An Obstacle-Avoiding Router for Custom VLSI

By

Gordon Taro Hamachi

(University of California) 1977

B.
S. (University of California) 1982

A.

M.
DISSERTATION

Submitted in partial satisfaction of the requirements for the degree of

DOCTOR OF PHILOSOPHY

in

Computer Science

in the
GRADUATE DIVISION
OF THE
UNIVERSITY OF CALIFORNIA, BERKELEY

e Qﬁ@ 442386

Date

1
*

--

An Obstacle-Avoiding Router for Custom VLSI

Gordon Taro Hamachs

Abstract

Magic’s automatic routing system combines the flexibility of hand-routing with the
speed and quality of automatic channel routers, by allowing chip designers to prewire
selected nets by hand. The router then works around this previously-placed layout, called
obstacles, to automatically wire the remaining nets. This ability to partially hand-route
an integrated circuit gives designers complete control over critical paths, power and
ground routing, and other special nets. At the same time the router provides a fast way
to make the remaining connections in the design.

The system's novel features include a fast channel decomposer, an obstacle-avoiding
global router, and an obstacle-avoiding switchbox router. The router’s channel decompo-
sition algorithm relies on a corner-stitched data structure to efficiently produce a small
number of large channels. The global router considers obstacles during path generation,
trading-off net length and channel complexity to simplify the subsequent channel routing
task. While able to cope with obstacles, Magic's switchbox router is still comparable to
the best traditional (non-obstacle-avoiding) channel routers.

The router’s obstacle-avoidance features rely on two underlying concepts: (1) a pre-
ferred direction for crossing an obstacle, and (2) bazards, or areas the routing should
avoid. Crossing obstacles in the preferred direction minimizes the creation of blocked
areas, which can not be crossed by other routing; this minimizes obstacles’ impact on the
automatic routing. Crossings in preferred directions are controlled by strategically-placed
bazards adjacent to obstacles.

Measurements show that obstacle-avoiding routing is both useful and practical:
hand-routing improves the electrical characteristics of the selected nets, while the hand-
routed obstacles have only minor effects upon the routing quality of a design as a whole.
The improvement in electrical characteristics is due to the decreased net length and
increased attention to layer selection possible when nets are prewired by band.

Dedication

In memory of Arnold Philip Tapie

1

Acknowledgements

Special thanks to John Ousterhout, who stresses the value of stating the most impor-
tant ideas first. In his typical style, John comes very close to being the ideal research

advisor. Working with him has been a very rewarding experience.

I would like to acknowledge a number of others for their technical assistance. First,
it has been a great pleasure to work with the other members of the Magic group: Robert
Mayo, Walter Scott, and George Taylor. Thanks to the many other tool builders for
making my job easier, especially Michael Arnold, Dan Fitzpatrick, Howard Landman, and
Barry Roitblat. Randy Katz served on my qualifying exam committee and provided valu-
able guidance. As members of my thesis committee, Alberto Sangiovanni-Vincentelli and
Charles Woodson read several drafts of my dissertation and provided helpful and insight-
ful comments on its content, organization, and presentation. Fred Obermeier and David
Wallace also reviewed drafts of this thesis. David Patterson and Carlo Séquin supervised
my academic progress and research early in my career as a graduate student. Franky
Leung and David Ashkenas designed the chips used to debug the router and measure its

performance.

Finally, [would like to express my gratitude to several persons for their important
personal support and encouragement. | am indebted to my parents, Ted and Alice, who
designed and fabricated me. Similar thanks to my brothers and sisters--Karolyn, Warren,
Margaret, and Ken--who tested me. Thanks also to Dale Beucler, Scott Evans, David

Spears, Lewis Yee, and Alan Yung, for their enduring friendship.

The work described here was supported in part by SRC under grant number SRC-
82-11-008.

1

Table of Contents

CHAPTER 1. Introduction

CHAPTER 2. Approaches to the Routing Problem

D1 IItTOAUCION . eevveeeeeeereeeieeisieesrereeeensseeeaseseserabeesabate e s e anras e tbb e e aeasstaaeeasbeaesssanrnaseseanare 9
2.2 Net-At-A-TIiIME ROULETS ...ciciviieiiirieeeiairrernnaerirrereeiitriretirstereresrassssssatasasessaanrastsrsesssesses 10
2.9 1 The Lee ROULET..c..cciiviieriieireranrrereeeeeirertessssssiantaeassessnsrasanaaaessossnierasssssssasssnas 11
2.2.2 The HightowWer ROULET.......ccoiuiiiiiiiiiiriiiiiiii et 13
9.3 Channel-Based Methods........ccoourieiirrierieieeereiiiiiiinei e sananne e 15
2.3.1 The Left Edge Algorithmcccccoviiiiiiniiiiiiiiniiiencn 17
2.3.2 Deutsch’s Dogleg ROULET......ccccotiiiiriiiiriiiieiee st 19
2.3.3 Yoshimura and Kuheeeeiiiiieiieiiieien ittt 20
934 YACR-IL. oot ee e e eerreeser e st eesee s saresebns e e ar s er s s e sa b e s s st e e ssneseian e bbb e 21
9.3.5 Burstein's Hierarchical ROUter........ccoociiiiiiiiiiiiiiiiicenee 21
2.3.86 Rivest’s Greedy ROULET.......ccocerviiiniriniimniriienirste e 22
2.4 Lack of FIeXibBIIty . .ecovierverieeeiieiiiiiiii e 23
CHAPTER 3. Magic’s Obstacle-Avoiding Router
B.1 IIETOAUCHIOD e tveveeeeeeeeeeeeettiteeeseeeiastsraraeeeeas s areeeeessssasabnasbaeaaasseransbrsaaseessobrurabeseneesenans 25
3.2 Magic's Obstacle-Avoiding ROUter......oooveriiciiiiiiii 25
3.3 Obstacles and HAZATAS ..ccocvvvvieiiiiiriirireeiesieererees et e e e seantraree s e s arbateee s saaes 27
3.4 Hierarchical Terminalscoooiiiiiiiiiiiiiiiiiie et ra e n s 31
B Nt IStS.eeeeeeesieiirrreeeeseeaaaereesesessassssassesansansnmeentesseamtassssesioasarsnsaasranaastanesaeessssninansnnres 32
3.6 Automatic Grid AHZNMENt...c.ccoviiiiiiiiiiiiiiii et 33
3.7 A Fast Channel DecomPoOSer.....c...coouviiiiiiiiiriiiiiiniiine et 34
3.8 Magellan: An Obstacle-Avoiding Global Router........ccooiiiiiiiinniinin 34
3.9 Detour: An Obstacle-Avoiding Channel RoOUterc.coocveiricniiiiiiniiiiiinn 35
3.10 VISl Feedback .oooeeveiiiiiiiiiiieiiieiieireeeere sttt rres s e s s a e e st s e s e s na e 35
3.11 Technology Independencec.oouieiiiiiniiinnieniiiiiiii e 35
CHAPTER 4. Channel Decomposition
4.1 TDUTOAUCTION e vverreeeeeeresieitrrieesereesernrnrresseaeesarerssostsminnrarrseaeaaastsasestssassattatisessssansnattsts 37
4.2 BacKGIOUDA...oeioveienieneniiiiiiinies ettt 38
4.2.1 VTI's Maximal Horizontal Strips.....ccccoomiimiiniiiimniiciiennieriiniinn, 39
4.2.2 BBL'S BOttIEnecks . ..ooooevvvvieeieeieiineiiiieeeeniiiiiicn e s sssents s 39
4.2.3 The PI SYStem ...ccoueereiiiiriiiiiiiinteiitese ettt 41
4.3 Chanpel Decomposition AIGOFithmccooiiviiiiiiiiiiiiii e 41
4.4 TMPIEMERTALIONc.icveriiiitireiieietie ettt 44
4.4.1 Identifying Convex COPDETSccoiiriimrenieniiniinsentetene ettt 45
4.4.2 Horizontal and Vertical DIStancescocovveveiriiiiiimiininriiniennnrcniiiin e, 48
4.4.3 Splitting and Merging Tilesccooniiiiiiinini 51
4.4.4 Setting Horizontal Status Flags ... 54
4.4.5 CUutting COTDMErS...c.coiiiireiiiiiiitiiiriiie ettt ettt ettt 55
4.5 ADALYSIS...cvoviiereeceeetet ettt et 55
CHAPTER 5. Magellan--Magic’s Obstacle-Avoiding Global Router
Bl IDtTOQUCEION oevvereeeeeeeseeeeeeeeeeravsreseareeseesanrnrreeeeeaessmtaataeesesrbnsanaaesasssssrnetsesassssressnumansses 58
5.2 Global ROULET OVEIVIEW ...cececuviieeieierieerieeeeeriuiriiessnserssirassesesssesossnniasssnntiessseanaesaenas 59

5.3 SHOTEESt P Al cceiieieieieeeeeseeeeeeereeeeeassssssesarssrsstrrnreraerretansssantatsansasaessstaaesssaeesaeaesaaaesasenes 61

Table of Contents v
5.4 Crossing PIacementooooviieiemeecninnicmiiiii e 64
5.5 The Penalty FUDCON . c..ccvcciiiiiiiritiieiie it 67
5.5.1 ODSLACIES.ccvveeeeeeeecieescueereaeereseaeeeeessute st s e s e e e s e s te e e s s s s st sa e bssa e 68
5.5.2 JOZ AVOIAADCE. c.cucuiuiuiiiriesnsrisisirsei ettt st 70
5.5.3 Pin Density and COTDErSc.oovimiieereniiiiiiiiii ettt 72
5.8 Net OFAEIIDE ...ocveeverreceieriemiiiiieeresteie ettt sttt bbb 73
5.7 MUti-PID INELS cvveeeeeeeeeiieeesirieesteeeeseesoeteseutssass e basasstsasasaaes s e s sbt s e s b s s e bas s e ss s e s st soasees 74
5.8 Equivalent Terminals and Feed-Throughs........c.cooviiiimiinnnicie 75
5.9 LOOP PreVention «..c.ccoviiiiimriiiieiict ettt 76
5 10 EEXEEIMSIONS .nvvvvveeeseenneesesssneeesensaesasasneessesssessessssesansbsssaessstssessstessninsessaebntaasassntessosnte 76
511 EVAIUALION o tuvvereeeereeeeaaeiuurrerseseenansnnneeaeeeeasbaraseatosasnranaaesaniastasraseessnr s tasaanaasaeesaasnsnenies 77
5,12 SUIIATY ..cvvereveererseeneessersessasessansassssessarss s henn b s e b s s s e s bbb s et b bttt e 79
CHAPTER 8. Detour--Magic’s Obstacle-Avoiding Switchbox Router
8.1 IDEEOQUCTION cuvveeeneeeereereeesueeseseeeasesesseesaeeeesbeesantseesbeasssasaseeseassianbseeabs s e as s e bsassubeesses 81
6.2 The Column Sweep APProachocoovviiiieiiiiiiiiiii 82
8.3 Obstacle-AvVOIdAnce StTALEEY ...ccveevrvirriivriirirairrrteetestc sttt e 85
B.4 SWILCHDOX SUIALEZY ..vrverververrerreceiiiinreeeess sttt bbbt 86
B.5 HAZATAS .veeeeieeeeeeeeeeeeeeeioaeeieseeseraaeasssaesbeeesee s s b e e e ba e e e b b e s R et n e s bR a s 88
6.5.1 Hazards for Obstacle-AVOIdANCE......ccouririiemieiiiniiniereniiinnecie bt 88
6.5.2 Hazards for ENd COnDECctiOnSccovveeeoieeiiiiiinirrniieenineesteesenitssnisesntienenasssses 89
6.6 Revised Vertical Wiring Rules........ccoooviiriiiniiiiininn 90
8.7 Metal MaXimIZALIOM oceeereiiiirrriireeerraaerereeeeisiisrbnneaesaassssrernesseanatnrn e s ae e s s abbarae e s e s sesnass 92
B.8 Chanmel ROUAION. . ccvveeiereeiirieeerteeirteeerieeesirteesttesinaesste st e sebe s st n e st e s s bs s s s st 93
B.0 P ATAIMELETS. .eeeeeeeeeeeeeaierreeeeiseeeeaaanreeeaasaeesaraaesee s basesassseseat b e s st a s e s et b s e s st et s 93
B.10 RESUIES...eeiereeieseseeeeeeteeesesnraserasaeaeaemtattestessr kb rseaeaas s aabaatessa b L b e s g e e s e ettt s s 94
CHAPTER 7. Results
7.1 IIETOQUCTION .. ceeeeeeeeeeereeeresreseeaasresasaseeessassatseassbrsaa s s aaeesbtsces bt s s s e bbb s s e st s st st 102
7.2 Hand-Routing Measurements.........couererieimereanerentencnsiniiiiiinrisisastss ettt 102
7.2.1 Net Length...oovocieieeeieiiiniiietinei it 105
7.2.2 Electrical CharacteriStiCs . .ouiiieveeerririiiiiriieriirirrressresensiies st esrnesssienessas 107
7.29.3 Effects on Automatic ROUUIDE.....oerevvciieriiiiiiiiniiinnis ittt 108
7.3 THME T RETOULE .ovveeeeeeeeeeeiieeeeeeeeierereeseeesanasiaeresssesnanraaaesssesisbateressestrbrataaeassenasnnants 111
7.4 Rul Time DiStIiDULION ..eoueeeiiiiieireriienniemeeereiriirrererrrretiasessentsssinistsssssnaeressssssssissssssnes 112
7.5 Small EXAIMPIES. ..ocuiiviieiiieieniiii e 113
T8 COAE SIZE vuvreeeeeereeeeeeeeeessetseesesesseeaaabbreeeeebbatessbr e e e s s e s asbs et se bt e s e s n g s e s e st sttt 114
7.7 TIPIOVEIMENES «...veeeeueiiimiiresiseasesiei s ettt 115
7.7.1 Technology ISSUESoccveveiiiiiiiiitee st 116
772 GlODAl ROULEE c.eeeeereveienieeeerieerieesneeeeeresiaresete e sraesssnaessssesar e s e s s s a e sentacannecas 116
7.7.3 SWItchDOX ROULIIZ...cvveeereeeeriiirineiieiteestessttsr ettt 117
7.7.4 Obstacle Locations and S1ZES....cccccceereeriiimiiriiriimiiniinieeresseiaiienisseesessiiennes e 117
7.7.5 GrFid AZIIMENt. ..ottt 118
TT8 USEL-TDUETTACE «.vvvveeeneereeevieeeevrrerereraneeereeeessiretneserenrarioseraasamissisissssrnsnnsasnnassansnnes 118
777 MeEOTY USAEE «.oveeueeiienianiiiienietiesiesi et ettt st 118
CHAPTER 8. Summary and Conclusions
8.1 IItTOQUCHION ... eeeeeeeeeeeeeeieianeeeesinneassereeeeansseeesiaras e e ssaaeasasaessseaaar st e s b an s e s s st st st e e 119
8.2 SUININATY «.evvrveriererseesercatrereassereesss s as s e e sh e s e s a s a e e e s e b e e b e e L s Lo s LS b s bt 119
B8 COMCIUSIONS cvvveeeevreeeereeesreesereessseesseeesseesesneesiaseserbaaassaaaasesasbtsssbs s s et et e s s s e b s e st et 121

REFEREINCESoeeeettiieteeeeieeettesseeesoasssiansesssanssssssneesstsssatsssasanassistassssesebessesinssins 122

CHAPTER 1

Introduction

Integrated circuits are specified by layers of geometric patterns etched on silicon
wafers (Figure 1.1). Components of these circuits are cells: functional blocks such as
arithmetic logic units, registers, pads, and shifters. After the constituent cells of an
integrated circuit are designed, they are arranged on a 2-d surface and connected by
wires, which are also patterned onto silicon. Typically two or more layers of wires pro-
vide cells with power and ground, clock lines, control, and other signals. These wires run

between connection points called terminals at the edges of cells.

Phil Phil Phil
N 0
—— VvbD |l | VDD [| vop
~31 _ SHIFTCELL
Vin —| Vout Vin [: 5| | B Vout vin [C Vout
—1 +—ano] aND [lanp

(a) (b) (c)

Figure 1.1. The circuit in (a) is implemented in an integrated circuit by the
geometric patterns in (b). The geometry is encapsulated for routing as a subcell
in (c), where terminals such as Vout are the only features visible.

The process of placing these wires to connect the cells together, called routing, is the
topic of this dissertation. While the process of determining the locations of cells, called
placement, has great influence on the subsequent wiring between these cells, it alone is a
complicated task worthy of a dissertation. As such, I will ignore the placement problem

and concentrate on the wiring together of pre-placed cells with fixed locations.

Integrated circuit routing is a difficult task. Current designs may have hundreds or

thousands of nets, each containing two or more terminals to be wired together (Figure

CHAPTER 1: Introduction

1.2). The wires for each routed net must observe design rules specifying, for each wiring
layer, the minimum width of the wires and minimum separation from other material
Decessary to ensure reliable fabrication. These design rules constrain the number and
locations of wires that may be placed in a given area of the design. At the same time,

since larger chips are more difficult to fabricate successfully, it is important to use area

efficiently and place as many wires as possible in a given area.

cifplot® Window:

bower d

Biron

ESSkron

256k am

S6kr an

S6kr en

SBkram

S6kram

34BPF 283509 21608 299199 --- Scale:
SEkram SEkram 256k an
S6krem 256k ram
ramdatectl

256k r om

is §.822

256k ram

S6urem

) & wn

256kr am

—

256kr om

S6kram

256kr em

- p—
T T

256kr am

Figure 1.2 Routing places wires to connect subcells together. This example has
425 terminals and 60 nets.

The different electrical characteristics of the different routing layers are a further

complication. Special care must be taken in selecting the routing layers used to connect

CHAPTER 1: Introduction 3

nets that are particularly critical in terms of their resistance, capacitance, or the propaga-
tion delay of the resulting wiring. These special nets may need to be routed on the rout-
ing layer with the best electrical properties, given priority over other nets, or connected

using wires with larger than minimum widths.

One particularly important aspect that makes routing difficult is the interaction
between mets. Since there is a limited number of routing layers (typically 2 or 3), once a
pet is placed it blocks some of the possible paths for the remaining nets to be routed;
thus, a seemingly innocuous action during the routing of one net may have detrimental

consequences for other nets.

Figure 1.3. A wiring model for automatic routing places all wires on a uniform
grid using one wiring layer in each direction. The grid spacing is determined by
the design rule for minimum contact-to-contact spacing. This simplifies the rout-
ing process but can result in wasted area in cases where contacts are not adjacent.

The difficulty of the problem makes hand-routing very time-consuming. It can easily
take months for designers to hand-route even the relatively simple Mead-Conway style

custom designs produced in university environments, wherein many of the connections are

CHAPTER 1: Introduction 4

made by abutment. The chief designer for UC Berkeley’s SOAR (Smalltalk on a RISC)
microprocessor project estimates that hand-routing comprised 25 percent of the 12.5

person-months needed to complete the layout [Pendleton].

Because routing is so difficult and time-consuming, automated routers have been
developed to manage the complexity and reduce design times. Automatic routers gen-
erally take a simplified approach, sacrificing the flexibility of hand-routing. One common
wiring model places routing on a fixed grid whose spacing is determined by the closest
possible spacing between adjacent contacts. To conserve area and maintain the unifor-
mity of the routing grid, all wires are of the same width. To avoid layer assignment prob-
lems where nets cross over each other, one routing layer is used for all horizontal wires

and another layer is used for all vertical wires (Figure 1.3).

..

Figure 1.4. Standard-cell and gate-array designs consist of long parallel rows of
subcells of uniform height. The dotted lines show the channels between the rows
of subcells.

The simplifications taken by automatic routers extend to subcell placement. In the
standard-cell and gate-array design styles chips consist of long parallel rows of subcells of
uniform height, with signal routing between terminals on the edges of adjacent rows (Fig-

ure 1.4). Routing such designs is accomplished by routing each of the rectangular areas

2]

CHAPTER 1: Introduction

between the rows of subcells. These rectangular regions with terminals on only their top
and bottom edges are called channels; specialized channel routers are employed to route

these regions.

Figure 1.5. Custom chips have cells with arbitrary dimensions and arbitrary lo-
cations.

While most existing routing systems are designed for standard-cell or gate-array
integrated circuits, high-performance custom designs present new and more difficult prob-
lems for automatic routers. In custom designs chips are less structured: cells have arbi-

trary dimensions, and placement is arbitrary rather than in rows (Figure 1.5).

The custom design style gives designers the freedom to build compact logic blocks of
greater complexity and arrange them more efficiently, but the resulting layouts are more
complex than for standard-cell designs. For example, connections are no longer limited to
adjacent rows. Instead, the automatic router may have a large number of different
choices for a path to connect terminals on one cell to terminals on another cell. In
standard-cell designs, power and ground are distributed to the cells in a row through the
cells themselves, by abutment; in this case power and ground routing consists of making

simple connections to the ends of the rows. Custom designs require routers to make

CHAPTER 1: Introduction 8

power and ground connections to less-structured arrangements of cells, using wires whose

widths vary according to the amount of current they must carry.

Custom designs frequently push the limits on chip size and performance. Conse-
quently, high-quality routing is crucial. More aggressive performance goals require that
the router give special treatment to the routing of special nets such as clock lines and crit-
ical paths, with respect to delay, layer selection, and resistance. The space constraints on
custom designs require the flexibility to make trade-offs between wire length and area.
For example, it may be possible to reduce chip sizes by routing non-critical nets by circui-

tous paths.

Traditional channel routing tools, intended for standard-cell and gate-array designs,
are inadequate to meet the different needs of custom chips. They afford designers little or
no control over special nets such as clock lines or critical paths. Instead, these nets are
treated no differently from the larger number of non-critical nets. Traditional channel
routers lack the flexibility to make tradeoffs between wire length and area, and have rigid

restrictions upon which routing layer runs in each direction.

The heart of the problem is the inability of traditional channel routers to simply and
efficiently incorporate the input of human designers into the routing process. Designers
are more flexible and intelligent than the best automatic routers; however, hand-routing is
slow and error-prone compared to automatic routing. Additionally, the human designer’s

expertise is generally needed for only a small number of the connections to be routed.

One way to efficiently incorporate designer input is to let a human designer wire the
critical nets and let an automatic router route the larger number of non-critical nets.
Combining designer input with automatically-generated routing allows designers to focus
on the cases requiring special attention; the automatic router quickly routes the other nets
that do not require human expertise. There are two approaches to combining designer
input with automatic routing: prewiring, in which special nets are hand-routed before
automatic routing, and patching, in which special nets are hand-routed after automatic

routing.

CHAPTER 1: Introduction 7

Unfortunately, traditional channel routers do not allow prewiring. The use of such
routers is typically an all-or-nothing proposition: they require that the routing areas be
completely free of previously-placed layout. Designers must choose between routing
everything automatically or routing everything manually. With such systems the only
control the designer has over the routing is the connectivity. The other desirable features
such as electrical properties and area/speed tradeoffs are completely dictated by the rout-

ing system.

Short of simply accepting the automatically-generated wiring, the remaining alterna-
tive to prewiring is postwiring: hand-patching the results of automatic routing to get the
desired wiring. Hand-patching critical nets after channel routing is a poor alternative to
prewiring, since the existing automatic routing interferes with hand-routing. Even if there
is room to do the hand-patching, it is likely to be difficult. Furthermore, with traditional

channel routers the hand-patching must be completely redone if the chip is rerouted.

My thesis is that it is important to build design tools that allow hand-generated
input to be easily combined with automatically-generated results. To support custom
designs and provide control and flexibility, automatic routers should allow designers to
hand-route critical nets in advance and then allow this hand-routing to be efficiently
merged with subsequent automatic routing. I call this previously-placed layout obstacles,

and routing around the obstacles obstacle avoidance.

Work in other areas of Computer Science illustrates the general benefit of the ability
to combine hand-generated input with automatically-generated results. In the area of pro-
gramming languages some compilers allow assembly language to be combined in-line with
compiled code. In place of (or to supplement) complex and sophisticated code generators,
humans have the option to hand-code critical sections of programs. Short of artificial
intelligence techniques on a par with the human designer, systems that combine hand-
generated input and automatic input are faster, more flexible and more effective than
would otherwise be possible. In such systems the designer does the critical work demand-
ing human expertise, while the remaining non-critical work is left to the design tool. The

design tool truly is a tool rather than an adversary to be outguessed or worked-around.

CHAPTER 1: Introduction 8

This dissertation presents the design of a routing system designed specifically to
allow hand-generated input to be easily combined with automatically-generated results.
The router, developed as part of the Magic VLSI layout editor [Ousterhout 85], works as
an obstacle-avoiding system in which previously-placed layout such as hand-routing forms
obstacles that the router knows how to route across and around. This allows designers to
deal specially with nets that have special requirements, while providing a fast way to

make the remaining noncritical connections.

Chapter 2 surveys previous routing systems. [t explains how the early net-at-a-time
routers are inadequate for routing large circuits, and how more powerful channel routers

are an answer to these problems.

Chapter 3 presents an overview of Magic’s routing system. It introduces the major
results of this work, outlining techniques for combining automatic routing with hand-
routing. The most fundamental of these results is the idea of a preferred direction for
crossing an obstacle in a routing channel. From this it develops the idea of hazards,

which guide Magic's global router as well as its channel router.

Chapters 4 through 6 present and analyze the three major parts of Magic’s router.
Chapter 4 presents Magic’s channel decomposer, which uses a corner extension algorithm
to divide the space not occupied by subcells into a small number of large rectangular
channels. Chapter 5 presents Magic's global router, which incorporates crossing place-
ment to choose specific channel-to-channel crossing points for each net. Chapter 6
describes Magic's channel router, which routes switchboxes and avoids obstacles while still

producing results comparable to the best traditional channel routers.

Chapter 7 evaluates Magic’s routing system. It presents results from routing a

number of test chips as well as some real integrated circuits.

CHAPTER 2

Approaches to the Routing Problem

2.1. Introduction

Routing at the chip level involves much more than finding an optimal (shortest path)
routing for each net. One reason is interactions between nets: an optimal routing for one
net may block an optimal route for another, or even make it impossible to make the other
connection. Obstacles present a further complication similar to net interactions: obstacle-
avoiding routers must consider both the interactions with obstacles and interactions with
other nets to avoid blocking connections for other nets. To find an optimal routing--one
that minimizes chip area, minimizes wire length, or maximizes overall performance--
requires a router to take a more global view, considering these interactions and resolving

any conflicts.

The routing problem has been shown to be NP-complete for even a single multi-pin
net [Garey and Johnson]. This means that routing is equivalent to any one of a large
number of other problems for which no exact and efficient algorithm is known. Thus,
research in automatic routing concentrates on less ambitious goals such as using heuristics

to generate acceptable routing, or optimally solving special cases of the general problem.

This chapter surveys two general approaches to the problem of integrated circuit
routing: net-at-a-time routing and channel routing. The approaches are distinguished by
two major characteristics: the manner in which each approach decomposes the routing
problem, and the manner in which each uses global information to guide the routing pro-
cess. Net-at-a-time routers treat each net as a separate routing subproblem, while channel
routers use a three-step problem decomposition. Net-at-a-time routers route each net
without regard for other nets, while channel routers route many nets in parallel and con-

sider interactions between nets.

CHAPTER 2: Approaches to the Routing Problem 10

Another important consideration in analyzing approaches to routing is their tradeoff
in run time versus effectiveness. In routing chips for high volume production, die size dic-
tates yield and thus economic viability. In this domain, designers are willing to spend
large amounts of time to get marginally better routing. For lower-volume parts, die size
may be less critical than design time. In this case the efficiency of the routing algorithm
may be more important than the resulting die size. One particularly interesting example
of this is wafer scale integration where, due to fabrication defects on the wafer surface,
each wafer may require its own unique routing. A router that took days of CPU time to

route each wafer would be too slow for such an application.

One final important criterion is flexibility--the ability to control the resulting routing.
Designers often need to give special treatment to special nets such as critical paths, power
and ground, and clock lines. Most routers do not provide for designer control over these
special nets. One way for a router to provide this control is to allow automatic routing to
be incorporated with previously-placed hand-routing. Net-at-a-time routers allow this;

however, most channel routers prohibit partial hand-routing.

2.2. Net-At-A-Time Routers

The first category of routers is net-at-a-time routing, represented by Lee's wavefront
router [Lee] and Hightower's line expansion [Hightower 69] router. With net-at-a-time
routers a point-to-point router is used to make each of the many connections in a design,
one at a time. The overall routing problem is decomposed into a number of subproblems,
each of which consists of a single net. Each subproblem is routed without any considera-
tion for the remaining nets to be routed. This is the simplest approach, and it uses the

least global information to resolve net interaction conflicts.

Net-at-a-time routers inherently allow automatic routing to be combined with
previously-placed hand-routing. Since they operate sequentially, the first nets routed
become obstacles for subsequent nets to route around. A designer using such a router
may wire special nets by hand; the router routes around these hand-routed nets just as it

routes around other automatically-generated routing.

CHAPTER 2: Approaches to the Routing Problem 11

While net-at-a-time routers do an excellent job of routing individual nets, they do a
poor job on the overall routing problem. This occurs because they route the current net
without regard for the remaining nets to be routed. Since net-at-a-time routers do not
consider net interactions, they may place a net in such a manner that subsequent nets will

be blocked and cannot be completely routed.

2.2.1. The Lee Router

The Lee router was an early and significant approach to the routing problem.
Operating on a grid superimposed over the routing area, the Lee router finds a shortest
rectilinear path from one point to another by propagating a wavefront from a source
point toward a destination point. At the start the wavefront consists only of the source
point for the route (Figure 2.1a). At each iteration the wavefront expands to include all
currently unvisited grid points immediately adjacent to some current portion of the wave-
front (Figure 2.1b, c¢). For each point the router records the direction from which the
given point was reached. The router terminates when the wavefront reaches the destina-
tion point, or when the search space is exhausted. If the route was successful the recorded
direction information is traced backwards to the source to determine the exact path gen-

erated. (Figure 2.2).

(a) (b) (c)

Figure 2.1. The Lee router finds a shortest path from one point to another on a
rectilinear grid. On each iteration it expands a wavefront to include all currently
unvisited points immediately adjacent to some current portion of the wavefront.
At each point visited the router remembers the direction from which the point
was first reached.

CHAPTER 2: Approaches to the Routing Problem 12

(a) (b) (©)

Figure 2.2. Figure (a) shows the start of a search from point A to point B with
an obstacle (drawn in bold). In (b) the wavefront has propagated outward and in-
tersected the destination point B. In (c) the shortest path information is obtained
from the recorded direction information at each grid point.

The Lee router is effective. By considering layer switches in conjunction with the
propagation at each wavefront expansion, the router will eventually generate all possible
paths to every point reachable from the source point. Thus, the Lee router is guaranteed
to find a solution if one exists. Since the wavefront expands outward uniformly from the

source, the shortest path to the destination is guaranteed to be the first one found.

The Lee router is also flexible. By slightly modifying the algorithm the Lee router
can obtain a number of special routing effects, such as crossing a minimal number of other
nets or making tradeoffs between additional net length and routing on an unpreferred
layer. This is accomplished by associating a penalty with each undesirable feature in a
routing and remembering, for each point on the routing grid, the cost to reach this point
from the source point. As the wavefront propagates it may generate multiple paths to
any given point, each with a different cost. Special effects with their resulting flexibility
are then achieved by remembering the current lowest cost to reach a point and the direc-

tion from which the lowest cost path to a point was reached.

Unfortunately, the Lee router has large memory requirements and slow run times for

long connections. It requires a large amount of memory because it explicitly represents

CHAPTER 2: Approaches to the Routing Problem 13

each grid point in an array. The Lee router is slow because it must keep track of all of
the points on the current wavefront, and at each point consider each of the possible alter-
native actions: switch layers, turn left, turn right, or run straight ahead. Also, since it
propagates a wavefront in all directions, it must examine O(N?) grid points to find a path

between two points N units apart.

2.2.2. The Hightower Router

Hightower's router also routes from point to point, one net at a time. It works by
line expansion, expanding perpendicular escape lines from both end points of the route
and then repeatedly extending the longest escape line from some previously-constructed
line (Figure 2.3a). Escape lines are bounded by obstacles such as previously-placed wiring.
The router terminates when a line from one end point intersects a line from the other

point (Figure 2.3b).

() (b)

Figure 2.3. The Hightower router repeatedly expands perpendicular escape lines
from both points (A and B) to be connected. The router terminates successfully
(Figure b) when escape lines from the two end points intersect.

The Hightower router is fast for simple mazes. By extending perpendicular escape
lines it takes advantage of the dimensions and locations of the features in the routing
area. If objects are nearby, the router expands short distances much like the Lee router;

however, where features are spaced far apart the router can extend large distances in a

CHAPTER 2: Approaches to the Routing Problem 14

single iteration. This ability to span large distances in a single iteration allows the

Hightower router to avoid much of the work done by the Lee router.

—— —
A O — , F. ...

T - T
S D S Era i o G

| | |

: ! z 1 |

.\ ! PA ! '

T ke n I o @ |

; | : ! '

z | s g |

* | x | i
e e A e — e S - S S —

1 4 l

(a) (b)

Figure 2.4. The Hightower router can not guarantee to find the best routing, or
even to find a routing if one exists. It fails to find a solution in (a), where extend-
ing the longest perpendicular escape lines does not find the path from point A to
point B. In another example (b), it fails to find the shortest path from point A to
point B.

The comparison between the Hightower router and the Lee router shows a clear tra-
deoff between results and run time. Unlike the Lee router the Hightower router does not
guarantee to find a path if it exists, although Hightower claims that in practice this is
never observed (Figure 2.4). Also, the Hightower router does not guarantee to find the
shortest path; instead, it finds the path with the fewest number of bends. This tends to
be the shortest path; the distance penalty measured less than 10 percent for one set of
examples [Hightower 74]. On the other hand, for one example the Hightower router was 2

to 3 orders of magnitude faster than the Lee router.

Memory requirements are much less than for the Lee algorithm. Rather than storing
the entire plane as an array, the Hightower router stores only lines and points. For paths

with few bends in them the memory requirements are correspondingly small.

Although the Hightower router is fine for routing individual nets, it suffers from the
same short-sightedness as the Lee router. Since it routes a net without regard for subse-

quent nets, it may place routing that blocks these later connections.

CHAPTER 2: Approaches to the Routing Problem 15

2.3. Channel-Based Methods

The solution to the short-sightedness of net-at-a-time routers is to employ routing
methods that consider many nets at once and make tradeoffs that allow all of them to be
routed successfully. The channel routing technique, originated by Hashimoto and Stevens

[Hashimoto and Stevens] is one such approach.

B Al
A :
@ | Ty B c |
C
/ L e
B A"/}
Al U ‘
®»y 0y Ty ‘TB c_ 1
C

ol | = "

Figure 2.5. Channel routing techniques consider many nets at once. Channel
decomposition (a) divides the area between subcells into rectangular channels.
Global routing (b) determines which channels each net crosses. Channel routing
(¢) individually routes each channel, placing wires to make the connections
specified in the global routing phase.

CHAPTER 2: Approaches to the Routing Problem 168

This approach decomposes the routing problem into three phases (Figure 2.5). The
first phase, channel decomposition, divides empty areas between cells into rectangular,
non-overlapping channels. The second phase, global routing, uses global information
about the overall routing problem to determine which channels each net will cross to
make its connections, without actually placing the wires to do so. The final phase, chan-
nel routing, separately wires each channel to make the connections specified by the global
router. Channel-based approaches divide the difficult overall routing problem into a
pumber of difficult but smaller problems: global routing and individual channel routing

problems. Most current routing systems adopt this strategy, with minor variations.

Channel decomposition lays the groundwork for the subsequent steps by defining the
dimensions of each of the channels. In general the remainder of the channel routing pro-
cess runs more smoothly if channel decomposition generates a small number of large chan-

nels, as these are more easily used by both the global router and the channel router.

The global routing phase is an important planning step prior to channel routing. It
determines the general path for each net without actually placing the wires to make the
connections. The global router has the responsibility for generating channel routing prob-
lems that the channel router can successfully wire. Simultaneously, the global router
must try to choose direct paths for nets, to minimize overall wire length. Global routers
use global information about nets to resolve conflicts, handling overcrowding in channels
by considering alternative paths through less-crowded channels. Global routing may pro-
cess nets sequentially, or it may route many nets in parallel using more sophisticated tech-
niques such as simulated annealing [Vecchi and Kirkpatrick] and hierarchical routing [Bur-
stein and Youssef]; however, these techniques are generally much slower than net-at-a-

time methods.

The channel routing phase separately routes each rectangular routing area as defined
during channel decomposition, to make the connections specified during global routing.
Routing areas with connections on two opposite sides may be routed using specialized
channel routers. Routing areas with connections on additional sides are more difficult to

route, requiring more general switchboz routers. Only some of the various approaches

CHAPTER 2: Approaches to the Routing Problem 17

handle the switchbox routing problem; nevertheless, throughout this dissertation I some-
times use the term channel in a general sense to denote the routing of any rectangular

region.

One important characteristic of channel routers, compared to net-at-a-time routers,
is that channel routers generally use a simplified wiring model. Many routers place all
horizontal wiring on one routing layer, and all vertical wiring on the other; this constrains
the routing and sometimes prevents channel routers from completing all connections.
Some channel routers place all routing on a fixed routing grid that allows a contact to be
placed at any grid intersection; this wastes space if two adjacent grid lines have no adja-

cent contacts (Figure 1.3).

2.3.1. The Left Edge Algorithm

Hashimoto and Stevens’ routing system uses the classic Left Edge algorithm to indi-
vidually route each chanmnel routing problem generated by the global router. Scanning
from left to right across a channel, the algorithm assigns each net to a single horizontal
track, always selecting the net whose left edge comes closest to the right edge of some
previously-placed net without overlapping that net (Figure 2.8). The process repeats until
all connections are made. This algorithm is greedy, since it tries to make the most
effective use of each track by packing as many nets as possible into each horizontal track
within a channel. This reduces the total area needed to do the routing. In fact, the
results are optimal if there is at most one terminal in each column of the channel, as in

Figure 2.6.

This channel routing algorithm uses global information on a channel-by-channel
basis. Rather than dealing with one net at a time, the Left Edge algorithm examines all
nets in the channel to find one which makes the best use of the remaining wiring space
within the current track. The results produced are superior to those for net-at-a-time

channel routers.

CHAPTER 2: Approaches to the Routing Problem 18

Figure 2.8. The Left Edge algorithm assigns nets to tracks, filling each track as
fully as possible before proceeding to the next track. Since net 1 has the leftmost
terminal, it is placed in the first track (a). Net 3 also goes into this track, since it
extends further to the left than net 4. The remaining nets fit into the second
track (b).

Unfortunately, the Left Edge algorithm does not work in channels where terminals
for different nets share the same column (Figure 2.7a). Such terminals generate vertical
constraints, requiring the net for the upper terminal to be placed in a track above the
track assigned to the net for the lower terminal. The vertical constraints can be cyclic,
requiring that a net be placed on a track above itself (Figure 2.7b)). This can be done by
splitting a net so it occupies more than one track (Figure 2.7c); however, the Left Edge
algorithm always assigns each net to exactly one track. Thus, channels with cyclic con-

straints can not be routed using the Left Edge algorithm.

1 2 1 1 2 1 1 2
v
s
2 1 2 1 2 1
(a) (b) ©)

Figure 2.7. When two terminals share a column, vertical constraints require
that one net be placed above the other (a). Cyclic constraints (b) may make it
impossible to use the Left Edge algorithm. Such constraints can be resolved by
splitting a net onto more than one track, as in (c)-

CHAPTER 2: Approaches to the Routing Problem 19

2.3.2. Deutsch’s Dogleg Router

Deutsch developed a router based on the Left Edge algorithm, whose goal was to
handle channels containing vertical comstraints. His Dogleg channel router [Deutsch]
allows nets to switch from ome track to another; locations where nets switch tracks are
called doglegs (net 1, Figure 2.7c). Doglegs allow the router to eliminate long constraint
chains and route using fewer tracks (Figure 2.8).

1 2 2 3 4 1 2 2 3 4

.

(a) (b)

Figure 2.8. Doglegs can reduce the number of tracks needed to route a channel.
The Left Edge algorithm, which does not use doglegs, produces the routing in (a).
Deutsch’s Dogleg router does the same routing using fewer tracks (b).

While the dogleg router can route channels where the Left Edge algorithm fails,
there are cases where it too has problems. The cause of this is a restriction upon the loca-
tions for doglegs: to avoid producing unnecessary doglegs, the router allows them only at
interior pin locations of multi-pin nets. Thus, the dogleg in Figure 2.9b is not allowed,

since net 2 has no pin in the center column of the channel.

More fundamentally, the reason for this problem lies in the way channel routers
closely based upon the Left Edge algorithm use information global to a routing channel.
Although all such routers use global information to determine which net should be pro-
cessed next, and some use vertical constraint information, in a sense all of these routers
operate a net at a time since they do not fully consider the effect of subsequently-routed
nets upon the current net. The dogleg router does nét know in advance if adding a dogleg

will reduce the number of tracks needed to route a channel (Figure 2.9a, b); in some cases

CHAPTER 2: Approaches to the Routing Problem 20

1 2 1 2
(a) (b)

2 1 3 3 2 1 3 3

1 3 2 1 3 2
(c) (d)

2 1 3 2 1 3

Figure 2.9. Unconstrained doglegs can have good or bad eflects upon the
number of tracks needed for routing. In (2, b) the dogleg in net 2 reduces the
number of tracks, while in {c, d) it increases the number of tracks.

doglegs increase the number of tracks needed (Figure 2.9¢, d). Consequently, the dogleg
router constrains the number and locations of doglegs, with the effect that they are some-

times prohibited where they are needed.

2.3.3. Yoshimura and Kuh

Yoshimura and Kuh's algorithms [Yoshimura and Kuh] use graph reductions to
merge nets onto tracks (Figure 2.10). Their algorithm #1 simply merges nodes on a verti-
cal constraint graph, where each node represents a net, to minimize the length of the long-
est path in the graph. Their algorithm #2 takes a more complicated approach, to try to
maximize the number of merges that can be made. When the algorithm concludes, all of
the nets in a merged node are assigned to the same track; thus, merging nodes reduces the

pumber of tracks needed to route a channel.

These algorithms share the Dogleg router’s problem with regard to dogleg locations.
Since doglegs are allowed only at terminal positions, they are sometimes prohibited even

when they would benefit the routing.

CHAPTER 2: Approaches to the Routing Problem 21

bt ———+ @ - -Track 1

1 IQ] 9
—3 - - Track 2
2, T
L4 nﬁ — -Track 3
8 ., \
S "'

@ ' - Track 5 (or 4)

‘= = = Track 4 (or 5)
(a) (b) (c)

Figure 2.10. Yoshimura and Kuh’s algorithms use graph reductions to merge
nets onto tracks. Figure (a) shows a netlist. Figure (b) shows the corresponding
vertical constraint graph. Figure (c) shows the final merged graph.

2.3.4. YACR-II

YACR-II [Sangiovanni-Vincentelli] is Yet Another Channel Router. YACR-II assigns
nets to tracks and then copes with each vertical constraint by attempting to maze route
around the vertically-constrained area, using some adjacent tracks and columns (Figure
2.11). To minimize the number of vias and avoid introducing additional tracks, YACR-II
relaxes the layer-per-direction wiring model when resolving vertical conflicts (Figure 2.11a,
¢), allowing ‘‘wrong way'' wiring.

YACR-II produces routing to equal the best channel routers, by making effective use
of constraints and global information. It considers many nets at once, particularly the
tradeoffs between various track assignments, selecting a track assignment that simplifies
the overall routing for these nets. Also, unlike Left Edge algorithms, YACR-II focuses on
the critical column crossed by the greatest number of nets, first assigning nets to tracks at

this point.

2.3.5. Burstein’s Hierarchical Router

Burstein's Hierarchical [Burstein and Pelavin] router takes the novel approach of
mapping an m-row by n-column channel routing problem onto a coarse 2-by-n grid. Each

net is routed through the grid with a minimum-cost Steiner tree, one net at a time. After

CHAPTER 2: Approaches to the Routing Problem 22

1
1 : |
1 |
@ —e
—— 2 ——
2 — T *
] ———— 1 Q T 1 &

2 2 2

(a) (b) (c)

Figure 2.11. YACR-II uses maze routing to resolve vertical conflicts between
nets 1 and 2. First, it tries to route using an adjacent column, in poly only (a). If
this fails, it tries doglegs spanning more columns (b). If this fails, then both inter-
connections are jogged (c).

all nets are routed, each net is removed from the grid in random order and rerouted while
the other nets remain in place. Following this the grid is refined by splitting it into 2 2-
by-n subproblems, which are routed in a similar fashion. The successive refinement con-
tinues to the point where each point in the grid corresponds to a singe point on the origi-

nal routing grid (Figure 2.12).

Rerouting each net in random order allows it to adjust its path to accommodate the
presence of the other nets. This gives the algorithm a degree of independence from the
order in which nets are routed. It also is an example of using global information within

the routing channel to choose routings that consider interactions between nets.

2.3.8. Rivest’s Greedy Router

Since the Greedy router forms the basis of Magic's own channel router, a detailed
description appears in Chapter 6. Consequently, this brief discussion omits many of the

details, concentrating instead on higher-level issues such as its use of global information.

CHAPTER 2: Approaches to the Routing Problem 23

2 2 4 5 8
il 2 2 45 8
2 2 4 5 8 - 1
] 2 4 5 8
LT
2 4 5 8 8 [—-1——
2 4 5 8 8
(a) (b) (c)

Figure 2.12. Burstein's Hierarchical router decomposes an m-by-n channel into
a 2-by-n problem (a) and successively refines the grid (b) to obtain the final rout-

ing (c).

The Greedy router uses a column sweep approach, extending partially-wired nets
from left to right across a channel. In each column heuristic rules control the placement

of vertical wiring to make connections and simplify the remaining routing task.

The Greedy router is similar to YACR-II in the sense that it scans the length of a
channel and is concerned with net assignments to tracks. Yet while YACR-II attempts to
assign each net to some best single track, the Greedy router dynamically changes track
assignments with vertical wiring. This allows the Greedy router to resolve or reduce vert-
ical conflicts over a wide range of columns but tends to introduce extra vias and extra

wire length.

2.4. Lack of Flexibility

Channel routers generally produce results far superior to net-at-a-time routers, but
they are less flexible. While net-at-a-time routers allow partial hand-routing, channel
routers generally assume channels are completely devoid of previously- placed layout.
Because channel routers consider many nets at once rather than one at a time, it is not
necessary for them to consider some nets as obstacles for other nets. Thus, the ability to

combine automatic routing with previously-placed hand-routing is lost.

CHAPTER 2: Approaches to the Routing Problem 24

Since traditional channel routers can not handle obstacles, routing systems generally
provide only a limited form of obstacle-avoidance. Some systems, such as BBL [Chen] and
LTX [Persky], prewire power and ground routing by placing it at the edges of channels
and then bridge other signals straight over this wiring; however, user-supplied hand-
routing is not allowed. The PI system [Rivest] provides limited support for arbitrary,

hand-placed metal obstacles, but each metal segment forms its own separate channel.

Magic's routing system provides a more general form of obstacle-avoidance. Based
on the channel routing approach, it develops new techniques to support obstacle-avoidance
at both the global routing and channel routing phases. These new techniques are

described in the following chapters.

25

CHAPTER 3

Magic’s Obstacle-Avoiding Router

3.1. Introduction

This chapter provides a high-level description of Magic's obstacle-avoiding routing
system. It begins with a general introduction to the routing system, including its goals
and its approach. Following this the chapter presents a major result of this dissertation:
the hazard mechanism which forms the basis of the obstacle-avoidance techniques
employed by the routing system. Next, it briefly describes the features and major com-
ponents of the routing system, in the order of their invocation or use: hierarchical termi-
nal pames, petlists, automatic grid alignment, a fast channel decomposer, an obstacle-
avoiding global router, an obstacle-avoiding switchbox router that produces results com-

parable to good channel routers, visual feedback, and technology independence.

3.2. Magic’s Obstacle-Avoiding Router

The goal of Magic's automatic routing system is to provide flexibility by allowing
automatically-generated routing to be combined with hand-routing. The system provides
the designer with the flexibility to focus on the important parts of a circuit, performing
critical wiring by hand to get routing with exactly the desired characteristics. After the
critical nets are taken care of, the automatic router provides a fast way to make the

remaining, non-critical connections, completing the wiring for a chip.

The router is an integral part of an interactive layout editor. It is invoked as a com-
mand from within Magic [Scott 86]. All of the router’s inputs--a set of hand-placed sub-
cells, hand routing or other obstacles, and netlists speciflying the connections for the
router to make--are produced using Magic's commands for layout creation, layout manipu-

lation, and netlist editing. The router accesses Magic's internal database to get these

CHAPTER 3: Magic's Obstacle-Avoiding Router 26

inputs, and paints the resulting routing directly into the database.

In this system the designer plays an active role, iterating over the design to obtain
the desired results. If the results of a routing are unsatisfactory, the designer invokes a
command to rip-up the automatic routing while preserving hand routing. Next the
designer modifies the cell placement and adds hand routing, using commands such as
plowing [Scott and Ousterhout]. Following this, the designer reinvokes the automatic

router, completing the routing cycle.

Since the router is specifically intended for interactive use, the quality of the routing
and the speed of operation are both important considerations. The router seeks a balance
between speed and results, working quickly and relying on the designer for help if it gets
“stuck”. It does mot strive for optimal routing; the quality of the routing is crucial for
only a few critical nets and in a few “tight’ routing areas. It completely routes
moderate-size chips in 4 to 5 minutes of cpu time on a VAX 11/780, including the time to
paint the resulting wires back into Magic’s internal database and refresh the design on a

display device. This is fast enough for designers to work with interactively.

This interactive approach contrasts sharply with other approaches to routing that
attempt to completely remove the designer from the routing process. Magic's router
accepts designer input in the form of hand routing; many other systems prohibit any
designer input other than conmectivity information, while attempting to provide a
comprehensive, fully-automated answer to the routing problem [Chen] [Persky]. Another
system, PI, provides limited hand routing for power and ground while stating that its
objective is to ‘‘explore the limits of what can be accomplished algorithmically”. In this
sense Magic’s router’s objective is to explore interactions, particularly the division of
labor, between designers and tools. More recent expert system research [Joobbani]
attempts to build the flexibility and creativity of a human designer into a router; Magic's
router avoids the complexity and enormous speed penalty of that approach by instead

drawing upon the human designer for human expertise.

CHAPTER 3: Magic’s Obstacle-Avoiding Router 27

The Magic router has much in common with the traditional, non-obstacle-avoiding
channel routing systems described in Chapter 2. Like those systems, it decomposes the
areas between subcells into rectangular channels, globally routes nets through these chan-

nels, and then individually routes each of the channels.

The differences lie in the features added specifically to support obstacle-avoiding
routing. The global router has special obstacle-avoiding features; The global router
decides where each net crosses each channel boundary; this minimizes obstacles’ effects on
the routing, but requires that each channel to be routed as a switchbox. it considers the
effects of obstacles as it evaluates alternative paths. The switchbox router is also designed
to cope with obstacles; while normally observing the layer-per-direction model, it can

switch routing layers to bridge obstacles.

3.3. Obstacles and Hazards

The router’s unique feature is its ability to cope with obstacles. The major results of
this dissertation are thus the ideas developed to deal with obstacles during routing. After
first defining some terms and introducing some problems caused by obstacles, this section

presents an important mechanism called a hazard to deal with these problems.

An obstacle is any layout present prior to automatic routing that affects the normal
course of routing. For example, the results generated by one invocation of the router may
become obstacles to subsequent invocations. Magic does not route over cells; thus, cells
are not obstacles, and obstacles occupy the otherwise-empty areas between cells. Finally,
material does not constitute an obstacle unless it occupies layers that match or interact
with one of the two routing layers. For example, if the routing layers are metall and
polysilicon, diffusion is an obstacle since it interacts with polysilicon, but metal2 is not an
obstacle since there are no design rules or formation rules constraining interactions

between metal2 and either of the routing layers.

Obstacles complicate the already difficult routing problem. They disrupt the simple

wiring model which assumes that the routing channels are completely empty. The simple

CHAPTER 3: Magic's Obstacle-Avoiding Router 28

.................

Figure 3.1. These obstacles form three blocked areas, outlined with dotted lines.
Blocked areas are formed by contacts that block both routing layers (A), two-
layer overlaps (B), and adjacent areas of different layers (C).

wiring model assumes it can always route in one direction on one routing layer and in the
other direction on the other routing layer; this is no longer true when obstacles are
present. In particular, it may be necessary for a net to switch routing layers to cross
conflicting material. If routing channels are empty, design rules are an issue only at the
boundaries between channels and cells; when obstacles are present in channpels, design rule

violations can occur anywhere within the routing area.

At their worst, obstacles occupy both routing layers in a given location, creating
blocked areas through which no routing may pass (Figure 3.1). Blocked areas may be gen-
erated even where obstacles do not overlap each other. If obstacles on different layers are
so close to each other that there is mo room to place contacts between them to switch
layers, then the obstacles eflectively create blocked areas, since the router can switch
layers to cross one of the obstacles, but can not switch layers again to bridge the other.
One key problem of obstacle avoidance is recognizing these blocked areas and avoiding

them by routing nets around them.

Obstacles occupying only one of the routing layers create a different problem. Areas
covered by such obstacles are obstructed: routing may cross only on one of the two rout-
ing layers. In this case the router can simply switch routing layers, if necessary, to cross

over the obstacle; however, since the combination of an obstacle on one routing layer and

CHAPTER 3: Magic’s Obstacle-Avoiding Router 29

(c) (d)

Figure 3.2. When an obstruction blocks one of the routing layers, either hor-
izontal or vertical wires, but not both, may bridge the obstacle. If the obstacle is
short and wide, as in (a) and (b), it is easier to jog the horizontal wire out of the
way, as in (b). If the obstacle is tall and narrow, as in (c) and (d), it is easier to
jog the vertical wire out of the way, as in (c).

a wire on the other routing layer creates a blocked area, the obstacle can be crossed either
horizontally or vertically, but not in both directions. Thus the router must choose

whether to cross each obstructed area horizontally or vertically.

The solution to this problem is to give preference to routing crossing the short
dimension of a single-layer obstacle (Figure 3.2). Nets running perpendicular to the pre-
ferred direction (parallel to the obstacle’s long dimension) are routed around the obstacle
if necessary to allow other nets to cross in the preferred direction. This policy is advanta-
geous; crossing an obstacle across its short dimension reduces interference with other nets
by minimizing the size of the blocked area created in crossing the obstacle. Also, since the

cross-section of the blocked area is small, nets diverted around the blocked area detour

CHAPTER 3: Magic's Obstacle-Avoiding Router 30

...............

Figure 3.3. Hazards (marked with dotted lines) along one side of an obstacle are
warning areas, indicating that nets approaching the obstacle from that direction
should route around the obstacle. In Figures (a) and (b) nets extend from left to
right toward an obstacle. Since a taller obstacle (b) may require more nets to jog
out of the way, the hazard must extend further away from the obstacle to leave
more room for nets to do this. In Figure (c) a hazard above an obstacle causes a
descending net to jog around the obstacle.

only a short distance.

The router uses a mechanism called a hazard to deal with both single and double-
layer obstacles. Hazards are warning areas near obstacles and are used in routing nets
around blocked and obstructed areas (Figure 3.3). As the router extends a net through
the routing area it may encounter a hazard; this indicates that it is approaching an obsta-
cles that it should avoid. The router then takes appropriate actions to move the net out

of the hazard area and around the obstacle.

Hazards guide the router by indicating the directions in which it should cross obsta-
cles. The absence of a hazard adjacent to one side of an obstacle indicates that the router
may cross the obstacle from that direction. Hazards completely surround blocked areas to
indicate that these areas should not be crossed in any direction. Hazards adjacent to the
short dimension of single layer obstacles indicate that nets should not cross these obstacles

along their long dimension.

CHAPTER 3: Magic's Obstacle-Avoiding Router 31

The size of a hazard has an important effect on routing quality. Moving nets away
from an obstacle too soon wastes routing area, since it may leave empty spaces near the
obstacle. On the other hand, moving nets away from an obstacle too late may cause some

of them to run into the obstacle.

Accordingly, the router sets the size of a hazard to correspond to the urgency of
avoiding the obstacle and the amount of area it estimates will be needed to jog nets
around the obstacle. A hazard near a blocked area is made larger than a hazard near an
obstructed area of the same size, since the router fails if it extends a net into a blocked
area, while the router can simply switch routing layers to cross an obstructed area (with
potential inconvenience for other nets). A hazard for a taller obstructed area is made
larger than a hazard near a shorter obstructed area, since a larger number of nets may
have to move around the taller obstacle, and this requires more area (Figure 3.3 (a) and
(b))

Magic generates hazards as one of the first routing steps. After channel decomposi-
tion but before global routing the router searches the channel areas and maps the location
and type of each obstacle. It then analyzes the obstacles, determines the preferred direc-

tion for crossing each obstacle, and places hazards to indicate this.

3.4. Hierarchical Terminals

Terminals identify connection points at or near subcell edges. They are specified by
rectangular labels, and include a textual terminal name, an area, and a layer. The router
connects to a terminal at a convenient point along one of its sides; larger terminals give
the router more freedom to choose connection points and to avoid generating jogs when
aligning terminals onto the routing grid (Section 3.8). The terminal’s layer specifies which

of the layers at the terminal’s location is to receive the connecting wire.

Terminal names are hierarchical, to avoid ambiguity when the same subcell appears
more than once in the same design. A terminal name is composed of a sequence of cell use

identifiers, followed by the name of the terminal itself. Each cell use identifier is unique

CHAPTER 3: Magic's Obstacle-Avoiding Router 32

within its parent cell definition, so a hierarchical terminal name identifies which of possi-
bly many uses of the same cell definition holds a terminal of interest (Figure 3.4). Termi-
nals may appear arbitrarily deep within the cell hierarchy: they need not reside within the

topmost subcells.

Shiftcell ShiftParent Shiftcell

Shiftcell 0 Shiftcell_1
ST ShiftParent_0

t.erm A H . term_A H

Figure 3.4. Hierarchical terminal names distinguish between terminals within
copies of the same subcell. In the figure, subcell names are shown in bold, while
instance names are in italics, and terminal names are in plain text. The hierarchi-
cal name of terminal term_A in the left subcell is “Shiftcell_0/term_A"", while the
name of the same terminal in the right subcell is
“ShiftParent_0/Shiftcell_1/term_A"".

3.6. Netlists

The designer creates netlists to specify groups of terminals to be wired together by
the router. Netlists reference terminals by name rather than by location; this makes it
easy to move cells, since the router finds terminals regardless of their coordinates. Magic
uses this netlist information not only to specify connectivity during routing, but also to

verify that all nets are fully-wired and to rip up wiring prior to rerouting.

Magic includes an interactive netlist editor that allows terminals to be selected,
grouped into nets, or removed from nets. The netlist editor is graphically (rather than
textually) oriented: terminals are selected and operated upon by pointed at them on the

graphics screen and clicking a mouse button.

CHAPTER 3: Magic’s Obstacle-Avoiding Router 33

3.8. Automatic Grid Alignment

Although the router is grid-based, designers are not constrained to design cells whose
cell edges or terminals match up with grid lines. The router automatically generates lay-
out called stems to jog connections onto the routing grid from unaligned locations near
the edges of subcells. Thus, the designer need only space terminals sufficiently far apart
to ensure that it is possible to river route the terminals to grid lines; the router antomati-

cally takes care of the other grid alignment considerations.

Figure 3.5. The router expands subcell dimensions to leave an empty frame
around each subcell to hold stems used to jog terminals onto the routing grid.
After creating the stem frame the router expands it outward to the next point
between grid lines to force all channel boundaries to fall between grid lines and
avoid terminal alignment problems.

Magic reserves an area called a stem frame around each subcell to allow room for
the stems. The stem frame has to be large enough to allow wires to run outward away
from the subcell edge and then make a right angle jog without generating design-rule vio-

lations. Figure 3.5 shows an example of a stem frame.

CHAPTER 3: Magic's Obstacle-Avoiding Router 34

3.7. A Fast Channel Decomposer

The first major component of the routing system is a fast channel decomposer. The
channel decomposer uses a heuristic to generate a channel structure with a small pumber
of large channels; this simplifies global routing and channel routing. The channel decom-
position algorithm owes its simplicity and speed to a data structure called corner stitch-

ing [Ousterhout 84].

Magic’s channel decomposition algorithm is based entirely upon geometric considera-
tions. Since Magic does not modify placement, the channel decomposer ignores channel
definition and ordering techniques designed to provide ‘‘safe”” routing [Kajitani] with
revised placement. Instead, like the PI system [Rivest], it routes each rectangular channel

area as a switchbox.

3.8. Magellan: An Obstacle-Avoiding Global Router

Magic’s global router, named Magellan, is another key router component specially
designgd to deal with obstacles in the routing area. To avoid creating problems the
switchbox router cannot successfully route, it considers the effect of obstacles on the
resulting routing. Obstacles can completely block areas along channel boundaries; unlike
other global routers which simply determine which channel boundaries each net traverses,
Magellan is unique in that it examines crossing points along channel boundaries and
assigns specific crossing locations to avoid such situations. Obstacles also cause nets to
make extra jogs within channels, reducing their effective capacity; the global router must
route fewer nets through such regions. These extra jogs increase the total wire length; the
global router considers this addition to total net length when selecting a ‘‘shortest” path

for a net,

The global router relies on hazards for obstacle-avoidance. When evaluating cross-
ings it tries to avoid assigning nets to crossings within hazards, since the switchbox router
will likely have to jog these nets out of the way of some obstacle immediately upon enter-

ing the channel.

CHAPTER 3: Magic's Obstacle-Avoiding Router 35

3.9. Detour: An Obstacle-Avoiding Switchbox Router

Magic's obstacle-avoiding switchbox router, named Detour, is the third key com-
ponent of the routing system. Unlike conventional channel routers, it routes rectangular
regions that may contain obstacles; depending on the size, type, and aspect ratio of an
obstacle, Detour may choose to route nets across or around it. Detour also handles
difficult switchbox routing problems, where pin locations are fixed on all sides of the rout-
ing region. At the same time, since it is based on channel routing techniques (the
“Greedy" channel router [Rivest and Fiduccia]), it still produces results comparable to the

best traditional channel routers for conventional routing problems without obstacles.

Hazards are the key to the channel router's obstacle-avoiding function. They indi-
cate when the channel router should route nets across obstacles and when it should route
around them. When it is appropriate to route across obstacles, hazards reserve space for
contacts needed to bridge the obstacles. Finally, the channel router uses a variation on

the basic hazard concept to implement its switchbox routing mechanism.

3.10. Visual Feedback

Information and error reporting are visual as well as textual. Channel decomposition
information is shown as bright white lines overlaying a design. If terminals are spaced too
closely together for grid alignment, the global router puts feedback paint into the design
at the location of the problem. Similarly, if the switchbox router is not able to complete
all connections, it places feedback paint into the design at the location where the error
occurred. Associated with each feedback area is a text string describing the nature of the
error. This visual feedback generated by the router is viewed and manipulated using the

general-purpose viewing facilities built into the Magic system.

3.11. Technology Independence

Aside from the limitation of 2 routing layers, the system is technology-independent.

All information concerning routing parameters is contained in a Magic technology file that

CHAPTER 3: Magic's Obstacle-Avoiding Router 36

is read at startup. The technology file describes the physical characteristics of the rout-
ing: the two routing layers, the widths of the wires on each of these layers, the minimum
separation between these routing layers and other layers in the design, and the size of con-
tacts between the layers. Routing in a different technology or changing the physical
characteristics of the routing in the current technology is accomplished by changing these

technology file routing parameters; no recompilation of the program is necessary.

37

CHAPTER 4

Channel Decomposition

4.1. Introduction

Channel decomposition divides the space between subcells into rectangular, non-
overlapping areas called channels. The channel is the central data structure of the rout-
ing process; once defined, channels are first traversed by a global router to find approxi-
mate paths for nets, then individually routed by a channel router. The goal of channel
decomposition is to create a channel structure that simplifies the remaining portions of the

routing process.

Although what constitutes a good channel decomposition depends on the subsequent
phases of the routing process, in general a superior channel decomposition generates a
small number of large channels. A global router works faster with a smaller number of
channels since there are fewer paths to consider from one point to another. A channel
router also does better if channels are larger since this allows more options when choosing
how to route nets within a channel. Also, since it typically takes slightly more than the
optimal area to route each channel, this excess area accumulates more slowly if a given

area is divided up into fewer channels.

Magic’s channel decomposer meets this goal by using an eflective heuristic, first
employed by the PI system [Rivest], that minimizes the sums of the perimeters of the
channels. The implementation, which relies on a corner-stitched data structure

[Ousterhout 84] is simple and extremely fast.

Like the overall routing system, Magic’s channel decomposer is capable of operating
without user assistance, but it also allows the designer to examine its results and modify
them before proceeding to the subsequent stages of routing. This provides a measure of

control over the channel structure and takes advantage of the human designer’s expertise.

CHAPTER 4: Channel Decomposition 38

Designers can control the channel decomposition process by modifying the cell place-
ment. In typical usage the designer generates a channel decomposition, views it on a
graphics display, modifies the placement, and generates a new decomposition. Slight
placement changes can greatly improve the channel structure and simplify the remainder
of the routing process. Channel decomposition typically requires only a fraction of a
second of CPU time; this provides an interactive quality and makes it practical to take an
iterative approach to the problem. Magic provides visual feedback, displaying the result
of automatic channel decomposition by superimposing the channel structure over the chip
layout. All of Magic’s cell and layout manipulating commands are available to allow the
designer to modify the channel decomposition by moving cells; if the cells have connecting
wires, then an interactive operation called plowing [Scott and Ousterhout] may be
employed to move subcells and their attached wiring. Once the channel decomposition is
satisfactory, the designer invokes the rest of the routing system to complete the desired

connections.

The chapter begins by examining previous approaches to channel decomposition.
This is followed by a high-level presentation of Magic’s channel decomposition algorithm.
Details of this algorithm appear in the next section. The chapter concludes by analyzing

the implementation's complexity and performance.

4.2. Background

This section examines the geometric channel decomposition techniques used by VTI's
composition editor [Ng|, the BBL system [Chen], and the PI system [Rivest]. Other tech-
niques that generate separate channel structures for each routing layer [Hashimoto and
Stevens), [Leblond], [Rothermel and Mlynski], and [Wiesel and Mlynski] are unsuitable for
Magic's router, since they enforce a layer-per-direction wiring model, while in an
obstacle-avoiding environment nets may need to switch layers to cross obstacles. Some
previous work is concerned with ‘“‘safe” orderings of channels, to allow automatic place-
ment revisions to adjust channel widths ([Kajitani], [Chiba], [Dai]); however, since Magic

does not modify placement, it does not use such techniques.

CHAPTER 4: Channel Decomposition 39

4.2.1. VTI’s Maximal Horizontal Strips

Figure 4.1. VTI's composition editor uses the channel structure defined by max-
imal horizontal strips. Shaded rectangles represent subcells. Channel boundaries
are drawn with dotted lines.

VTI's composition editor divides the routing area between subcells into maximal bor-
izontal strips (Figure 4.1). The vertical edges of all channels are bounded by subcells or
by the edges of the routing area. Ng reports that this simple approach produces unsatis-
factory results. An early version of Magic's router also used this approach, with similar
results. One problem with the maximal horizontal strip approach is that it tends to gen-
erate long thin channels that are hard to route efficiently. Another is that it generates a
large number of channels. Thus, the routing quality suffers compared to systems that use

more sophisticated channel decomposition techniques.

4.2.2. BBL’s Bottlenecks

The BBL system [Chen] uses the concept of a bottleneck to define routing regions
(Figure 4.2). A bottleneck exists between two neighboring subcells or between a subcell
and an edge of the chip if and only if there is no other subcell between them. Bottlenecks

identify areas between cells where congestion is likely to occur. The bottleneck structure,

CHAPTER 4: Channel Decomposition 40

Figure 4.2. BBL derives its channel structure by generating bottlenecks (marked
with heavy bold lines) between subcells. Each area containing a bottleneck is a
channel, while the remaining regions are switchboxes.

which is used during global routing, allows BBL to revise the subcell placement to provide
the amount of space needed by the routing. After global routing, BBL transforms the
bottleneck structure into a more conventional channel structure composed of rectilinear

channels and switchboxes.

BBL'’s bottleneck approach is unsuitable because it generates a much larger number
of channels without providing any advantages for Magic’s routing system. The channel
structure that results from the bottleneck approach resembles a maximal decomposition
into rectangles where each corner of each subcell generates two channel boundaries.
Bottlenecks are useful in placement modification, while Magic does not modify subcell
placement. With the bottleneck approach, BBL’s global routing operates on a graph
abstracted from the physical layout; however, Magic's global router, described in Chapter
5, needs to operate at the physical layout level to decide where to place crossings and to
estimate the effects of interactions between particular crossings and nearby obstacles upon

the eventual wiring.

CHAPTER 4: Channel Decomposition 41

4.2.3. The PI System

Published descriptions of the algorithm used by the PI system are very sketchy. In
[Rivest] the algorithm given is nothing more than, “The channel-definition heuristic tries
to produce a channel structure that minimizes the sum of the lengths of these edges.”
Another paper, [Soukup], provides only a little more, *“The PI System as being developed
at M.LT. creates larger rectangles using only the shorter of the two possible edges for each

corner.”

Although Magic’s channel decomposer is based on the heuristic used by the PI sys-
tem, the two systems treat obstacles much differently. In the PI system each metal wire
segment in the floorplan of a chip creates a covered channel which is treated like any
other channel except that routing may only cross it on an alternate layer. If the design
includes much hand routing, Pl's approach generates many small channels which are
difficult to route. Further, there is apparently no provision for handling obstacles on any
routing layer besides metal. In contrast, Magic's channel router is designed to route
around and across obstacles, so it is not necessary to I;Jake each obstacle segment a
separate channel. The result is a better channel decomposition with fewer, larger chan-
nels. Finally, since Magic’s implementation was derived completely independently of PI

and is based on corner-stitching, the algorithmic details are likely very different.

4.3. Channel Decomposition Algorithm

Magic's channel decomposition algorithm takes as input a placement of subcells and
a rectangular boundary for the overall routing area. It divides the area between subcells
and within the routing area into rectangular non-overlapping channels. It does this by
enumerating all convex corners of subcells, at each corner generating a horizontal or a
vertical channel boundary, whichever is shorter (Figure 4.3). By choosing the shorter of
the two alternatives at each corner, the sum of the perimeters of channels is reduced, and
the result is a small number of large channels. The result of this channel decomposition

algorithm applied to the placement of Figure 4.1 is shown in Figure 4.4.

CHAPTER 4: Channel Decomposition 42

1. For each convex subcell corner

{

2. dh = horizontal distance to the nearest channel boundary
3. dv = vertical distance to the nearest channel boundary
4. if(dh < dv)
5. mark a new horizontal channel boundary
else
6. mark a new vertical channel boundary

Figure 4.3. A high level description of Magic’s channel decomposition algo-
rithm.

After generating and viewing a channel decomposition the designer may often sim-
plify the channel structure by slightly modifying the placement. Figure 4.5 shows how the
placement of Figure 4.4 can be adjusted to produce a smaller set of larger channels; this

should make the example easier to route.

Figure 4.4. Magic's channel decomposer produces this structure when applied to
the same subcell placement as in Figures 4.1 and 4.2. At each convex subcell
corner it creates a channel boundary in the shorter of the two possible directions.

CHAPTER 4: Channel Decomposition

Figure 4.5. The simplified channel structure after the designer views the chan-

nel decomposition and modifies the placement.

Figure 4.8. The channel decomposition algorithm searches horizontally and vert-
ically from subcell corner D to find the nearest previously-defined channel boun-
dary, as indicated by the dotted lines in (a). The shorter horizontal leg from
corner D becomes a valid channel boundary for a subsequent search from corner

B A
s 3
C D
(a)

E, as shown in (b).

43

CHAPTER 4: Channel Decomposition 44

The channel decomposition algorithm is feature-based, enumerating the corners of
each subcell in the layout. At each convex subcell corner the algorithm searches both hor-
izontally and vertically outward to find the nearest adjacent subcell, edge of the routing
area, or previously-defined channel boundary, then chooses the channel boundary to be in
the direction of the shortest edge. The channel boundaries established early in the decom-
position are used in deciding which way to generate boundaries from later corners (Figure
4.8); thus, the algorithm'’s results depend on the order in which corners are enumerated.
Since channels are strictly rectangular (no L-shaped channels are allowed), each convex

subcell corner must lie on at least one constructed channel boundary (Figure 4.7).

(a) (b) (c) (d)

Figure 4.7. Since L-shaped channels are not allowed (a), each convex subcell
corner lies on at least one constructed channel boundary. The boundary may be
either vertical (b) or horizontal (c). A subcell corner may lie on two constructed
channel boundaries as in (d), where the vertical boundary is generated by the
portheast corner of subcell A and the horizontal boundary is later generated by
the southwest corner of subcell B.

4.4. Implementation

This section describes Magic's implementation of the channel decomposition algo-
rithm, which is based on corner stitching. Corner stitching [Ousterhout 84] is a data
structure for Manhattan geometries that explicitly represents both material and space.
Each corner-stitched plane is composed of non-overlapping rectangular tiles that com-
pletely cover the plane (Figure 4.8a). Each point lies within exactly one tile; a tile con-
tains its left and bottom edges but not its top or right edges. Tiles of the same type are
stored in maximal horizontal strips to prevent fragmentation and to provide a canonical

form (Figure 4.8b,c). Each tile is linked to neighboring tiles with four pointers: two at the

CHAPTER 4: Channel Decomposition 45

upper right corner, and two at the lower left corner. Database routines traverse these
pointers to provide fast point searching, fast area enumeration, fast neighbor finding, and

fast database updates.

... L}
R : $ t, [

Vg = 8
"}*1 *‘3,1’ L__
f (b)
e Gy Ty t,
T oty
R Et i& -------- t,
B I
(a) (c)

Figure 4.8. Corner-stitching explicitly represents both material (solid outlines)
and space (dotted outlines). Each tile contains four pointers to adjacent tiles (a).
Areas of the same type of material are represented with horizontal strips that are
as wide as possible. In (b) and (c), the structure on the left is illegal and is con-
verted into the tile structure on the right.

The channel decomposition algorithm uses a corner-stitched plane to represent the
routing area. Initially, solid tiles represent subcells and space tiles represent the areas
between subcells. The decomposition algorithm splits and merges horizontal strips of
space tiles to produce a new set of space tiles with a reduced sum of perimeters. Each of
these new space tiles represents a routing channel with the same location and dimensions

(Figure 4.9).

4.4.1. Identifying Convex Corners

The outer loop of the channel decomposition algorithm is an enumeration of each of
the convex subcell corners within the routing area. This is done using the standard area
enumeration algorithm for corner-stitched tile planes, which visits a tile when all of the
tiles above it and to its left have already been processed. As each subcell tile is

enumerated its four corners are examined in turn to see if they are convex. The corners

CHAPTER 4: Channel Decomposition 46

A A
""" 1 71 T 2] AC
(a)| B c)| B
D D
A A
]] 7] AC
®B| C (e)} B} -
............................... alo
D D D’
A A’ A
1 ol T 1 2
©|Bl C 0| B A'CD’
D D
|

Figure 4.9. The algorithm splits and merges space tiles, creating a structure
where each space tile represents a channel. Initial edges, drawn with dotted
lines, are artifacts of the original formation as maximal horizontal strips. Valid
edges, drawn in solid lines, are constructed channel boundaries. Figure (a) shows
an initial tile plane. In (b) the edge between tiles A and B becomes valid after
processing corner 1. As part of processing corner 2 in (c), tile A splits into A and
A’, causing a vertical merge between A’ and C in (d). In (e} tile D splits into D
and D’ after processing corner 3. Tile D' merges vertically with A'C’, forming tile
A’CD’ in (e). The last step, marking a valid boundary between tiles B and D, is
not shown.

are enumerated in the following order: southeast, southwest, northwest, northeast.

The test for convexity, as shown in Figure 4.10 for a northeast corner, looks for
material directly above the corner (Figure 4.10 (b)) and diagonally opposite the corner
(Figure 4.10 (c)). If no material (in this case subcell tiles) is found either above or diago-

nally opposite the corner, then the corner is convex.

CHAPTER 4: Channel Decomposition 47

(a) (b) (c) (d)

Figure 4.10. Testing a northeast subcell tile corner for convexity. Figure (a) is
a legitimate convex corner. Figures (b) is not convex, since there is material
above the corner. Figure (c) is not comvex, since there is material diagonally-
opposite the corner. Figure (d) is not convex, since there is material both above
and diagonally-opposite the corner.

Figure 4.11. The test for a convex corner checks to see if the x-coordinate of
the right edge of the spanning tile is greater than the x-coordinate of the corner in
question.

The test for convexity is even simpler than suggested by Figure 4.10, through the use
of spanning and side tiles. A spanning tile lies immediately above a north-facing corner
or immediately below a south-facing corner, and may be either a solid tile or a space tile.
A side tile lies immediately to the right of an east-facing corner or immediately to the left
of a west-facing corner (Figure 4.11). Side tiles are always space tiles, since subcell tiles
are stored in maximal horizontal strips.

The tests for material directly above and diagonally opposite the corner can be com-

bined into a test of the corner’s spanning tile. A corner is not convex unless the spannin
P

tile truly spans the corner’s x-coordinate. If, as in Figure 4.10 (b) or 4.10 (c), the

CHAPTER 4: Channel Decomposition 48

“spanning”’ tile has an edge directly above the corner, then the corner is not convex; this
works regardless of whether the spanning tile is a subcell tile or a space tile. If the span-
ning tile really spans the corner, then the corner is convex if the spanning tile is a space

tile; otherwise, the corner is concave (Figure 4.10 (d)).

4.4.2. Horizontal and Vertical Distances

The heart of the channel decomposition algorithm is the construction of a channel
boundary at a convex subcell corner. A channel boundary can extend either horizontally
or vertically from the corner location. It terminates when it runs into a subcell, an edge
of the routing region, or some other previously-defined channel boundary. The channel
decomposition algorithm examines both choices and selects the alternative whose boun-
dary length from corner to termination point is the shortest. Since the algorithm always
chooses the shortest of the two alternatives at each point, this tends to minimize the per-

imeters of channels.

Measuring the distance horizontally from a subcell corner to a valid channel boun-
dary is easy in the corner-stitched tile plane. The distance is found by examining the x-
coordinates of the corner's spanning tile and side tile. For the northeast corner in Figure
4.12 the distance is simply the minimum of the x-coordinates of the spanning tile and the
side tile. If the spanning tile represents a subcell, then the corner is not convex, and the

algorithm skips the corner.

Figure 4.12. For a northeast corner the horizontal distance to a valid channel
boundary is simply the minimum of the x-coordinates of the spanning tile and the
side tile.

CHAPTER 4: Channel Decomposition 49

Measuring horizontal distance in this manner depends on the property that all verti-
cal edges in the channel decomposition plane represent valid channel boundaries. At the
start of the decomposition process the only vertical edges are those between subcell tiles
and space tiles. Vertical edges are only added to the tile plane when space tiles are split
as in Figure 4.9 to mark valid vertical channel boundaries. Thus, all vertical edges

represent valid channel boundaries.

Figure 4.13. Determining the vertical distance from the circled corner to a valid
channel boundary may involve traversing a number of space tiles and checking to
see if any of their edges represent valid channel boundaries. When tile 3 is
checked, the lower edge of tile B terminates the search.

Measuring vertical distances to valid channel boundaries is more complicated. The
problem is that only some of the horizontal space tile edges represent valid channel boun-
daries. Other horizontal edges exist simply as artifacts of the original formation of the
space tiles into maximal horizontal strips; these edges will eventually be made into valid
channel boundaries or else disappear as tiles are split and merged during the course of the

decomposition algorithm.

Figure 4.13 shows the vertical distance measurement from a northeast subcell tile
corner. The search for a valid channel boundary progresses vertically upward beginning
with the spanning tile (1) and progressing through space tiles directly above the originat-
ing corner (2 and 3), using the standard point search algorithm for corner-stitched tile

planes to find the tile containing a given point. When a valid horizontal channel

CHAPTER 4: Channel Decomposition 50

boundary is located, the vertical distance is simply the distance from the corner to the

channel boundary.

A valid horizontal channel boundary can be encountered in several ways. The hor-
izontal edge of any subcell tile represents a valid channel boundary. The upper and lower
edges of the routing region also represent valid boundaries. A horizontal boundary
between two space tiles may also represent a valid channel boundary (how to determine
this will be explained shortly). If the horizontal boundary is not valid, it is necessary to
check the x-coordinates of the tile to the left (Figure 4.13, tile B) to detect the case shown
in Figure 4.13 where a vertical subcell edge coincides with the line of search and the valid
horizontal subcell tile edge would otherwise be missed (a tile includes its left edge but not
its right). If none of these conditions apply, the vertical distance measurement advances

to the next vertically adjacent tile and repeats the process.

Figure 4.14. When one space tile's horizontal edge completely spans another’s,
the flags associated with the shorter of the two edges are identical and determine
the status of the edge they share. Flags along A’s lower edge are set to ¢ to indi-
cate that the edge between tiles A and C (drawn with a solid line) is a valid edge.
Flags along B's lower edge are set to f to indicate that the edge between tiles B
and C (drawn with a dotted line) is not a valid edge.

To identify the horizontal space tile edges that represent valid channel boundaries,
Magic's channel decomposer associates two boolean flags with each horizontal space tile
edge. When one space tile's horizontal edge completely spans another’s, one bit is

sufficient to determine if the edge is valid. In this case the flags associated with the

CHAPTER 4: Channel Decomposition 51

shorter of the two edges are identical and determine the status of the edge they share

(Figure 4.14).

Figure 4.15. When space tiles partially overlap (tiles A, C, and E), two status
bit per horizontal edge are needed to indicate the status of the overlapping edges.
The edge between tiles A and E is valid; A's lower right flag and E's upper left
flag are set to ¢ to indicate this. The edge between tiles C and E is an initial
edge; C's lower left flag and E's upper right flag are set to f to indicate that it is
not a valid edge.

In some cases both status bits are needed to correctly mark each horizontal edge
(Figure 4.15). This occurs when a horizontal space tile edge partially overlaps two other
space tiles, one at each corner. In this case the horizontal edge requires two boolean flags:

one for the horizontal edge’s leftmost segment and one for its rightmost segment.

The algorithm for measuring the vertical distance is presented in Figure 4.18. This
pseudo-code listing only shows the procedure for north-facing corners. Since at the start
no horizontal edge is valid, the channel decomposition algorithm clears all edge status bits

at the start of the decomposition process.

4.4.3. Splitting and Merging Tiles

Once the decomposer determines the direction from the corner to the nearest existing
channel boundary, the algorithm creates a new channel boundary from the corner to that
existing boundary. When the vertical direction is shorter the algorithm establishes a vert-

ical channel boundary by splitting all space tiles between the corner and the nearest

CHAPTER 4: Channel Decomposition 52

1. nextTile=spanning tile;
while(nextTile.type!=subcell)

{

1

currTile=nextTile;

nextTile=tile above new currTile at corner's x-coordinate;
4. if(nextTile.lower_y===routingArea.upper_y)

break; /* Found top of the routing area */

I

5. if(nextTile.lower_x===corner_x)
break; /* Subcell edge or valid boundary */

8. if((currTilelower.x <= nextTile.lower.x) and
(currTile.upper.x => nextTile.upper.x))
{
if(nextTile’s lower left horizontal status bit==1)
break; /* Valid horizontal boundary */
}

else
7. if(currTile.upper.x > nextTile.upper.x)

if(nextTile's lower right horizontal status bit==1)
break; /* Valid horizontal boundary */
}

8. else
if(currTile’s upper right horizontal status bit==1)
break; /* Valid horizontal boundary */

}

distance=nextTile.lower_y - corner_y;

Figure 4.18. The algorithm for measuring the vertical distance from a north-
facing subcell tile corner to a valid horizontal channel boundary.

existing channel boundary.

If the resulting split tiles have upper or lower neighbors that are space tiles with
identical horizontal span, then they are merged together as in Figure 4.17 (a) and (b). In
some cases this may delete part of a previously-defined valid horizontal channel boundary.
This is okay since the horizontal edge segment is completely redundant as it is bounded at

both ends by vertical (valid by definition) edges.

If the tiles resulting from these vertical merges match horizontally-adjacent tiles

(except for the edge representing the new valid channel boundary), further merging can be

CHAPTER 4: Channel Decomposition 53

D 1 2
B

A e (a)
C

D 1 2
A BC oo (b)
D 1 2

ABC poeees (¢)

Figure 4.17. Splitting upward from corner 2 allows tiles B and C to merge (b)
vertically. This merge allows tiles A and BC to merge horizontally, deleting the
vertical edge from corner 1 (c).

done in the horizontal direction (Figure 4.17 (c)). Note that horizontal merging deletes a
vertical edge, and vertical edges always represent valid channel boundaries. This is okay
since by deleting a redundant vertical boundary the sums of the perimeters of all channels

is reduced.

CHAPTER 4: Channel Decomposition 54

4.4.4. Setting Horizontal Status Flags

~ f
AN (a)
¢ t
¢
~\
(b)
N7 ; _

Figure 4.18. When creating a valid horizontal channel edge from the circled
northeast corner to the right, set valid horizontal valid flags. Always set the
northwest flag in the side tile. If the right edge of the side tile is to the left of the
right edge of the spanning tile, also set the northeast flag in the side tile (a), oth-
erwise, set the southeast flag in the spanning tile (b).

When the horizontal direction is shorter, the algorithm does not have to split tiles
since there is already a space tile boundary from the corner to the existing channel boun-
dary; however, to identify the horizontal tile edges that represent valid channel boun-
daries the algorithm sets status flags in the space tiles along the edge in question. The
algorithm always sets a flag in the subcell corner’s side tile. Where appropriate the algo-
rithm also sets the flags in the spanning tile. The three rules for setting horizontal boun-

dary flags are illustrated in Figure 4.18 for northeast subcell corners:
1. Always set the side tile’s northwest valid flag.

2. If the spanning tile's upper x-coordinate matches or exceeds the side tile’s upper x-
P pp

coordinate, also mark the side tile's northeast valid flag.

3. If the spanning tile's upper x-coordinate is less than or equal to the side tile's upper

x-coordinate, mark the spanning tile's southeast valid flag.

CHAPTER 4: Channel Decomposition 55

4.4.5. Cutting Corners

Part of minimizing the sums of perimeters of channels is avoiding the generation of
unnecessary channel boundaries. As shown in Figure 4.5 a corner must have either a hor-
izontal or a vertical channel boundary, but generating both unnecessarily increases the
sums of perimeters of channels. Thus, the decomposition algorithm only processes those

corners not already incident upon a valid channel boundary.

All edges of the routing region are valid channel boundaries, so the algorithm skips
corners touching the edge of the routing region. It is also possible that while processing
one corner the decomposition algorithm creates a valid channel boundary incident upon
an as-yet-unprocessed corner; when that corner is later enumerated the presence of the

valid channel boundary must be detected so the corner can be skipped (Figure 4.18).

Any vertical space tile edge represents a valid boundary; if a vertical tile boundary
runs into a corner then the corner can be skipped. The test for this is to see if an x-
coordinate of the spanning tile matches the x-coordinate of the corner. Otherwise, there
must either be a valid horizontal channel boundary at this corner, or no valid channel
boundary yet exists. The algorithm checks the status flag of the appropriate corner of the
side tile to see if the horizontal boundary is valid. For example, when checking for a valid
horizontal boundary while processing a northeast corner, the algorithm looks at the
northwest status flag for the space tile immediately to the right of the corner. If the flag

is set then the boundary is valid and the corner can be skipped.

4.5. Analysis

Compared to BBL or VTI's composition editor, Magic's channel decomposer produces
better results: a smaller number of channels with dimensions that make them easier to
route. Using an example subcell placement copied from a BBL report, BBL generates 25
channels (Figure 4.2), while Magic generates 14. Maximal horizontal strips also produces
14 channels, although some of them are so narrow that they can only be routed with some

difficulty. The maximal horizontal strip method produces channels whose perimeter sum

CHAPTER 4: Channel Decomposition 56

is 171 units; Magic’s sum of perimeters for the same placement is only 128. These meas-

urements are summarized in Figure 4.19.

Method Channels Perimeter
Number Ratio Sum Ratio
Max. Horiz. Strips 14 1.4 171 1.54
Bottlenecks 25 2.5 167 1.50
Magic 14 1.4 128 1.15
Magic, Adjusted 10 1.0 111 1.0

Figure 4.18. Comparison of channel decomposition methods for the placement
of Figure 4.4. Magic's channel decomposer produces a significantly smaller
number of channels and a significantly smaller sum of channel perimeters.

Typical run time complexity is O(N), where N is the number of subcells in the lay-
out; however, in the worst case the algorithm is O(N?). The typical linear time behavior
occurs because the average subcell corner ‘‘sees’” a constant number of space tiles during
channel decomposition. The worst-case behavior occurs when subcells generate O(N)
space tiles, and each of the N subcells must search vertically through O(N) space tiles
(Figure 4.19). Processing the lower corners of the topmost subcell requires O(N) space
tiles to be examined; processing subsequent subcells requires O(N-1), O(N-2), O(N-3), ...

space tiles to be examined, yielding the stated worst-case behavior.

Corner stitching provides a very efficient data structure for channel decomposition.
The horizontal and vertical searches for a nearest previously-defined channel boundary are
simple traversals of neighboring tiles in the plane. Updating the data base during the
splitting and merging of tiles representing channels is fast and efficient using corner stitch-
ing. Furthermore, the corner-stitched implementation runs very quickly, using less than

0.1 second of VAX 11/780 CPU time on every design tried to date.

Use of Magic's corner-stitched data base routines allows a simple, compact implemen-
tation of the channel decomposition algorithm. When stripped of comments the channel

decomposition module is only 437 lines of C code.

CHAPTER 4: Channel Decomposition 57

Figure 4.20. The channel decomposition algorithm runs in O(N?) time for this
worst case layout, where subcell tiles are processed from the top down. The ar-
row crosses the O(N) space tiles that must be processed by the topmost of the
subcells.

Figure 4.21. The channel decomposition algorithm is order-dependent. Depend-
ing on whether corner A or corner B is enumerated first, the final result may be
either of these channel structures.

As a final observation, although the corner extension algorithm tends to minimize the
sums of the perimeters of channels, it cannot guarantee this. The problem is that this
procedure is order dependent: results depend on the enumeration order for the cell
corners. Figure 4.21 shows two possible channel decompositions, depending on whether

corner A or corner B is enumerated first.

58

CHAPTER 5

Magellan--Magic’s Obstacle-Avoiding Global Router

5.1. Introduction

A global router generates a wiring path for each net. Each path specifies a sequence
of channels through which a net will pass, without determining the exact placement of the
net's wiring within those channels (a channel router does the actual wiring). Path selec-
tion considers the effect of choosing various alternative sequences of channels, with the
overall goal of simplifying the resulting channel routing problems. Since longer wires
occupy space that could be used to route other signals and also increase resistance and
capacitance in circuits, a global router usually chooses the shortest path from one point to
another. In some cases, however, it may choose a less direct path to avoid routing

through congested channels whose wire capacities are already fully used.

Obstacles complicate the routing problem. In some places, they may occupy all of
the routing layers; such areas will have to be avoided completely by the channel router.
Single-layer obstacles limit the choice of routing layer; they may make the channel
router’s job difficult or impossible. The global router must ensure that the channel router
will have enough space to route around obstacles, and must take the obstacles into
account when computing the capacities of channels. In some cases, it may be better to

choose a longer path than to attempt to pass through an area with many obstacles.

To operate in this obstacle-avoiding routing environment, Magic’s global router
named Magellan chooses not only the sequence of channels for each net, but also the
exact points (and layers) where nets cross channel boundaries. These points are called
crossings and the selection process is called crossing placement. Because the crossing

points are fixed, the resulting routing problems are switchboxes rather than channels.

CHAPTER 5: Magellan--Magic's Obstacle-Avoiding Global Router 59

Crossing placement originated in the PI system [Rivest] as a separate step occurring
after global routing. Unlike the PI system, Magic's routing system performs crossing
placement during global routing. As it generates shortest paths for global routing, it
evaluates crossing points along switchbox boundaries to assess the the effects of obstacles.
This allows the global router to select crossings that result in the simplest switchbox-
routing problems. In cases where all of the available crossings are undesirable, the global

router will consider alternate, ‘‘next-shortest’’ paths for the net.

5.2. Global Router Overview

The global router takes as input a cell placement, a collection of channels, and a
net-list specifying desired connections between pins on cell edges. The cell placement is
determined by the designer, and is not modified by the routing tools. The channel struc-
ture is determined automatically by the channel decomposer. The net-list is provided by
the designer, and specifies one or more nets, each of which is a set of terminals to be wired
together. The global router outputs a set of switchbox problems ready to be routed by
Magic's switchbox router. After global routing, crossing points for each net are com-
pletely specified (Figure 5.1).

-- ‘E
cell ¥ B E...
g o _ BT oTTTTRE Ty g
12 Bleen *C 5
cell o Et A ;D Eé¢ *A
A Dt. E :,4{ Dt B
g -
(a) (b)

Figure 5.1. The global router is given a set of cells, a set of channels, and a
net-list, as in (a). It produces a set of switchbox routing problems, as in (b), with
the crossing points for each net completely specified.

CHAPTER 5: Magellan--Magic's Obstacle-Avoiding Global Router 60

The global router processes nets sequentially. It makes a rough estimate of the wire
length of each net and sorts the nets according to the estimates (Section 5.6 discusses the
sorting in more detail). Nets are then processed one-by-one, shortest net first. After the

global routing for one net is completed, the next net is then considered.

0. sort nets;

1. for each net

2. { source points = (first pin);

3. for each additional pin in the net

4. | repeat

5 { find the (next) shortest path to target pin;
6 if (path length > best total cost so far)

break;
7. adjust crossings;
8. path total cost = path length + crossing penalties;
9. if (path total cost < best total cost so far)

save new path;

}

10. source potnts+= new path points;

Figure 5.2: Overview of the global router. Lines 3 and 10 are used for nets with
3 or more pins, and are explained in Section 5.7.

Each net is processed in two steps, involving shortest-path generation and crossing
placement. The process is outlined in Figure 5.2. For most of the discussion that follows,
each net is assumed to have two terminals. Section 5.7 generalizes the algorithm to han-
dle nets with more pins. The global router begins by finding the sequence of switchboxes
through which to route the net in order to minimize wire length. As it creates this shor-
test path, it makes an initial crossing placement by choosing crossing points that will
minimize the net length.

After the shortest path has been found, the global router re-examines the initial

crossing points that were chosen for the path. Each crossing is penalized for nearby obs-

tacles and other undesirable features that will complicate the task of the switchbox router.

CHAPTER 5: Magellan--Magic’s Obstacle-Avoiding Global Router 61

The penalties are computed as distances. A penalty of 10 units means that it is preferable
to choose a path that is up to 10 units longer in order to avoid this crossing. Where
penalties are assessed, the global router will examine other nearby crossings and may
replace the initial crossing choice with another crossing whose penalty is smaller. Section

5.5 describes how the penalties are computed.

After finding the best crossings along the path, Magic adds all the penalties for those
crossings to the wire length for the path and uses this as the total cost of the path. The
desirability of a path thus depends on both its length and the quality of its switchbox
crossings. The shortest path may not be the best one if it has particularly bad crossings.
For this reason, the global router does not stop with the shortest path. Instead it gen-
erates more paths, next-shortest first, in the hope that it will find one whose crossings are
attractive enough to give it a lower total cost. Since paths are examined shortest-first, the
algorithm can terminate when a path is found whose length alone is greater than the best
total cost seen so far. When the global router finds the lowest-cost path for a net, it
marks the path’s crossing points as “in use”’ by that net, and then proceeds to the next
net. The following section gives a more detailed discussion of this approach to crossing

placement.

6.3. Shortest Path

One of the global router’s key components is a multiple-source, single-destination
shortest-path generator. The shortest-path generator is somewhat like Lee-type algo-
rithms [Lee] in that it extends a wavefront outwards from source to destination. However,
there are two significant differences between the Magic router and the standard Lee
approach. First, the Magic router extends the wavefront one switchbox at a time [Clow]
instead of one grid unit at a time. Second, Magic's shortest-path generator is directed:
instead of extending the wavefront uniformly on all sides, it first explores the most direct
route to the destination. These two differences result in a dramatic speed-up over the
conventional Lee approach. This directed search technique, described in [Nilsson], is attri-

buted to Hart, Nilsson, and Raphael.

CHAPTER 5: Magellan--Magic’s Obstacle-Avoiding Global Router 62

B A e B Dt A S L AL A A RRYER R R ST SRR AL o S AR R

. o I T I

+ + + +

: cell A cell b

i d LI * T - T

RERE S AR IR R} ER AR S - $rrrt L A R d

: T : I

+ : -

+ T S B -

cell| : - cell i

cell SEEPY : cell cuid b

bt : T

D T + D e EEEmE— -

- - + + + -

+ L + . + + + +

B TR RR Lkt T AT S R ER UL b S St A DA RE hh st ol il e R IR R RS RS SRR SRRREE S B ATETES hh i it bl Sl Rl R A b e 4 opobotot

I N I

+ + + +

+ + + +

- - - +

L R e e a R e S SN R R e N S L R IR o S L EE L S AT AT
(a) (b)

RS R AR R R fotobop-pet-d-dbobob-toi-4-t + R N R N R e PR e Y S A R EE ot R S AL R}

I cell PO cell R

+ + + Ll +

RPSE R N SRt R EE I I (R 2 PPRL I R A A I

+ SR +

o +

cell + cell ;

+ +

- -

- -

+ + + + + +

P B e R R R e N R e I A + [T SR R R I e e e Rt S

» + * +

+ + + +

- + + +

T S 2 IR ot o R R R R R B S A A s DURTSUINE HR P R A T T St T B e e R e A e el M

(c) (d)

Figure 6.3. The shortest-path algorithm expands a search wavefront from the
source point towards the destination. In each step it extends the most promising
path, which is shown with dark lines. In (a), three partial paths are generated
from the source point. Path 1 appears to be the most promising: it has the smal-
lest sum of distance traveled from the source and estimated distance to the desti-
pation (the dotted line shows the distance used for comparison; in this case the
estimate is optimistic since a subcell blocks the most direct path to the destina-
tion). In (b), path 1 is extended outward one switchbox in all directions. The
dotted line in (b) shows the distance estimate for one of the new paths. The es-
timated costs for all of the new paths are at least as great as for path 2, so path 2
is extended in (c) (the choice between it and path 3 is arbitrary). In step (d) the
most promising path reaches the destination, thereby ending the search.

The shortest-path algorithm constructs a number of partial paths through sequences
of switchboxes from the source point toward the destination point, as shown in Figure 5.3.
It stores these partial paths in a heap, sorted by estimated path length. The estimated
length for a partial path is the actual distance travelled from the source point plus the

Manhattan distance between the path’s endpoint and the destination point. The

CHAPTER 5: Magellan--Magic’s Obstacle-Avoiding Global Router 83

estimated distance is a lower bound on the path length: the actual distance to the destina-
tion may be greater than the estimate if there are cells blocking the most direct path (see
Figure 5.3).

On each iteration the shortest-path algorithm removes the most promising partial
path (i.e. the one with shortest estimated length) from the heap. If the path’s endpoint is
in the destination point's switchbox, then the shortest-path algorithm terminates success-
fully, returning this path. Otherwise, the algorithm extends the path to all neighboring
switchboxes and estimates the length of each new path. The new partial paths are added
back into the heap in sorted order, and the process repeats. If the heap ever becomes
empty then no partial path can be extended, so the search terminates unsuccessfully. Fig-

ure 5.4 summarizes the algorithm.

1. for each source point P
2. HeapAdd(pin, ManhattanDistBetween(P, target));
3. repeat
. 4. { P = HeapRemoveTop();
5. if no more points

failure;
6. if switchbox(target point) contains P

success;
7. for each switchbox C1 adjacent to switchbox(P)
8. if !(loop created)
9. { P1 = closest available crossing into C1;
10. HeapAdd(P1, Dist(P) +

ManhattanDistBetween(P, P1) +
ManhattanDistBetween(P1, target));

}
}

until success or failure;

Figure 5.4: The shortest-path algorithm repeatedly extends the most promising
partial path toward the target point, one switchbox at a time.

CHAPTER 5: Magellan--Magic’s Obstacle-Avoiding Global Router 64

This procedure guarantees that the first path to reach the destination switchbox is
the shortest. Since the estimated path length (the Manhattan distance to the destination)
is a lower bound on the actual path length, this is a consequence of the guided search
techniques of Hart, Nilsson, and Raphael. To see this, recall that the algorithm always
extends the path whose estimated distance (distance travelled plus Manhattan distance to
the destination) is minimum. When a path reaches the destination switchbox, its length is
no longer an estimate: it is exact (there cannot be any cells blocking its path to the desti-
nation). All the other points on the heap have estimates at least as great as this, and
their estimates are lower bounds on the exact lengths. Thus they cannot end up with

shorter path lengths than the one that has already reached the destination switchbox.

Crossing locations are chosen by the shortest-path generator and later modified by
the crossing placer. In the shortest-path stage of global routing, each new crossing is
made as close as possible to the previous crossing in the path, subject to the availability of
crossing points. This approach puts off additional wire length as long as possible and
guarantees that the path length estimates are lower bounds. At a later stage of global
routing the crossing locations will be reconsidered in order to avoid obstacles, eliminate

jogs, or otherwise simplify the switchbox routing problems.

5.4. Crossing Placement

Magic’s global router is unusual in that it does crossing placement during global
routing. Other routers assign crossings after all global routing is complete, either by let-
ting a channel router assign them or by executing a separate crossing-placement step
before channel routing. Magic's mechanism has advantages over each of these other

approaches.

The most common approach to crossing placement is to let a channel router assign
crossings. When a given channel is routed, all of its crossings are fixed by the routing of
the channel. The router is free to place unassigned crossings anywhere along the relevant
channel border, but it must accept any crossings fixed while routing previous channels.

This approach has the advantage of leaving the channel router maximum flexibility to put

CHAPTER 5: Magellan--Magic’s Obstacle-Avoiding Global Router 65

crossings in the most convenient place. Also, in many situations the channels can be
routed in order so that channels have fixed crossings only on their sides and never on their

ends. In Magic, the router must handle switchboxes, with fixed crossings on all four sides.

A disadvantage of choosing crossings during channel routing is that it tends to sim-
plify the problem at hand without considering the solution’s global ramifications. A chan-
nel router may choose a crossing point that is convenient for the channel being routed but
extremely inconvenient for the channel on the other side of the crossing; once the crossing
is fixed, it will have to be used when the adjacent channel is routed. For example, if the
channel router chooses a crossing adjacent to a large obstacle, it may be difficult or impos-

sible to route the signal around the obstacle in the next channel.

The PI system [Rivest] and the VTI Composition Editor [Ng] perform crossing place-
ment as a separate step between global routing and channel routing. They use global
information during their crossing placement steps to adjust the crossings on the paths
established during global routing. The aim is to maximize the number of crossings that
face each other across switchbox edges so that the switchbox router will not need to insert
jogs.

A problem with this approach is that the sequence of switchboxes traversed by each
net is fixed before crossing placement occurs. When actual crossing locations are esta-
blished, it may turn out that many of the crossings are undesirable because of obstacles.
The router will not be able to consider alternative global routing paths to avoid the
undesirable crossings, so it may have to use some of the bad crossings. This may make

switchbox routing difficult or impossible.

Magic's crossing placement scheme avoids the problems with the above approaches.
By assigning crossings during global routing, the characteristics of adjacent switchboxes
can be considered in order to choose a crossing that makes each of the switchbox-routing
problems as simple as possible. Since the global router repeatedly generates paths and
adjusts crossings until the lowest-cost path is found, it can consider alternate paths during

the global routing for a particular net.

CHAPTER 5: Magellan--Magic’s Obstacle-Avoiding Global Router 66

Figure 5.5. If net lengths are estimated using the centers of switchbox boun-
daries, unnecessarily long paths may be chosen. In this example, path B appears
to be the shortest path if distances are measured using boundary centers. Howev-
er, path C, which Magic will use, is actually the shortest route between the two
points.

The Magic approach has other advantages over the above approaches. Since it
knows where nets cross switchbox boundaries, it can make better estimates of path length.
During global routing, the Pl system assumes that nets all cross at the centers of switch-
box boundaries. It can result in large overestimates of path length, as shown in Figure

5.5. [Ng] reports that this technique produces poor global routes.

In addition to avoiding obstacles, another of the goals in crossing placement is to per-
mit straight-across routing in switchboxes by choosing crossings that face each other. In
order to make as many facing crossings as possible, each crossing must be chosen with
knowledge about the next crossing in the net. This information is not available until the
shortest-path step is complete (when extending a path to a new crossing, the next
crossing’s location is not known). Thus, crossing placement cannot be done effectively

during the shortest-path step of global routing.

Therefore, crossing placement is a two-step operation. During shortest-path genera-
tion, initial crossings are chosen to minimize net length. Once the complete path is esta-
blished for a net, the router makes an additional scan over the crossings in the path.
Each crossing is reconsidered in light of nearby obstacles, the locations of the preceding
and following crossings in the net, and other information that is described in Section 5.5.

If the crossing is undesirable, it may be replaced by a nearby crossing that is more

CHAPTER 5: Magellan--Magic's Obstacle-Avoiding Global Router 67

desirable, even if the other crossing results in a longer path length. Thus, crossing place-
ment involves a tradeoff between net length and the difficulty of the resulting switchbox

routing problems.

When reconsidering a crossing, the router first computes a penalty for the initial
crossing, with the penalty expressed in units of distance. This penalty gives the maximum
amount of additional net length it is worth incurring to avoid the problems at the cross-
ing. If the penalty is not zero, then the global router examines crossings on either side of
the initial crossing. Penalties are computed for each of these crossings, which also include
the additional distance that will have to be travelled to use the crossings, and the lowest-
cost crossing is chosen to replace the initial crossing. The penalty for the initial crossing
limits how far to either side the router needs to look to find the best crossing. Figure 5.6

outlines the algorithm.

5.56. The Penalty Function

The global router's penalty function uses a number of heuristics to estimate the
effect of a particular crossing upon the overall routing problem. The penalty function
consists of a collection of rules, each of which assesses a distance penalty for a particular
class of undesirable features at crossing points. Larger penalties are assessed for features
likely to have the greatest impact upon the routability of specific switchboxes. Casting
routing complexity into units of distance allows the global router to make tradeoffs
between different combinations of length and complexity, and also different types of com-

plexity, as it selects crossing points between switchboxes.

Since the crossing placement algorithm uses the penalty at its initial crossing to
define the limits of its search for a lower cost crossing, each crossing penalty may be
regarded as specifying how far to each side of the original crossing to look in an attempt
to find a better crossing. The penalty function for a particular crossing considers a
number of features described in the subsections below: obstacles, jogs, crossing density.

and proximity to the corner of a switchbox.

CHAPTER 5: Magellan--Magic's Obstacle-Avoiding Global Router 68

1. crossing = closest pin;

2. penalty = evaluate(crossing);
3. if (penalty == 0)
done; /* Nothing else could be better */
4. best so far = crossing,
5. current penalty = penalty;
8. for (dist = 1; penalty <= jog_penalty(dist); dist +=1)
7. { if(Save_Best(crossing - dist) == 0) done;
8. if(Save_Best(crossing + dist) == 0) done;

}

9. Save_Best(crossing)

10. { new penalty = evaluate(crossing);
11. if (new_penalty < current penalty)
12. { best so far = crossing;
13. if (new penalty == 0)
return(0); /* Done. Nothing else can be better */
14. current penalty = new penalty;

}

15. return(current penalty);

}

Figure 5.6: The crossing placement algorithm uses the crossing penalty at its in-
itial crossing to define the limits of its search for a lower cost crossing.

Although the general framework is sound, the relative weights of the heuristics, as
well as the rules themselves, are tentative. The specific rules and penalty values are likely

to change with more experience with the system.

5.6.1. Obstacles

Several rules are concerned with avoiding obstacles. Obstacles come in two forms:
double-layer and single-layer. Double-layer obstacles occupy both of the routing layers.
There is no way to route any additional wires over those areas, so the router must avoid
them completely. Single-layer obstacles occupy one of the routing layers; the router can
still run wires over single-layer obstacles if it uses the other routing layer. However, the
router normally expects to be able to use both routing layers for different signals, one hor-

izontal and one vertical, so single-layer obstacles restrict the router’s options: it can only

CHAPTER 5: Magellan--Magic's Obstacle-Avoiding Global Router 69

Figure 5.7. Wherever possible, the routing tools attempt to route across single-
layer obstacles in the narrow direction. In this example, if net 1 were routed
across the length of the obstacle, as in (a), all of nets 2, 3, 4, 5, and 6 would be
blocked. By routing 1 around the obstacle, the other nets can cross the obstacle
in the narrow direction and all the nets can be routed.

route in a single direction over them.

When choosing which way to route over single-layer obstacles the global and switch-
box routers try to route across the narrowest dimension of the obstacle, as shown in Fig-
ure 5.7. This creates the least amount of two-layer blockage. If a signal would have to
cross an obstacle along its long dimension, the routing tools try instead to jog the signal
around the side of the obstacle so that other signals can bridge both the jogged signal and

the obstacle.

The global router has four rules that deal with obstacles, illustrated in Figure 5.8.
The first rule concerns crossing points that are covered by two-layer obstacles. These are

called blocked crossings and cannot be used at all. They receive an infinitely high penalty.

The second rule deals with covered crossings. These are crossings that lie under-
neath single-layer obstacles. The goal is to penalize the crossing a lot if a wire connecting
to that crossing would pass over the long dimension of the obstacle, and to use a smaller
penalty if the wire would pass across the narrow dimension of the obstacle. The rule
assesses a penalty equal to 3 times the size of the obstacle in the direction of the wire.

Among covered crossings, this favors those covered by the narrowest obstacles.

CHAPTER 5: Magellan--Magic's Obstacle-Avoiding Global Router 70

Obstacle on
Routing layer 2

PR Obstacle on
Routing layer 1

Figure 5.8. Crossing A is blocked by obstacles on both routing layers and cannot
be used. All of the other bottom crossings are covered by a single-layer obstacle.
Crossings B and C are hazardous, and crossing D is obstructed.

Even if a crossing is not covered, it may be so close to an obstacle that the switchbox
router will not have enough space to jog the wire around the obstacle. Such crossings are
called hazardous. A crossing is hazardous if a wire running through that crossing is likely
to have to cross a two-layer obstacle or the unfavorable dimension of a single-layer obsta-
cle. How close an obstacle has to be to a crossing to make it hazardous depends on the
dimensions of the obstacle. Larger obstacles force nets to route further to avoid them.
Closer obstacles constrain the router, forcing it to route nets around them sooner. Hazar-
dous crossings are assessed a penalty of 3 times the obstacle size minus the distance to the
obstacle. Among hazardous crossings this favors ones with the narrowest obstacles, and

those whose obstacles are furthest away.

Finally, a crossing point is termed obstructed if a straight run through that point
would cross an obstacle. Such a crossing may cause a two-layer blocked area to be

formed. These crossings are simply assigned a penalty of 5.

5.56.2. Jog Avoidance

Another of the most important goals of crossing placement is to allow straight-across
routing through switchboxes wherever possible. This involves three rules. The first rule

penalizes crossings that are not facing. If a signal passes from one side of a switchbox to

CHAPTER 5: Magellan--Magic’s Obstacle-Avoiding Global Router 71

the opposite side, the global router attempts to use crossings that are directly opposite
each other. The penalty function assesses a fixed penalty of 5 to a crossing if it is on the
opposite side of the switchbox from the previous crossing but is not directly across from

the previous crossing.

Figure 5.9. When choosing a crossing for net 1, the penalty function will penal-
ize crossing point A, since it splits up a pair of facing crossings. Since the crossing
opposite B is already in use by net 2, there is no penalty for using B.

The second jog rule preserves facing pairs of crossings when making turns. If a net
enters a switchbox through one side and turns to leave the switchbox through an adjacent
side rather than the facing side, then the router attempts to use crossings whose opposite
numbers are already in use. See Figure 5.9. If a facing pair of crossings is broken up by a

turning net, a penalty of 3 units is assessed.

The third jog-elimination rule is also applied when a net turns within a switchbox.
When this occurs, the penalty function looks ahead at the mext switchbox. If the next
switchbox has a straight-through run, the router attempts to enter that switchbox at a
crossing-point whose facing crossing is available, so that there won't be any need to jog
within the switchbox. Any c¢rossing whose opposite number is busy is assessed a penalty

of 3 units. See Figure 5.10.

CHAPTER 5: Magellan--Magic's Obstacle-Avoiding Global Router 72

Figure 5.10. When net 1 makes a turn in the top switchbox, the penalty func-
tion will look ahead to the next switchbox. If the net runs straight through that
switchbox, it will attempt to find a crossing whose opposite number is still avail-
able, as is the case with crossing B. Crossing A will be penalized since it would
require a jog in the lower switchbox.

5.5.3. Pin Density and Corners

Magic's switchbox router can produce better routing if the occupied crossings are
spread out over the length of the switchbox, rather than bunched together. For example,
if only every other crossing is used then the router can virtually guarantee good routing.
For this reason, the penalty function contains a rule that penalizes a crossing 5 units if
both adjacent crossings are already in use, and 3 units if only one of the adjacent cross-

ings is in use. This rule is only useful when a switchbox is undercommitted.

Crossing points near the corners of switchboxes also cause problems for Magic’s
switchbox router. For example, switchbox connections are harder to make if vertical wir-
ing space in the last few columns must be used to make top and bottom connections.
Therefore, a crossing that is the nth closest to the end of the switchbox is assessed a
penalty of 5-n units. Only the five crossings at each end of the switchbox are penalized in

this way.

CHAPTER 5: Magellan--Magic's Obstacle-Avoiding Global Router 73

5.8. Net Ordering

The global router processes shorter nets first. Before path generation, it sorts the
nets according to the sum of the height and width of the bounding boxes containing their
terminals. The height plus width of the bounding box containing a net's terminals
approximates the length of the wires needed to connect the terminals. For two-pin nets

(the most typical case), this number represents the Manhattan distance between pins.

...... - J -1 +-t oot
CELL A4 CELL AC’-l

R I SR ST L EEUE S A0 A b 2 S A B S AR EE AR A e i b M A A

(a) (b)

Figure 5.11. Shortest nets should be routed first, as in (a). If met A is routed
first, the result is increased overall wire length (b).

This routing order for nets can have beneficial effects on the resulting wiring.
Congestion created early during global routing may cause later nets to take less direct glo-
bal routing paths; the same sized detour is a smaller percent increase for a longer net than
for a shorter met. Shorter nets are less likely to interfere with each other; since longer
nets cover more area, they are likely to interfere with many other nets. Designers may
group cells during placement to reduce interconnection delays for critical paths; by rout-
ing the shortest nets first, the global router gives preferential treatment to these paths.
The shorter nets will also get first choice of crossing points, while longer nets will use

whichever crossings are available at the time they are routed.

The global router provides indirect support for user-defined net orderings. If

designers want to give priority to arbitrary nets, they are free to pre-wire them in any

CHAPTER 5: Magellan--Magic’s Obstacle-Avoiding Global Router 74

manner and then invoke Magic to make the remaining connections. This pre-wiring can
be done by hand, with special-purpose routing tools, or even using Magic's automatic

routing system.

peedecdeedpeoponpedeedos —— B e o o

R O o

feefeegredeabechodondcbenbes PRSI E:

Figure 5.12. After the first two terminals of net A are connected, those termi-
nals and all of the crossing points are used as starting points to connect to the
third terminal in the net.

5.7. Multi-Pin Nets

Although the shortest-path algorithm described in Figure 5.4 dealt only with two-pin
nets, it extends naturally to handle nets with three or more pins. The resulting algorithm
generates a crude approximation to Steiner trees. If a net has more than two pins, the
global router picks any two of them at random and applies the algorithm described above
to generate a path from the source to the destination. After crossings have been assigned
along this path, the algorithm then processes the third pin. That pin is used as the desti-
nation for the shortest-path algorithm. However, instead of searching from a single
source, the shortest-path algorithm uses the previous pins, plus all of the crossings that
have been assigned to this net, as starting points (see Figure 5.12). Each of these points is
inserted in the heap with a zero cost, and the algorithm proceeds exactly as before: a shor-
test path will be found from one of these points to the new pin, and crossings will be
assigned along that path. If there are still more pins in the net, the algorithm processes

each of them in the same fashion, using all previous pins and crossings as starting points.

CHAPTER 5: Magellan--Magic's Obstacle-Avoiding Global Router 75

5.8. Equivalent Terminals and Feed-Throughs

The shortest-path algorithm also extends naturally to handle electrically-equivalent
terminals. If two or more terminals on a subcell connect to the same node within the sub-
cell, the global router connects to the subcell using whichever of the alternatives is the
most convenient. Further, after making the initial connection to one of the electrically-
equivalent terminals, a net can use the subcell's internal wiring and run out through
another electrically-equivalent terminal to make additional connections for the net, reduc-

ing the amount of new wiring needed to connect the net.

The global router handles electrically-equivalent terminals by separately determining
the lowest-cost path to each of the equivalent terminals. It uses the least-expensive path
to any of these terminals. Each of the equivalent terminals is then added to the list of

starting points used to connect to any additional pins for the net.

With electrically-equivalent terminals it is possible for the current global router to
fail to find a path where one exists. This is because the global router starts off by picking
two terminals at random from a net, but the only path connecting the terminals might be
through electrically-equivalent terminals for that net. This problem can easily be solved
by using a more generalized subcell feed-through mechanism that takes advantage of

electrically-equivalent terminals.

Although not implemented, it takes very little additional work to extend the global
router to use generalized subcell feed-throughs not associated with any particular net.
This is done with a simple modification to step 7 of the algorithm of Figure 5.4. Instead
of looking only at switchboxes adjacent to the current switchbox, the shortest-path algo-
rithm must also consider subcells adjacent to the current switchbox. If the subcell con-
tains an unassigned feedthrough terminal bordering on the current switchbox, then the
shortest-path algorithm propagates through the feed-through terminal to all of its

electrically-equivalent pins. Each of these points is added to the search point heap.

CHAPTER 5: Magellan--Magic’s Obstacle-Avoiding Global Router 76

5.9. Loop Prevention

Channel Boundary

(a) Subcell Subcell Subcell Subcell

_ i) _)

Figure 5.13. Different parts of a single net may need to pass through a switch-
box without being connected within that switchbox (a). If this detail is not con-
sidered, the resulting routing may contain unnecessary closed circuits, as in the
switchbox below the two subcells in (b).

One significant detail missing from the initial implementation of the global router
was allowing different parts of a single net to pass through a switchbox without being con-
nected within that switchbox. The result of this omission was closed loops of routing (Fig-

ure 5.13).

To avoid this problem, the global router treats each point-to-point connection as a
separate subnet. The crossings for a subnet are stored as net/subnet pairs within the
switchboxes it crosses. When a switchbox is routed, each net/submet combination is
regarded as a unique net. This allows the router to avoid generating the closed loops

when distinct branches of the same net must pass through a single switchbox.

5.10. Extensions

A number of extensions to the current global router have not yet been implemented.
Some of them--density checks and feed-throughs--have already been mentioned. This sec-

tion describes the remaining extensions.

One possible extension is to remove order-dependency. Currently the global routing
results depend upon the order in which nets are enumerated. One common technique to
deal with 'this is to first route each net without regard for the other nets, then decide

which nets to move from congested areas. Another possibility is to use the congestion

CHAPTER 5: Magellan--Magic’s Obstacle-Avoiding Global Router 77

information from an initial routing to assign penalties for crossing through congested
areas.

Another possible extension is to allow designers to give priorities to various nets.
This would allow the designer to control the order in which nets are processed by the glo-
bal router. Important nets could be given higher priorities to allow them to choose the

most direct routes to make their connections.

The global router processes each net separately. There is currently no way to bundle
nets together and route them along the same path. Such a ‘‘bus router”’ could result in
higher-quality routing. It could reduce run times by obviating the need to route each of

the nets in the bundle.

Since Magic currently uses a single switchbox router, the global router provides no
support for river routing. If one were added, path generation and crossing placement

would have to be modified to create switchboxes where the river router could be applied.

5.11. Evaluation

Experience with the global router is limited to a single Master’s project designed by a
graduate student at U. C. Berkeley. All of the results presented in this section are based
on this one design. A thorough evaluation of the system will have to wait until there are
more and larger test cases available. In particular, there is not yet enough information to
evaluate the specific penalties attached to each of the rules. Consequently, these results

are preliminary and only indicative of the general performance of the system.

The following results are based on an 8000 transistor custom NMOS chip called
“Tester’. Magic's router was used to make the global interconnections for Tester, con-
sisting of 153 nets and 351 terminals. Hand-placed power and ground routing formed obs-

tacles for the global router to work around.

Crossing placement effectiveness was measured by comparing results with and
without crossing placement. When crossing placement was used the subsequent routing

produced no bad connections; however, with crossing placement disabled the routing

CHAPTER 5: Magellan--Magic's Obstacle-Avoiding Global Router 78

produced 14 bad connections.

Penalty Disabled Bad Connections Paths Considered
None (normal) 0 289
All (no penalties) 14 198
All Obstacle Penalties 13 269
Straight Through Current 2 260

Straight Through Next 1 271
Neighboring Pins 1 269
Avoid Corners 1 276
Paired Orphans 0 272

Figure 5.14. Results of selectively disabling individual components of the cross-
ing penalty function. The diflerence between the number of paths considered
when all penalties are used and the number of paths considered when a penalty is
disabled indicates the additional amount of work the global router does as a result
of that penalty.

While processing Tester, the global router took advantage of its ability to select
slightly longer paths in order to avoid areas with bad crossings. Of the 198 point-to-point
connections, 151 could be made two or more different ways. Of these, 13 (8.6 %) connec-
tions used lowest-cost paths that were better than their initial shortest paths. Crossing
placement was useful even when the global router used the initial shortest path to connect
a net. On the Tester chip the global router moved 42% of crossings from their initial

locations to reduce penalties and simplify switchbox routing.

The effectiveness of the individual components of the crossing penalty function was
measured by selectively disabling them. The results are summarized in Figure 5.14. For
the Tester chip, the obstacle penalties were the most useful of the various crossing penal-
ties. With obstacle penalties disabled, Magic's router generates 13 bad connections while
routing Tester. Of course, the obstacle penalties are only important in designs with
hand-routing; when the hand-routing was removed from Tester, Magic had no trouble

routing it even with no crossing penalties.

The other penalties had much smaller effects on Tester’s routability. In particular,
the second jog rule (Figure 5.9) had no effect on the number of bad connections. Since it
is intended to make ‘‘tight” switchboxes easier to route, this rule should be more

significant on chips with less free area than Tester.

CHAPTER 5: Magellan--Magic’s Obstacle-Avoiding Global Router 79

Path Length Nets Cumulative % Nets Points (Average)
1 75 38 1.00
2 37 57 2.14
3 19 66 3.37
4 20 76 6.50
5 16 84 8.69
6 15 92 9.53
7 8 96 11.38
8 4 98 37.50
9 2 99 49.50

10 2 100 26.50

Figure 5.15. The number of search points examined versus path length. For ex-
ample, 15 nets had a path length of 6, and 92 percent of all nets had path length
6 or less. On average, paths of length 6 expanded 9.53 search points, or (9.53 - 6
=) 3.53 unnecessary search points.

The shortest-path algorithm appears to be working well. It was instrumented to
count the total number of search points expanded during shortest-path searching (each
extension of an existing path into new switchboxes counts as an expansion), and to count
the number of switchboxes in the shortest paths. On average, each initial shortest path
(crossing penalties cause the global router to generate additional paths) crossed 1.94
switchbox boundaries, and on average 5.17 points were expanded per shortest path found
(Figure 5.15). Since each cswitchbox boundary represents one search point expansion and
the search origin represents an additional mandatory search point expansion, this indi-
cates that the shortest path algorithm typically examines only 2 search points not on the

actual shortest path.

5.12. Summary

There are three key aspects to the Magic global router. The first aspect is that it
combines crossing placement with global routing. This allows the global router to choose
more circuitous paths to avoid particularly bad areas of the layout. Initial results indicate
that the router does indeed find situations where it is better to choose a longer route. The
second key aspect is the use of a rule-based penalty function. By evaluating the crossings

with a set of rules, the global router can apply many different criteria in evaluating

CHAPTER 5: Magellan--Magic's Obstacle-Avoiding Global Router 80

crossings. As a result, the Magic crossing placer performs jog elimination as in the PI and
VTI systems, and also applies different rules to keep wires away from obstacles and the
ends of switchboxes. The third key aspect of the system is its use of a directed shortest-

path algorithm, which tends to find the shortest path with very low overhead.

Experience with the penalty function is limited, and the specific numbers in use right
now are fairly arbitrary. More experience is needed to understand the relative importance
of the various penalties, and to extend the rule set with more knowledge about good and
bad crossings. Nonetheless, even with this initial rule set crossing placement during global

routing has been shown to be useful for eflective obstacle-avoiding routing.

81

CHAPTER 6

Detour--Magic’s Obstacle-Avoiding Switchbox Router

8.1. Introduction

Detour is a fast obstacle-avoiding switchbox router developed as part of Magic's
routing system. Its goal is to support the routing system’s obstacle avoidance capabilities
by providing high-quality routing in switchboxes containing obstacles. This obstacle
avoidance capability gives designers the option of prewiring special nets such as clock
lines, Vdd, and GND, either by hand or using special-purpose routers. Detour routes

around this wiring to complete the remaining connections.

Detour provides the same obstacle-avoidance capability as maze routers such as the
Lee and Hightower routers (Chapter 2), which can also avoid obstacles on multiple layers.
The problem with maze routers is that they consider only one net at a time. Since they
completely route a single net before considering the next net, they can not consider
interactions between nets as a channel is routed. Consequently, early nets tend to block
later ones. For this reason these routers are inferior to true channel routers for channel

routing [Soukup).

Detour’s novel aspect is its ability to both avoid obstacles and consider interactions
between nets. Since Detour is based on a channel-routing approach, it is able to consider

the interactions between nets and thereby prevent some nets from blocking others.

This feature enables Detour to produce better routing than maze routers while also
avoiding obstacles. In switchboxes or portions of switchboxes without obstacles there is no
penalty: Detour produces results comparable to traditional channel routers. In areas con-
taining obstacles, the router either jogs around the obstacles, or it switches layers and
river routes across them. Detour thus combines good features from net-at-a-time routers

and traditional channel routers.

CHAPTER 8: Detour--Magic’s Obstacle-Avoiding Switchbox Router 82

Fast response time is important in an interactive design environment such as
Magic’s. Consequently, it is critical that the router run quickly, even at some expense in
routing quality. Although it is a switchbox router and is capable of avoiding obstacles,
Detour still routes large channels such as Deutsch's difficult example in less than 4
seconds, with total wire length and number of tracks within 5 percent of the best conven-

tional channel routers.

Section 6.2 discusses the column sweep approach to channel routing, popularized by
the ““Greedy’’ router and adopted by Detour. Section 6.3 examines the problem of obsta-
cle avoidance and develops a general strategy for dealing with obstacles. Section 6.4
explains Detour’s techniques for routing switchboxes. Section 6.5 describes how hazards
are used to implement both the obstacle-avoiding and switchbox strategies. Section 6.6
presents details of the obstacle avoidance algorithm. Section 8.7 describes a post process-
ing step to increase metal and reduce vias. The chapter concludes with a discussion of the

router’s implementation and performance.

8.2. The Column Sweep Approach

Detour is an extension of Rivest and Fiduccia's “Greedy” channel router [Rivest and
Fiduccia]. The original Greedy router was written in Lisp; Detour was independently
written in C and enhanced to solve two difficult problems the Greedy router does not

address: obstacle-avoidance and switchbox routing.

Like the original Greedy router, Detour uses a rule based, column sweep approach to
channel routing. This section summarizes the column sweep approach and the specific
wiring rules used by the original Greedy router. Subsequent sections describe and
motivate the extensions to the Greedy router to avoid obstacles and to handle switchbox

routing problems.

In the column sweep approach, the router works in a single left-to-right, column-by-
column sweep across the channel (Figure 6.1). During the sweep it completely routes each

column before proceeding to the next column. Routing a column consists of such things as

CHAPTER 6: Detour--Magic’s Obstacle-Avoiding Switchbox Router 83

bringing nets into the channel from top and bottom pins, and jogging nets closer to their
next top or bottom connection. When no more vertical wiring can be placed, the router
extends still-active horizontal tracks into the next column, where the process is repeated.
The router attempts to generate as much useful vertical wiring as possible in each column,

hence the name ‘‘Greedy''.

W = N D
[P—{L|[L—J]LP—'-‘

n

W == 2D BO
£

-

W = D
[,

| b0 ma—

S

(a) (b) (c)

Figure 8.1. Three columns wired using the column sweep approach. In the first
column (a) the router joins the two tracks assigned to met 2, brings net 1 into the
channel, and jogs net 3 closer to its destination. In the second column (b) net 4 is
assigned to the first vacant track, preventing the two tracks for net 1 from con-
necting; however, net 1’s lower track moves closer to its upper track. In the last
column (c) net 1's two tracks connect and net 3 makes its bottom connection.

Two features of the column sweep approach are of particular importance. First,
unlike constraint-graph approaches, conflicting vertical wiring requirements are resolved
by allowing nets to temporarily occupy more than one track at a time. These are called
split nets. The ability to create split nets gives the router much of its flexibility, since it
allows difficult wiring problems to be deferred to later columns where there is (hopefully)
more room. Of course, split nets require extra tracks, so the router devotes considerable

effort to collapsing them at the earliest opportunity.

The second important feature of the column sweep approach is its simple and
straightforward control structure. Vertical wire placement within a column is controlled

by an ordered set of rules. These rules are applied in order of importance to complete

CHAPTER 6: Detour--Magic’s Obstacle-Avoiding Switchbox Router 84

crucial connections and to make subsequent columns easier to route. The router can
easily be extended to achieve special effects such as obstacle avoidance, merely by adding

new rules or changing the existing ones.

To ensure routability the router first takes those actions which if not done would
cause it to fail. For example, it is essential to bring the nets of a column’s top and bot-
tom pins (if any) into the first available tracks that are either vacant or already assigned
to the nets. If this step is not done immediately, vertical wiring might be placed so as to

make it impossible to connect to the pins.

After taking care of essential tasks, the router generates vertical wiring to simplify
the remaining routing problem. For the original Greedy router, this consists of collapsing
split nets and ‘reducing the range” of split nets that could not be collapsed due to

conflicts with other wiring.

A split net may be created by bringing a net into the first available track rather
than into some other track already occupied by the net (net 1 in Figure 6.1). Split nets
can fill up the available tracks, making it impossible to bring in additional nets; therefore,
the router gives high priority to collapsing them. Since conflicting vertical wiring can
make it impossible to collapse all split nets in a particular column, the router collapses

split nets in the pattern that frees up the most empty tracks for use in the next column.

When not all of the split nets can be collapsed, the router simplifies the task of col-
lapsing them in a later column by reducing the range of tracks occupied by these nets. It
jogs each split net's highest occupied track downward and its lowest occupied track
upwards. The remaining problems are easier because collapsing can be done with shorter

vertical jogs which are less likely to conflict with other wiring.

Next, unsplit rising and falling nets are jogged upward or downward toward the
edge of the channel with their next pin. This step anticipates the split nets that might be
created when upcoming pins' nets are brought into the channel. It attempts to eliminate

such split nets, or at least reduce their range.

CHAPTER 6: Detour--Magic's Obstacle-Avoiding Switchbox Router 85

The handling of split nets and rising and falling nets are examples of decisions based
on interactions between nets. Among conflicting alternatives (a jog to raise a rising net
may block a jog to lower a falling net) the router chooses the one that does the best job of

simplifying the remaining overall problem.

8.3. Obstacle Avoidance Strategy

The original Greedy router assumes it can always extend active nets’ tracks into the
next column. It also assumes it can place vertical wiring wherever it is not blocked by
vertical wiring it has previously placed. It runs horizontal wiring on one layer, and verti-

cal wiring on the other layer.

When obstacles are present in the routing area, these assumptions no longer hold.
Areas may be blocked (obstacles on both routing layers) or obstructed (obstacles on one
routing layer), as explained in Section 3.2. Routing across a blocked area is impossible --
the router has to jog around it. As the router sweeps from left to right, it must move all
pets from the blocked tracks before it reaches the blocked area. The router must also

refrain from placing any column wiring in the blocked area.

Obstructions offer two alternatives to the router. One option is to jog around them
as for blocked areas. However, since the obstruction only occupies one layer, the router
can use the other layer to route either the track or column over the obstruction. In order
to cross obstructions, the Detour router relaxes the strict layer-per-direction wiring model
to allow routing in either direction to temporarily switch from the preferred layer to the

other layer if that is necessary for it to bridge an obstruction.

One of the most important issues in obstacle avoidance is deciding whether to bridge
an obstruction with column wiring or track wiring. If a track is allowed to bridge over an
obstacle, then there is no way for columns also to pass over the obstacle since both rout-
ing layers are now blocked: the columns will all have to jog around the end of the obsta-
cle. Similarly, if the obstacle is bridged by a column, the tracks will have to jog around.

As mentioned in Section 3.2, it is generally easier to jog tracks around obstacles that are

CHAPTER 6: Detour--Magic's Obstacle-Avoiding Switchbox Router 86

very wide and around obstacles that are very tall.

The column-sweep approach used in Detour makes it easier to focus on the tracks,
rather than the columns. By the time any given column is reached, it is too late to worry
about where the tracks are, so they must be planned in advance. Before routing, Detour
decides for each obstruction whether to bridge over it with the track or the column. If
the track is to jog out of the way, Detour arranges to vacate the track before the obstacle
is reached. No explicit action is taken to jog vertical wiring, except to avoid placing it in
areas where both routing layers are blocked. If a track has not jogged out of the way
before an obstruction is reached, this means that either it was supposed to bridge the obs-
tacle or it was unable to get out of the way in time; in either case it will bridge over the

obstacle, and there will be no place to put vertical wiring.

8.4. Switchbox Strategy

Detour handles routing problems with pins on all four sides. Furthermore, it allows
nets to have arbitrary numbers of pins on each edge of the routing area. To route switch-
boxes Detour needs two new strategies, one to allow nets to move into the tracks they
need to make end connections, and another to allow nets to split in order to make multi-

ple connections at the right edge of the switchbox.

Detour extends the original Greedy router’s notion of rising and falling nets to
include not just top and bottom connections but also pins at the right edge of the switch-
box. This makes nets gravitate towards the tracks they need for their end connections;
however, the problem is complicated by the possibility of cyclic conflicts. For example,

net 2 can occupy a track needed by net 1, while net 1 occupies a track needed by net 2.

The router resolves these conflicts by implementing a strategy that first tries to move
rising and falling nets into tracks they need to make their own end connections, then tries
to move them out of tracks needed by other nets to make their end connections. Initially
no tracks are marked as needed to make end connections. When an unsplit net has

passed its last pin on the top or bottom of the switchbox, it is ready to get into the track

CHAPTER 86: Detour--Magic's Obstacle-Avoiding Switchbox Router 87

it needs to make its end connection. Its final track is marked as needed by the net to
make an end connection, and any net currently occupying that track attempts to jog out

of the track.

If a net has more than one pin on the right edge of the switchbox, the router splits
the net to connect to these pins. Since split nets occupy tracks that could otherwise be
used to help route the switchbox, splitting to make multiple end connections is only done
when the router gets close to the end of the switchbox. A parameter controls the number
of columns from the end of the switchbox where net splitting begins. A typical value is

four columns.

B = D W W N = D

nsiinl

Figure 8.2. As the router approaches the end of the switchbox, nets with more
than one of their pins on the right edge must be split to make those connections.
If a net has pins only on the right edge (nets 2 and 3), the net must in some
column be assigned to tracks for the first time. To avoid generating dead-end
“stubs’’ of wire, this is done only if at least two tracks can be allocated and joined
with vertical wiring. Note that the upper two tracks for net 2 are assigned earlier
than the lower two tracks; this is because in the column where the upper two
tracks are assigned, nets 1 and 3 prevent either of the lower tracks from connect-
ing to any other track for net 2.

Nets with all of their pins on the right edge edge of the switchbox are another com-
plication. As the router nears the right edge it has to decide when first to assign tracks to
these right edge nets. Since there are no connections to previous pins, a right edge net is
introduced only if it can be assigned to at least two tracks that can be joined by vertical

wiring (Figure 6.2). Assigning a right edge net to a single track would be pointless, since

CHAPTER 6: Detour--Magic's Obstacle-Avoiding Switchbox Router 88

this would create a stub that doesn’t connect to anything.

Going one step further, groups of two or more tracks for a particular right edge net
may be introduced, even if the groups themselves can not immediately be joined. The
task of joining these groups is easier, since the top track of one group need only be con-

nected to the bottom track of a net's higher group.

8.5. Hazards

The strategies for obstacle avoidance and switchbox connections are both imple-
mented using the hazard mechanism presented in Chapter 3. A hazard area is a location
that nets should try to avoid. As the router extends tracks from left to right into a

hazard, it attempts to make vertical jogs to vacate the hazards.

68.5.1. Hazards for Obstacle Avoidance

Hazards are generated to the left of all blocked areas, since it isn't possible to bridge
them in either layer. Long, horizontally-oriented singlé-layer obstacles also generate
hazards. This causes nets to jog vertically around such obstacles rather than route across
them. Single-layer obstacles extending horizontally for only one column’s width do not
generate hazards since the vertical wiring gained in the obstructed area is more than offset

by the vertical wiring wasted in jogging around the obstacle.

Depending on the height of the obstacle, many nets may have to be jogged around it.
Since vertical wiring for one vacating jog may block other nets, mot all nets can make
vacating jogs in the same column. On the other hand, vacating tracks long before they
near obstacles wastes routing area. In recognition of this, the distance at which Detour
begins making vacating jogs around an obstacle depends on how high the obstacle is.
Taller obstacles, which block more tracks, generate wider hazards, while shorter obstacles
generate narrower hazards (Figure 6.3). The width of the hazard is the product of a
parameter, obstacle threshold constant, and the height of the obstacle. This parameter

allows some control over how soon the router attempts to vacate obstructed tracks. A

CHAPTER 8: Detour--Magic's Obstacle-Avoiding Switchbox Router 89

typical value for this parameter is 1.

Figure 6.3. Taller obstacles may obstruct more nets, which require more
columns to vacate a hazard; therefore, taller obstacles generate hazards (A and C)
that are both wider and taller. Hazards (B and D) are also placed above and
below obstacles which are on the vertical wiring layer, to leave space for contacts
needed to bridge the obstacles with vertical runs.

If horizontal wiring were to run immediately adjacent to an obstacle blocking the
preferred vertical routing layer, it would block all of the columns, since there would be no
place to put a contact between the track running in one routing layer and the obstacle
running in the other routing layer. Therefore, hazards extend one track above and below
obstacles on the preferred vertical routing layer. This prevents horizontal wiring from

running too closely to such obstacles (Figure 6.3).

6.5.2. Hazards for End Connections

The switchbox connection strategy is implemented with a slightly different form of
hazards. Here rather than defining areas that are hazards for all nets, Detour defines
areas that are hazards for all nets except the particular net that needs the track to make

an end connection. See Figure 6.4.

CHAPTER 6: Detour--Magic’s Obstacle-Avoiding Switchbox Router 90

1

; | ; 1 | |
3 - A -1
2 = B =~ 2
- -

Figure 8.4. The areas marked with dotted lines are hazards for all nets except
the specific nets making connections at the end of the switchbox. For example,
area A is a hazard for all nets except for net 1. Tracks with end connections be-
come hazardous for other nets at the column of the last top or bottom connection
for the net making the end connection; thus, area B extends the length of the
switchbox, while areas A and C do not.

8.8. Revised Vertical Wiring Rules

This section presents the complete set of rules the Detour router uses to control the
placement of contacts and vertical jogs. All of the rules are modified to avoid placing
vertical wiring in areas that are blocked, either by a two-layer obstacle or by a track

bridging an obstacle. The rules are:

a. Place Track Contacts: As the first step in wiring a column, place a contact in each
unobstructed utilized track, if either the next column or the previous column has an
obstruction in the preferred horizontal layer. The contact serves one of three pur-
poses: (a) it switches the net from the preferred horizontal layer (metal) to the alter-
nate layer (poly) when the net enters an obstructed region; (b} it switches the net
from the alternate layer back to the preferred horizontal layer when the net leaves
an obstructed region; or (c) it switches the track to the preferred vertical layer in

preparation for jogging the net to another track.

b. Make Minimal Top and Bottom Connections: A minimal top or bottom connection
brings a net from a top or bottom pin into the nearest vacant track. Do not bring a

net into a track that is blocked in the next column. This step may bring a net into a

CHAPTER 6: Detour--Magic's Obstacle-Avoiding Switchbox Router 91

hazard. If this occurs, step (c) will attempt to jog the net out of the hazard. Report

failure if some net could not be brought into a track.

¢. Vacate Tracks from Hazards: Find horizontal wiring that is in a hazard, and try to
jog it to the nearest empty track that is outside the hazard. Do not vacate to
another track within a hazard unless the source track is blocked (ie. runs into a
multi-layer obstacle) and the destination track is not blocked. Give preference to

vacating jogs that move rising and falling nets closer to their next pin.

d. Collapse Split Nets: Connect nets that occupy multiple tracks. Some combinations
of connections may be mutually-exclusive; choose a pattern that creates the most

empty tracks for use in the next column.

e. Reduce the Range of Tracks Assigned to Split Nets: If a split net can not be col-
lapsed, try to jog its highest track downward and its lowest track upward, to make it
easier to collapse in some subsequent column. Make no jogs shorter than
minimum-jog-length (a parameter of the router). Do not move a net into a hazard,;

however, it is okay to move a net from one hazard to another.

f. Raise Rising Nets and Lower Falling Nets: Move unsplit rising and falling nets
toward the edge containing their next pin. Enumerate nets in order of decreasing
distance from their track to their ‘“target edge”. Make no jogs shorter than
minimum-jog-length. Do not move a net into a hazard; however, it is okay to move

a net from one hazard to another.

g. Split Nets to Make Multiple End Connections: If within channel end constant (a
parameter of the router) columns of the end of the switchbox, split nets onto multi-
ple tracks to make multiple connections at the end of the switchbox. This is the
opposite of the collapsing step (d) above. The best pattern is the one that splits the
most tracks. If a net has pins only on the end of the switchbox, assign the net to

vacant tracks, provided that at least two tracks can be assigned and connected.

h. Extend Active Tracks to the Next Column: Report an error if some track is blocked

in the next column.

CHAPTER 6: Detour--Magic's Obstacle-Avoiding Switchbox Router 92

8.7. Metal Maximization

After routing, Detour concludes with a metal maximization step. (Figure 6.5). Since
the router already places metal horizontally wherever possible, this step replaces vertical
wiring in polysilicon with vertical wiring in metal, subject to constraints imposed by wire

crossings and obstacles in the switchbox.

Metal maximization improves routing quality by reducing the resistance of wires; for
example, in one nMOS process the typical resistance for metal is 0.03 ohms/square, while
the typical resistance for polysilicon is 15-100 ohms/square [Mead and Conway]. Metal
also has lower capacitance; a typical capacitance value for metal is 0.3 x 10 pf/micronz,

while a typical capacitance value for poly is 0.4 x 104 pf/micronz. Finally, metal maximi-

zation may often reduce the number of contacts, improving the circuit reliability.

/ poly siliiy metal

(a) (b)
X
— X
X
: K L X
(c) (d) (e) (f)

Figure 6.5. Layout before (a, c, and e) and after (b, d, and f) metal maximiza-
tion. This step may add, delete or move vias.

Metal maximization is controlled by a user-supplied parameter specifying the cost of
a via, VC. The Detour router will add a via to the routing (Figure 6.5f) if adding the via
results in the conversion of at least VO wire lengths from polysilicon to metal. Specifying
a large value for this parameter results in the insertion of no new vias; however, vias may
still be moved (Figure 8.5d) or deleted (Figure 6.5b). Specifying O for this parameter

allows the metal maximization step to convert polysilicon to metal wherever possible; since

CHAPTER 6: Detour--Magic's Obstacle-Avoiding Switchbox Router 93

the resistance of polysilicon is typically at least 500 times greater than for metal, small

values for VC are reasonable.

Metal maximization only marginally improves the amount of metal in dense routing.
Since almost all tracks are occupied in all places, most vertical polysilicon wires cross hor-
izontal metal tracks; thus, the vertical polysilicon can not be converted to metal. In less

dense areas the conversion of long vertical polysilicon runs to metal can be quite dramatic.

6.8. Rotation

Detour exhibits a directional bias. In some cases the router will fail on a particular
routing problem but succeed when the same problem is mirrored or rotated. This occurs
because of the column-by-column nature of the routing algorithm. A different orientation
causes the router to process nets in a different order. The routing algorithm takes into
account the direction and distance to the next pin in each net; these also change when a

switchbox is processed in a different direction.

Magic’s routing system takes this directional bias into account when using the
Detour router. If a switchbox can not be routed in the default orientation, the routing
system reroutes it in each of its other orientations. It quits when it finds a successful
routing; otherwise, it uses the routing with the lowest number of connection errors. In

practice rerouting in different orientations has been a useful recourse.

8.9. Parameters

The router accepts a number of numeric parameters. These parameters--the
minimum jog length, the steady net constant, the channel end distance, and the obstacle
constant--have major effects upon the resulting routing. Parameter values represent vari-
ous kinds of tradeoffs. Higher values for minimum jog length and steady net constant
may produce routing with fewer unnecessary doglegs; however, higher values may prohibit
the router from making some necessary jogs, and the router fails. Higher values for the

end constant may make the router overly cautious about making end connections in

CHAPTER 6: Detour--Magic’s Obstacle-Avoiding Switchbox Router 94

switchboxes, prematurely tying-up tracks for end connections when they are still needed
to make top and bottom connections. Lower values may not allow enough columns before
the end of the switchbox to make all of the end connections. Higher values for the obsta-
cle constant make the router overly-cautious about skirting obstacles; lower values may

cause the router to be unable to avoid some obstacles.

Magic’s default routing parameter values were selected to produce better completion
rates, at some expense in terms of extra vias or wire length. In practice Detour does well
with the default parameters; however, in some cases different parameter values, ones that
might be expected to reduce routability, do have a beneficial effect. For example, with the
default parameters Detour routes Deutsch’s difficult example in 21 tracks; with a higher

value for the steady net constant, it requires only 20 tracks.

Like other routers based on Rivest's Greedy router, Detour’s parameter selection is
very primitive. Currently, designers may specify different parameter values before the
routing process begins, but those parameters are applied to all of the routing. If the
router fails, the router does not modify the parameters and retry, although in most cases
the useful parameter space is quite small. It might be useful to be able to interactively
modify parameters and reroute selected areas; this would allow rerouting to improve rout-
ing quality as well as completion rate. Parameter selection need not stop at the granular-
ity of the switchbox; parameters could be adjusted during the routing of a single switch-

box in response to local conditions within various spans of columns.

8.10. Results

Figures 8.6 and 8.7 illustrate both the power of the greedy approach and the power
of obstacle-avoidance. These figures show the result of applying Detour to Burstein’s
difficult switchbox [Burstein and Pelavin]. The hierarchical router was unable to com-
pletely route this switchbox; Burstein and Pelavin even conjectured that the problem was
unroutable. The Detour router by itself was also unable to completely route the switch-
box; however, by examing the incomplete solution, I found a solution by hand. In order to

give the router a ‘‘hint”, I routed one critical net by hand, and then Detour was again

CHAPTER 6: Detour--Magic’s Obstacle-Avoiding Switchbox Router

15 241276958 13151415 21201 219118
T 1
iy Y= 15
- (o =13
14 & 19
13 24
11 o8 —g) -
244 o 20
1 Z_ 4! & 18
9 3 -6 o o—=o |20
2 O B 11
17 - o——8- -5 & 21
12— e 8 -8 G—118
16 € T-a ® - 23
4 4! £ B)
10 @8 tli 22
3 & K 18
I i1 1 1
2417164 7 6 5 9 8 9121524151023 1 2218

Figure 6.6. Partial routing of Burstein's difficult switchbox, routed by Detour.
One pin for net 20 could not be connected.

15 2412769 5 813151415 21201 219118
— -
~ 15
- ? £ @13
14 a— 19
13 ® 24
11 < —a |
2419 N o- ~20
1 éjﬂ ?E'IS
9 0 o9 oo 20
2 & T 11
17) B8 9 21
12 E' 58 7 0 G—1-18
16 -8 G—r—= E 23
4 2
10 hi T 22
3 — T?—-ls
T T 7 7 1 1
2417164 7 6 5 9 8 9121524151023 1 2218

Figure 8.7. Complete routing of Burstein’s difficult switchbox, routed by De-

tour. Net 2 was pre-wired by hand.

95

invoked. This time, it was able to complete the switchbox, while working around the

hand routing (Figure 6.7).

CHAPTER 6: Detour--Magic’s Obstacle-Avoiding Switchbox Router 96

In addition to illustrating the usefulness of partial hand-routing, this example also
demonstrates the effectiveness of Detour’s obstacle-avoidance techniques. Especially in
such a difficult routing problem, one might expect obstacles to make the switchbox more
difficult to route. Instead, Detour successfully routed the remaining nets around the obs-

tacles, producing a fully-routed switchbox.

30

%)
Test
Cases 20

10 4
] L
0 T 1 T
10 1.1 12 13 14 15 16 1.7
Tracks / Density

Tracks Test Cases Percent Cumulative Percent
Optimal 86 50.89 50.89
Optimal + 1 44 26.04 76.92
Optimal + 2 18 10.85 87.57
Optimal + 3 7 4.14 91.72
Optimal + 4 9 1.18 92.90
Optimal + 8 1 0.59 93.49
Optimal + 9 1 0.59 94.08
Could not Route 10 5.92 100.00

Figure 6.8. Detour routed most of the 169 YACR test cases using an optimal or
near-optimal number of tracks. The bar graph displays the number of tracks used
as a fraction of the optimal number of tracks to route each test case, showing
that most of the test cases were within 10 to 20 percent of optimal.

CHAPTER 6: Detour--Magic's Obstacle-Avoiding Switchbox Router 97
Test Case Tracks Test Case Tracks |
academic/110 12 industrial/quali9.dat 13
academic/1b 2 stdcell /fex/ex2 15
academic/3c 18 stdcell/ex/ex3 11
academic/3cr 18 stdcell/ex1/route.in.1 12
academic/4 5 stdcell/ex1/route.in.12 22
academic/4r 5 stdcell/ex1/route.in.13 12
academic/4ra 5 stdcell/ex1/route.in.15 2
academic/5 5 stdcell/ex1/route.in.2 15
academic/chris2 50 stdcell/ex1/route.in.3 17
academic/chris3 64 stdcell/ex1/route.in.5 24
academic/error 1 stdcell/ex1/route.in.8 20
academic /ex2 15 stdcell/ex1/route.in.9 26
academic/ex3 11 stdcell/ex2/route.in.1 4
academic/nasty5.5 7 stdcell/ex2/route.in.11 10
academic /nasty7.7 9 stdcell/ex2/route.in.2 8
industrial/channel10.dat 26 stdcell/ex2/route.in.3 8
industrial /channelll.dat 22 stdcell/ex2/route.in.6 5
industrial/channel12.dat 22 stdcell/ex2/route.in.7 12
industrial/channel13.dat 19 stdcell/ex2/route.in.8 8
industrial/channel14.dat 23 stdcell/ex2/route.in.9 14
industrial/channel15.dat 21 stdcell/ex3/3c 18
industrial/channel16.dat 22 stdcell/ex4/route.in.1 8
industrial /channel17.dat 18 stdcell/ex4/route.in.3 17
industrial/channel18.dat 19 stdcell/ex4/route.in.4 10
industrial/channel19.dat 20 stdcell/ex5/route.in.1 10
industrial /channel20.dat 20 stdcell/ex5/route.in.11 32
industrial/channel21.dat 16 stdcell/ex5/route.in.18 13
industrial/channel22.dat 18 stdcell /ex5/route.in.19 12
industrial/channei23.dat 17 stdcell/ex5/route.in.2 13
industrial/channel24.dat 19 stdcell/ex5/route.in.3 16
industrial/channel5.dat 18 stdcell/ex5/route.in.5 17
industrial/channel6.dat 15 stdcell/ex5/route.in.9 27
industrial/channel7.dat 18 stdcell/ex8/route.in.1 2
industrial/channel8.dat 20 stdcell/ex8/route.in.10 7
industrial/channel9.dat 25 stdcell/ex8/route.in.11 7
industrial/ex2 15 stdcell/ex8/route.in.12 15
industrial/ex3 11 stdcell/ex8/route.in.3 10
industrial /qualil0.dat 11 stdcell/ex6/route.in.4 9
industrial/qualill.dat 11 stdcell/ex8/route.in.5 9
industrial/quali5.dat 10 stdcell/ex8/route.in.7 9
industrial /quali6.dat 9 stdcell/ex8/route.in.8 8
industrial/quali7.dat 9 stdcell/ex8/route.in.9 6
industrial/quali8.dat 11 switchbox /126 5

Figure 6.9. Detour routed these 86 of the 169 YACR test cases using the op-
timal number of tracks (density).

CHAPTER 6: Detour--Magic’s Obstacle-Avoiding Switchbox Router 98
Test Case Density | Tracks Test Case Density | Tracks

academic/0 6 7 academic/r4 15 17
academic/1 3 * academic/rb 18 19
academic/11r 12 13 academic/yuck 2 8
academic/2 2 3 industrial/ex1 16 17
academic/2.a 2 * industrial /ex4 19 21
academic/3a 15 18 stdcell/ex/ex1 16 17
academic/3b 17 20 stdcell/ex/ex4 19 21
academic/bad 4 6 stdcell/ex1/route.in.10 21 22
academic/burstein 4 6 stdcell/ex1/route.in.11 21 22
academic/cl 5 6 stdcell/ex1/route.in.14 13 14
academic/c2 4 * stdcell/ex1/route.in.4 23 24
academic/c3 4 * stdcell/ex1/route.in.6 38 39
academic/chrisl 49 50 stdcell/ex1/route.in.7 25 26
academic/cycle.14 6 * stdcell/ex2/route.in.10 5 6
academic/cycle.19 2 * stdcell/ex2/route.in.4 7 8
academic/cycle.20 8 * stdcell /ex2/route.in.5 11 12
academic/dd 19 20 stdcell/ex3/3a 15 18
academic/dd.rel 19 21 stdcell/ex3/3b 17 21
academic/dd2 32 33 stdcell/ex3/ddr 19 21
academic/dd2.fix 39 40 stdcell/ex4/route.in.2 17 18
academic/dd2.rel 32 34 stdcell/ex5/route.in.10 27 29
academic/dd3.fix 32 34 stdcell/ex5/route.in.12 32 33
academic/dd4.fix 35 36 stdcell/ex5/route.in.13 34 35
academic/dda 19 21 stdcell/ex5/route.in.14 29 30
academic/ddr 19 20 stdcell/ex5/route.in.15 25 26
academic /ex1 16 17 stdcell/ex5/route.in.16 25 26
academic/ex4 19 21 stdcell /ex5/route.in.17 20 21
academic/mitl 4 5 stdcell/ex5/route.in.4 16 17
academic/mit2 3 6 stdcell/ex5/route.in.8 24 25
academic/mit3 4 7 stdcell/ex5/route.in.7 25 26
academic/mit4 6 9 stdcell/ex5/route.in.8 22 23
academic/nl 20 21 stdcell/ex8/route.in.13 8 9
academic/n2 20 22 stdcell/ex8/route.in.2 10 11
academic/n3 16 17 stdcell/ex8/route.in.6 9 10
academic/n4 15 17 switchbox/t104 7 8
academic/nasty7.5 7 8 switchbox/t109 7 9
academic/nasty9.5 6 10 switchbox/t110 10 12
academic/nasty9.8 6 8 switchbox/t117 14 23
academic/nasty9.7 7 10 switchbox/t119 15 *
academic/rl 20 21 switchbox/t121 17 *
academic/r2 20 22 switchbox/t123 17 *
academic/r3 16 17

Figure 6.10. Detour routed 83 of the 169 YACR test cases using a suboptimal
number of tracks. An asterisk indicates that Detour was unable to route the test

case.

CHAPTER 6: Detour--Magic's Obstacle-Avoiding Switchbox Router 99

Detour produces good routing in channels without obstacles. I applied Detour to 169
channels and switchboxes known as the YACR test cases, which were obtained from
Alberto Sangiovanni-Vincentelli. The optimal number of tracks for the test cases ranged
from 1 to 64 tracks. As summarized in Figure 6.8, Detour routed most of these test cases
using an optimal or near-optimal number of tracks. Figure 6.9 lists those test cases that
were routed optimally, while Figure 6.10 lists the results for those that could not be

routed optimally.

IREDEE ARRE ABED f gepes
i * X ¥
'-_—1‘1* i ;H _En‘ " . — " L]
‘ _W,——'ur g".x =
i ‘ﬂ Ve ! L
il) i “q“ N‘ﬁ | =
Tz = Ei: = ___? ﬂ!
e ;:ﬁn E!! nihﬂﬁ
3 (22225258 ,’f H;F 22
R AT I i
FRMRARARRZIIAREREEE RE0E QedadRARIEE fEpREgERE
SR e
= LS === P —ii F O NRRRE—
T e e S]
4 =1 X 'ﬁn 'Q i
[HITE S E = E]
g 3y = 3]
o L LT i R
EEE 8 f B
ZiSL 35 5
=5 S = [3 =
15 3z e jl
el e == =l
ety F] St
Lt i il 1 |
%! i ey 755 % JI11T
T 1 IR LT v

Figure 8.11. Deutsch’s difficult example, as routed by Detour.

A more detailed comparison shows that Detour produces results similar to those pro-

duced by other good channel routers such as Yoshimura and Kuh's Algorithm #2

CHAPTER 6: Detour--Magic's Obstacle-Avoiding Switchbox Router 100

[Yoshimura and Kuh], YACR [Sangiovanni-Vincentelli}, and Burstein and Pelavin’s
hierarchical router. Figure 6.11 shows the complete routing for the longer of the two ver-
sions of Deutsch’s difficult example. The table in Figure 6.12 compares the Detour router
to these other routers for this problem. All times are on a DEC VAX 11/780, except the

Hierarchical router, which was timed on an IBM 370/3033.

Router Tracks Vias Length Time (sec)
Detour 20 412 5302 3.9
Y&K 20 308 5075 2.1
YACR 19 285 5060 6.1
B&P 19 336 5023 24

Figure 6.12. Router Comparison for Deutsch’s Difficult Example

Figure 6.12 shows that Detour is competitive with other channel routers on Deutsch's
difficult example. Detour is within approximately 5 percent of the other routers in total
wire length and number of tracks; although it generates a significantly larger number of

vias than the other routers, the effect of these vias upon chip yield is small.

Test Case Optimal Detour YACR Y &K
academic/rl 20 21 21 21
academic/r2 20 22 20 20
academic/r3 16 17 16 17
academic/r4 15 17 17 20
academic/3a 15 18 15 15
academic/3b 17 20 17 17
academic/3c 18 18 18 18

Figure 6.13. In comparisons on other test cases, Detour performed within one to

three tracks of the best routers.

The numbers for the other routers are from

[Sangiovanni-Vincentelli 83b].

The results are similar on a wider range of test cases. Figure 8.13 compares Detour
to YACR and Yoshimura & Kuh's router. Over all 7 of the test cases, Detour averaged
1.28 tracks per channel more than YACR, and 0.71 tracks per channel more than

Yoshimura and Kuh.

CHAPTER 6: Detour--Magic's Obstacle-Avoiding Switchbox Router , 101

Maximization Vias Metal Length Percent Metal
None 471 2566 48.4
Unrestricted 467 2996 56.5
No new vias 412 2889 54.5

Figure 6.14. Metal Maximization for Deutsch’s Difficult Example

Postprocessing to increase metal and remove vias significantly improves the quality
of the routing (see Figure 6.14). The “unrestricted’ line is when the router was allowed
to insert additional contacts; for the “‘no new vias' data, the router was not permitted to
introduce new vias. As an example of the range of problems handled by Detour, it can

river-route the switchbox in Figure 6.15, which is completely covered with metal.

1 3 4

Figure 6.15. Detour river-routes in areas completely blocked in a single layer.

The router has proved to be sensitive to modifications to the routing rules, particu-
larly for routing examples that are difficult to begin with. For example, after “improv-
ing” Rivest and Fiduccia's rules to take advantage of more vertical wiring (be more
greedy), Detour would no longer route Deutsch’s difficult example from left to right in 20
tracks-—-it took 21. After discovering this it could then route the same problem from right

to left using only 20 tracks, whereas before it could not.

102

CHAPTER 7

Results

7.1. Introduction

Chapters 4-8 include measurements of the performance of the three major router
components; this chapter supplements those results with measurements of the routing sys-
tem as a whole. These measurements show that obstacle-avoiding routing is both advan-
tageous and practical: hand-routing improves selected nets, while the hand-routed obsta-

cles have little effect upon the routing quality for the design as a whole.

This chapter presents a number of measurements of Magic's router. It begins by
comparing the lengths of carefully hand-routed nets with the lengths of the same nets
when routed automatically, to show that the automatic router does a reasonable job of
minimizing net lengths. These hand-routed nets show improved electrical characteristics
resulting from reduced wire length, increased routing on the preferred routing layer, and
fewer vias. The measurements also demonstrate the effectiveness of obstacle-avoiding
routing, by showing that rather than hurting the quality of the subsequent automatic
routing, partial hand-routing has a small and generally positive effect on the overall rout-
ing quality. Next, the results show that the router provides fast turnaround, as the time
needed to hand-route a selected net and then reroute a chip is well under an hour. Small
routing examples illustrate some of the fundamental obstacle-avoiding features. The

chapter concludes with a discussion of code size and some areas for further work.

7.2. Hand-Routing Measurements

The first test of Magic's obstacle-avoiding routing techniques is a comparison of
automatically-routed nets to hand-routed nets. This test shows that, while nets can be

hand-routed with only small improvements in wire length compared to automatic routing,

CHAPTER 7: Results 103

PN Tomg t @

Pocuth

fondua

————————— T

1 18 tror

Pews:
lod fostent tester

ador s scounter coded
code!
oous-gy sret)

wectorcnter

D PR AL AL P P 7 07 svasmnd

,A [m-. NESCEOCISeRed

T_ om0 — |
i cled v e I |
A PR P -
- —— S
¥ sanse
concarator
T

PFnor th

Figure 7.1. Comparisons of hand-routing versus automatic routing used the
Tester chip, shown here before automatic routing. In addition to the hand-
routing, Vdd and GND routing also formed obstacles for the router to work
around. The completely-routed chip is shown in Figure 7.2.

significant improvements in electrical characteristics are typical.

The test corresponds to what a designer might do with a critical net: carefully route
it by hand to reduce net length, resistance, and capacitance. The procedure was to route
a chip using Magic's router, measure the length and electrical characteristics of one of the

routed nets, delete all of the automatic routing, reroute the selected net by hand, and

CHAPTER 7: Results 104

Tester

PFoouth

Foncima
i
|
=
. owuber 186 tror
trena -
L
Pfaest
P st fsstest.tester
adior esscounter ce -
¥
code”
woderey ste-” 1 g
vectoronte”
BUDES L DRE DEBUDE DR 0" i
BOSSOT
- decoder clxg- v der
oo |
clkg v oe
saner
onpa-stor

PFnorth

Figure 7.2. The Tester chip following automatic routing. Dense routing areas
are above the decoder, to the right of the moderegister, and between the fsmdma
and the large metal GND line.

then reroute the rest of the nets automatically. The hand-routed net and the power and

ground routing formed obstacles for the automatic router to route around.

This test used the Tester chip previously described in Chapter 5 and shown in Fig-
ures 7.1 and 7.2. Fifteen of that chip’s nets were tested out of its 198 total nets. To take
net length into account (it should be easier to improve upon longer nets than shorter

nets), | measured the 5 longest nets, the 5 nets with median length, and the 5 shortest

CHAPTER 7: Results 105

nets. The following sections describe the results of the test: net length improvement,

delay improvement, and effects on automatic routing.

7.2.1. Net Length

The first measurement compares the length, percent metal, and number of vias in
the hand-routing and the automatic routing for each of the 15 test nets. The table in Fig-
ure 7.3 summarizes the results, while the bar graph shows the ratio of the hand-routed

length to the automatically-routed length for each net.

These results indicate that, while the router does a good job of finding shortest
paths, designers can improve critical nets by hand-routing them. Twelve of the 15 nets
could be hand-routed using less wire than was used by the automatic router; for these nets
the hand-routing averaged 7 percent shorter than the corresponding automatic routing.
In every case hand-routing improved the percentage of metal used to make the connec-
tion; the improvement ranged from 0.7% to 55.1%, with an average of 16%. The number
of vias remained the same or was reduced in the hand-routing for each of the selected

pets; in some cases the reduction was quite dramatic, ranging up to 100 percent.

The major reason for the length improvement of the hand-routed nets is that they
are routed in advance of the automatic routing, so they do not have to route around the
automatically-routed nets; in effect they have priority over the automatic routing. They
can be assigned to the preferred routing layer, and avoid many of the vias that would oth-

erwise be needed to route them across other wiring.

Three of the 15 nets could only be hand-routed using more wire than used by the
automatic router. This occurred because the natural hand-routing paths for these nets
cross highly-congested areas. Rather than route around the obstacles, the global router
tried to reduce the lengths for other nets by placing them on top of the hand-routing.
Because of this, the Detour router was forced to create two-level blocked areas completely
blocking some of the nets. To avoid these problems, I hand-routed the nets around the

congested areas, resulting in the increased net length.

CHAPTER 7: Results 108

-

Median

Short

:

0 10 2 30 40 50 60 70 8 90 100 110 120
I 1 l 1 1 b ! it l 1 l 1 I 1 l 1] 1 I 1 l 1 ! ! l J

Hand-Routed / Auto-Routed Length

Length | % Metal Vias
Hand-Routed Net Hand [Auto [[Hand | Auto ||Hand | Auto
addresscounter_0/al0 4470 | 5249 || 85.8 [72.4 || 15 67
moderegister_0/regfor16bit_0[2]/$9 4249 | 6070 || 94.1 | 75.6 || 11 55
PFnorth_0/$41 4772 | 5249 || 92.1 [724 11 67
PFeast_0/PADDATAINONLY_161}/$1 4270 | 4736 | 94.5 [784 | 11 | 45
vectorcnter_0/$6 4145 | 4391 || 95.0 | 85.1 9 37
fsmdma_0/mack 1122 {1123 }} 89.6 | 86.0 3 7
decoder_0/output_3 1381 | 1115 || 97.5 | 87.1 4 8
clkdivider_1/$10 611 | 1114 | 90.0 | 48.4 6 18
PFnorth_0/$11 1103 | 1112 || 98.6 | 97.9 2 2
PFwest_0/PADADDRESSNOCOMP, 12{1}/$1 || 1049 | 1059 ||100 90.7 0 9
fsmdma_0/InSt3* 124 115 || 96.8 | 41.7 1 5
comparator_0/$2 97 | 105 || 87.0 | 52.4 4 4
rammap_0/$33 97 | 104 | 67.0 | 59.6 4 4
comparator_0/$4 98 97 || 66.3 | 58.7 4 4
moderegister_0/regfor16bit_0{0]$2 63 68 || 92.1 | 82.4 1 1

Figure 7.3. In most cases, hand-routing improved the selected net's length, and
in every case it improved the percentage of metal. The bar graph shows hand-
routed net lengths as a percentage of the corresponding automatic routing. Nets
in the bar graph and table are in three groups: Long refers to the 5 longest nets,
Median refers to the 5 nets of median length, and Short refers to the 5 shortest
nets on the test chip.

CHAPTER 7: Results 107

This problem is with the implementation rather than the general approach to
obstacle-avoiding routing. The global router’s penalty for selecting crossings already
covered by hand-routing is too low, and should be increased. The switchbox router
created blocked areas because of conflicts between wiring rules for avoiding hand-routing
and rules for making switchbox connections; the rules can be modified to avoid the prob-
lem. I chose to hand-route around the problem simply to save the time necessary to make

the changes and then redo the measurements.

7.2.2. Electrical Characteristics

From the viewpoint of critical-path improvement, a better measure of the effect of
hand-routing is a comparison of the electrical characteristics of hand-routing with the
electrical characteristics of automatic routing. Using the same nets as in Figure 7.3, I
compared the resistance and capacitance of the hand-routing and automatic routing.
These are summarized in Figure 7.4, which shows that hand-routing improves the RC pro-
duct for the nets by a substantial margin, from 25 to 75 percent compared to the
corresponding automatic routing. Figure 7.4a shows the routing’s electrical characteristics
assuming the electrical parameters for an NMOS technology, while Figure 7.4b shows the

same figures for the MOSIS scalable CMOS technology.

For the NMOS technology, hand-routing improved the electrical characteristics of
each of the nets tested. The improvements ranged up to 75 percent for the longest nets,
and generally less for shorter nets. Much of the RC reduction was due to better layer
selection, since the selected nets could be hand-routed largely in metal and with little
polysilicon.

For the CMOS technology the improvements are less dramatic because the two rout-
ing layers (metall and metal2) have nearly identical routing characteristics. In this case
the results resemble the net length reduction results, with the same 3 hand-routed nets
worse than the automatic routing, but with a general improvement overall. The degree of
improvement is greater than just the net length improvement, since the designer hand-

routing the nets can still minimize vias.

CHAPTER 7: Results

Long

Median

Short

10
|

20 30
i l i I

1

40 50 60

[

i

| 4

1

1

[

-

Hand-Routed / Auto-Routed RC

70 80 90 100

108

Resistance Capacitance RC x 10°1%

Hand-Routed Net Hand Auto Hand Auto Hand Auto
addresscounter_0/al0 5843 15580 || 1.60 1.92 9367 20875
moderegister_0/reg-

for16bit_0[2]/$9 20677 13497 1.53 191 4106 25743
PFnorth_0/$41 3656 12537 1.72 2.07 6277 25925
PFeast_0/PADDATA-

INONLY. 16[1]/81 2557 | 10844 | 1.54 1.72 3944 | 18671
vectorcnter_0/$6 2214 7539 | 1.50 1.60 3311 12078
fsmdma_0/mack 1097 1877 || 0.40 0.41 442 682
decoder_0/output_3 548 1649 § 0.50 0.41 274 669
clkdivider_1/$10 883 5577 0.23 0.40 198 2237
PFnorth_0/$11 263 323 0.40 0.40 105 130
PFwest_0/PADADDRESS-

NOTOMP. 12[1]/81 10| 1382 | 0.38 0.39 3 537
fsmdma_0/InSt3* 101 852 0.05 0.05 4 38
comparator_0/$2 520 655 || 0.39 0.41 20 26
rammap_0/$33 520 595 || 0.04 0.04 20 24
comparator_0/$4 528 595 0.04 0.04 20 22
moderegister_0/reg-

for16bi. D[0]$2 108 160 | 0.02 0.02) 4

Figure 7.4a. Using the electrical parameters for a single-layer-metal NMOS pro-
cess [Mead and Conway|, hand-routing improved the electrical characteristics of
all hand-routed nets. The parameters are: metal resistance 0.03 ohms per square,
poly resistance 15 ohms per square, contact resistance 30 ohms, metal capacitance
0.3 x 104 pf/micron?, poly capacitance 0.4 x 104 pf/micron?, and contact capaci-

tance 25.6 x 104 pf.

CHAPTER 7: Results 109
Long
Median
Short
0 10 20 30 40 50 60 70 80 90 100
l 1 I 1 l 1 l 1 l 1 l 1 l 1 | i t 1 ‘ 1 I
Hand-Routed / Auto-Routed RC
Resistance Capacitance RC x 10-1%

Hand-Routed Net Hand Auto Hand Auto Hand Auto
addresscounter_0/al0 42.68 47.99 | 0.464 0.567 19.79 27.23
moderegister_0/reg- -

for16bit_ 0[2]/$9 41.71 48.45 0.439 0.561 18.30 27.20
PFnorth_0/$41 46.52 53.13 0.492 0.605 22.90 32.14
PFeast_0/PADDATA-

INONLY . 16[1]/81 4198 | 44.18 | 0441 | 0505 | 1850 | 22.29
vectorcnter_0/$6 40.81 41.89 0.427 0.465 17.43 19.49
fsmdma_0/mack 10.85 10.74 0.116 0.118 1.26 1.27
decoder_0/output_3 13.71 10.71 || 0.143 0.117 1.96 1.26
clkdivider_1/$10 5.93 9.33 0.085 0.112 0.39 1.14
PFnorth_0/$11 10.99 11.05 0.113 0.114 1.25 1.26
PFwest_0/PADADDRESS-

NOTOMP. 19]1)/81 1049 | 1030 [o0107 | o112 | 112 1.15
fsmdma_0/InSt3* 1.23 0.95 0.013 0.014 0.02 0.01
comparator_0/$2 0.88 0.90 | 0.012 0.013 0.01 0.01
rammap_0/$33 0.88 0.92 | 0.011 0.012 0.01 0.01
comparator_0/$4 0.89 0.85 | 0.012 0.012 0.01 0.01
moderegister_0/reg-

for16bit_0[0]$2 0.62 0.73 0.007 0.008 0.004 0.006

Figure 7.4b. Using a two-layer-metal CMOS process, hand-routing improved
the electrical characteristics of 12 of the 15 hand-routed nets. These figures use
the electrical parameters from the Magic SCMOSII technology file at U.C. Berke-
ley: metall resistance 0.03 ohms per square, metal2 resistance .027 ohms per
square, contact resistance 0.03 ohms per square, metall capacitance 0.34 x 1074
pf/micron?, metal2 capacitance 0.26 x 1074 pf/micron?, and contact capacitance

8.5 x 104 pf.

CHAPTER 7: Results 110

7.2.3. Effect on Automatic Routing

While Magic's router avoids obstacles, the results show that it does so without a
significant effect upon the overall routing quality for the entire design. This is a critical
measure since, to be useful, hand-routing should improve the hand-routed net without

having a severe impact on the automatic routing.

% Length | % Metal | % Via
Hand-Routed Net Change Change | Change Patches
addresscounter_0/al0 -1.5 -0.2 1.5 1
moderegister_0/regfor16bit_0[2]/$9 -0.5 -0.3 5.2 0
PFuorth_0/$41 -0.5 -0.5 1.4 0
PFeast.0/PADDATAINONLY_16[1]/$1 -0.2 0 2.9 2
vectorcnter_0/$6 -0.7 -0.3 1.9 0
fsmdma_0/mack 0 -0.1 0.8 1
decoder_0/output_3 0 0.1 2.1 2
clkdivider_1/$10 -0.4 0.2 0.6 1
PFnorth_0/$11 -0.6 0.1 0.2 0
PFwest_0/PADADDRESS- 0 0 01 0
NOCOMP_ 12[1)/$1 :
fsmdma_0/InSt3* -0.1 0.4 -2.3 2
comparator_0/$2 0 0 0 0
rammap_0/$33 0 0 0 0
comparator_0/$4 0 0 0.1 0
moderegister_0/regfor16bit_0[0]$2 0 0 0 0
Average for All Nets -0.3 -0.04 0.9 0.8

Figure 7.5. Overall change in chip wiring characteristics, before and after
hand-routing one net and auto-routing the rest. The numbers are for all nets, in-
cluding the hand-routed net. Negative values for length change and via change
indicate that the automatic routing produced better results after hand-routing
than before. ‘“‘Patches” indicates the number of incomplete nets that had to be
hand-patched after automatic routing.

Figure 7.5 shows that hand-routing a single net has a small and usually beneficial
effect on the total wire length and percent of metal wiring for the design as a whole. As
might be expected, the automatic router had to use additional vias to bridge routing
across the hand-placed obstacles; this increase was the largest for the longest nets, but

averaged less than 1 percent increase over all 15 nets tested.

In spite of the router’s obstacle-avoidance techniques, the automatic router was not

always able to completely route designs containing hand-routing. When the only obstacles

CHAPTER 7: Results 111

were Tester’s power and ground routing, the router was able to completely route the chip;
however, when one net was hand-routed, in 6 of the 15 cases the hand-routed net caused

the subsequent automatic routing to fail with one or two incomplete nets.

The primary reason for the router’s failure to complete the routing was the lack of
density calculations during global routing. The number of wires Magic will attempt to
route through a switchbox is limited only by the number of crossing points at which nets
can enter and exit; this is a fairly weak approximation to the switchbox’s capacity.
Further, there is no allowance for the negative effect of obstacles upon wire capacity Thus,
even after obstacles have been added, the router tried to run the same number of wires
through a switchbox. The additional congestion caused incomplete nets that must be

patched by hand.

In every case the incomplete nets could easily be hand-patched following the
automatic routing. It was not necessary to reroute the entire net by hand; typically there
was a problem within a single switchbox along a net’s path. In some cases I patched the
automatic routing by hand-routing one net on top of another for a short distance; Magic’s
switchbox router can cross obstacles, but it does not run one automatically-routed net on
top of another. In other cases I routed nets within unused stem frame areas after looking
inside the subcells to see that no design rules would be violated, or moved tracks closer

together because they lacked adjacent contacts.

7.3. Time to Reroute

The router provides fast turnaround for a complete routing cycle that includes
removing the old automatic routing, partial hand-routing, and automatic rerouting of an
entire design. An initial goal was to be able to do this in less than a day [Ousterhout

84b]; measurements show that this takes less than an hour of real time.

As part of the hand-routing experiments in the previous section, I measured the time
it took for one iteration through the hand-routing cycle on the Tester chip. Using the

longest net in the design, the total time to run through the hand-routing cycle was 49

CHAPTER 7: Results 112

minutes. This included 7 minutes for the initial automatic routing, 2 minutes to rip-up
the automatic routing, 23.5 minutes to hand-route the selected net, another 7 minutes to
reroute the rest of the nets automatically, and 9.5 minutes to hand-patch one incomplete
net. Routing the second-longest and third-longest nets took similar amounts of time,
except that no hand-patching was necessary. All of these times were measured on a Sun-2

with 4 megabytes of memory.

Even using Magic's centerline wiring command, hand-routing proved to be very slow.
Hand-routing the selected met took 48 percent of the total hand-routing cycle time, or
more than three times as much time as was needed to automatically-routing the entire
chip. If each of the 153 nets took the same amount of time to route by hand, it would

take 7.5 8-hour days to completely route this chip by hand.

Hand-routing is probably even slower than this indicates. Since each hand-routed
net forms an obstacle to other wires, each successive hand-routed net gets harder to route

by hand. It might well take far longer than a week to hand-route the Tester chip.

7.4. Run Time Distribution

Figure 7.6 shows the router’s distribution of run time over its various component
parts, for two real designs. One is the Tester chip, with 153 nets and 338 terminals. The

other is Memboard1, with 60 nets and 425 terminals (Figure 1.2).

. Tester Memboardl

Routing Phase Time % Time %
Channel Decomposition 0.28 0.1 0.75 0.3
Channel Initialization 32.48 15.0 24.72 10.9
Global Routing 43.87 20.3 52.08 23.0
Switchbox Routing 82.02 37.9 88.15 39.0
Paintback 57.58 26.6 60.35 26.7
Total 216.23 - 226.05 -

Figure 7.8. Distribution of run time over various parts of the router. All times
are measured on a Sun 2 with 4 megabytes of memory and using a remote file
server.

CHAPTER 7: Results 113

For each of the two designs the largest amount of time--38 to 39 percent--was spent
in switchbox routing. The second most time-consuming part of the routing process was
painting the routing back into Magic's corner-stitched database. This step includes metal
maximization to convert polysilicon (or any other second routing layer with less-desirable
electrical characteristics) into metal wherever possible. Global routing was the third most
time-consuming part of routing. It was followed by channel initialization, which includes
storage allocation and hazard generation. The least time-consuming part of routing was

channel decomposition, which constituted less than 1 percent of the total routing time.

7.5. Small Examples

Figure 7.7 shows the effect of a simple obstacle upon the routing for a small example.
Figure (a) shows how it is routed with no obstacles, while Figure (b) shows the effect of an
obstacle upon the routing. It is impossible for four nets to avoid the obstacle, so the
router simply places contacts, switches routing layers, and bridges the obstacle using the

other routing layer. There are no other changes to the routing.

Although stem frames (Chapter 3.5) provide a simple mechanism to allow automatic
alignment of terminals onto the routing grid, they also take up room that could be used to
improve the routing quality. For example in Figure 7.7 the topmost connection for net 1
runs upward to clear the stem frame, and then left and down; however, it could have been

routed horizontally through the stem frame to shorten the net's length.

Figure 7.8 shows the effect of a more complex obstacle upon the same example used
in Figure 7.7. In Figure 7.8 nets 1 and 2 cross the obstacle by extending further to the
left than in Figure 7.7, to avoid creating a long vertical strip with both routing layers
blocked. If net 1 in Figure 7.8 had taken the same path as in Figure 7.7, it would have
blocked the other pet, preventing it from making its connection. Avoiding a long run
across the obstacle also reduces the nets’ parasitic capacitance with respect to the obsta-

cle.

CHAPTER 7: Results 114

{
D : . | Stem Frame
‘ 9 tut7c I R 1 L Routing Area
5 T
tut7c_0
: ULTC. Y 4 b Obstacle
|

e e e e — — —

% tut7e
tut7c_1

(3) (b)

Figure 7.7. A small example routed by Magic. Figure (a) shows the routing
when there are no obstacles. Figure (b) shows the effect of an obstacle passing
through the routing area.

In Figure 7.8 (a) the routing area is limited, so it is impossible for the rightmost two
nets (4 and 5) to clear the obstacle. They have to route across the obstacle, and because
of the crossing ordering chosen by the global router, Magic could not completely route net
5. To avoid this problem when the routing area is expanded in that direction, the router

chooses to avoid the obstacle by extending the nets further to the right (Figure 7.8 (b)).

7.8. Code Size

The router is written in C and runs under 4.3 Berkeley Unix. Its 18,716 lines of code
constitute 16 percent of Magic's 117,039 lines, a substantial fraction indicative of the com-
plexity of the routing problem. Approximately half of the source lines are comments or
blank lines; when comments and blank lines are removed, the routing code is less than

10,000 lines.

CHAPTER 7:

Results

115

4

s 3 tutZec
tut7c_1
3

3

Obstacle

o tut?c
5
tut’7c_04

(3)

(b)

w1 Stem Frame

L Routing Area

Figure 7.8. A more complex obstacle illustrates additional obstacle-avoidance
techniques. When compared to Figure 7.7, nets 1 and 2 extend horizontally to
the left to avoid crossing the obstacle along its long dimension. Net 5 is blocked
in the lower right corner of (a) (circled area); when the routing area is expanded
further to the right as in (b), nets 4 and 5 can extend further to the right and
avoid crossing the obstacle along its long dimension.

The table in Figure 7.9 lists the sizes of the various parts of the router. Functions

included under “‘miscellaneous’ include channel initialization, feedback, stem generation,

and paintback. Since the various parts of the router make use of Magic’s database,

graphics, command-interpreter, and utilities routines, a stand-alone version of the router

would be much larger than the total for all routing code.

7.7. Improvements

This section describes a number of possible improvements to the router. Some of

these are straightforward additions to the current implementation, while others constitute

areas for further research.

CHAPTER 7: Results 116

Router Module Size (with comments) Size (no comments)
Channel Decomposition 889 473
Global Router 2782 1259
Switchbox Router 4707 2930
Netlist Editing 6080 2872
Miscellaneous 4258 2242
All Routing Code 18716 9776
All of Magic 117039 54290

Flgure 7.9. Code sizes, measured in number of lines, for each of the parts of the
router. Approximately half of the lines in Magic source files are comments.

7.7.1. Technology Issues

Since many current IC fabrication processes provide three or more layers suitable for
routing, it would be useful to modify the router to handle more than two routing layers.
The greedy column-sweep approach used by Magic's Detour router is readily adaptable to
additional layers; one 3-layer version has already appeared in the literature [Bruell and
Sun]. Modifications to support obstacle-avoiding global routing with more than 2 routing
layers would be more difficult, since the global router would have to pay more attention to

layer assignments and obstacles on different layers.

Since the router assumes a uniform routing grid, there may be problems applying it
to technologies where the two routing layers have widely differing pitches. If minimum-
sized contacts are not square, then it is possible to gain additional tracks or columns by
using different grid spacings in the x and y-directions; however, a grid-based obstacle-
avoiding router cannot take advantage of this, since it needs to be able to switch layers to
bridge obstacles. A pon-gridded router would be more efficiently applicable over a wider

range of technologies.

7.7.2. Global Router

The router’s completion rate for fully-routed nets is quite sensitive to the placement
of subcells and obstacles in a design. This occurs because the global router does not con-
sider switchbox density, nor the effect of obstacles upon switchbox capacities. Because the

global router does not check density, it can overcommit areas, creating routing problems

CHAPTER 7: Results 117

the switchbox router cannot successfully route. If density were considered during global
routing, it would be possible to more evenly balance the load carried by each switchbox,

and improve the completion rate for automatic routing.

7.7.3. Switchbox Routing

While providing great flexibility, Magic's switchbox router tends to introduce a large
number of vias, unnecessary bends, and crossovers, when compared with hand-routing.
Routing quality can be improved by the addition of more specialized channel routers, such
as river-routers or more traditional channel routers, for those cases where the full power

of an obstacle-avoiding switchbox router is not needed.

Additional techniques can improve the quality of the wiring. The router currently
post-processes the wiring to convert polysilicon to metal wherever possible; this post-
processing can be extended to a more general local optimizer, performing corner-flipping

as described in [Hsu] to remove crossings, bends, and unnecessary vias within channels.

7.7.4. Obstacle Locations and Sizes

The router has problems with obstacles in certain situations. The problems are the
worst at switchbox boundaries, where the routing is constrained. Since the global router
is oblivious to wiring within switchboxes, it may choose crossing points that require wires
to cross, even when river routing would be possible or necessary. This sometimes makes it
impossible for the switchbox router to complete its routing if there is not enought area

available to route around an obstacle (Figure 7.8).

To avoid these problems the designer must be careful when placing obstacles at
switchbox boundaries, especially those adjacent to subcells. Obstacles should not run

parallel to switchbox boundaries for long distances.

One possible improvement would be to classify obstacles according to size. Large
obstacles, such as major power and ground lines, can be treated as river-routed areas,

while small obstacles can be more efficiently-handled with the current obstacle-avoidance

CHAPTER 7: Results 118

mechanism.

7.7.5. Grid Alignment

Magic’s stem generator could also be improved. Currently it reserves an area on all
sides of each subcell, even those sides with no terminals or those whose terminals are
already grid-aligned. Since it generates the stem for each terminal without regard for any
adjacent terminals, closely-spaced terminals may result in design rule violations or short-

circuits.

7.7.8. User-Interface

Since Magic operates in a single batch operation, it is difficult to redo the routing in
specific areas. With the current implementation, the only way to do this is to remove all
of the automatic routing from the design and then re-invoke the automatic router. Simi-
larly, changes to the switchbox router parameters affect all of the routing regions rather
than just the one containing the problem. A more interactive routing system would pro-
vide greater designer control over the routing. Such a system could use many of the same

concepts described in this thesis; however, the implementation would be much different.

7.7.7. Memory Usage

One implementation issue is the amount of memory used by the router. Since it
explicitly represents every routing grid intersection with two bytes of information, large
designs use large amounts of memory. A 10,000 by 10,000 lambda design with a routing
grid spacing of 7 lambda requires over 4 megabytes of memory, and the router uses addi-
tional storage for heap elements during shortest path generation. On our current works-
tations, with 4 megabytes of memory and a remote file server, routing causes Magic to

spend a lot of time paging.

119

CHAPTER 8

Summary and Conclusions

8.1. Introduction

This chapter summarizes the major points of the thesis, and concludes with some

observations on the routing problem.

8.2. Summary

This thesis has examined modes of interaction between human designers and
automatic routers. These range from complete hand-routing at one extreme, to batch
routers that attempt to provide complete, ‘‘hands-off”’ solutions to the routing problem.
Magic provides an intermediate alternative that combines the flexibility of hand-routing
with the speed and accuracy of automatic channel routers, by allowing designers to first
prewire critical nets by hand and then invoke an obstacle-avoiding automatic router that
works around the hand-routing to make the remaining connections. Complementary
talents of the intelligent human designer and the fast automatic router combine to form

an effective solution to the problem of handling critical nets in special ways.

As explained in Chapters 1 and 2, traditional approaches suffer from one or more of
the following problems: (1) slowness; (2) poor routing quality; or (3) inability to incor-
porate designer input. Hand-routing provides direct designer control over all aspects of
routing; however, it is difficult and time-consuming. Net-at-a-time routers improve design
times, but the routing they produce is poor because they do not plan ahead to handle
interactions between nets. Traditional channel routers provide high-quality routing, but
unlike net-at-a-time routers, they do not allow designers to wire critical nets in advance of

automatic routing.

CHAPTER 8: Summary and Conclusions 120

Chapter 3 introduced the basic concepts and components of Magic’s obstacle-
avoiding routing system. The fundamental idea of a preferred direction for crossing an
obstacle led to a mechanism called a hazard, which guides the router in dealing with obs-

tacles.

Magic's channel decomposer (Chapter 4) uses a simple yet effective heuristic to create
a small number of large routing channels: minimize the sum of the perimeters of channels.
The implementation of this heuristic relies on a corner-stitched data structure to provide

a fast and elegant implementation.

Magic's global router (Chapter 5) supports obstacle-avoidance by considering the
effect of obstacles upon each globally-routed net. It tries to reduce the complexity of the
routing problem by trading-off net length and channel-routing difficulty, sometimes choos-
ing a longer path for a net in order to avoid routing it across an obstacle. As part of its
obstacle-avoiding path selection, the global router selects the exact location where each
net crosses from one channel to another; this is called crossing placement. Because each

crossing location is fixed, the resulting routing problems are switchboxes.

Chapter 6 described Magic's switchbox router. It uses the column-sweep approach
coupled with special heuristics to avoid obstacles and route switchboxes. Although able to
avoid obstacles, the switchbox router still produces results within 5 percent of the perfor-

mance of the best conventional channel routers, which do not avoid obstacles.

To be an effective obstacle-avoiding router requires that an automatic router produce
good routing, that there be a significant benefit in hand-routing critical nets, and that the
hand-routing cause no significant harm to the overall routing quality. Chapter 7
presented results supporting all 3 of these points. Magic provided automatic routing
whose net length was typically within 7 percent of that for carefully-placed hand-routing;
the fact that the automatic router’s net lengths are close to hand-routed net lengths
demonstrates its effectiveness. Meanwhile, careful hand-routing reduced the routing’s RC
delay by up to 75 percent. Finally, the hand-routing had a small but usually positive

effect upon the characteristics of the overall routing for the test chip.

CHAPTER 8: Summary and Conclusions 121

8.3. Conclusions

Obstacle-avoiding routing is both desirable and feasible. It is possible to hand-route
critical nets on an integrated circuit and automatically-route the remaining nets. One
would expect that the presence of obstacles should hurt the quality of the automatic-
routing that interacts with it; however, using the obstacle-avoiding routing techniques
developed in this thesis, the presence of hand-routed nets has a barely measurable effect
on the overall routing quality for an integrated circuit. At the same time, hand-routing

results in substantial improvements in resistance and capacitance for the selected nets.

Like the routing problem, developing and implementing the routing system described
in this thesis was itself a difficult task. Routing is NP-complete, so optimal solutions can-
not be obtained with reasonable efficiency. To make matters worse, no small number of
heuristics is adequate to always produce routing as good as that produced by human
designers. From a more practical viewpoint, implementation revealed numerous small
details that were important to consider yet were not anticipated prior to testing the code

on real routing problems.

There will always be a need for human designers to hand-modify their design tools’
output. Design tools are not yet, and may never be, as intelligent as human designers;
therefore, designers continue to find places where they can improve upon automatically-

generated results. This thesis has explored ways of allowing them to so.

Many other approaches to obstacle-avoiding routing are possible. As an example,
Magic's router is a batch system, and designers specify their input prior to invoking the
router; however, as discussed in Section 7.7, a more interactive approach could prove to
be more natural and produce superior results. Further, Section 7.7 presents only a partial
list of improvements that could be made to the current implementation. Consequently,
rather than offering Magic’s router as the solution to providing designer-control over rout-

ing, | offer it as a starting point for further research in obstacle-avoiding routing.

122

References

[Arnold]
Arnold, M., Corner-Based Geometric Layout Rule Checking for VLSI Circuits,
Report No. UCB/CSD 86/264, UC Berkeley Computer Science Division, November
1985.

[Bruell and Sun]
Bruell, P., and P. Sun, “A ‘Greedy’ Three Layer Channel Router”, Proceedings
IEEE International Conference on Computer-Aided Design (1985), pp. 298-300.

[Burstein and Pelavin]
Burstein, M., and R. Pelavin, ‘‘Hierarchical Wire Routing”, IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems, Vol. CAD-2, No. 4
(Oct 1983), pp. 223-234.

[Burstein and Youssef]
Burstein, M., and M. Youssef, *‘Timing Influenced Layout Design”, Proceedings 22nd
Design Automation Conference, Las Vegas (1985), pp. 124-130.

[Chen]
Chen, N. P., C. P. Hsu, and E. S. Kuh, “The Berkeley Building-Block Layout System
for VLSI Design”, ERL memo UCB/ERL M83/10, UC Berkeley, February 1983.

[Chen Hj

Chen, H., Private Communication.

[Chen K]
Chen, K. A., et. al., “The Chip Layout Problem: An Automatic Wiring Procedure’’,
Proceedings 14th Design Automation Conference, New Orleans (1977), pp. 298-302.
[Chiba]
Chiba, T., N. Okuda, T. Kambe, I. Nishioka, T. Inufushi, and S. Kimura, “‘SHARPS:
A Hierarchical Layout System for VLSI, Proceedings 18th Destgn Automation
Conference, Nashville (1981), pp. 820-827.

[Clow]
Clow, G. W., “A Global Routing Algorithm for General Cells”, Proceedings 21st
Design Automation Conference, Albuquerque (1984), pp. 45-51.

[Dai]
Dai, W., T. Asano, and E. S. Kuh, “Routing Region Definition and Ordering Scheme
for Building-Block Layout”, IEEE Transactions on Computer-Aided Design of
Integrated Circuits and Systems, Vol CAD-4, No. 3 (July 1985), pp. 189-97.

[Deutsch]
Deutsch, D., “A ‘Dogleg’ Channel Router”, Proceedings 13th Design Automation
Conference, San Francisco (1976), pp. 425-433.

[Garey and Johnson]
Garey, M., and D. Johnson, Computers and Intractabslity, W. H. Freeman and Co.,
San Francisco (1979).

[Hamachi 84}
Hamachi, G. T., and J. K. Ousterhout, “A Switchbox Router with Obstacle
Avoidance’’, Proceedings 21st Design Automation Conference, Albuquerque (1984),
pp. 173-179.

References 123

[Hamachi 85]
Hamachi, G. T., and J. K. Ousterhout, ‘‘Magic's Obstacle-Avoiding Global Router",
1985 Chapel Hill Conference on Very Large Scale Integration, H. Fuchs Ed., Com-
puter Science Press, 1985, pp. 145-164.

[Hashimoto and Stevens]
Hashimoto, A., and J. Stevens, ‘‘Wire Routing By Optimizing Channel Assignment
Within Large Apertures’, Proceedings 8th Design Automation Workshop (1971),
pp. 1565-169.

[Hassett]
Hassett, J. E., “Automated Layout in ASHLAR: An Approach to the Problems of
‘General Cell’ Layout for VLSI", Proceedings 19th Design Automation Conference,
Las Vegas (1982), pp. 777-784.

[Hightower 69)
Hightower, D., ““A Solution to the Line Routing Problem on the Continuous Plane”,
Proceedings Design Automation Workshop (1969), pp. 1-24.

[Hightower 74]
Hightower, D., “The Interconnection Problem: A Tutorial”, IEEE Computer (April
1974), pp. 18-32. (1980) pp. 12-21.

[Hightower 80]
Hightower, D., ‘A Generalized Channel Router”, Proceedings 17th Design Automa-
tion Conference, Minneapolis (1980), pp. 12-21.

[Horowitz]
Horowitz, E., and S. Sahni, Fundamentals of Computer Algorithms, Computer Sci-
ence Press, Inc. (1978), pp. 183-188.

[Hsu]
Hsu, Chi-Ping, “General River Routing Algorithm’’, Proceedings 20th Design Auto-
mation Conference, Miami (1983), pp. 578-583.

[Joobbani]
Joobbani, R., WEAVER: An Application of Knowledge-Based Ezxpert Systems to
Detasled Routing of VLSI Circuits, SRC Technical Report No. T85044, July 1985.
[Kajitani]
Kajitani, Y., “‘Order of Channels for Safe Routing and Optimal Compaction of Rout-
ing Area”’, IEEE Transactions on Computer-Aided Design of Integrated Circuits
and Systems, Vol CAD-2, No. 4 (October 1983), pp. 293-300.
[Kernighan]
Kernighan, B., D. Schweikert, and G. Persky, “‘An Optimum Channel-Routing Algo-
rithm for Polycell Layouts of Integrated Circuits’, Proceedings 10th Design Auto-
mation Workshop (1973), pp. 26-46.

[Leblond]
Leblond, A., “CAF: A Computer-Assisted Floorplanning Tool”, Proceedings 20th
Design Automation Conference, Miami (1983), pp. 747-753.

[Lee]
Lee, C. Y., “An Algorithm for Path Connections and its Application”, IRE Transac-
tions on Electronic Computers (Sept. 1961), pp. 346-365.

[Mead and Conway]
Mead, C., and L. Conway, Introduction to VLSI Systems, Addison-Wesley Publish-
ing Co., Reading, Mass., 1980.

References 124

[Ng]
Ng, C. H., “A Symbolic-Interconnect Router for Custom IC Design”, Proceedings
21st Design Automation Conference, Albuquerque (1984), pp. 52-58.

[Nilsson]

Nilsson, Nils J., Problem-Solving Methods in Artificial Intelligence, McGraw-Hill,
Inc., New York, 1971.

[Ousterhout 84a]
Ousterhout, J. K., “Corner Stitching: A Data Structuring Technique for VLSI Lay-
out Tools”, IEEE Transactions on Computer-Aided Design of Integrated Circusts
and Systems, Vol CAD-3, No. 1 (January 1984), pp. 87-99.

[Ousterhout 84b]
Ousterhout, J. K., G. T. Hamachi, R. N. Mayo, W. S. Scott, and G. S. Taylor,
“Magic: A VLSI Layout System’, Proceedings 21st Design Automation Confer-
ence, Albuquerque (1984), pp. 152-159.

[Ousterhout 85]
Ousterhout, J. K., G. T. Hamachi, R. N. Mayo, W. S. Scott, and G. S. Taylor, “The
Magic VLSI Layout System', IEEE Design and Test of Computers, Vol. 2, No. 1
(February 1985), pp. 19-30.

[Pendleton]

Pendleton, J., Private Communication.

[Persky]
Persky, G., D. Deutsch, and D. Schweikert, “LTX--A System for the Directed
Automatic Design of LSI Circuits’’, Proceedings 13th Design Automation Confer-
ence, San Francisco (1976), pp. 399-407.

[Rivest] ,
Rivest, R. L., “The ‘PI' (Placement and Interconnect) System’, Proceedings 19th
Design Automation Conference, Las Vegas (1982), pp. 475-481.

[Rivest and Fiduccia]
Rivest, R. L., and C. M. Fiduccia, A Greedy Channel Router’’, Proceedings 19th
Design Automation Conference, Las Vegas (1982), pp. 418-424.

[Romeo]
Romeo, F., and A. Sangiovanni-Vincentelli, ‘‘Probabilistic Hill Climbing Algorithms:
Properties and Applications’, 1985 Chapel Hisll Conference on Very Large Scale
Integration, H. Fuchs Ed., Computer Science Press, 1985, pp. 393-417.

[Rothermel and Mlynski]
Rothermel, H-J., and D. A. Mlynski, ‘‘Routing Method for VLSI Design Using Irregu-
lar Cells”, Proceedings 20th Design Automation Conference, Miami (1983), pp.
257-262.

[Sangiovanni-Vincentelli 83a]
Sangiovanni-Vincentelli, Alberto, Private Communication, February 1983

[Sangiovanni-Vincentelli 83b]
Sangiovanni-Vincentelli, A., and M. Santomauro, “YACR: Yet Another Channel
Router”, Proceedings Custom Integrated Circuit Con ference (1983), pp. 327-331.

[Sangiovanni-Vincentelli 84]
Sangiovanni-Vincentelli, A., M. Santomauro, and J. Reed, “A New Gridless Channel
Router: Yet Another Channel Router the Second (YACR-II)", Proceedings IEEE
International Conference on Computer-Aided Design (1984), pp. 72-75.

References 125

[Scott 84]
Scott, W. S., and J. K. Ousterhout, ‘‘Plowing: Interactive Stretching and Compac-
tion in Magic”, Proceedings 21st Design Automation Conference, Albuquerque
(1984), pp. 166-172.

[Scott 86a]
Scott, W. 3., R. N. Mayo, G. T. Hamachi, and J. K. Qusterhout, 1986 VLST Tools:
Still More Works by the Original Artists, Report No. UCB/CSD 86/272, UC Berke-
ley Computer Science Division, December 1985,

[Scott 86b]
Scott, W. 5., “Compaction and Circuit Extraction in the MAGIC IC Layout Sys-
tem', Report No. UCB/CSD 86/269, UC Berkeley Computer Science Division,
Spring 1986,

[Soukupj
Soukup, J., “Circuit Layout”, Proceedings of the IEEE, Vol. 89, No. 10 (Oct. 1981),
1281-1304.

[Soukup 83|
Soukup, J., Private Communication, Dec. 1983

[Suen]
Suen, L., A Statistical Model for Net Length Estimation”, Proceedings 18th Design
Automation Con ference, Nashville (1981), pp. 769-774.

(Wiesel and Mlynski]
Wiesel, M., and D. A. Mlynski, “An Efficient Channel Model for Build Block LSI",
Proceedings 1981 IEEE International Symposium on Circuits and Systems, pp.
118-121.

{Yoshimura and Kuh] .
Yoshimura, T., and E. S. Kuh, “Efficient Algorithms for Channel Routing”, IFEE
Transactions on Computer-Aided Design of Integrated Cireuits and Systems, Vol.
CAD-1, No. 1 (Jan 1982), pp. 25-35.

[Vecchi and Kirkpatrick]

Veccht, M., and S. Kirkpatrick, *Global Wiring by Simulated Annealing'’, IEEE

Transactions on Computer-Aided Design of Integrated Circuits and Systems, Vol.
CAD-2, No. 4 (October 1983), pp. 215-222.

