool is fixed at database creation time and does not depend on the
number of users in the system at any one time, we could not be entirely certain of how
to account for the effects of caching on our results (it should be noted that this difficulty
could have been avoided if we had been able to use throughput as our performance
metric).

Finally, ssome comments about the suitability of using load balancing for each of
the three querw types described above. It is clear that, for local queries, the benefits of
load balancing in many cases are very limited. Unless the processing power of a system
is extremely low compared to the bandwidth of the communication mechanim that is in
use, it would seldom be attractive to ship local data off-site to take advantage of excess
cycles elsewhere. Even if the local CPU were terribly overloaded, the network protocols
involved in shipping the tuples to a remote site would still require a large amount of
local processor cycles; thus, unless many more CPU cvycles are required to process the
query than to move it, it would seldom pay off to do so. On the other hand, if the pro-
tocols were implemented in hardware, and the data were moved without requiring the
intervention of the processor (e.g., a network interface with DMA capabilities), load
balancing wowld become more attractive. Furthermore, there are cases where a

35

relatively smmall amount of data will be used for a large number of compuzzzions. For
example, an engineering database may contain design data for a VLSI chiz- that data
will be processed for a long time by a variety of CAD/CAM tools, and henc= it may be
desirable tc: ship that data to a site that has more available power. Th¥ scenario is
quite apprempriate for a LAN consisting of relatively low-power CAD/CAM warkstations
and large number-crunching processors.

Remote queries are even better suited for load balancing. Since the arswer to the
query will eventually have to be displayed on the user’s terminal (or stored m a file) in
the local system, it may be cost effective to move the data from the remot: 2> the local
site and do the computation there. This becomes especially attractive if a izl cache is
available. Irn that case. the performance of queries that access “hot spou™ (l.e., fre-
quently use:c data) will be substantially improved. Lastly, it may not b: mossible or
desirable tc do any computation remotely. For example, if the data is kez” in a net-
work file server [Mitchell1982:, it would be necessary to transport the data n: a compu-
tational site:: the choice of the execution site could be based on load balancirr considera-
tions.

It is cleear that load balancing is ideally suited for the last type of quev described
above. Sinee in the case of mixed queries some work Is normally requirec 2% all sites,
and some transfer of data must take place, it is evident that these queries psent ample
opportunitims for taking advantage of unequal loads (and capacities) among zae partici-
pating procwzssors. In particular, there probably has to be less of an imbauzce among
the network processors in order for load balancing to be of use, and the rei.:>ve cost of
computation to communication perhaps does not have to be as favorable a: = the case
of the other types of queries. :

In our lioad balancing work we were guided by the following “canonicz’ scenario.
Consider a system with a heterogeneous collection of processing nodes. A 1ser, who is
logged on as site A, queries the DDBMS. Site A has part of the data inv:ized in the
query, and site B has the rest of the required data. Site C has none of the tiza locally,
but has excess processing capacity. Clearly, there are three possible alternat==s: we can
(1) move the: data at B to A, and compute there (the result is then availat.e locally to
the user); (%'} perform an equivalent data move from A to B (and. after cor—uting the
answer to tine query, send it to A): {3) move all the data to C, compute the=:. and send
the final an=:wer to A (note that the two data moves may go on in parallel o many net-
works). UnZortunately, we could not quite reproduce this canonical case j:= two rea-
sons: first. we had only two processors available; secondly, the plans we w=re able to
study did mot perform their work in such clear-cut fashion {see the comz«=zts about
merge-join plans in Section 4.3.3).

The queeries studied in this chapter are of the mixed type; we will see 1zzt for R*,
even under wery unfavorable circumstances for load balancing (the communizzzion chan-
nel was extremely slow and the processors were identical in their capabilities . we could
still obtain ssizable performance gairs for this type of query by balancing tk: :>ad. One

final point that appii=: o sll three types of queries is that, in the case of multi-query
transactions, it may be advantageous to transport the data to another site for a particu-
lar query if swreeding queries in the transaction would be better served by having the
data at that particular site. We did not address these considerations in our work.

4.2.2.3. Generating the System Load

In order to conduct our experiments, we needed a mechanism for creating a given
level of load i each of the two processors available for the experiment. We chose to
maintain the required load by creating a set of compute-bound jobs that would run at
the same time as our workload tool. These jobs would enter a computational loop, and
then sleep for x given amount of time. By changing the ratio of the time spext comput-
ing to the tim: spent sleeping, we could create jobs that imposed different amounts of
load in the s¥stem. Thus, by using a suitable arrangement of them, we could fine-tune
the “backgroumd” CPU load that the database queries encountered in the syvstem; this
gave us an easily controllable loading method.

Note that this is a somewhat one-dimensional view of the load, since we were not
similarly loading the disks. We ecan justify this by claiming that, in most environments
of interest, the main user of the disks is the DDBMS, and that the disk utilization of the
other users is a secondary effect. Furthermore, if other users have their data in different
disks (and diff=rent disk channels) than those with the data used by the DDBMS, their
disk accesses may not conflict with those of R* in a significant manner. However, there
will possibly be conflicts with other DDBMS jobs; we have not addressed this problem.
although a more comprehensive view of load (that included DDBMS disk usage) could
easily be incorporated in the implementation alternatives we suggest in Sectior 4.4.

To ensure that the load was accurately repeatable, we had to consider the schedul-
ing policy of the system. Although we were the only user of the two processors, there
were various processes constantly running, which were needed in our experiments (e.g..
the inter-processor communication mechanism). The R* DDBMS runs within a parti-
tion of the Cwstomer Information Control System (CICS) [IBM]. This is essentially a
sub-system rucning on top of the MVS operating system (which was the operating sys-
tem used in the processors); CICS does its own process scheduling, and it supports a
variety of job classes, each with different properties. We first made sure that CICS ran
at a higher pricrity (as far as MV'S scheduling was concerned) than any other activity in
the svstem. Then we ran our loading jobs within the same CICS partition as R*. We
placed loading jobs in a different priority class than R*; the properties of this CICS
scheduling class were such that the priority of any job in that class was always higher
than the prioriiy of any R* job (with respect to CICS internsl scheduling). Thus, no
matter for how long our loading jobs executed, they would always have a higher priority
than R*.

For the experiments presented in this chapter, we defined load as the percentage of
the CPU that was utilized. We understand that this may not be a complete {or even a

37

very good) estimator of load. However, it had the advantage of being easiy available
(we used the features of the RMF monitor available for MV'S systems). We were unable
to measure the equivalent of UNIX's load average described in Chapter 2. This would
have been preferable since it would have enabled us to use a consistent load metric for
all the work described in this thesis. We did not choose to use the CPU utization for
our INGRES work because of some uncertainties about the accuracy of tl= measure-
ment of that index in UNIX [Hagmann1983|. On the other hand, one advantage of
using two different load metrics in our work is that the success of both experiments (the
R* acd the distributed INGRES) shows that implementing load balancing wiik either of
two ‘-reasonable” load metrics leads to performance improvements over tie mon-load
balar-ing implementations. We cannot say much more about the proper ct:ize of load
metri- for any particular DDBMS; that issue remains the topic of future resezrck.

4.2.2.4. Modifyving the Optimizer Plans

I order to test the effect of the system’s load on the performance of queries, the
optimizer had to be forced to pick different plans for the same query (normaly only one
“best”” plan s chosen, in the manner described in a previous section). Thus, the
different plans were identical semantically (i.e., the answer to the query shzald be the
same for all plans) but not procedurally (i.e., the actions of the database ssstem were
quite different in all the plans).

First, we modified the PL/1 workload program so that each query to be studied
was included twice in the program. Then we compiled the program; by thi: we do not
mean language compilation, but rather database query compilation (see [Dani==1982] for
more details). We interrupted the query compilation process just before th: optimizer
chose a plan, but after it had gathered all the estimates needed for compilation {as was
mentizned before. those estimates are related to CPU utilization, number of [O’s, and
pumber of network messages required). The interruption was effected thrortgh the use
of a kigh level debugger created by the R* implementors for the purposes of system
development. After the appropriate breakpoints were reached, the time estamates that
the ortimizer had obtained were modified in such a way as to make soms particular
plan seem the most attractive. Thus, we were able to force it to pick the dif=rent plans
requirzd for the experiment.

I: should be pointed out that we were not able to force the compiler to pick an
arbitrsry plan. Due to the complexity of the data structures used in the systzm. we res-
trictec our choice to the plans that were the final candidates for the “test” plan.
Specif zally, for each site involved in the query {and for an extra “unknowr” site), the
compi:er first determines which plan would be the best if the final answer had to be
delivered to that particular site. It then chooses the actual query plan by introducing
into it= cost mode. the expense of moving the answer set to the user’s site. e stopped
the planner just bzfore it selected this final plan (i.e., we could only experimezt with the
plans that “reached the semifinals”). Although we lost a great deal of flexibii:y because

of this. the plans available proved sufficiently vaned for our purposa.

Understanding the intricacies of the compiler sufficiently well to modify its plans
prove¢ a major hurdle in our work. This was not so time-consuming because of the
intricac~ies of the actual details of the modification process, but was rather due to the
author’s lack of familiarity with the system.

4.2.2.5. Running the Queries

A= mentioned before, the experiments were performed in stand-alone fashion. Each
of the queries that were used in the experiments required a large amount of real time to
studv “ie., to set up the systems. modify the plans, execute the query multiple times,
and s- on). In particular, the queries described in this chapter each required about a
week ¢ experimenter time to study. This was due to a variety of reasons: (1) since the
queries were sometimes executed under high system load, the actual turn-around time
could t-e large; (2) for each point in the load space, the competing plans had to be exe-
cuted = number of times to achieve statistically significant results; (3) many points in
the load space were considered; and (4) the system itsell was only available for experi-
mentazion at certain times. '

T=e laboratory setup was available for only a limited period of time, due to an
impenZing change in the hardware installed. This, combined with the long experiment
times. mrecluded our experimenting with a large number of queries, but we managed to
complene about 15 experiments. In Section 4.3 we discuss two of the experiments car-
ried ou-. and we explain why load balancing was not appropriate for some queries.

4.2.3. System Configuration

As previously mentioned, the experiments were carried out on the equipment of the
Highly Available Systems Laboratory. We were able to secure the use of only two of
the processors in the laboratory. Each of the two was identical in hardware and
softwa=e configuration. The processors were IBM 4341-M2 models (about 1.3 MIPS)
with & Mbytes of main memory each. The data was kept on IBM 3350 disks, which
have 2 mean access time of 25 ms and a data rate of about 1.2 Mbytes per second.
Both —achines were running IBM's MVS operating system.

T=e processors were linked by both a channel-to-channel connector and by an IBM
3705 e-mmunication device. Due to hardware problems with the 3705 we were able to
use ot v the channel-to-channel link in the experiments. Using this link did not improve
the communication time in a significant way because of the large delays imposed by the
commeaication software. R* executes as a CICS resource manager, and the communica-
tion m-=chanism that CICS uses s IBM’s Virtual Telecommunications Access Method
(VTAM). According to published data [Selinger1980], a reasonable estimate is that the
systerr requires about 40,000 instructions to send and acknowledge a message. On a 1.3
MIPS svstems that translates to roughly 31 milliseconds of software overhead. That
should be compared with less than 3 milliseconds for a send-receive-reply message round

trip in other networking schemes [Cheriton1983].

4.3. Results

In this section we describe some of the results of our experiments. The first two
sub-sections show how, in two of the successful experiments, we were able to obtain
marked improvements through load balancing. The third sub-section explains why, for
some queries, load balancing experiments either could not be performed (due to faulty
software) or there was no possible improvement for the plans (because of the nature of
tke communication channel).

43.1. R* Experiment #1
The query studied in the first experiment was the following:

SELECT R1.Al, R1.A2, R2.B1, R2.B2

FROM RI1, R2

WHERE RI1.A3 = R2.B3 AND R1.A1 = RANDOM

AND R2.B1 = RANDOM,;

R1 and R2. the relations involved, were described in Section 4.2. In the experiment, R1
wa2: a local relation, and R2 was at the remote site. RANDOM stands for a variable
whose value is assigned randomly at run time (not at compile-time); the value of RAN-
DOM is chosen (with a uniform distribution) from the entire range of possible values for
Al (which is the same as Bl). Informally, the query is asking the DDBMS for the tuples
ir relations R1 and R2 that have common values in two fields (1 and 3). The execution
o this query consists of forming two temporary relations by selecting tuples from rela-
tion R1 (those with RANDOM in field Al) and similarly selecting tuples from R2; then
joining the resulting relations on field A3 and B3 to form another temporary relation:
fizally, obtaining the answer set for the query by projecting fields Al, A2, B1, and BEZ
from that relation. Note that a semantically identical query could be expressed as fol-

jows:

SELECT RI1.Al, R1.A2, R2.B1, R2.B2

FROA! R1, R2
WHERE R1.A1 = RANDOM AND R1.A3 = R2.B3 AND R1.Al = R2.B1;

K-wever, the actual sequence of actions followed by the planner in this second case lef:
v: with a different set of “semifinal’” candidates for our experiments (although the com-
pi.er still chose the same “winner’'); the candidates were unsuitable because they con-
ciszed of merge-join plans (see Section 4.3.3 for more details on this).

We chose two plans for the experiment. Plan A required that the DDBMS perform
.-t of the computation locally, while in plan B most of the work was to be done at the
remote site. Specifically, both plans called for an index scan on the outer relation of a
pasted-loop join: the inner relation of the join was R1 (the local one) in plan A, and R2
(t-= remote relation) in plan B. Query execution would be terminated by a final pred:-
c=-2 selectizn (at the site of the inner relation). Less formally, in plan A. the syster

40

was to scan (using the secondary index on field Bl1) relation R2, picking out the tuples
obeving the predicate “R2.BI=RANDOM". Those tuples would then be transferred to
the Jocal site (not individually, but as many as could be fitted in a message). Then the
DDBMS would perform a local join by scanning the tuples sent over once for each tuple
in R1; those whose B3 field equaled the A3 field of a local tuple were chosen. Finally,
the joined tuples would be further winnowed by discarding those whose Al fields were
not equal to RANDOM (note that, for this query, since the same value of RANDOM
was used in two places in the query and the relations are identical, this final process
does not discard any tuples). Plan B was similar, but with the remote relation (R2)

plaving the part that R1 performed in plan A.

Note that plan B has to do intrinsically more work than plan A. This is so
berause, after the query answer set is determined, the tuples have to be shipped to the
user site in plan B, while they are already in the correct place for plan A (for this partic-
ular query, the actual extra overhead involved in transferring the answer back to the
ucer's site was one extra message). Since the optimizer is aware of this, it normally
would select plan A.

However, if the remote node were more powerful than the local one, and if the
optimizer had information on the processing speeds of different nodes, it might assign
diffierent costs to the computational part of the two plans, and might then conceivably
pick plan B as the most effective one. Although currently the optimizer does not have
cost information on a per site basis (it uses the same processing speed and message delay
estimates for all nodes). the information will have to be added to it sometime in the
future for obvious reasons. For example, if R* is ever to run in an environment com-
posed of workstations and mainframes, some measure of CPU performance will have to
be incorporated into the optimizer. Heterogeneous CPU'’s are not the only reason for
having processor-specific costs; in a long haul network, the cost of sending messages Is
dependent on the distance to the destination site. Hence, ultimately the optimizer will
have to be revised so that it can keep {and take into account) all appropriate informa-
tior about each site with which it intends to interact. If the number of processors on
1he metwork becomes extremely large, or there is not much local storage, that informa-
tior could be stored at some subset of the nodes and cached locally at each site where
queries are compiled.

Actually, this cachicg issue must eventually be addressed, since a similar problem
occurs with other database directory information. For example, in a very large petwork,
keeping track of the site{s) at which all the relations reside might require inordinately
large amounts of storage. In such networks, perhaps the best place for this type of
information would be a name server [Oppenl983, Birrell1982), a mechanism that is
required in large distributed applications.

In Figure 4.6 we present in graphical form the results of the first experiment. On
the x axis we report system load (i.e., CPU utilization) at the local site. Similarly, the
position along the y axis represents the load on the remote processor. For points in this

41

load space above the shaded area (i.c., mostly points with x-coordinates less than their
y-coordinates), plan A had better performance (i.e., lower turn-around time). For points
below the shaded area, plan B offered performance improvements of various magnitudes.
The shaded area comprises points for which the performances of both plans were about
the same; we defined this to mean that the means of the turn-around times of plans A
and B differed by less than the sum of the respective standard deviations. (Note: the
boundaries of the shaded area are drawn so that they approximately enclose the points
where both plans performed about equally). In order to gauge the actual size of the
improvement possible by using plan B, we have further marked three points cn Figure
4.6. and labeled them with the performance degradations that using plan A would entail
wh=n compared 1o using plan B at those points.

In Figure 4.7 we present in tabular form the raw results obtained in tke experi-
ment. All turn-around times in the table are normalized so that plan A, with no back-
ground load in either system, takes one unit of time. Both plans were executed from
five to ten times for each of the background load combinations listed in the table (as
previously mentioned, load s defined in these experiments as percentage of CPU utiliza-
tioz). The table also gives the standard deviation of the measurements. Degradation is
defined as the difference between the turn-around time of the plan normally chosen by
the optimizer and that of the alternate plan, normalized by dividing this difference by
the time of the alternate plan. Negative degradations indicate that the “normal” plan
performs better at that point. Obviously, not every point in the space was tried, but
tha: was not n=cessary, since the shape of the shaded region contains all the relevant
information for deciding between the two plans.

As can be seen from the table in Figure 4.7, large performance improvemexts (up to
almeost 30%) ar= possible if the optimizer takes the loads existing on the mackines into
account. The graph in Figure 4.6 shows that under many circumstances {abou: half the
time for this particular query) the optimizer chooses the wrong plan: furthermore,” the
loads of the two systems do not have to be greatly unbalanced before the cifferences
become apprecizble. Note that we did not even drive either of the two nodes in the sys-
terr to saturation, which could indeed be the case in many a real installation. Greater
loac imbalances would strengthen our results; so would the availability of a more
heterogeneous set of processors, since a remote host whose power were much greater
thas the local host would be an ideal target for offloading local tasks.

Some final observations about the diagram in Figure 4.6 are in order. Tie spread
of the shaded region is related to the variance present in the experimen:al setup.
Decreasing various sources of variance in the experiment (for example, il the response
time of the message passing mechanism had lower variance) would result in a decrease
of the shaded region’s size. .1f one of the two machines were far more powerful (e.g..
higter MIPS rate or faster disk access time) than the other, the shaded regin would
move closer to the axis labeled with the load of the more powerful hardware: this is so
because, if that were the case, the load would have to become very unbalancec (i.e., the

Load in
Remote
System
(% CPU
utilization)

100
90
CHOOSE

80 PLAN

A
70
60
50
40

7
30 , CHOOSE
7 PLAN

7/

, B
20 d

Ve
/ /
s 10.8% d=3.
10 d / ne 28.8%
s / [- ® dec
7/
0 / 1
0 10 29 30 40 SO 60 70 80 90

Load in Local System (*: CPU utilization)

Figure 4.6: Results of Experimen: #1

43

background ' turn-around time
load Plan A Plan B degradation

loca! | remote | mean | st.dev. | mean | st. dev. (%)
S) 1.00 0.06 1.02 0.04 -2.0
42 S 1.20 0.12 1.25 0.06 4.0
57 5 1.62 0.07 1.47 0.11 10.2
87 5 3.93 0.17 3.05 0.25 28.8
57 42 1.61 0.12 1.72 0.16 -6.4
n 42 2.23 0.17 2.03 0.04 12.3
67 57 2.3> 0.16 2.29 0.30 2.6
s 57 2.6V 0.31 2.38 0.12 12.2
86 57 3.2% 0.33 3.06 0.04 6.9
& o7 4.12 0.38 3.66 0.24 12.6
a4 57 6.90 0.77 6.54 0.78 5.5
72 67 3.01 0.21 2.96 0.17 1.7
80 67 3.35 0.11 3.36 0.28 0.6
& 67 4.53 0.33 4.23 0.13 7.0
a4 67 8.54 0.67 6.94 0.36 23.0
8 72 4.59 0.52 4.52 0.17 1.5
Q3 72 8.0 0.24 6.82 0.34 17.6
&V 80 6.15 0.37 5.95 0.81 10.8
94 80 8.31 0.45 8.02 0.49 3.6

Figure 4.7: Results of Exp. #1 - Tabular Form

more powersul machine severely overloaded and the other processor almost idsz} before
it would b preferable to execate the plan that carries out most of its work 2 the less
powerful rachine. {In this case, as was pointed out in the previous paragrazh, if the
more powerful processor were the remote one, load balancing optimizers couwsl obtain
sizable perf srmance improvements by executing local queries remotely.) For thi particu-
lar query. txe same amount of work is carried out under both plans, except for an extra
message it plan B. Thus, if one could send messages at a faster rate, the cost of this
extra work would be minimized, which would result in the shaded region shift=g closer
to the dast=d line drawn at a 45 degree angle. Note that, as both sites beccme more
loaded and response time goes up, the overhead of sending messages becomes 1=gligible.
This is shown by the fact that the shaded region’s edges get closer to the 45 dszree line
in high-loa.: cases.

44

4.3.2. R* Experiment #2
The query used for the second experiment was as follows:

SELECT R3.C1, R3.C2, R4.D1, R4.D2
FROM R3, R4
WHERE R3.C1 = R4.D1
AND R3.C2 = RANDOM
AND R4.D2 = RANDOM
AND R3.C4 > VARI
AND R4.D4 > VAR2;

Now the relations involved are R3 and R4 (see Section 4.2 for their descripuon). R3
was the local relation and R4 the remote one in this experiment. RANDCM again
stands for a variable whose value is assigned randomly at runtime (again, wrh a uni-
form distribution drawn from the entire range of possible values for fields C2 and D2).
VAR1 and VAR2 are two (different) variables, whose value is set at runtime. It is
important to note that this implies that the optimizer can only make a wild guess at
what their value will actually be at runtime. As will be seen later, this means that the
DDBMS will not be able to predict with any certainty which plan will be optimal for
these queries.

The semantics of this query are somewhat similar tc those of the quers used 1in
experiment #1, with the exception that now we are further restricting the azswer set
tuples by imposing two new predicates: “R3.C4 > VAR1"” and “R4.D4 > VAR2". As
in the first experiment, the syntax of the query was chosen so that a certain se: of plans
could be generated.

For this experiment, we again chose to study two different plans (C and D). The
description of plan C is identical to that of plan A in the previous section. with the
difference that. as the index scan is being done on the outer relation, the tuples that do
not match the predicate “‘R4.D4 > VAR2" are discarded, and, after the join, the tuples
not matching “R3.C4 > VARI1” are also dropped. A similar relationship hold: between
plan D and the previously described plan B. Essentially, in plan C we will move the
relevant tuples of R4 to the local machine and perform the join locally, wherezs in plan
D we move the tuples of the local relation (R3) to the remote site.

Note that the symmetry existing in the previous experiment is missing h:re, siace
the amount of data involved in the query is different at each of the two sres (as it
depends on the respective selectivities of the “greater than™ predicates). In oth:r words,
the run-time values of VARI and VAR?2 determine the number of tuples scected at
both sites. Hence. we cannot say a priort which plan has intrinsically to perfcrm more
work. However, we will see that the relative loadings of the processors stii matter.
One final piece of information is that, under normal circumstances, the optimizer would
always select plan C, in spite of the fact that plan D might be better even in the
absence of load. In this section we will describe the experimental results obtaized using

45

two differen: sets of v.alues for VARI1 and VAR2.

In Fizure 4.8 the results of the second experiment are shown for VAR1=15000, and
VAR2=25000. This results in a query that involves about 1/2 of the tuples of the local
relation. and about 1/6 of the remote tuples. That is, there is three times as much
query dats locally as remotely. Hence, we would expect that a load imbalance larger
than in experiment #1 would be needed before load balancing pays off. As can be seen
in Figure 4.8 (the x and y axes are labeled as before), even in this biased case load
balancing pays off in a non-trivial portion of the cases, and the potential gains are not
negligible «see the table in Figure 4.9).

In Firure 4.9 we present in tabular form the raw results obtained ir the experi-
ment. \W: azain normalize all turn-around times in the table so that plaz T, with no
backgrour 2 load in either system, takes one unit of time.

In Firure 4.10 we show the results of the same experiment, but for VAR1=25000
and VAR =15000, so that now most of the data is at the remote processer. While the
optimizer would have still selected plan C for this query, it is clear from th= graph that
plan D stould have been chosen in most cases. This is so because now it s better to
move the relatively smaller amount of local data to the remote machine. Our results
again show that this decision is very much dependent on the load, since plan D 1s a
better chcice than plan C for most of the load space. The raw data for this experimen-
tal run is presented in Figure 4.11.

We Lzve again shown that the load conditions existing in a distributed svstem need
to be taksc into account by the optimizer. But there is another point to b= made here.
The optirzizer still made an incorrect choice of plans even neglecting the }oads, since
crucial re=time information (i.e., the values of some of the query variab:=) was not
available to it at compile time. We feel that future query optimizers shoulZ be built in
a way thz: allows the system to reconsider planning decisions made at cormrile time in
the face ¢ new information about either the state of the network or the guery itsell.
We will kzve more to say about this runtime vs. compile-time tradeoff in thz concluding
section of this chapter. The implementation implications of doing all this extra work at
runtime (2: least for the case of load balancing) are considered Section 4.4.

4.3.3. Experimental Problems

We [-upd many queries (about a third of those we studied) for which == could not
carry out successful load balancing experiments. This happened for a variets of reasons,
seldom t=cause load balancing did not offer substantial benefits, but. most often,
because of experimental problems. For example, in a few cases, there was s: much more
local datz than remote, that it never paid off to move the query off-site unless there was
an inordir ste imbalance in the loads. (Although it should be pointed out ttat employ-
ing a lozZ balancing optimizer would not be detrimental in these cases. since that

balancer would simply choose to run locally.) In other experiments, the car Zidate plans

Load 1n
Remolte
System

(% CPU
utifization)

100

90

80 CHOOSE

C s

70 7

60 7

50 Vs

40 Ve

30 ,

PLAN s

20 7 |

10 4

T

0 10 20 30 40 50 60 70 S

Load in Local System {% CPU utlization}

Figure 14.8: Results of Experiment #£2, Case [

46

background turn-around time
load Plan C Plan D degradation

local | remote | mean | st.dev. | mean | st.dev. (%)
5 5 1.00 0.07 1.26 0.04 -20.6
67 S 2.07 0.17 2.25 0.09 -8.0
72 S 2.47 0.15 2.43 0.04 1.6
80 5 3.24 0.11 3.29 0.10 -1.5
87 5 4.86 0.24 4.28 0.24 13.6
94 S 8.84 0.28 719 0.41 22.9
72 42 2.62 0.12 2.88 0.16 -9.0
80 42 3.43 0.18 3.62 0.14 -5.2
87 42 4.86 0.36 4.71 0.16 3.2
94 42 8.73 0.33 8.16 0.84 7.0
87 56 5.16 0.23 5.41 0.46 -4.6
a4 56 9.09 0.43 8.19 0.44 11.0
87 67 5.26 0.24 5.59 0.20 -5.9
94 67 10.07 1.22 9.18 0.71 9.7
94 | 80 10.20 0.50 10.62 0.80 -4.0

Figure 4.9: Results of Exp. #2, Case I - Tabular Form

47

Load
Remote
System

(% CPU
utthization)

100

CHOOSE
PLAN

90 C s
s

80 7

70 s

60 ‘ P
S0 7

40 s

4 CHOOSE
30 7 PLAN
V4 0

20 s

10 7

C 10 20 30 40 50 60 70 80 30

Load in Local System (% CPU utilization)

Figure 4.10: Results of Experiment #£2, Case Il

48

49

background _ turn-around time
Joad Plan C Plan D degradation

local | remote | mean | st.dev. | mean | st.dev. (%)
) S 1.00 0.03 0.78 0.04 282
5 N 1.68 0.14 1.58 0.05 6.3
S 72 1.99 0.11 1.83 0.07 8.7
5 80 2.33 0.12 2.47 0.09 5.7
) 87 3.29 0.23 3.59 0.06 -84
42 80 2.64 0.14 2.43 0.05 8¢
42 &7 3.68 0.27 3.69 0.20 -0.3
42 94 5.85 0.39 6.43 0.41 -9.¢
56 g7 3.94 0.20 3.71 0.18 6.2
67 g 4.06 0.10 3.94 0.15 3.C
80 gV 491 0.18 4.10 0.25 192

Figure 4.11: Results of Exp. #-2, Case II - Tabular Form

that remained as “finalists” in the optimization process (as described previously) were
such that there was only one “good” plan and no reasonable alternative. We tried to
modify the sxstem so that plans discarded in previous rounds would not be pruned, but
this proved t.oo complex to accomplish in our limited time frame. For still other queries,
while load bazlancing offered improvements, the queries themselves were so complex that
their actual execution time was too long, thereby precluding their use ic our time-
constrained experiments.

A major stumbling block in our work was the lack of merge-join plans. While the
planner does consider merge-joins as candidates (indeed, it chooses merg=join plans
much of the time), the software that implements merge-joins was inoperative during our
experiments; this is to be expected in a prototype system such as R*. However, merge-
joins are the ideal candidates for load balancing, since their behavior is such that they
move all the appropriate data to one site and compute there (this is consistent with the
-canonical’” scenario introduced in Section 4.2.2.2). Clearly, one could chocse the com-
putation site according to load balancing considerations. Merge-joins would have pro-
vided us witk a cleaner experimental setup, since the nested-loop join implementation in
R* sometimes tries simultaneously to send data while it is reading some more from the
disk (which 2= a departure from our canonical scenario - this was not the orly time that
we had to reconsider some of the assumptions we made before the experimects).

Another major problem was that the message passing software was so siw (relative
1o the computational requirements of the queries) that, in many cases, what would have
been an attractive alternative plan (in a system with less communication overhead) was
slower just b-ecause it sent a few more messages than the plan chosen by thke optimizer

50

(in our experiments, a query’s total processor residence time was approximately equal to
the time required to send a few messages; thus, if message sending were faster or queries
required more processing cycles, this problem would have been less important). The
communication mechanism also had the annoying habit of sometimes holding onto data
that should have been sent, while it waited for more send requests. It took many hours
of careful analysis of system traces to determine that the culprit for the obvious outliers
in our experiments was the communication sub-system. Even though maay experts
were consulted about this problem, we were unable to find a cure.

It should also be explained why we focused on joins in our experiments. This was
so for a variety of reasons. In the first place. the speed of communications was such
th=: we hac to look for queries that performed a significant amount of work iz order for
our experiments to be meaningful. Secondly. we felt that, since joins are the most
time-consuming operations in a relational DDBMS, it made sense to focus on them
rather than on other operations. Lastly, we did not look at groups of queries {i.e., com-
plex transactions) because the planner optimizes one SQL statement at a time. Chang-
ing its algorithms to optimize for a group of queries would have taken far more time
thar we had available for the experiments.

But the main difficulties of the experiments lied in the complexity of the software
invoived and the obscure interactions in the system. Our lack of familiarity with both
R* and the rest of the system software (MVS, CICS, VTAM, and so on) was an aggra-
vatiz.z factor. Learning how the optimizer worked, and how to modify its cos: estimates
took an inordinately long amount of time. Using turnaround time as a performance
met=i~ in a system that had been designed for throughput created unexpectel problems
in a variety of places (for example, if we had been using throughput instead. the prob-
lem mentioned above of the communication software holding onto data for a while
woti: have had lesser importance). Finally, the sheer amount of real time required by
eack experiment limited the number of queries we could explore.

4.4. Implementation Considerations

Although we did not actually implement load balancing strategies in the R* optim-
izer. we developed two alternative strategies for doing so. In this section we describe
thezr and briefly consider their performance and their cost.

Poth suggested implementations require that the system somehow detect an abnor-
ma! izad level in some of the sites involved in the execution of a query. As was pointed
out iz a previous section, performing some runtime checking is a necessity ic R*. This
is s> because there may have been changes in the system (e.g., an index being deleted)
since the time the query was compiled, that invalidate the plan chosen by the optimizer
(e.c.. if the plan used the deleted index). Thus. there would not be as muct overhead
invoived in detecting abnormal load conditions and invalidating the plan as tkere would
be if no runtime checks had already to be made. There should not be any extra work
invo'ved in computing the load metric {the CPU utilization in this case). since the

51

underlying operating system normally maintains that information, unless we found that
this information was not sampled or smoothed properly. The information about the
loads does not have to be broadcast, as in some of the load balancing schemes described
in previous chapters, because the user site must contact all relevant remote sites before
executing the query (in order to ensure that the sites involved are still functional and
that the data and indices used by the query plan are still in place).

At this point, there are two possible alternatives. The first design requires the
DDBMS to re-compile the query under abnormal load distributions (for the initial com-
pilztion, the optimizer may assume whatever ‘“‘normal” load distribution it expects to
fin2). This has the disadvantage of requiring the extra work of a new compilation.
Tt ==, the imbalance has to be sufficiently large to warrant the effort. To make matters
werse, this extra work may take place while there is a high load in the system (although
one appealing approach is to try to carry out as much of the compilation work as possi-
ble on the least loaded processors). The main advantage of this alternative is that it 1=
simple to implement (the system is already able to re-compile at any time), and does not
recuire the extra storage that the second scheme demands.

The second approach forces the optimizer to compute more than a single plan for
eacrh query. The planner would keep a few different plans, each of whick would be
aprropriate for different load conditions. This would involve a couple of minor
mcdifications to the optimizer: (1) changing it so that it does not eliminate all plans
except one, and (2) varying the costs it considers, so that load is taken into account
(tk3s change is actually needed also in the first approach). The main advantage of this
mezhod is that practically no further major amount of work is needed at runtime due to
changing load conditions. The drawback is that compilation is a little slower and there
are extra storage requirements. Although it is hard to estimate the extra storage
ne=ded, rough calculations show that we would require about 600 bytes per SQL state-
meat (per plan kept). .

It should be pointed out that modifying the optimizer to consider load in its plan-
nicr is relatively easy to implement. As we mentioned during our previous discussion of
proessor-specific costs, the optimizer will eventually need to be modified so as to com-
pu-= different processing costs for different hardware configurations. Once these changes
are implemented in the compiler, variations in 2 processor’s load can be modeled by
changing the processing costs associated with that node.

Thus, we have presented two ways to implement load balancing in DDBMS's. Both
aprroaches are expected to be simple to implement and not very costly, in either com-
pilz or running time. Those R* research group members with whom we discussed our
aprroaches could see no obvious fault with them.

One final point is that, in some environments, there are a few, frequently used

qu=ries, or a few very time-consuming queries. In those cases, it may be possible for the
us==s to employ the same approach we used in our experiments, and determine

52

empirically what are the appropriate plans for different sections of the load space. The
users could then (manually) run the correct plan for the conditions that exist when they
want to ex=cute the queries. . Of course, this is the approach of last resort, and certainly
pot as effe~tive as the alternatives described above. A refinement of this alternative
would be tc: automatically trigger load balancing only for these kinds of queries.

4.5. Conclusions

In this chapter we have presented our R* experiments. The results have shown
that load mialancing strategies offer the possibility of sizable improvements in DDBMS
performan=« under reasonable load conditions. Furthermore, these strategies are peither
complex t: mmplement {we have suggested two simple implementztions) nor expensive to
run (at eitzer compilation or execution time). The load metric used was a simple one,
and seeme¢ to be sufficient for a real implementation. With more heterogeneity in the
hardware. we would expect load balancing strategies to be even more successful. Thus,
we have m=ot our experimental goals of showing load balancing to be both useful and
easy to impsiement.

Not 2l the queries that we studied benefited from load balancing. The reasons for
this were. Jor the most part, related to the low speed of the communication software
and to the zemporary absence of merge-joins.

We dc mot feel that adding load balancing to a sophisticated optimizer such as R*’s
is “polishizr a round ball”’. We have shown that runtime considerations {which have
been somewhat neglected in previous work) are very important to the performance of a
query plarmer. Some researchers have focused on obtaining fner grained statistical
informatioz about the distribution of tuple values in the database in order to improve
query perfccmance via better query compilation. Since there is so much to be gained by
looking at runtime information, we feel that future work in this area should study run-
time issues as well as compile time ones. This will be especially eseful in LAN environ-
ments witk 2 high degree of heterogeneity and dynamically changing conditions.

This experimental work proved to be substantially more diffizult than a comparable
simulatior study. However, we feel that the results obtained warranted the effort. and
that thev offer further support for the performance improvements suggested by the
findings of =he preliminary simulations described in Chapter 3. An additiona! advantage
of these exmeriments over simulations is that, at many times during our work, we were
forced to r=consider some of our assumptions. In simulation work it is sometimes easy
to build or+'s biases into the model or skip crucial details. It is harder to make those
mistakes wen one is working with a real system.

In the mext chapter we will present a third study of the problem of applying load
balancing szrategies to DDBMS's.

CHAPTER 5

Distributed INGRES

In order to extend our work to a second distributed DBMS, we studied the effect of
load balzncing on the fragment-replicate query optimization strategy proposed for distri-
buted INGRES. In this chapter, we describe the model used in that work, and present
the resu ic of the simulatior experiments performed.

5.1. Introduction

As we explained in a previous chapter, it was desirable to study the applicability of
load balzncing to the optimizer of a second DDBMS. Distributed INGRES was chosen
because the design of its query processing strategies has been well documeanted in the
literatur=. and it was easily available to us. It would have been preferable to perform
the experiments described in this chapter on a running version of that system. How-
ever, at the time this work was to be carried out, the software in question was not yet
reliable enough to permit wide-scale testing and experimentation.

Query processing in distributed INGRES is relatively complex, and quite different
from th: mechanism described for R* in a previous chapter. The details of the pro-
cedure will not be completely described here; a careful description ik given in
[Epsteini078|. There, a ten-step optimization algorithm is presented, which deals with
complex queries that access a number of (possibly) fragmented relations distributed
among = multitude of sites. Basically, after sub-queries are handled, the original query
is decomposed by a reduction algorithm (see [Wong1976]) into a set of irreducible
queries. Then, the sites that will process the queries are chosen. Next, the algorithm
decides which relation will remain fragmented, and the rest of the relevant relations are
replicated at every processing site (i.e., a copy of each fragment of each relation 1s sent
to all sit=s involved in the query that did not originally contain it, except, of course, for
the pieces of the “fragmented” relation). At this point, only local query processing
operatiom:s remain to be doone; the “master” site (i.e., the site at which the query ori-
ginatedi broadcasts the work to be done to all the participating processors ithe “slave”
sites).

In Zpstein1978] two optimality criteria for query processing policies are considered:
one consists of minimizing transmission costs, the other execution time. Reasonable
heuristies are suggested for the implementation of both types of policies. In order to
decrease transmission costs, the heuristic proposed is to select as the fragmected relation
the one with the largest amount of data, and to replicate the other relaticns at every
site that has a piece of the fragmented relation. Actually, this is the heuristic suggested

54

for broadcast networks; there is a different heuristic for the case of point-to-point net-
works (the authors suggest moving all the data to one site in the latter case). We will
henceforth refer to the broadcast network scheme as FR (for Fragment-Replicate). A
further simplification of this policy would be to select at random the relation to be frag-
mented; this is the scheme currently implemented on distributed INGRES. We shall

refer to it as RS (for Random Selection of fragmented relation).

We suggest in this chapter two ways to incorporate load balancing into the basic
fragment-replicate policy. Our first proposal involves selecting the relation to be frag-
mented on the basis of a weighted sum of the local sizes of the data. Specifically, in a
network with N sites, the relation chosen to remain fragmented is the one that maxim-

1zes
N
E (dl/ lx")
=1

where d. is the size of the relation fragment at the i-th site, and [is the load at the i-th
site. Actually, L. will be the value of some load metric at the i-th site; we will assume

that any load metric of interest can be defined so that a higher value of the metric
implies a larger level of load, and that its value s always positive. We will refer to this
policy as the LB1 scheme (for Load Balancing policy #1).

The second policy incorporating load balancing that we will stady in this chapter is
a further refinement of LB1; we will refer to this new policy as LB2 {for Load Balancing
policy #2). In all the policies discussed so far. when a join is to b2 computed. work is
done only at the sites that have some of the data required for the join. In LB2, we
attempt to make use of the idle processors that would not be involved in the join under
the other strategies. We do this by acting as if we had one more relation involved in
the query, one with a size equal to the size of the smallest of the relations really
involved in the query, and located at the processor with the smallest load (as defined by
our load metric). Then, we choose the fragmented relation in exactly the same manner
as in LB1. The effect of this strategy is that the DDBMS will act as it does under LBI
while the load in the system is relatively even, while, under load imbalance conditions,
the DDBMS will copy all the data pertinent to the join to the least loaded processor,
and proceed to execute there, even if that processor did not originalls contain any of the
data involved in the query.

At this point, we should also describe the heuristic given in[Epstein1978| to reduce
the query processing time. This scheme involves “equalizing” the amount of data to be
processed at each site. That is, the relation to be fragmented will be evenly distributed
across all the nodes of the network (and, since the processing cost ic the model used by
the authors is independent of the relation chosen, the relation to be fragmented can be
selected to be the one that we can evenly distribute with the least communication cost).
However, if communication costs are not zero, we can force this scheme to perform arbi-
trarilv badly by simply increasing the number of nodes in the petwork. Moreover, as

the authors of the paper point out, this is suitable only for an environment where all the
processors husve identical computational speeds. Since we are interested in policies that
are applicabioe to heterogeneous environments, we will not consider this scheme further
in our work.

In thic chapter, we will present the results of simulations that compare the perfor-
mance of tiue four query processing schemes described above: FR, RS, LB1 and LB2.
The next setion of this chapter describes the model used for the experiments. The
third section details the experiments performed and compares the eflects of the four pol-
icies on various performance criteria. The final section draws some conclusions about
the desirabiiiity of using load balancing techniques in conjunction with fragment-
replicate gz~ processing strategies.

5.2. The Model

In the =xperiments. each host was simulated using the model shown in Figure 5.1.
Although taiz model is similar to the one shown in Figure 3.1, the actual details of the
simulatioz are different. in that this model attempts to mimic the behavior of a specific
DDBMS (INiZRES), instead of a general DDBMS, and it is a closed model {while the
model dessriived in Chapter 3 was open). The DDBMS was modeled as a collection of
such processiors connected by a network (the network was modeled by an exponential
server).

Durinc =be simulation, there were 2 fixed number of users at each processor submit-
ting databas: queries. Each query starts at a terminal, then goes to the CPU queue,
where the T BMS decides how to process the query (according to the strategy being
simulated;. “When the DDBMS has chosen-the fragmented relation for the join, a mes-
sage is broadizast by the master site (i.e., the one where the query originatedj to all the
sites contain:mg some of the join data (in the case of LB2. there may be an extra mes-
sage recipiza if the query will be executed at the least-loaded site as described in the
previous secwion). The master site then waits (in the wait queue) for the other sites to
complete theerr work. (In Figure 5.1 the triangular figures represent the coupling of two
actions; tke Triangle with a left-pointing apex represents the two actions of seading the
broadcast message and waiting for replies from the other sites; the triangle with a
right-poiniin.c apex represents the fact that the master site job will depart from the wait
queue wher <he appropriate acknowledgments are received). When a site that contains
fragments ci the replicated relations receives this initial message, it will access the
appropriate @ata on its disks, and broadcast it to all the sites containing the fragmented
data. If s s-e that contains fragments of the replicated relations does not bave any
data from tae fragmented relation, it is now finished with its work and it sends an ack-
nowledgermen: to the master site. When fragmented data sites receive the initial mes-
sage, ther aiso obtain the relevant data from their disks, but then wait for the data
from the renicated relation sites. When all the replicated data has arrived, these sites
proceed t- execute the local portion of the join (if there is more than one job in the

56

N\

ACK /l\

—HAE O
% WAIT
N\

/O\TERMINALS

0O AN
o

Y

v [
o [

%

A Y
AN
/7
RESCHED
Z
N

Figure 5.1: Host Model

CI'i7 queue. each job will exccute for a time-slice before being re-scheduied . We
asstmed that it would take about 10,000 instructions to process cach page of the data
invelved in the local join, and that each machine can process one million tnstrictions
per second. When ecach local join is inished, an acknowledgment is sent tc the master
site. When the master site has reccived an acknowledgment from all the participating
site= . all the work required for the query is finished, and the job goes back t> the termi-
nal. from where after some time the user submits a new query.

57

The queries modeled were all two-relation joins, and each relation could be com-
posed of multiple fragments of varying sizes (although, in the simulations described in
the next section, all relations consisted of single fragments). The relations irvolved in
the queries are located throughout the network, but with a higher probabilitr of being
local (i.e., in the processor where the query originates); for example, a local deia proba-
bility of 0.5 implies that, for a two-relation join, .25 of the queries are strictly docal (i.e.,
all local data), .25 are strictly remote queries, and the rest are mixed.

The parameters used in the model are shown in Figure 5.2, together with their
values. The values of the parameters were set based on the measurements we presented
in Chapter 3. ‘

Ve termizated each of the simulation runs when a given number of jobs zad been
complsted. Simulations were executed for a variety of values of this limii. and the
response time and throughput measures were found to be stable (within 5% of each
other) for runs in which more than 100 jobs were allowed to finish. We ran ti- simula-
tions whose results are reported in this chapter until at least 150-200 jobs w=re com-
pleted {and in some cases for longer than that).

5.3. Experimental Results

The goal of these experiments was to gauge the benefits of introducing loa2 balanc-
ing in:o the frzgment-replicate query processing strategies used in (or proposel for) dis-
tributed INGRES. As in previous chapters, the performance indices of inte=st were
mean job turn-around time and system throughput. As before, mean job turp-zround is
definec as the mean time elapsed between job initiation and job completion, arl system
throuzhput is defined as the total number of jobs completed per second by the s¥stem.

Tie simulations were performed for a variety of user distributions, and ix all the
query processicg strategies of interest (i.e., FR, RS, LBI1, and LB2). The lcsd metric
used iz the simulations was defined to be the number of jobs waiting in the CFU queue
plus 1. divided by the mean CPU service time. This metric is essentially the izad aver-
age described in a previous chapter, but modified in order to ensure that it value is
always positive and to account for differences in CPU power, if any.

It the remainder of this section we describe the simulation experiments p=rformed.
In the first experiment we measured the performance of the load balancinr schemes
descrit-=d above. and in the rest of the simulations we explored the effects of various
change in the simulation parameters (such as the amount of local access= or the
number of nodes in the network). The stability of the algorithm in the pr=sence of
imperfect load information was also studied.

5.3.1. Performance of the Algorithms

r the first experiment, we simulated a network of five hosts, joined by 3+ CSMA-
CD petwork {see Figure 5.3). For each simulation run, the users in the syx=m were

parameter value

Nodes in network 5

Network service 1 Mbit/s

time (exponentially distributed

User thinktime 1250 ms
(exponentially distributed

Disk service time 30 ms
(exponentially distributed)

CPU service time 10 ms
(exponentially distributed

Message size 1000 bytes

Instructions to 10,000

process a page

Fragment size 1-10 pages

(uniformly distributed)
Fragments per relation 1
Prob. of local data 0.5,0.8

Figure 5.2: Parameters for the Model

HOST
#1
HOST
#2
HOST
£3
HOST
#4
HOST ‘

v

NET
7 JQUEUE

N

Figure 5.3: Network Model

Gistributed evenly among three of the processors, while the other two had no wuses:
2ssigned to them (e.g., in the simulation corresponding to 60 system users, three of 1= =
rrocessors had 20 users each). However, it should be remembered that, since the dziz
rsed in a query may be located at any site in the network, work is normally done at 2%
rrocessors, even under the non-load balancing policies FR and RS (work is perform=2
£ only for data retrieval purposes, but also in the exccution of the local sub-queries;.

We varied the number of users (in a single processor) from 15 to 25: thus, tz =
£ umber of total system users varied from 45 to 75. We set the probability of local dzta

equal to 0.8 {so that 64% of the queries involved only local data, 32% required both
local and remote data, and 456 of the queries accessed only remote data). Figure 5.4
shows the average job turn-around time for all the policies, as the number of users in
the system increased. The throughput achieved (by the entire system) in the simula-
tions is shown in Figure 5.5.

As the graphs in Figure 5.4 and Figure 5.5 show, LB2 substantially outperformed
FR and RS with respect to both performance metrics measured throughout the range of
system users we modeled. The added flexibility that LB2 has in selecting the execution
sites of the query makes it a very attractive strategy, even under conditions of relatively
low load. Furthermore, the network bandwidth was never a bottleneck; its mean wutili-
zation rever exceeded 109¢ in our simulation runs. On the other hand, LB1 was not
consistectlv superior to FR and RS until the load m the system became high. We feel
that the benefits from LBl are not sufficient to warrant its use; however, the perfor-
mance improvement under LB2 was sufficiently high that we would strongls recommend
its use iz metworks where the loads are not completely evenly spread out across the sys-

tem.

5.3.2. Increased Local Data

In order to explore the effect of a smaller proportion of local data (which, in this
situation. implies a decrease in the imbalance of the work demands of the system). we
repeated the simulations described above with only 0.5 of the join data beizng local. The
results appear in Figure 5.6 and Figure 5.7. They show that, although the improvement
due to LB? is smaller, it can still be a considerable one (especially in terms of svstem
throughputj. We believe that these results support our conviction that, urnless the user
requests are evenly distributed across the different nodes in the system, load balancing
strategies ean be very effective in improving DDBMS performance. It should be poted
that the environment simulated in our models is one of relatively mild imbalance, at
least compared to many of the networks in which we have worked.

It i also interesting to note that FR did not perform demonstrably better than the
simpler RS. Thus, we would not recommend that the current design of distnbuted
INGRES be modified in order to implement FR, unless the spread of relation sizes is
much grezter than the one modeled here.

5.3.3. The Effect of a Larger Network

Sipe~e the size of the network modeled was not very large, and we expect newer net-
works tc connect larger numbers of machines, we were interested in determining how an
increase ir the number of nodes would affect our results. Thus, we repeated the sirnula-
tions of Section 5.3.1, but this time increased the size of the network from 5 to 10
nodes. The total number of users in the system ranged from 30 to 120, evenly distri-
buted among 6 of the machines, while 4 of the machines had no users.

nms

o
W
c
c

4000

3500

3000

2500

2000

1500

1000

500

30

Figure H.4:

75

)
[an)

35 40 a5 50 SS 60 65

usersin the system

Turnaround Time vs. ## of Users (0.8 prob. of local data)

61

jobs/s 62
’/\/
]I) ,-”/ ’
/// 82
e
yd
vl
14
13
LB 1
12 ,_/"- =~ -~ -
_ .- - ~
T T T = RS
11
FR
10
9

30 35 40 45 50 55 60 65 70 75

users in the system

Figure 5.5: Throughput vs. # of Users (0.8 prob. of local data)

an

A500

4032

3000

S0C

30 35 40 45 S0) 60 65 70 75

users in the system

tirure 5.6: Turnaround Time vs. # of Users (0.5 prob. cf local data)}

63

12

R

i0

30 35 40 45 S0 S5 60 65 70)

usessin the system

Figure 5.7: Throughput vs. §f of Users (0.5 prob. of local datz}

65

While the increased number of processors may provide a greater opportunity for
load balancing. since the load balancing decisions are made by the individual processors,
one rmav expect that, with a larger number of decision-makers, more conflicts may arise
(i.e., more sites will select the same machine to which to migrate jobs). However, our
simulation results show that LB2 continued to offer performance gains over the non-load
balan=ing policies. For example, with 120 users, LB2 offered a response time improve-
ment of more than 35% over the standard fragment-replicate policy (FR). In Figure 5.8
and Figure 5.9 we show, respectively, the mean turnaround time and the throughput
corresponding to the various algorithms. It should be pointed out that a network of 10
nodes is pot inordinately large; indeed, there are many substantially larger networks in
curre-: uss. and we expect local area networks to increase in size to much larger
numt-ess over the next few years. On the other hand. even if networks grow to contain
hund-=ds of nodes, perhaps the number of machines that would participate in a load
balan ~ing scheme would be a subset of the total. At any rate, the simulation results of
this section suggest that our load balancing schemes would still perform well in those
larger networks of the near future.

5.3.4. The Effect of Workload Changes

Since the jobs being modeled in our first experiment did not access a large number
of da:zbas= pages (in the previous simulations, each join accessed from 1 to 10 database
pages uniformly distributed) we studied the effect of having more demanding database
tasks. In particular, for the simulations described in this section, each join accessed
from - to 100 database pages, uniformly distributed. All other model parameters are
the s=mne as in the first experiment described in this chapter. As can be seen from Fig-
ure 5.10 (which shows the throughput of the system for the different algorithms), the
increzsed demands made by the jobs on the system’s resources result in their quickly
exhavsiing the capacity of the DDBMS. However, since LB2 can take better advantage
of th: less loaded processors than the other algorithms, its mean turparound time
(showz in Figure 5.11) is much better than that of the other schemes.

Since we might expect that, even in a well-designed DDBMS, the user demands at
some <7 the nodes might become exceptionally large for short periods of time, a query
optim:zer that implements LB2 would be very useful, since it would allow the DDBMS
to mzie use of underutilized machines elsewhere in the network, and thus alleviate the

temp-rary erisis.

5.3.5. The Stability of the Algorithm

S:mulations were also performed that explored the effect of imperfect or out of date
load izformation on the LB2 policy. The same model (see Figure 5.1) and parameters
(see Fazure 5.2) employed in the first experiment described above were also used, but
now tie lead information (i.e., the value of the load metric) lagged behind the actual
values TLke reason for exploring the behavior of LB2 under “stale” data is that, in an

4500

4000

L)
VAl
]
(@}

3000

2500

2000

1500

1000

500

30 40 50 60 70 80 390 100 110 120

users in the system

Ficure 5.8: Turnaround Time vs. §f of Users (10 nodes)

67

jobs/s

LB2

_——
_— e
-

30 40 SO 60 7C 80 90 100 110 120

users ir the system

Figure 5.9: Throughput vs. # of Users (10 nodes)

jobs /s

30

25

20

1.5

1.0

0.5

L82

. e e 6 e e 0 mm C e O e @ E——— ® — O o = W= = m= O Cms © CEmm— - me ¢ aee o S o A o =S o

e e e R S AAE - G e G e — — — — Cm — — ——
—
——

15 20 25 30 35 40 45 S0 55 6C

users in the system

Figure 5.10: Throughput vs. #f of Users (inzrased workload)

69

seconds

30

25

g2
20

15

10

15 20 25 30 3S 40 45 S0 S5 60
users in the system

Figure 5.11: Turnaround Time vs. 7 of Users (increased workload)

70

actual implementation, there is a certain cost to sampling and broadeasting the load
informaticz. Thus, we are interested in the performance of LB2 as we let the load infor-
mation us=d for the load balancing decision become increasingly out of date. As in the
simulation= presented in Chapter 3, this situation was modeled by periodically refreshing
each processor's estimates of the load present at other nodes. Clearly, for a given load
metric upéate rate, as the system load increases, we experience a degradatior in perfor-
mance witx respect to the results obtained for LB2 with up to date information.

For tiis experiment, the number of users in the system was set at 45. The update
interval w=as varied from 0 to 7000 milliseconds. Figure 5.12 shows the effect of decreas-
ing the ref-=sh rate on the mean turn-around time experienced by jobs in the system. In
order to uzderstand the significance of the graph better, an additional Line 1= shown in
the figure: = hatched line marks the mean turn-around time for jobs in the system if o
load balap-=ing takes place (i.e., if the FR policy is used). As is evident from the graph,
as the update interval increases, the performance of the system begins to degrade from
its best vaiue (with perfect information), until, finally, the mean turn-around time gets
worse witk load balancing than without it. Figure 5.13 shows that a similar result holds
for the sysaem throughput.

The r=sults of this last experiment show that, in order to successfully implement
LB2, load information must be broadcast at a fairly rapid rate. For a system similar to
the one beimg modeled, the refresh interval must be smaller than 2 seconds in order for
LB2 to be an effective strategy. Clearly, the length of this interval depends (in a non-
trivial war: on the number of users currently in the system, and on the types of jobs
they are ex=cuting.

It is xteresting to investigate what happens as the number of users in the system
increases. While more jobs will enter the system during the update interval {and thus
there will e greater opportunity for erroneous selection of the fragmented relation), we
also expecz load balancing to be more effective when the load is higher. We repeated
the above experiment, but this time with 60 users in the system. Figure 5.14 and Figure
5.15 show {respectively) the effect of this change on the turnaround time and on the .
throughpri. The constraints on the update rate are somewhat relaxed; we caz now wait
3 seconds between updates and still improve the performance of the syvstem (as com-
pared to F).

As w= mentioned above. there is a cost involved in rapidly communicating load
informatica among the network nodes. This cost can be divided into two parts: (1) the
expense of obtaining the load information at each node, and (2) the cost of broadcasting
that information. Of these two costs, the second is the more sizable one, and the one
that grows in proportion to the number of hosts on the network (even if the network
supports 2 broadcast facility, so that one does not have to send a message to every other
node, therz is a cost associated to listening to the messages from every other site). This
suggests tzat perhaps an acceptable compromise between paving the high cost of using
recent da=: and suffering the performance penalty due to stale data might be to obtain

ms

2500

2404

230¢

220C |

2108

190C

180U

170C

160C

150C

14GE

1300

120€ - gpdate
interval

C 1000 2000 3000 4000 5000 6000 700 (in ms)

Figur: 5.12: Turnaround Time vs. Update Rate (45 users)

71

jobis /s

LE2

0 1000 2000 3000 4000 5000 6030 7000 8000

update interval (in ms)

Figure 5.13: Throughput vs. Update Rate (45 users)

2200
4000
3800

3500

3200

3030

2229

2200

0 1000 2000 3000 4000 SO0GC 6000 7000 8000

update interval (in ms)

Fizure 5.14: Turnarouand Time vs. Update Rate (60 users)

15

14

13

12

11

10

jobs /s

0 1000

Figure 5.15:

2000 3000 4000 S000 6000 7000 800C

update interval (in ms)

Throughput vs. Update Rate (60 users)

the local load information at very frequent intervals, but to broadcast that information
at a much slower rate. The query optimizer would still have to cope with stale informa-
tion about the state of the other processors in the network, but would at least be able to
assess its own load more accurately.

In the final experiment described in this chapter, we studied the situation described
in the previous paragraph; we used the same model and parameters as in the first model
of this sub-section, but this time we used current local load information and stale
remote load data. In Figure 5.16 we show the average turnaround time for this simula-
tion. As before, the hatched line marks the performance of the FR policy; the Line
labeled “LB2-s"” shows the performance of LB2 with completely stale data {ie., it is the
same line that appears in Figurz 5.12); the line marked “LB2-1" correspond: to running
LB2 with current local load data. Similarly, by examining Figure 5.17 we can compare
the throughput curves of LB2-s and LB2-1.

As both Figure 5.16 and Figure 5.17 show, the behavior of LB2 f{i.e., LB2-])
becomes much more stable now. Although the performance of the algoritkm is some-
whai degraded from that of the perfect information case, LB2 performs better than the
pop-load balancing case even for fairly slow rates of load broadcast. The instability
that LB2 showed in the previous two experiments was due to two causes: (1! each node
had old information about remote loads, and thus, reacted slowly to changes in the koad
of other sites, and (?) the machines tended to keep for themselves all loca! work, even
past the point when they were overloaded, since the local load information also lagzed
behind. By eliminating the second factor, the performance of LB2 improved radically.
This suggests that, for an implementation of LB2, one would not have to incur the costs
of constantly communicating load information in order to achieve performance gains.

Even though the availability of current local load information helped matters a
great deal, the comments we made in Chapter 3 about the significance of the update
rate for load balancing still applr. In order for load balancing techniques to be effective,
load metric information must be rapidly communicated. In practice, this may turn out
to impose a limit on the number of processors that can usefully participate in a load
balancing arrangement. When the distributed system has too many machizes, a possi-
ble solution is to logically decompose a network into clusters of processoss and oxly
implement intra-cluster load balancing.

It should be kept in mind that the results of the simulations presented in this
chapter underestimate the performance improvements possible while using boad balanc-
ing, since the models used do not account for the non-linear effects of load ca CPU per-
formance (i.e., five jobs do pot take five times as much to complete as a sinzle one, Lut
much more. due to scheduling overhead and other such effects not modeled in our simu-
lation). Thus, the benefits of LE1 and LB2 may be even greater in an actual implemen-
tation than what our results suggest.

2500

2400

2300

2200 |

190C

1800

170C

160C

1500

1400

130C .

1200

Figur

L82-s

update
interval

a 1000 2000 3000 4000 S000 6000 700C (in ms)

n 5.16: Turnaround Time vs. Update Rate (curreant local data)

76

t82-s

C 1000 2000 3000 4000 S000 6000 7000 8000

update interval (in ms)

Figure 5.17: Throughput vs. Update Rate (current local data)

78

5.4. Conclusions

In this chapter, we saw that, for distributed INGRES, a second DDBMS quite
different from R* (which we studied in the previous chapter), we can also obtain sizable
performance mmprovements by applying load balancing techniques to the query optimi-
sation software. This lends further credibility to our claim that load balancing tech-
niques can be profitably introduced into DDBMS optimizers.

In the mext and final chapter, we will make some overall commeats about the
significance and usefulness of our work, and map future directions for research in this

area.

79
CHAPTER 6

Conclusions and Future Work

6.1. Condiusions

In ord=r to gauge the success of the research we have performed, the grals stated at
the outset «f the work must be recalled. In the introductors ~hapter of tbs thesis. the
following is=ues were raised:

can the performance of a DDBMS be improved by using load balancing teckziques? Ii
is clear 1hat some degree of improvement could always be achieved by gmng mors
knowlecze about the system to the query planner, but only if the gains are szable will
this prociosal be of more than academic interest. Note that system designers. who have
sunk maxny person-years of effort into their query optimizers, migat be reluctzat to dis-
card their current software and develop new code that incorporates load zalancing.
Thus, iz would be desirable to reduce to a minimum the chaages the introdz:tion of =
load ba:ancing scheme will require. Also, it must be shown that, using ezsly impi:-
mentab’s load metrics, and in environments that are not extremely imbalziced, loz<
balancirr still makes sense, even when accounting for the cvarhead of tr: schem=.
Hence, 2 better statement of the problem would be: can leas balancing stiegies b
easily iciroduced into current optimizers in such a way that t5: performance :f the sy=-
tem wil. be substantially improved in realistic situations of im-alance and unc:r reasoz-
able comditions?

In the previous chapters, two different systems were studied. one experimer-ally and the
other by siznulation. For both R* and distributed INGRES it was shown taat the gains
due to loa¢ balancing could indeed be large even under moderate load im:alances. and
for systems that were never saturated. For example, in the R* experiment & was shown
that for a zvpical join the gains were from about 10 to 3C percent, in & system that
never becamne very loaded (always less than 90 percent CPU utilization). *or bothk svs-
tems the ir—plementation approaches suggested involved minimal changes t: the system.
In the case of INGRES, the cost function was extended so that, instead of examining
only transrmission costs in order to make the fragment-replicate decision, tze load aver-
age measurement gathered by UNIX systems was also considered. For R*, one of the
two implementations described was to construct alternative plans and caoose among
them base¢ on load information. The other approach was to invalidate zlans at run-
time if the Joad in the systems involved was not within a “normal” rangs. Finaliy. in
all cases tt e load metrics used were readily available in the svstems stud=d (although
we do not «laim that those metrics are necessarily good ones: see [Ferraril35] for some
recent work on this subject). Since the statistics used are npormally gatiered by the
operating s¥stems, implementing load balancing does not involve additiona! overheal for

80

data acquisition, but only for communication among the systems involved. In a high
bandwidtk broadcast local area metwork such as the Ethernet, this communication over-
head shoutd be negligible unless an extraordinarily large number of hosts are mvolved in
the load balancing scheme. o

The results described in tar thesis show that load balancing strategies are quite
attractive for distributed database systems. Furthermore, designers would do well to
focus on runtime issues such as the loads, even at the expense of doing less work on
compile time optimization. The effect of the former has been shown here to be
significant. while any new gairs dae to further refinements in the techniques currently
employed for query compilation might be quite marginal.

6.2. Future Work

The work presented in this thesis could be extended in a variety of ways. One pos
sibility would be to focus next om non-relational distributed databases (for example, a
hierarchicz! database system sach as IMS [Datel975]). Another interestiag project
would be to actually implemenz scme of the load balancing algorithms studied, either in
INGRES or in R*, and to measure the systems under actual workloads. A third possi
bility is tc use the experience cbtained from the work herein to attack the gemeral load
balancing problem, i.e., to stud= the problem in the context of a general purpose distri
buted syssem. As has been mentioned in previous chapters, the load balar<ing work
described in the published literzzure suffers from a number of deficiencies {e.g.. the pol+-
cies are tos ad hoc, or the mod =& used are unrealistic). One possible approack would be
to study z collection of load m=trics in order to determine their suitability. Since the
choice of metric would seem t- te very system and workload dependent, 3 choice of
both wouiZ have to be made. Berkeley UNIX 4.2 BSD and the workload of one of the
distributeZ systems at U.C. Berieley would seem to be appropriate initial choxes. Oace
the choice of a metric has beer marrowed down to a few, a variety of load balancing pol-
icies coulé be explored. The policies should be chosen based on both intuitica and the
predictio= of theoretical modeis. The study and selection of both load metrics and load
balancing policies could be d=ze by constructing simulation models of tke existing
software z2nd hardware at Berkalor and by performing experiments on the campus syv=
tems. Ore of the results of tais iine of research should be an implementatoa of lozd
balancing suitable, at least, for the environments where 4.2 BSD is typicalir run (ie..
university. research laboratorz. and engineering design installations). Wih careful
extensions. this work could alsc result in even more general strategies, whict would te
applicable in a wider setting.

81

BIBLIOGRAPHY

‘Almes1¢79]
Almes, Guy T. and Lazowska, Edward D., “The Behavior of Ethernet-Like Com-
puter Communications Networks,” Proceedings 7th ACM Symposium on Operaling
Systrms Principles. Operating Systems Review, pp. 66-81 {December 1979).

Alonsol&32)
Alorso, Rafael, “A Model of the XCS Network,” CS258 class report, U.C. Berkeley
(Winter 1982).

"Astrahar197€
Astrahan. M., Blasgen, M. W., Chamberlin, D. D, Eswaran. K. P., Gray, J. N,
Grifiths, P. P., King, W. P., Lorie, R. A., McJones, P. R, Mekl, J. W., Putzolu, G.
R., Traiger, L. L., Wade, B. W., and Watson, V., “System R: Relational approach
to database management,” ACM Transactions on Database Systems 1(2) pp. 97-137
(Jun= 1976).

‘Birrell1 832!
Birrell, A., Levin, R., Needham, R. M, and Schroeder, M. D., “Grapevine: An
Exercise in Distributed Computing,” Communications of the ACM 25(4) pp. 260-

974 (April 1982).

‘Biasgen1979;
Blaszren, M. et al, “System R: An architectural update,” Research Report RJ2581.
IBM Research Laboratory, San Jose, California (July 1979).

‘Bokharil 879
Boktari, S. H., “Dual Processor Scheduling with Dynamic Reassignment,” IEEE
Traz.sactions on Software Engineering SF-5(4) pp. 341-349 (July 1979).

Bokharil 981]

BokLtari, S. H., “A Shortest Tree Algorithm for Optimal Assignments Across Space
" and Time in a Distributed Processor System,” IEEE Transactions on Software
Engineering SE-7(6)(November 1981).

‘Brvant,

Brvant, R. M., SIMPAS 5.0 User Manual. University of Wisconsin - Madison ().

{Bryant1980]
Ervant, R. M., “SIMPAS - A Simulation Language Based on Pascal,” Proceedings

67 the 1980 Winter Simulation Conference, pp. 25-40 (December 1980).

[Brrant1981]
BEryant, R M. and Finkel, R. A, “A Stable Distributed Scheduling Algorithm,”

Proceedings of Second International Conference on Distributed Computing Systems,
Faris, pp. 314-323 (1981).

1Cerll 982]
Ceri, S. and Pelagatti, G., “‘Allocation of Operations in Distributed Database

ecess,” IEEE Transactions on Computers c-31(2)(1982).

‘Chammberlin1974]
Chamberlin, D. D. and Boyce, R. F., “SEQUEL: A Structured English Query
Language,” Proc. of the ACM-SIGMOD Workshop on Data Description, Access and

Control, (May 1974).

:Cherzton1983,
Cheriton, D. R. and Zwaenepoel, W., “The Distributed V Kernel and its Perfor-
mmance for Diskless Workstations,” ACM Operating Systems Review 17(5) pp. 128-
139 (October 1983). Proceedings Ninth ACM Symposium on Operating Systems

Frinciples

Chor1982]
Chou, T. C. K. and Abraham, J. A., *“Load Balancing in Distributed Systems,”

ITEE Transactions on Software Engineering SE-8(4)(July 1982).

Chow=1977|
Chow, Y. C. and Kohler, W. H,, “Dynamic Load Balancing in Homogeneous Two-

Frocessor Distributed Systems,” Proceedings of International Symposium on Com-
puter Performance Modeling, Measurement and Evaluation, Yorktown Heights, NY,
op. 39-52 (August 1977). also in Computer Performance, North Holland

Chow1979)
Chow, Y. C. and Kohler, W, H,, “Models for Dynamic Load Balancing in a Hetero-
c=neous Multiple Processor System,” [EEE Transactions on Computers C-28(5) pp.

234-361 (May 1979).

Tkl 980)
Thu, W. W, Holloway, L. J.,, Lan, M., and Efe, K., “Task Allocation in Distributed
Teata Processing,” IEEE Computer, (November 1980).

[Chuanshan1984]
Zhuanshan, Gao, Liu, Jane W. S.. and Railey, Malcolm, ““Load Balsncing Algo-

rithms in Homogeneous Distributed Systems,” DRAFT - Department of Computer
Science, University of Illinois (1984).

[Clack1978]
Clark, D. D., Pogran, K. T., and Reed, D. P., “An Introduction to Local Area Net-
works,” Proceedings of the IEEE 68{11) pp. 1497-1517 (November 1978).

[Cof man1977]
“offman, E. G., Leung, J. Y-T., aad Ting, D, “Bin-Packing Problems and their
~pplications in Storage and Processor Allocation,” Proceedings of irternational
Symposium on Computer Performance Modeling, Measurement and Evaluation,
Yorktown Heights, NY, pp. 327-33% (August 1977). also in Computer Ferformance,
*eorth Holland

[Coc1983]
Took, R., Finkel, R., DeWitt, D., Landweber, L., and Virgillio. T., “The Crystal
“ugget - Part I of the First Repcrt on the Crystal Project,” Computer Sciences
Technical Report #499, University of Wisconsin - Madison (Aprl 1983}

[Cooi1983]
Zook, R., Finkel, R., Gerber, B.. DeWitt, D., and Landweber, L., “The Crystal
“luggetmaster - Part II of the First Report on the Crystal Project,” Cemputer Sci-
ences Technical Report #500, University of Wisconsin - Madison (April 1983).

[Dan3=1s1982]
Tranjels, Dean, “Query Compilation in a Distributed Database Svsterr.,”” Research
T.eport RJ3423 (40689) 3/22/82, IEM San Jose Research Lab (1882).

[Dat=21975]
Zrate, C. J., “An Introduction To Database Systems,”” Addison-Wesley, {1975).

{Der=ing1968]
Trenning, P. J., “Thrashing: Its Caases and Prevention,” Proc. AFIPS FJCC, Pt 1
33 pp. 915-922 AFIPS Press, Montvale NJ, (1968).

[Eps:=in1978]
Zpstein, R., Stonebraker, M. R., ar! Wong, E., “Distributed Query Processing in a
= elational Data Base System,” Memorandum No. UCB/ERL \78/18, Electronics
=.esearch Laboratory, U.C. Berkeles (17 April 1978).

[Ferrzril978
Torrari. Domenico, *,”" in Compui:r Systems Performance Evaluaticr, Prentice-

84

Hall, Inc. (1978}.

'F erraril983;
Ferrari, Domenico, “The Evolution of Berkeley Unix,” Report Ne. UCB/CSD
83/155, U.C. Berkeley (December 1983). also in Proceedings of COMPCON,

Spring 1984

[F erraril985;
Ferrari, Domenico, “A Study of Load Indices for Load Balancing Schemes,” Report

No. UCB/CSD 86,262, U.C. Berkeley (October 1985).

Finkell3984,
Finkel, Raphael, private communication, University of Wisconsin-Madi=on (1984).

|Kagmann1983]
Hagmann, Robert B., ‘“Performance Analysis of Several Backend Ar:hitectures,”
U.C.B. Report No. 83/124 (August 1983).

Hunter1984;
Hunter, Ed, prirate communication, U.C. Berkeley - Computer Systems Research
Group {1984).

‘Hiwangl982
Hwang. K., Crof:. W. J,, Goble, G. H., Wah, B. W, Briggs. F. A, Simoons, W. R.,
and Coates, C. L.. “Unix Networking and Load Balancing on Multi-Maicomputers
for Distr. Proc.,”” IEEE Compuler, (April 1982).

=Ml
I |
IBM,, “CICS/VS General Information Manual,” IBM Form No. GH24-3013 ().

35in1978)
Jain, Rajendra K., “Control Theoretic Approach to Computer Sysiems Perfor-
mance Improvement,” Proceedings of Computer Performance Fvaiiation Users
Group, Boston, {1978).

T ratzer1980
Kratzer. A. and Hammerstrom, D., “A Study of Load Levelling,” F-oceedings of
Compcon80: Distributed Computing, (Fall 1980).

[Frueger1984]
Krueger, Phillip and Finkel, Raphael, “An Adaptive Load Balancing xigorithm for
a Multicomputer.” Computer Sciences technical Report, University ol Wisconsin -
Madison (April 1984).

85

[Lampson1983]
Lampson, Butler W., “Hints for Computer System Design,” Proceedings 9th ACM

Symposium on Operaling Systems Principles, Operating Systems Review
17{3)(October 1983).

[LeLanz1981|
LelLann, Gerald, “Motivations, Objectives and Characterization of Distributed Sys-

tems.” pp. 1-9 in Distributed Systems — Architecture and Implementation: An
Aévanced Course, Lecture Notes in Computer Science, ed. B. W. Lampson, M.

Paul. and H. J. Siegert, Springer-Verlag (1981).

[LefflesZ #33a]
LeEier, S., Joy, W., and McKusick, K., UNIX Programmers’s Manual - 4.2 Berkeley
Frware Distribution, U.C Berkeley (August 1983).

[Leffler:853b]
LeSer, S. J., Fabry, R. S., and Joy, W. N., “A 4.2 BSD Interprocess Communica-
tior Primer,” Report No. UCB/CSD 83/145, Computer Science Division, Univer-
sity of California, Berkeley (Draft of July 27, 1983).

[Leffler1 833c]
LeSier, S. J., Joy, W. N,, and Fabry, R. S., 4.2 BSD Networking Implementation
‘caes,”” Report No. UCB-CSD 83/146, Computer Science Division, University of

T

Caifornia, Berkeley (Revised July 1983).

[Levyl22
Lerv. S. Y., “Distributed Computation for Design Aids,” Proceedings of the
Nizeteenth Design Automation Conference, Las Vegas, (June 14-16 1982).

(Livay1333)
Livav, Miron, “The Study of Load Balancing Algorithms for Decentralized Distri-
bused Processing Systems,” Ph.D. Thesis, Weizmann Institute of Science (August
1653).

[Livoy %32,
Li=zv. M. and Melman, M.. “Load Balancing in Homogeneous Brodcast Distributed
Srsiems,” Proceedings Computer Network Performance Symposium. pp. 47-55
(Ao -il 1982).

[Lol9s:
L<. Virginia and Liu, Jane W. S, “Task Assignment in Distributed Multiprocessor

Sy=zems,” Proceedings Tenth International Conference in Parallel Processing, pp.
333360 (August 1981).

86

[Ma1982] '
Ma, P. R, Lee, E. Y. S., and Tsuchiya, M., “A Task Allocation Model for Distri-

buted Computing Systems,” IEEE Transactions on Compulers C-31(1){January
1982).

[(McGrath1983]
McGrath, Sean and Peters, Dick, *“Single System Image Software,” Computing Ser-
vices Newsletter, University of California, Berkeley (September 1983).

[McQuillan1977]
McQuillan, J. M. and Walden, D. C., “The ARPA Network Desigr Dec=ions,””

Compuler Networks 1(5) pp. 243-289 (September or August 1977).

Metcalfel976]
Metcalfe, R. M. and Boggs, D. R., “Ethernet: Distributed Packet Switching for

Local Computer Networks,” CACM 19,7 pp. 395-404 (July 1976).

[Michel1976]
Michel, J. and vanDam, A, “Experience with Distributed Processing on a

Host /Satellite Graphics System,” Computer Graphics 10(20)(1976).

[Mitchell1982]
Mitchell, J. G. and Dion, J., “A Comparison of Two Network-Based File Servers,”

Communications of the ACM 25(4){April 1982).

(Ni1981]
Ni, L. M. and Hwang, K., “Optimal Load Balancing Strategies for a Multiprocessor
System,” Proceedings Tenth International Conference tn Parallel Processizg. pp.
352-357 (August 1981).

[Oppen1983]
Oppen, D. C. and Dalal, Y. K, “The Clearinghouse: A Decentralized Agznt for

Locating Named Objects in a Distributed Environment,” ACM Trarsactizns on
Office Information Systems 1(3) pp. 230-253 (July 1983).

[Popek1981]
Popek, G., Walker, B., Chow, J.. Edwards, D., Kline, C., Rudisin, G.. anc Thiel,
G., “LOCUS: A Network Transparent, High Reliability Distributed System,”
Proceedings Eight ACM Symposium on Operating System Principles, pp. 153-177
(December 1981).

[Popek1984]
Popek, Jerry, private communication, LOCUS Corp. (1934).

87

[Postel1980b] ~
Postel, J., “DOD Standard Internet Protocol,” RFC 760, Information Sciences

Institute (January 1980).

[Postel1980a]
Postel, J., “DOD Standard Transmission Protoco ;" RFC 761, Information Sci-

ences Institute (January 1980).

[Powell1983]
Powell, Michael L. and Miller, Barton P, “Process migration in DEMO3/MP,”

Proceedings 9th ACM Symposium on Operating Systems Principles, Operciing Sys-
tems Review 17(5) pp. 110-119 (October 1983).

[Presotto1982]
Presotto, D., “Dsh command,” 4.2 BSD manual page, U.C Berkeley (1982}

[Rao01979)]
Rao, G. S., Stone, H. S, and Hy, T. C,, “Assignment of Tasks in a Distributed

Processor System with Limited Memory,” IEEE Transactions on Comgrzlers c-
28(4)(April 1979).

[Ritchie and Thompson 78]
Ritchie, D. and Thompson, K., “UNIX Time-Sharing System,” Bell System Techni-

cal Journal 57(6) pp. 1905-1929 (1978).

[Rothniel980)
Rothnie, J. B., Bernstein, P. A, Fox, S,, Goodman, N., Hammer, M., Landers, A,
Reeve, C., Shipman, D., and Wong, E,, “Introduction to a System for Diszributed
Databases (SDD-1),” ACM Trans. on Database Systems 5{1)(March 1980).

[Selinger1979]
Selinger, P. G., Astrahan, M. M, Chamberlin, D. D., Lorie, R. A, and Pric=. T. G,

“Access Path Selection in a Relational Database Management System,” Froceed-
ings of ACM SIGMOD, (1979).

[Selinger1980]
Selinger, P. G. and Adiba, M., “Access Path Selection in Distributed [atabase

Management Systems,” Research Report RJ2833 (36439) 8/1/80, IBM Szn Jose
Research Lab (1980).

[Stankovic1981]
Stankovic, J. A., “The Analysis of a Decentralized Control Algorithm f£or Job
Scheduling Utilizing Bayesian Decision Theory,” Proceedings Tenth Intcr=ational
Conference in Parallel Processing. pp. 333-340 (August 1981).

[Stankovic1983]
Stankovic, J. A., “A Heuristic for Cooperation among Decentralized Controllers,”

Proceedings of INFOCOM, pp. 331-339 (1983).

[Stonel977]
Stone, H. S., “Multiprocessor Scheduling with the Aid of Network Flow Algo-

rithms,” IEEE Transactions on Software Engineering SE-3(1) pp. 83-93 (January
1977).

[Stone1978]
Stone, H. S., *‘Critical Load Factors in Two-Processor Distributed Systems,” IEEE

Transactions on Software Engineering SE-4(3) pp. 254-258 (May 1978).

[Stonebraker1976]
Stonebraker, M. R., Wong, E., Kreps, P, and Held, G. D., “Design and Implemen-

tation of INGRES,” ACM Trans. on Database Systems 1(3)(September 1976).

[Stonebraker1977]
Stonebraker, M. R., “A Distributed Version of INGRES,” Berkeley Workshop on

Distributed Data Management, Lawrence Berkeley Laboratory, (May 1977).

[Tantawil984
Tantawi. Asser N. and Towsley, Don, “Optimal Load Balancing in Distributed

Computer Systems,” Research Report RC10346 (#46163) 1/25/84, IBM Thomas J.
Watson Research Center (1984).

[Williams1982,
Williams, R. et al, “R#*: An Overview of the Architecture,” Proc. of The Interna-
tional Conf. on Data Bases, (June 1982).

[Wong1976;
Wong, E. and Youssefi, K., “Decomposition - A Strategy for Query Processing,”
ACM Trans. on Database Systems 1(3)(September 1976).

[Wu1980)
Wu, S. B. and Liu, M. T., “Assignment of Task and Resources for Distributed Pro-

cessing.” Proceedings of Compcon80: Distributed Computing, (1980).

[Youssefil978
Youssefi. K., “Query Processing for a Relational Database System,”” Ph.D. Disserta-
tion, U.C. Berkeley, Electronics Research Laboratory, U.C. Berkeley (6 January

1978).

