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ABSTRACT

UNIGRAFIX is a graphics modeling and rendering system that
runs under the unixt operating system. It consists of a descriptive
language and several programs that allow a user to create, modify
and display scenes consisting of polyhedral objects.

A new hidden feature algorithm in UNIGRAFIX was inspired
by Hamlin and Gear’s STACK algorithm. It is a scan-line, image
space algorithm that exploits depth ordering of faces to produce
the visible spans for each scanline. Detection and correct display of
intersecting objects is efficiently achieved by checking only visible
faces, and comparing each one with a minimal set of potential
penetrators.

The resulting rendering program also features smooth shading
of faces. It is robust and fast, and this makes it a good choice
for interactive design where other renderers might fail or take too
much time.

1 UNIX is a trademark of Bell Laboratories
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Introduction

The UNIGRAFIX system already has two different scanline based renderers, both
with different strengths and weaknesses. A third renderer has been implemented
which tries to combine as many of the strengths of the previous two algorithms,
and to add some new features such as handling intersecting objects and providing
smooth shading.

The first renderer, UGSHOW [10], is a scanline algorithm that performs in
image space and relies on stacks of faces. Edges that cross the current scanline
are kept in an X sorted Active Edge List (AEL), and faces are implicitly described
by their left and right bounding edges. Each span between two adjacent edges in
the AEL has a depth sorted stack of all the faces that lie under it. The top face
is the visible face in that span. The face stacks are retained from one scanline
to the next. They are updated whenever old edges leave the AEL, new edges are
inserted, or any two edges swap places. UGSHOW is a robust algorithm and copes
successfully with scene inconsistencies such as warped faces and coinciding edges.
It does however suffer from big (and at times huge) dynamic space requirements:
All the faces that are touched by the sweep plane are represented in the face stacks,
and there are such stacks for all edges in the AEL.

The second renderer, UGPLOT [18], is an edge-intersection scanline algorithm,
following the CROSS algorithm by Hamlin and Gear [3]. UGPLOT employs a more
refined data structure than that of UGSHOW and extracts valuable topological
information from the scene description (written in the UNIGRAFIX language [16}).
It also maintains an active edge list, but limits the search for obscuring faces
to the faces that are bordered by the neighboring edges in the AEL. Visibility
information is passed from edges to vertices and from them to other edges. The
core of the algorithm is a set of rules that define how visibility should be updated
at edge crossings. Since the major computation is done at “interesting y-locations”
i.e., vertices and edge crossings, the output is not bound to physical device
resolution; the algorithm is capable of recognizing the visible polygons in the two-
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dimensional image plane, as well as in three-dimensional object coordinates [13].
UGPLOT is a fast renderer, and the visible polygon return enables it to exploit
new display devices that scan-convert polygons in hardware. However, since all
visibility calculations are incremental, it is very semsitive to minor topological
inconsistencies, and errors due to numerical inaccuracies may propagate far into
other portions of the picture.

UNIGRAFIX serves research areas such as Computer Graphics, Geometric
Modeling [11,14,15,5] and Topology [9], as well as purely artistic endeavors by
people. Scenes are thus not limited to well behaved polyhedral solids; users
often take the freedom to create any imaginary scene that can be described
with the UNIGRAFIX primitives. Thus a need developed for a robust, yet still
efficient, renderer that would try to do its best to give a decent picture even
when the scene is not completely legal. Some “illegalities” are quite abundant and
should be displayed correctly; among those are coinciding faces, warped faces, self
intersecting contours, and most important for any interactive design - intersecting
faces. Many hidden surface algorithms restrict themselves to non-intersecting
objects, and require a special pre-processor to remove all intersections [9]. This
is a reasonable demand, and it leads to efficient rendering when the same scene
is rendered many times. But the price of pre-processing may be too high for
interactive design which involves many intermediate scenes. A rendering algorithm
that detects only the visible intersection lines in a scene is then much faster than
the repeated sequence of pre-processing and display.

The new hidden surface algorithm, UGDISP, tries to take on those challenges.
It follows the STACK algorithm by Hamlin and Gear (3], but since UNIGRAFIX
objects are not as constrained as their objects (convex polygons that do not
intersect and do not overlap one another cyclically), it is more sophisticated than
the original elegant idea. A single stack of visible faces is built, maintained and
finally discarded on each scanline. The basic algorithm employs scene and scanline
coherence to achieve fast rendering of shaded faces. Special care is given to edge
enhancement (correct enhancement of horizontal edges turned out to be the most
difficult task in the project). Command-line options tell the program to detect
and display face intersections and to handle warped faces. Intersection lines are
found by testing each visible face against a minimal set of potentially penetrating
faces. When an intersection is found, the data structure is modified to reflect the
“cut” in the current vigible face such that it looks like a regular edge on the next

scanlines.



1. INTRODUCTION 3

Chapter 2 describes the data structures and the new STACK algorithm for
shaded faces with hidden surface removal. Chapter 3 describes the algorithm
for intersection detection. Chapter 4 covers the extra work that is required to
achieve border enhancement. Chapter 5 briefly discusses two useful extensions
to the STACK algorithm: Gouraud shading and embedding text in the picture.
Chapter 6 evaluates the program performance and draws conclusions about this
work.



2

The Hidden Surface Algorithm

This chapter describes the data structures used by the program, and
the hidden surface algorithm in its simplest form, i.e., without border
enhancement and without intersections checks.

2.1. Static Data Structure

The primitives of the UNIGRAFIX language are vertices, faces and wires. A
vertex statement consists of a unique identifier and z,y,z coordinates. A face
statement has an optional identifier and a list of contours, each of which is a list of
vertex identifiers. Edges are not part of the language but are implicitly introduced
by any pair of adjacent vertices in the face statement, including the last and first
vertex in every contour. A wire statement is similar to a face statement, except
that no edge is implied between the last and first vertices of a contour.

As an example, consider the UNIGRAFIX file:

vtop 010; up
v right 1 0 O;

v left -1 0 0;

v up 011;

f triangle (top right left);
w (top up);

top

triangle

left right

For further details on definitions, arrays and instances see Appendix A and refer
to the UNIGRAFIX Manual [16].

An internal representation of the scene is constructed while reading the scene
file. This structure has multiple cross references between the primitive elements,
and it efficiently encodes all data and topology that can be extracted from the
ascii representation. In this section I describe the static data structure. Once
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built, it can be re-used for multiple renderings with varying viewing parameters
and options (See [1] on a system that makes effective use of this fact). Figure 2.1
shows the basic elements in the structure (for simplification, global linked lists are
not shown in the figure).

2.1.1. Vertices

Each vertex is represented by a VERTEX structure which contains a pointer
to its string identifier, its coordinates, and a pointer to a list of all edges that
use this vertex. Additional fields hold certain flags and an illumination value
(if smooth shading is performed). The veriex coordinates are either in world
coordinate system or in viewing coordinate system, depending on the stage of the
renderer. All vertices are linked in the order they appear in the original file to allow
easy access for various general operations. Since faces and wires refer to vertices
by name, we need a fast name lookup; therefore the same VERTEX structures
are also linked in hash table entries, with the key being the hashed value of the
unique identifier.

2.1.2. Edges

Each pair of adjacent vertices in face or wire statements is represented by an
EDGE structure which contains pointers to the VERTEX structures of its two
end-vertices, and a list of all faces and wires that make use of this edge. Edges are
unique, so all those faces and wires will use the same edge. The EDGE is a major
junction in the data structure between vertices on one hand, and faces/wires on
the other hand.

2.1.8. Faces

Each face is represented by a FACE structure which contains an optional
string identifier, a list of contours (each contour being a list of edges), and plane
equations of the face in world and in viewing coordinates. Additional fields hold
color and illumination data and flags. All FACE structures are linked in a global
list in the order they appear in the original file.

2.1.4. Wires

Each wire is represented by a WIRE structure which is similar to the FACE
except for the illumination and plane equations which do not apply to wires.



2. THE HIDDEN SURFACE ALGORITHM 6

VERTEX ¢ e

<name> ~“‘\

(zv2)
List of edges using this VERTEX

edge list —— ]
i T T 11

EDGE

vertices

—
x|

active edge (1)

ACTIVE-EDGE

List of faces and wires using this EDGE

face & wire |

, —

- P

FACE

<name>

List of contours
contour list ——— ]
1 RN
{abcd)
(2)

(a’b’c’d) CONTOUR List of edges

color edge list —4-[%:13
illumination

Pigure 2.1. Static Data Structure.

(1) When the edge is a member of the Active Edge List, this s a pointer to the
corresponding active structure (see section 2.5).

(2) The plane equation is represented by its four coefficients. (a' b ¢’ d') is the

plane equation sn viewing coordinates.
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2.2. Terminology and Overview of Rendering Process

UGDISP starts by reading the command line parameters and options (see
Appendix B), and calculating the viewing transformation matriz. It then reads
the input file and builds the static data structure as described above. All vertices
are transformed by the viewing matrix to viewing coordinates, and bucket sorted
by the Y coordinate into buckets, one for each scanline. Within each bucket the
sort is first by X and then by Y. Plane equations of all faces are transformed, and
faces with normals pointing away from the viewer are culled out (unless specifically
requested by the —ab view option to keep them). Illumination (shading) values
for faces are calculated by summing up the contributions of all light sources.
Each ambient source contributes its full intensity, and each directional sources
contributes its intensity factored by the dot product between its direction and the
face normal; if the dot product is positive (i.e., light reaches that face), then the
intensity is multiplied by it, otherwise the contribution is gero.

Now let’s imagine a horizontal plane that sequentially cuts through the scene
image at each scanline from top to bottom. This plane defines segments where
it intersects faces!. Our task is to decide which segments are visible (fully or
partially), and to generate their correct projection onto the output scanline.
(See [17] on Segment Comparisons and Scanline Algorithms). This task is carried
out, starting with the topmost non-empty bucket and going down until the lowest
non-empty bucket.

The Active Edge List (AEL) is the list of all edges that intersect the current
scanline. It is kept sorted by the intersection points from left to right. The current
scanline is the line being processed now, and the previous scanline is the one just
above the current. Processing line y means dealing with everything that happens
in the swath between y+ 1 and y (However, the output for this line will reflect the
visible faces at exactly y, 8o faces that ended on this swath are not represented in
the output).

Processing a scanline is done in two major steps: updating the AEL, and
running the STACK algorithm on it. Output is produced during the second
step. It should be noted that the output commands of the algorithm are device
independent (except for the obvious dependence on device resolution), and actual

t Concave faces and faces with multiple contours may have more than one
segment in a single scanline.
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output will be produced in different forms for different devices (e.g., monotonous
raster scan for simple raster plotters, shaded polygons for smarter devices, etc.).

2.3. Dynamic Data Structure

The dynamic structure is maintained as long as there are vertices in the array
of buckets. Its skeleton is the AEL, which is a list of ACTIVE-EDGE structures.
The list is doubly linked to allow easy movement in both directions, and easy
insertion and deletion of entries. Figure 2.2 shows the main components of the
list.

2.3.1. Active Edges

Each ACTIVE-EDGE represents an EDGE from the static data structure
that intersects the current scanline. It contains the following information:

e fromEdge is a pointer to the corresponding static edge.

e vTop is a pointer to the top vertex of the edge.

e vBot is a pointer to the bottom vertex of the edge.

o slope is Az/Ay i.e., the increment in X for one scanline.

e zPrev,zCur are the X intersections of the edge with previous and current
scanlines.

e rightFaces is a pointer to a list of FACE-START entries, each corresponding
to a face that spans to the right of the edge (and therefore bordered by our
edge from the left).

o leftFaces is a pointer to a similar list of FACE-END entries, each correspond-
ing to a face that spans to the left.

o right FacesPointer (not shown in figure 2.2) points initially to the beginning
of the right Faces list, and during the STACK algorithm moves along that list.
See 2.5.2 for its use.

At this point it may seem that storing the two vertices is redundant once we
have the pointer to the edge, but in chapter 4 we shall see that an active-edge may
correspond to a partial piece of the original edge, so the top and bottom vertices
would not necessarily be the end vertices of the edge.

The lists of faces are sorted in an open book manner, as if the faces were pages
in a book and the page numbers were used as the sort key. That means that in the
leftFaces list the first item is bottom-most face, and the last item is the topmost
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Doubly linked list of active edges

AL T T T
ACTIVE-EDGE
tromedge (1) +—{EPSE_]""""s 1y qai
vTop —] VERTEX |- »  Data Structure
vBot - VERTEX |- x "
slope
xcur, Xxprev
List of left faces rightFaces — List of right faces
[ — Je—— leftFaces ]
FACE-END FACE-START ;
[FAE f— fromFuce tromFace o FACE__ ]
[FACESTART |1 matching (4) matching (2) 4—— FACE-END ]

hiding (3) {—» FACESTART |

rank

Pigure 2.2. Dynamic Data Structure.

(1) Pointer back to the corresponding edge in the static data.

(2) A link to the edge that borders this face from the right. Specifically st is a
posnter to the matching leftFace entry in that edge.

(8) Pointer to a face that hides this face from the viewer. Relying on depth

coherence, this pointer may save depth calculations on following scanlines.

(4) Similar to (2), st is @ link to the edge that borders this face from the left.

face. Similarly in the rightFaces list the first item is the topmost face, and the
last is the bottom-most. See Figure 2.3. An easy way to compare the depths
of two such faces is described in [18]. An active edge with two non-empty face
lists is termed a seam edge. If only one of the lists is non-empty then the edge is
termed a contour edge (not to be confused with the CONTOUR data structure).
The reason behind the terminology is that in the final picture the contour edges
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outline the silhouettes of the rendered bodies, while the seam edges help to grasp -
the shapes of the surfaces.

The active edge
<~

Figure 2.3. “Book of faces” connected to an active edge.

leftFaces lsst: —
rightFaces list: EI — —

2.3.2. Active Faces

There are two structures for every face segment on the current scanline. The
first one is a FACE-START item in the rightFaces list of the edge that borders
the segment from the left, and the second is a FACE-END item in the leftFaces
list of the edge that borders the segment from the right. Both structures point to
the same static FACE entry with the fromFace pointer. They also point to each
other with the matching pointer. Matching pointers are initially NULL. They
are set and reset by the STACK module. FACE-START’s and FACE-END’s, as
may be seen in figure 2.2, are equivalent data structures; they do however have
different names to distinguish their use with regard to faces in the AEL. They are
also called actsve-faces by analogy to edges and active-edges.

The next two fields are relevant only for FACE-START entries, and carry two
forms of depth coherence:

e hiding is a pointer to a FACE-START whose face hides this segment from the
viewer. Every time a depth comparison occurs between two faces, the result
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is saved by setting this pointer in the hidden face.

o rank is a small integer. Ranks are set by the STACK module and used for
depth comparisons. They imply a partial depth ordering on the subset of
potentially visible face segments.

In the following sections I will sometimes use the term “face” instead of FACE-
START or FACE-END; the exact meaning will always be clear from the context.

2.4. Preparing the Next Scanline

The AEL carries all the dynamic information from one scanline to the next.
To update it for scanline y, the following is done for every active-edge in the list:

o If the edge is flagged as ending, it is removed from the AEL.

e If the Y coordinate of vBot is greater than y, it is an ending edge. The
edge gets flagged as such, and it will be removed from the AEL on the next
scanline.

e zPrev is set to zCur, and zCur incremented by slope (the increment in X
per scanline).

e Temporary flags from last scanline are reset in the active-edge and its active-
face lists.

o If there are still vertices in bucket y, and the first vertex in the bucket falls to
the left of our edge, that vertex is removed from the bucket and incorporated
into the AEL (see 2.4.1). This step is repeated if possible.

If there are still vertices in bucket y after all the edges have been processed,
they are removed from the bucket and placed at the end of the AEL. At this
point the AEL contains all (and only) edges which intersect y, but they are not
necessarily ordered. Since they were ordered on the previous scanline, and since
all changes were local, a variant of bubble-sort is used to reorder the list. In that
sort, we traverse the list from left to right, and in turn propagate each edge to the
correct position among the edges to its left. This guarantees that when we work
on the edge at position j, all edges at positions 0 to j — 1 are already ordered.
Propagating an edge to its final position is achieved by a series of single-step swaps.
Besides exchanging the positions of the two neighboring edges, the swap provides
important topological information: faces that are connected to those edges and
did not overlap on the previous scanline may now be overlapping, and vice versa.
We use that information for erasing ranks that have become irrelevant (when non-
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overlapping faces become overlapping. See 2.5), and in border enhancement mode
for finding the edge intersections (See chapter 4).

If new vertices were added at this scanline, the STACK module is instructed
to reset the matching information in the AEL. It is possible to try and adjust
all matching pointers to the changes that were introduced by the new vertices,
but the computation required is considerable (consider for example a saw-shaped
face with more than one “tooth” ending on the current scanline). The matching
information is constantly renewed as a side effect of running the STACK module.

2.4.1. Adding a New Vertex to the AEL

Each edge has two end-vertices. We will say that the edge is a starting edge
of the first end-vertex to be incorporated into the AEL, and an ending edge of the
second vertex. Usually this means that edge e, is an ending edge of V if V is the
lower end of e;, and that edge e; is a starting edge of V if V' is the upper end of e,.
If both ends of an edge lie between the the same two scanlines, then the leftmost
(or topmost, if the edge is vertical) of its end-vertices is added first to the AEL;
therefore, by way of construction, these edges start at their leftmost vertex and
end at their rightmost. Such edges are called sems horizontal edges. They do not
participate in the STACK algorithm because, as was mentioned before (in 2.2), the
STACK deals only with edges and faces that intersect the current scanline. They
do however play a major role in border enhancement as we shall see in chapter 4.

Each vertex has two (possibly empty) sets of ending and starting edges.
Consider vertex V waiting to be processed in bucket y. When the time comes
for V to be removed from the bucket, all its ending edges are already represented
in the AEL by their corresponding active-edges, and their actedge pointers are
therefore non-nil (Thus the actedge pointer provides a quick way to differentiate
starting from ending). A new active-edge is created for each starting edge, and:

e vTop and vBot are set to the edge vertices.

e zPrev is the X coordinate of vTop.

e zCur and slope are calculated from the edge vertices and the current scanline.
o The face-list! of the edge is sorted into the rightFaces and leftFaces lists

(see 2.3.1 on the order of faces in each list), and an active-face is created for

each face segment.

t Wires are ignored at the moment. They are displayed only in border
enhancement mode.
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e The new active-edge is then inserted into the AEL in the position of V (i.e.,
just before the edge that is closest to V' from the right). If there is more than
one starting edge, all are inserted at that position, correctly sorted by slope
between themselves.

The next actions are dependent on the number of edges in each set. If there
are exactly one ending edge and one starting, we know for sure that they belong
to the same contour(s), and use this fact to transfer as much information as we
can from the old to the new (see Figure 2.4):

e The matching pointers are copied from the ending active-faces to the respec-
tive starting active-faces, and in the “matched”} active-faces the maltching
pointers are shifted from the ending to the starting entry.

e Ranks are transferred from ending rightFaces to the respective starting
right Faces.

ending edge
f Yy \

y+1

current

scanline

starting edge
.............. » old matching pointers

————> new matching pointers

Figure 2.4. New vertez V, with one ending edge and one starting edge.
o “matching® posnters adjusted.
e Ranks copsed from ending to starting “rightFaces”.

} I the matching pointer in FACE-START A points to FACE-END B, we say
that B is “matched” by A, and vice versa.
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The general case of dealing with the edges attached to a vertex is quite
complicated, and the STACK algorithm can handle it much more efficiently then
any special processing here. Therefore in all other cases, ranks and matching
information is simply erased in the faces that use our vertex and in the “matched”
faces.

2.5. The STACK Algorithm

Once the AEL is updated and ordered, the STACK algorithm starts at the
first (leftmost) edge in the AEL, with an empty stack, A NULL current face,
and a rank counter which is set to 0. The first (topmost) face segment1 in the
rightFaces list of this edge is declared to be the current face, and processing begins
on it. To process a current face means to scan the AEL from the left boundary of
the face to its right boundary, and determine when (if ever) its visibility changes.

As our “scanning ray” moves to the next edge in the AEL, certain actions are
done on the leftFaces list and then on the rightFaces list of that edge. Those
actions depend on the current face and on temporary states of the edge and items
in the above lists. When processing is finished on allitems in the two lists, the edge
is marked and it will not be considered any more on this scanline. The “scanning
ray” is actually a pointer to the AEL. Whenever it advances to the next edge in
the AEL it checks to see whether the edge is marked. If so, it immediately goes
on to the next edges until it gets to an unmarked one.

If the next edge contains in its leftFaces list the FACE-END of the current
face, and its rightFaces list is empty (a contour edge), then processing is
terminated on this face. The rank counter is incremented by one and copied
to the rank of the current face. Since the algorithm causes the frontmost face
of any overlapping faces to have its processing terminated first, the ranks of two
overlapping faces may be used on the next scanline to indicate their relative depths.
(Ranks of two non-overlapping faces are meaningless, so if such faces become
overlapping on the next scanline, we make sure that their ranks are erased to
prevent wrong depth ordering based on those ranks. see 2.4). After ranking the

t To simplify the description from this point onward, I will refer to “face
segments” simply as “faces”, and ignore the fact that a single UNIGRAFIX face
may be represented by multiple segments on the current scanline. It does not
reduce the generality of the algorithm because every segment is uniquely identified
and referenced by its FACE-START and FACE-END entries.
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face, the stack is popped, the popped face becomes the current face, and processing
is resumed on it. When this occurs, the ray jumps back to the position in the AEL
it had when that face was pushed onto the stack. Thus, the algorithm does not
always follow a strict left-to-right processing order.

If the next edge terminates the current face as above, but the rightFaces list
of the edge is not empty (a seam edge), then the first FACE-START item in that
list becomes current face without any depth comparisons, and without popping
the stack. This transfer of the “current” title from face to face is called a “same
level” transfer because the scanning ray doesn’t have to jump up to a new hiding
face, or to fall back to a face that was just popped from the stack. “Same level”
transfers are repeated as long as the edge that terminates the current face has at
least one rightFace, and the processing of the current face is not suspended by
some hiding face. The collection of such contiguously connected faces creates a
long pseudo “current face” which has all the properties of a regular current face
except that it is piecewise. Whenever each face in that collection is terminated,
its rank is set to the rank counter, but the counter is incremented only once, so
all of them get the same rank.

If the first face in the rightFaces list of the next edge hides the current
face, processing of the current face is suspended, and it is pushed on the stack
together with the current position in the AEL. The hiding face becomes current
and processing is started on it. The first step in processing a new current face
is to find its right boundary (i.e., the corresponding FACE-END entry). In most
cases this information is already stored in the matching field of the FACE-START
entry. Otherwise we find it by a forward linear search across the AEL, and once
found we store the relevant pointers in the matching fields of the new face and its
FACE-END. If however our current face hides the faces in the rightFaces list of
the next edge, nothing happens and processing continues.

If a face in the leftFaces list of the next edge is not the FACE-END of the
current face, then it is the FACE-END of a face that is currently invisible. The
algorithm marks that it has seen the right end of this face. If that face was current
at some previous point, then it must have been pushed on the stack, and it still
waits there to be popped out. When eventually it gets popped off the stack, the
mark will cause the algorithm to immediately rank it and pop the next face from
the stack. If however the face was invisible all the way, and never got to be current,
then the mark has the effect of removing the face from further consideration on
this scanline. A major advantage of the above mentioned big “piecewise current
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face” is that all the faces that start and end within its span are practically ignored
without spending any computation time on them.

Notice that two different marks were mentioned here. To distinguish between
them we’ll call them e-mark and f-mark; an active-edge is e-marked when all its
left and right faces have been processed, and a FACE-START is f-marked when
the scanning ray passes its matching FACE-END. The marks are kept in the
corresponding data structures, although not shown in figure 2.2.

The following two sections restate and summarize in an orderly way what is
done on each list of the next edge during the processing of the current face.

2.5.1. Processing the leftFaces

All the items in the leftFaces list are FACE-END’s of some faces. One of
them may be the FACE-END of the current face, in which case it must be the last
item in the list, because of the way the list is sorted (see 2.3.1). To realize that,
suppose f) is a FACE-END in the left Faces list, and it ends the current face. f;
is another item that comes after f; in the list; since f; succeeds f; in the list, the
face it ends hides the current face, and therefore would have become current itself!

The algorithm traverses the list from head to tail. All the list items, except
possibly the last one, are right ends of invisible faces which have to be f-marked.
The actual f-marking is done on the left border of the face (i.e., the matching
FACE-START entry of the face), and we find the pointer to it in the matching
field of our item. If matching is not set then we find it by a backward linear
gearch on the AEL, and once found record our findings in the relevant matching
pointers.

If the last item in the list ends the current face, then we rank the face and
terminate its processing. If the face got to be current in a “same level” transfer,
then we want it to have the same rank as the previous current face, therefore the
rank is simply set to the rank counter. Otherwise the rank counter is incremented
by one before the setting. If the current edge is a contour edge, we pop the stack;
if the popped face is f-marked, we increment the rank counter and rank the face.
Then we pop more faces in a similar way until the popped face is unmarked. That
face now becomes current, and the position in the AEL is reset to the position it
had when this face was pushed onto the stack. If, on the other hand, the edge is
a seam edge then a “same level” transfer will occur, so the stack is not popped.

When the algorithm is done with all the leftFaces, it sets a flag in the active-
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edge to remember that. This is necessary because this active-edge may be visited
again and again until all its rightFaces are processed, and we do not want to
repeat the processing of the leftFaces.

2.5.2. Processing the rightFaces

The items in the right Faces list are FACE-START’s (left boundaries) of some
faces. The first item in the list is the topmost and hides all the others.

When a right Face is processed, we determine its depth relation to the current
face. If the current face is NULL (e.g., at the beginning of the scanline, or in
open spaces between objects) or is farther than the rightFace, then it is pushed
on the stack with the current position in the AEL (i.e., the edge we're processing
right now), and the rightFace becomes current. Otherwise nothing happens and
processing continues on the current face.

The second way a rightFace could become current is via a “same level”
transfer, i.e., the edge it belongs to is a seam edge and the current face had just
terminated on the last item of its left Faces list. In that case no depth comparison
is needed and nothing is pushed on the stack.

When a rightFace becomes current in one of those two ways, we find
its corresponding FACE-END. Finding that right boundary is not a necessary
requirement of the STACK algorithm; rather it is a means of insuring scene
integrity and optimizing other parts of the algorithm which require one boundary
to know where the other boundary is (e.g., f-marking the right Face of a segment
when passing its right boundary). If no right boundary is found, then either the
FACE-START entry is ignored, or some error recovery takes place. After doing
that, the scanning ray moves to the next unmarked edge and continues processing
of the new current face.

The rightFacesPointer of the edge initially points to the first item in the
rightFaces list. It advances to the next item whenever the face it points to
becomes current, or f-marked. When it gets to the end of the list, we know that
all the faces that began on this edge have been accounted for, and that we can
finally e-mark the edge. Consider for example an edge E with the rightFaces list:
fi,fa,f3. A typical scenario involving E can be the following:

e When the ray arrives at E for the first time, f; is compared with the
current face, found to be closer, and becomes current. The right FacesPointer
advances to f;.
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e The ray advances to the next unmarked edge and processing continues. At
some point the ray passes the matching FACE-END of f;, so we f-mark f;.
Processing continues until at some later point the stack is popped, and the
ray jumps back such that E is again the next unmarked edge.

e Since f; is f-marked the right FacesPointer moves to f.

e f3 is found to hide the current face, and becomes current.  The
right FacesPointer is now at the end of the list, so E can be e-marked.

2.5.3. Producing Output

The algorithm outputs pixel spans in a monotonous left-to-right fashion, and
puts a marker on the rightmost edge for which output has been produced. Each
face is potentially visible whenever it is current, but if the face became current
after the ray jumped to the left, then no output is produced until the rightmost
marker is passed.

The display module collects sub-spans of the current visible face into a single
unified span, and this span is sent to the output device when it ends. We know it
ends when the current visible face changes.

More specifically, the display module keeps pointers to the currently visible
face ( VisFace), the edge where it started to be visible (Start), and the right limit
i.e., the edge where it ceases to be visible (Limst). When more contiguous spans of
the same face are sent from the STACK module, the right limit is updated. When
a span from a new face arrives, the VisFace is sent to the output device spanning
from Start to Limst. Then the VisFace is set to the new face, Start is set to the
Marker, and Limit to Next.

Notice that when the current face is NULL, the NULL face is sent to the
display module. This face will not be sent to the output device, but serves to flush
out the current span.

2.6.4. Coherence and Depth Comparisons

Hidden surface algorithms use depth comparisons to select the visible face
from a set of overlapping faces. This operation is carried out many times, so we
try to optimize it and to minimize the number of floating point calculations. Once
the depth relations among a set of faces have been established, we would like to
use it to prevent re-calculation of known relations, and to infer more relations.
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We have a set of assumptions about our environment and exploit any form
of coherence that can be deduced from this set; see Sutherland et al {17] for an
excellent discussion about types of coherence and their use. The more assumptions
we make on the environment, the more types of coherence we can exploit, but
correspondingly the set of legal scenes gets smaller. The UNIGRAFIX language
supports concave faces with multiple contours and holes, and those faces may
cyclically overlap each other. Therefore the only assumptions about faces are that
they are planar (to a reasonable degree), do not have self intersecting contours,
and do not intersect each other. There is no notion of a solid body, but by using
named vertices the language allows the user to define faces with shared edges, and
imply face continuity across those edges.

Given the above assumptions, UGDISP exploits depth coherence of non-
intersecting face segments rather than of whole faces. Scanline, edge and face
coherence are exploited in updating the AEL for the next scanline and by passing
the matching information across scanlines. Area coherence guarantees that the
same shading level can be used for an output span between its left and right limits.

Whenever two faces! are compared, the depth relation is remembered by
storing the pointer to the hiding face in the hiding field of the hidden FACE-
START. The implementation of the STACK algorithm on a system with limited
virtual memory (such as UNIX), requires deallocation and reuse of space for data
structures. Suppose that for some face-starts f; and f;, we set fo—hiding = f;
on some scanline; when we try to reference f;—htding a few scanlines later, it
may happen that the space pointed to was deallocated and is now used by another
face! So storing just the pointer is not enough. To avoid such dangling reference
problems, a valsdsty stamp is attached to that pointer. This stamp is the number
of the scanline in which the comparison had taken place. The program guarantees
a gap of two scanlines between deallocation and reallocation of the same space for
two different face entries; therefore a hiding pointer with a stamp higher than the
previous scanline is invalid. As a matter of fact, the hiding pointer is updated
only if the validity stamp is older (i.e., higher) than the current scanline. If f,
hides f3, but the stamp in f; equals the current scanline then f; was hidden by
some f3 earlier on this scanline, and we want to keep the pointer to f; because it
is most likely that on the next scanline f; will be compared with f; before it will
be compared with f;.

The following tests are applied when the algorithm has to answer the question

t As in section 2.5, I will refer to “face segments” simply as “faces”.
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“which face is closer, f; or f3 7”.

H fy—hiding is valid and points to f3, then f; hides f;.

H f,—hiding is valid and points to fi, then f; hides f;3.

If fi—rank and f—rank are both non-zero, then the face with the smaller
rank hides the other face.

If none of the above worked, we have to calculate the depths of the two
faces at the point of interest and to compare those depths. Remember that
depth comparisons are done when during the processing of the current face we
encounter an edge with a non-empty rightFaces list. Let’s denote the next
edge by E, the current face by Current, and the rightFace of E by New.
The coordinates of the point of interest are:

z = E—zClur,
y = scanline.

The depth of Current is found from the plane equation of the face. If the

plane equation is:
a*xX+bxY +ecxZ+d=0,

then the Z coordinate of (z,y) on that plane, which we shall call zCur, is:

axz+brxy+d
p .

zCur = —

The depth of New could be found in the same way from the plane equation
of the new face, but since we know that (z,y) lies on the edge E, we can use
a more precise method:

Let v, and v, be the end vertices of E, and let

Az = vz — v —z,
bz =z — vz,
2 = U2,
23 = Ug—2.
Then we can find the parametric position t of (z,y) on E, and use it to find
the Z coordinate of that point, which we shall call zNew:
t=6z/Az,
zNew =t x*(z — 21) + 2.
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If Ay is greater than Az we shall use Y instead of X to gain more precision.
Moreover we have to make sure that ¢ is in the range [0, 1}, and clip to that
range otherwise.

Once zCur and zNew have been determined, we compare them, and the face
with the smaller depth hides the other face.

e If zCur and zNew are too close to make a safe decision, we choose another
point on E which hopefully will result in a clearer distinction between the
faces. This point is the vertex of E which is farther from (z,y) than the
other vertex. zCur is found, as before, from the plane equation, and zNew
is readily given by the Z coordinate of the vertex. They are compared, and
the face with the smaller depth hides the other face.

o If the new values of zCur and zNew are still too close then E lies in the
plane of Current. The faces’s slopes are then compared with the “open book”
sorting method, as if both of them are rightFaces of E (see section 2.3.1), and
the face in front is the face that is closer to the viewer.

o If the slopes are equal then the two faces are co-planar. Co-planar faces may
occur in UNIGRAFIX scenes that were created by generators like UGSWEEP,
or simply by attaching two objects together. The mutual orientation of
the faces is determined, i.e., whether their normals point to the same or to
opposite directions. Opposite orientation will occur if one face is a back-face
and the other is a front-face (a back-face is a face with a normal that points
away from the viewer, but was included in the rendered scene because of the
-ab display option).

o If the faces have the same orientation then I assume that the topology of
the faces that are attached to our compared faces is such that Current
belongs to the visible surface, and that New belongs to the hidden surface.
Therefore Current stays current, and New is hidden.

o If the faces are back-to-back then the back-face hides the front-face. This
may seem counter-intuitive at first, but to realize why it is true consider
the following example: Cube A is mounted on top of cube B such that
the top face of B and the bottom face of A coincide, the top face of A
is removed, and we view the scene from above, so we can see the insides
of A. From this view point, the top face of B is a front-face while the
bottom face of A is a back-face, but we expect to see the latter!t

tItis possible to create an “adversary” UNIGRAFIX scene such that in a back-
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current

V1 scanline
> X
visible lines
"""""""" hidden lines
ABC.. active edges

Pigure 2.5. A cube with rectangular holes, projected on the view plane.
Edges A to K intersect the current scanline.
(viewing parameters: -ep 3.2 1.5 -4 -vr 15)

2.5.5. Examples

Figure 2.5 shows a perspective view of a cube with a rectangular hole in each
infinitely thin face. Hidden lines are shown dashed. Let’s follow the execution of
the algorithm on the marked scanline during the display of this cube. Figure 2.6
shows the intersection of the horizontal sweep plane at the current scanline with
our scene. Edges are denoted with capital letters (e.g., A), and face segments are
denoted by their bounding edges (e.g., (4, B)). Notice the following facts:

o Each face is represented on this scanline by two segments; e.g., (4, B) and

to-back case the front-face is the one that should be visible. Nevertheless, such
scenes are relatively rare, and the practical solution for a correct rendering then
would be to slightly separate the co-planar faces from each other.
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(G, H) belong to the same face.
o Edges E and H are seam edges, and all the others are contour edges.

o Edge A has a rightFaces list of two items. Following the sort rules from
section 2.3.1 we see that (A, B) should be the first, and (A4, C) is the second.
Similarly, K has a leftFaces list of two items.

The NULL face

Aq B! Cv Dv Go Ev Fa Hv lv r L‘ Kl

B face segment bounded by edges A and B

"""""""" > path of the scanning ray

A’ the X intersection of edge A with the current scanline

Pigure 2.8. Trace of the STACK algorithm on the current scanline.

The sorted AEL is illustrated in 2.7. The matching pointers were set in
previous scanlines. The stack is initially empty, the current face is NULL, and
RANK = 0. When some face-start (X,Y) and edge Z are pushed onto (or popped
off) the stack, We’ll use the notation: ((X,Y),Z).

o The first unmarked edge is A, so face (A, B) becomes current face, and the
right FacesPosnter is advanced to (A,C). The NULL face is pushed on the
stack together with position A.

e At B, processing of (A, B) is terminated. RANK is incremented to 1, and
(A, B) is ranked 1, and f-marked. B is e-marked. The stack is popped and
the current face is set to NULL. The ray jumps back to A.

e The rightFacesPointer is on (A, C) now. The currentfaceis NULL so (4,C)
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FPigure 2.7. The active edge list.

becomes current. It is the last item in the rightFaces list, so A is e-marked.
(NULL, A) is pushed onto the stack.

At C, processing of (A, C) is terminated. RAN K is incremented, and (4, C)
is ranked 2, and f-marked. C is e-marked. (NULL, A) is popped from the
gtack and the current face is set to NULL. The ray jumps back to A.

The next unmarked edge is D. (D, E) becomes current, and D is e-marked.

At G, we compare the relative depths of (D, E) and (G, H); the latter is closer
8o ((D, E),G) is pushed, and (G, H) becomes current. G is e-marked.

At E, we see the right end of (D, E) so it is f-marked. (G, H) wins the depth
comparison with (E, F) and stays current. E is not e-marked yet because
(E, F) is still potentially visible.

At H, the current face terminates. RANK is incremented to 3, and (G, H) is
ranked and f-marked. Face (H, I) becomes current in a “same level” transfer
because H is a seam edge. H is e-marked.
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o At F, we see the right end of (E, F), so it is f-marked. The rightFacesPointer
of E is advanced to the end of list, so E is e-marked. F is also e-marked.

At I, processing of (H,I) is terminated. It started as a “same level” edge,
therefore it is ranked 3 (without incrementing RAN K) and f-marked. I is
e-marked. Face (D, E) is popped from the stack. Since it is already f-marked
we immediately give it rank 4 (RAN K incremented), and pop again. The
current face is set to NULL, and the ray jumps to D.

Next unmarked edge is J. (NULL, J) is pushed, and (J, K) becomes current.
J is e-marked.

At L, face (J, K) is compared with (L, K) and loses. So ((J, K), L) is pushed,
and (L, K) is current. L is e-marked.

e At K, we see the right end of (J, K), so it is f-marked, and J is e-marked. The
current face also terminates at K. It is f-marked and ranked 5. ((J, K), L)
is popped from the stack, but it is already f-marked, so it is immediately
ranked 6, and the stack pops again. The ray was supposed to jump to J to
look for the next unmarked edge, but since K is the last edge in the AEL,
we know that by now all edges are e-marked and all faces are f-marked, so
processing of this scanline is terminated.

Spans sent to the display module are:

(A’ — B') from face (A, B).

(B' — C') from face (4,C).

(D' - G') from face (D, E).

(G' — E’) and (E' — H') from face (G, H).

(H' — F') and (F' — I') from face (H,I).

(J' = L') from face (J, K).

(L' — K') from face (L, K).

Figure 2.8 shows the actual output the algorithm produced from our scene.

Figure 2.9 illustrates more complicated cases which did not appear in the
previous example. The reader is encouraged to trace the algorithm'’s execution on
this scene, and verify the path of the scanning ray and the resulting ranks of the
faces. To clarify a few fine points, note the following remarks:

o Processing of (A, B) is suspended and resumed three times. Whenever it is
popped from the stack, processing is resumed at the position in the AEL it
had when it was pushed.
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FPigure 2.8. The final result: hidden surfaces are removed, visible faces are

shaded.
(display options: -sf -ab)

o No processing is done on (G, H). Consequently it gets no rank.

o When the ray gets to N the state of the algorithm is:

Stack: Current:
(J, K) M f-marked (M, N)
(E,F) I f-marked
(A, B) E
NULL A

face position  status

After processing of N the state becomes:

Stack: Current:
NULL A (M, N)

face position status



2. THE HIDDEN SURFACE ALGORITHM 27

and the following ranks are assigned: (M, N) « 3, (J,K) — 4, and (E,F) « 5.
o Although J and K are seam edges, faces (I,J), (J,K) and (K, L) all get
different ranks! The reasons are:
(J,K) starts in a “same level” transfer, but ends as hidden while (M, N) is
the current face; therefore it gets ranked when it is popped from the stack.
(K, L) becomes current during the processing of (4, B), and not by a “same
level” transfer.

The NULL face

A C ED G'r r r M K N L B

Figure 2.9. Another ezample of the STACK algorithm.

The numbers above the face segments are the resulting ranks.

2.5.6. Optimizations

If no new vertices were added to the scene at the current scanline and no
two edges swapped their positions in the AEL, then there is no need to run the
STACK algorithm; depth coherence of faces guarantees that the same faces which
were visible on the previous scanline will also be visible on this scanline, and in
the same order. Therefore if we keep a list of all the output spans, with pointers to
their left and right bounding edges, this list could be used to produce the output
spans for the next scanline, with the updated X intercepts of the edges in the
AEL. This observation was first made by Romney (see the section on Scanline
Algorithms in [17]); its implementation is simple and it saves a lot of computing
time in constant parts of the scene.
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Another type of optimization involves the capabilities of the output device. If
the device is capable of accepting polygon descriptions, then the above list could be
used to group several spans of a visible face into a single trapezoid. Communication
to the device usually takes a significant amount of I/O and system time, so this
greatly reduces total execution time.
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3

Display of Intersecting Faces

This chapter describes the modifications and extensions o the basic
algorithm that are required to detect intersecting faces and correctly
display them.

By allowing faces to intersect, we violate one of our basic assumption, so we
have to identify the parts of the algorithm that depend on the non-intersection
assumption and remove that dependency. Then we have to add the modules to
detect intersections and incorporate them into the general framework. Detection
and construction of intersection lines are performed on the fly during the STACK
algorithm, and they make effective use of its features to minimize the extra
computation. Once the intersection edges are inserted, they act very much like
regular edges, and require very little special processing.

3.1. Modifications to the STACK algorithm

When we review the ways in which the basic algorithm exploits coherence we
realize that most of them stay valid in the presence of intersecting faces, provided of
course that the intersection lines are detected and made into ordinary edges. Some
of them are valid most of the time except in the close vicinity of the intersection
lines. More gpecifically:

e The AEL still represents exactly those edges that intersect the current
scanline, provided that intersection lines are added and removed at the correct
points.

e The X-intercept of an edge on the next scanline can still be found from the
current intercept incremented by Az/Ay, because intersections do not affect
edge linearity.

o An output span between two consecutive edges in the AEL is guaranteed to
belong to a single face (again, after the new edges are present in the AEL).
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o The hiding fields in active-faces (see 2.5.4) are valid across scanlines, provided
that when an intersection is detected between faces f; and f;, their hiding
pointers are mutually adjusted. No other depth relation is affected by that
intersection.

e Ranks of active-faces behave the same way as hiding pointers. Making sure
that at least one of the ranks of the two intersecting faces is zero, guarantees
that no order is implied between them. The partial order of the set of all
ranked faces stays valid.

One use of coherence that we have to give up is the use of matching pointers.
Since intersection edges may come into existence at any point during execution of
the STACK module, we cannot just use the FACE-END from the previous scanline
when we look for it on the curren! scanline; instead, we have to perform a forward
linear search. In fact, as described in the next section, we get the FACE-END as a
by-product of detecting intersections. Once the matching relation has been found
for some face on the current scanline, we can use it to f-mark the FACE-START
when we pass the FACE-END of that face, because our method guarantees that
when the ray is at some position E in the AEL, all the intersection lines to the
left of E have already been discovered and added to the AEL.

Since intersections are detected during execution of the STACK algorithm, we
have to run it on every scanline. Thus we cannot reuse the image of the previous
scanline on the current scanline, even if no new vertices were added and the order
of edges was not changed in the AEL (see section 2.5.6).

8.2. Detecting Intersections

The main advantage of handling intersections as part of the display process,
over pre-processors for intersection removal, is that the former has to find only
the visible intersection lines, while the latter has to find and remove all the
intersections in the scene, regardless of viewing direction. Those pre-processors
usually test each polygon in the scene against all other polygons, and may have
a quadratic time and space behavior. Bounding box tests may alleviate the task
for well structured scenes [9]. UGDISP, on the other hand, detects intersections
only for current faces, and each current face is tested only with those faces that
overlap it on the current scanline. Also, intersection edges are added to the AEL
only if they are visible (i.e., to the right of the output marker).

Recall from section 2.5 that when a FACE-START entry becomes the current
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face, we first find its matching FACE-END. When handling intersection, another
important task is performed before processing continues; a list is made of all the
faces that may penetrate this current face during its processing. This list will be
inspected every time the scanning ray moves to the next edge in the AEL, to test
if some intersection line becomes visible. Clearly we want to minimize the size of
this list and the effort to create it each time for the current face.

Theoretically every face on the current scanline is a potential penetrator,
except for all those faces that are parallel to the current face. Actually, even if the
planes of two faces intersect, the two individual segments cannot intersect if they
do not overlap. Therefore the horizontal span of a current face f; on the current
scanline is used to limit the set of faces that will be tested: faces that have already
ended (f-marked) by the time f; becomes currentand faces that start to the right
of fi’s FACE-END are not tested. Culling out the faces from the left is achieved
by keeping a pointer to the lim-inf of unmarked edges, i.e., the rightmost edge in
the AEL for which all the preceding edges are already e-marked. We start at that
lim-inf, move along the AEL until we find the FACE-END of fi, and on the way
add each unmarked FACE-START to the potential penetrators list (PPL) of fi,
as described in section 3.2.1. Clearly the edge that contains f;’s FACE-END in
its leftFaces list, is the lsm-sup of our set, i.e., the leftmost edge in the AEL for
which all the succeeding edges do not overlap f; on the current scanline.

When the PPL is ready, we have the matching FACE-END of the new current
face as well, and processing of f; begins. Section 3.2.2 describes how the list is
used to detect faces that realize their potential.

3.2.1. Adding a Potential Penetrator to the PPL of f,

Each item in the PPL is a FACE-ISECT structure, containing the following
information:

e ppFace is a pointer to the potentially penetrating FACE-START.

e (u,v) encode the intersection line between the planes of the current face and
ppFace; u is the direction vector u = (a,b,c) of the line, and v is some point
v = (z,y, z) that lies on it.

o zlsect is the X-intercept of the intersection line with the current scanline.
The encoding of the intersection line is derived from the plane equations

of the two faces and therefore stays invariant through the whole scene. Since
any two faces may overlap across many scanlines, we store that encoding, once
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calculated, for easy retrieval the next time we will need it. The obvious place is
the FACE static data structure; so for each FACE entry an additional linked list
holds descriptions of intersection lines with other faces. Figure 3.1(a) shows part
of the static data structure where intersection data has already been calculated
for faces (a,B) and for faces (a, 7). Notice that this time we are talking about
whole faces, and not just segments, because all the segments of a face have the
same plane equation.

FACE FACE FACE
ﬂ ‘m(secﬁ o monf v List of intersections
— l\]lj ——'[‘) l l QY ——’[l l l l]
ISECT-PLANE ISECT-PLANE ISECT-PL. ISECT-PLANE
face | ~ face face / + face
data 4 L data data L data
ISECT-DATA ISECT-DATA
(u,v) 4. . (“vv)
status status

e

List of potential penetrators
FACE-START FACE-START : PPL —f ]

l

ISECT-FACE

\~....~_ - ppp‘ce
e and I (uvv)

current face
xIsect

/\ Iy

(b)
Figure 3.1.
(a) Keeping intersection line data in the siatic data structure.

(b) The PPL in the dynamic data structure.

f1 is the current face, fi’s face is a, and f3's face is B. The status flag sn
ISECT-DATA is set if this sntersection is currently represented as an edge in the
AEL.




3. DISPLAY OF INTERSECTING FACES 33

Suppose now that we have to add FACE-START f; to the PPL of the current
face fi. First, we search the intersection list of f,’s face for an entry with f;’s
face; if found, and if the status flag is not set, we take the intersection data from
there. If the flag is set, then an intersection edge already exists for f; and f3, so
f2 is not added to the PPL. If such an entry is not found, we have to calculate it.
The following calculation of the intersection data is taken from [9].

From the FACE structures we obtain the normalized plane equations:

az+ bly +c1z2= —dl
a3z + by + c22=—d

The vector (a;, b;, ¢;) is the normal to the appropriate face.

The direction vector u of the intersection line is found by computing the cross-
product of the two plane normal vectors and normalizing the result. To obtain a
point v on the line, we introduce a third arbitrary plane equation, constructed to
have normal u and to pass through some vertex in one of the faces, yielding:

a by ¢ z "dl
az by e y|=1|-4%]|,
as b3 C3 z -—d3

Av=d

or,

The system is nearly orthogonal, since each of the rows r; of A is a unit vector,
and r; -r3 and r; -r3 are both gero by construction. We need only alter r; so that
it is orthogonal to r;. We apply the elementary row operation:

R, — R, —(r;-r3)R;

and renormalize: 1

Irl
with R; = (a;,b;, ¢s,d;). ] is a three-vector whose components are the first three
components of R; after the first row operation. The resulting system is orthogonal,

R, —« R,

and we obtain our point:
v=ATd,

where the primed quantities represent the result of the orthogonalizing row
operations. The intersection line encoding, (u,v), is stored in an ISECT-DATA
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entry, and the proper ISECT-PLANE entries are added to the intersection lists of
fi’s and f's faces.

The X-intercept of the intersection line with the current scanline y is
computed from u and v. The complete item is now inserted to the PPL of fi,
which is kept sorted by the X-intercepts. Figure 3.1(b) shows f’s PPL after the
insertion.

8.2.2. Finding if f, is Penetrated

In processing of the current face f), the scanning ray moves from the edge it
had last processed to the next unmarked edge. When intersections are not allowed,
we are guaranteed that along the span between those two edges f, stays current,
and hides all the yet unmarked faces. However, when handling intersections,
another face may penetrate f; within that span and should be made the current
face instead. Notice though, that we care about penetrating faces only if f; is
visible (i.e., the next unmarked edge succeeds the output marker). As long as f;
is still invisible, the intersection line would also be invisible, so we ignore it.

Before processing the next unmarked edge (which we shall call Nezt), we
examine the items in the PPL from head to tail in order to determine whether
an intersection line falls within the relevant interval on the current scanline. The
following is done on each item:

o If ppFace is {-marked, then this face has already terminated, so the item is
removed from the PPL.

e If zIsect is smaller than the output marker, or if it is larger than the right
end of f;, then the intersection line lies outside the relevant part of fi, so the
item is removed.

o If zlsect is larger than Nezt— zcur, then no penetration will occur before
Nezt. Since the list is sorted by zIsect, the next items will also have an
zlsect field larger than Nezt—zcur, so we stop examining the list. No item
is removed from the list.

e We now know that ppFace is still active, and that the intersection line lies
within the relevant part of f; and comes before Nezt. If the line lies outside
ppFace, nothing happens, but if it lies within the span of ppFace, then a
penetration occurs! We stop examining the list, and an intersection edge will
be created and inserted to the AEL. In both cases the item is removed from
the list.
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If a penetration was not found, f, stays the current face, and Nezt is the
next edge to be processed.

3.8. Incorporating the Intersection into the Data Structure

Suppose that while f; is current and Nezt is the next unmarked edge,
penetration of f; was detected. The first step of incorporating the intersection
line into the AEL, is to set the status flag in the corresponding ISECT-DATA
entry. When f, later becomes current on the next scanline and a PPL is built for
it, this flag will have the effect of excluding f; from the PPL. After setting the
flag, we create a new ACTIVE-EDGE structure and fill it with data:

o A new VERTEX entry is created for the top vertex. Its Y coordinate is y
(the current scanline), the X coordinate is zIsect from the PPL item, and Z
is calculated from the plane equation of one of the participating faces. vTop
is set to this vertex.

e The bottom vertex stays unspecified because we don’t know yet when and
where this intersection edge is going to terminate; so vBot is NULL.

e slope is calculated from the direction vector of the intersection line.
e zPrev and zCur are set to zlsect.

e leftFaces and rightFaces lists are constructed to represent a “cut” of one
face segment into two segments.

Cutting just one face insures correct behavior of the STACK algorithm (Once
again, this is simpler than intersection removal pre-processors which usually cut
both faces). The face that gets cut is arbitrarily chosen to be the face that is
hidden on the left side of the intersection line, and biding on the right side. It
is determined by the same technique that is used to do the “open book” sort on
faces for ordinary edges (See 2.3.1). Figure 3.2(a) illustrates a situation where the
penetrating face is cut, while in 3.2(b) the current face gets cut.

Let f, be the cut face in our example (as in figure 3.2(a)). The rightFaces
list of the new active-edge consists of a single FACE-START entry, which we shall
call fIsect. Its fields are set as follows:

e fromFace is set to f3's face.

e If f; — matching is set, then fIsect — matching is set to it, and the
matching pointer in the matched FACE-END is set to fIsect. Otherwise
fIsect—matching is set to NULL.
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(2) (b)
current face

D penetrating face

sme—m  intersection edge

Figure 8.2. Which face wsll be cut into two segments?
(a) The penetrating face.
(b) The current face.

e rank is set to 0.

o If f,—hiding pointer is “fresh” (validity stamp equals to current or to previous
scanline) and does not point to f1, then fI sect—hiding is set to it (remember
that fIsect hides fi!). Otherwise it is set to NULL.

The leftFaces list of the new active-edge consists of a single FACE-END
entry; its fromFace field is set to f3’s face, the matching pointer is set to fa, and
fo—matching is set to point back to this new FACE-END.

The hiding pointers of the two original faces are modified as well (unless they
have fresh settings from the current scanline): fi—hiding is set to fIsect, and
fa—hiding is set to fi.

Finally, the AEL is searched from Nezt backwards for the correct X position,
and the new edge is inserted there. The search is necessary because there may be
gome already marked edges between Nezt and the correct position.

3.4. Special Processing of an Intersection Edge

Once the intersection line is incorporated into the AEL, it requires no special
processing in the STACK module. However, we still have to find where it
terminates. The line ceases to be a real edge when it crosses another edge that
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belongs to any of the two faces that had originated the intersection. Figure 3.3
illustrates a typical intersection edge. The intersection line between faces a and
B starts invisible under face v, and is made into a real edge only when it first
becomes visible at point T. The edge terminates at point B; B is on the first
scanline where the intersection edge crosses another edge that belongs to a or to

B.

intersection edge / :

intersection line

Figure 3.8. Top and Bottom endpoints of an intersection edge.
Hidden lines and the intersection line are dashed.

Recall that when the AEL is updated for the next scanline, we bubble-sort the
list with the new zCur values of the edges as the sort key (section 2.4). Whenever
two edges are swapped we check the following conditions:

o If one edge is an intersection edge, and

o The second edge is not an intersection edge, and

o The second edge is used by one of the two faces that intersect on the first
edge, and

o The two edges actually cross each other (they may have to be swapped to
achieve correct zCur ordering, but if one or both of them had just ended or
had just started on this scanline, they do not necessarily cross).

If all these conditions are true, the intersection edge terminates, and the

following is done:
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o The edge is flagged as endsng.
e The status flag in the relevant ISECT-DATA entry is reset.

e If the matching pointer of the right Faces is set, then the matching pointer
in the matched FACE-END is reset.

e The FACE-START of the cut face ( f3 in our example) is found either by using
the matching pointer in the le ft Faces of the intersection edge, or by a search
on the AEL if that pointer is reset. On this FACE-START we do:

e The rank is geroed.
e The matching pointer is reset.
e If the hiding pointer points to a FACE-START whose face is the second

face of the intersection pair (a in our example), then this pointer is reset.

Notice that we do not bother to find the exact point where the intersection
edge terminates. This will be important only in border enhancement mode.
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4

Border Enhancement

Enhancing polygon borders with solid edges gives the picture a “crisp”
look and makes complicated pictures much easier to understand. It is
especially important when the output device provides a limited number
of colors or just black and white stipple patterns. Basically the same
work is required for producing just the line-drawing image of the scene.
In that case we draw only the crisp edges and omit the shading of faces.

This chapter describes the algorithms to draw borders in scenes with
and without intersecting objects.

In border enhancement mode we display the visible portions of edges with
maximal contrast to the backgroundf. Edges are used by wires and/or faces, but
for the sake of simplicity I shall discuss face borders only; enhancing wires is a
natural extension. The material in this chapter calls for a meticulous definition of
what was freely referred to as “scanline” in the previous chapters: Scanline y is
the horizontal line Y = y, and swath y is the horizontal strip between the previous
line (Y = y + 1) and the current line (Y = y). Swath y includes scanline y, but
excludes scanline y + 1.

The edges in the AEL that intersect the current scanline define a sequence
of spans on it. The STACK algorithm determines for that scanline which face
segment is visible along each of these spans. Using this fact, we can define an edge
to be visible if it bounds a visible face, i.e., if the visible face on its left is in its
leftFaces list and/or if the visible face on its right is in its rightFaces list. Soon we
shall see that this definition is not complete, because it does not cover edges, or
portions thereof, that are present on the current swath, but that do not intersect
the current scanline (and therefore do not participate in the STACK algorithm).
They may still be visible and must thus be enhanced as well.

t I assume a white background for our display, 8o edges are displayed in solid
black.
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Enhancing an edge E is an easy task on a swath where E does not start, does
not end, and does not cross any other edges, because its visibility cannot change
on such a swath. If E is invisible, according to the above definition, then nothing is
displayed, otherwise we blacken the pixels over the horizontal extent of the edge in
this swath, that is the range [E—zPrev, E—zCur] (or [E—zCur, E»zPrev] if the
edge has a negative slope). Note that the range limits are floating-point numbers,
while pixels are indexed with the integer coordinates of their bottom left corners.
Therefore the above range is interpreted as all the pixels from | E—zPrev] (the
integer part of E—zPrev) up to and including | E-zCur]. The resulting effect
is that all the pixels the edge passes through on this swath are enhanced. See
figure 4.1.

y+1

1 1

\E —zPrev) |E —~zCur|

Figure 4.1. Each square represents a pizel on the current swath. The pizels that

the edge passes through are enhanced.

In all other cases, E may experience visibility changes, and we have to find the
visible portions and their exact endpoints. Figure 4.2 exemplifies four cases with
increasing complexity. For cases (b), (c) and (d) there are also the corresponding
(b)",(c)’ and (d)’ showing the final picture with the correct border enhancement.

o Figure 4.2(a) shows the simple case mentioned above. If the STACK algorithm
finds that either the face to the left of the edge or the face on its right side is
visible, then a span of pixels is blackened as described above.

o In figure 4.2(b) we have a veriex ¢ with one ending edge and three starting
edges. For each of these edges we already know the exact endpoints of its
portion on this swath:

The top point of E is (E—zPrev,y + 1); the bottom point is a.
The top point of F is a; the bottom point is (F—zCur,y).
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(E—~zPrev,y+1) N/

scanline y+1

E swath ¥

scanline ¥
I~ (E—zCury)

(»

y+1

b) (by

(d) (dr
Figure 4.2. Problems encountered in displaying borders.

(a) Simple case, no problems.

(b) Ending and starting edges meet at a vertez.

(c) Two edges cross.

(d) Edges start and end on the same swath (SHE).

(b)’, (c)’ and (d)’ show the corresponding scenes after the hidden feature removal.
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G and H are analogous to F.

Suppose that the STACK algorithm has determined that the visible face
between G and H is f;. From this we find that F and G are visible, and
that H is invisible. As for E, it was visible on the previous swath, and no
other edge had crossed it on this swath, so it is visible here as well. As a
result, the pixels in the range [F—zCur, E—zPrev] are blackened. These are
the X extrema in this swath for all visible edge segments attached to vertex
a.

o In figure 4.2(c) two edges cross at an unknown point g. We first determine
the coordinates of ¢, then decide which of the four edge portions are vigible,
and finally blacken the pixels between the extremes of the range of visible
edge segments. It may seem at first that we need only two more fields in the
active-edge structure, namely zBorderPrev and zBorderCur. Then once we
know that f, hides fz, we can set them as follows:

E—zBorderPrev = E—zPrev,
E—zBorderCur = E—zCur,

F—zBorderPrev = g—z,
F—zBorderCur = F—zCur.

and use them for border enhancement (see [10]). But the example in
figure 4.2(d), in which one edge segment in the current swath is broken into
more than one visible segments, demonstrates that two such fields do not
suffice. Instead both edges must be cut at the crossing point g, resulting ina
situation not unlike the one in figure 4.2(b).

o In figure 4.2(d) we have four such crossing points: g, r, s and ¢, and for
each one we have to cut the two crossing edges. But another difficulty is
introduced here: some of the edges (both original edges, and edges created
by a crossing) start and end on the same swath. Recall from section 2.4.1
that such edges are termed sems horizontal edges (SHE’sT). They don’t carry
visibility information from the previous swath, nor do they participate in the
STACK algorithm, so their visibility must be found by some special purpose
processing.

Let’s review here once more the main modules of UGDISP and their interaction
with each other during the processing of the current scanline. The first step is a

t No sexism implied...
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pre-processing of the AEL for the STACK and display modules. It consists of two
passes on the AEL: In the first pass edges that ended on the previous swath are
removed from the list, the zPrev and zCur fields of the other edges are updated,
and new edges are inserted to the list. In the second pass all the edges in the
AEL are bubble-sorted by increasing values of their X-intercepts with the current
scanline. Every pair of adjacent edges that are in the wrong order is swapped, and
if those edges cross each other, the crossing point is found and each edge is cut
into its two sub-parts. The cross-point determination and cutting are done only
in border enhancement mode.

The second step is the STACK algorithm. The STACK and the display modules
concurrently perform one pass on the AEL during which the STACK module
determines the visible face segments, and the display module follows and displays
them. Whenever the STACK module advances to the next unmarked edge in the
AEL, and that next edge is farther on the list than the output right marker, a
message is sent to the display module containing the current visible face and the
boundaries of the last span. The display module collects all the contiguous spans
from that visible face into one super-span and sends it to the output device. Each
such super-span is bounded by edge-clusters from both sides. An edge-cluster can
gimply be the bounding edge, as in example (a) of figure 4.2; it can also be the
bounding edge together with ending edges that are connected to its top vertex, as
in example (b), or with ending edges that are connected to it by crossing points,
as in examples (c) and (d). The display module determines the horizontal extent
of the bounding edge-clusters and sends them to the output device as well.

It may be argued that in the first step there is no need to cut both crossing
edges into four sub-edges, and that cutting just the farther edge is emough.
Referring again to figure 4.2(d) it would mean that edges E, F, G and H would
stay intact, and that edge I would be cut into five sub-edges. Now look at the
edge-cluster that bounds span (E — F) from the right; edges (r,s) and G should
have been part of this cluster, but there would be no tie in our data structure
between F and (r, s), and edge visibility would not be able to “propagate” to (r, s)
and through it to G! It is true that G would be enhanced as the left boundary
of the visible span (G — H), but even then (r,s) would be isolated and unnoticed.
Therefore both edges are cut and tied together for correct and efficient border
enhancement.

Section 4.1 describes the processing of a crossing point, and section 4.2
describes how borders are found and discusses some of the techniques to find
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visibilities of SHE’s.

4.1. Crossing Edges

When we bubble-sort the AEL, we swap every pair of adjacent edges that are
in the wrong order. We check if they cross each other, and if they do, we find the
crossing point and cut each edge into its two sub-parts. The only exception to
this procedure is when both edges are known to be invisible, that is both of them
were present on the previous scanline and were determined to be invisible by the
STACK module. In that case they are just swapped in the AEL without cutting
them.

4.1.1. Finding the Crossing Point

Let the two edges be represented by their end vertices: e; = (v;,vz) and
ez = (vs,vs). The distance of a point p from an edge e in the two-dimensional
view plane is given by

dp,c = nT ) (P - U)

where n is the normal unit vector to the line, and v is a point on the line. For any
point p on the line, d, . is zero. Let ny be the normal to e;. The distances of e;’s
endpoints from ey are given by

d"hez = ng‘ ' (”l - 03)’
dvg,e, = ng‘ * (Ug - 03).
If the endpoints of one edge lie on opposite sides of the other (distances have

opposite signs), and vice versa, then the edges cross each other. The crossing
point c., ., is found by averaging the endpoints of e, with their distances from e;

dy,.e3V2 = doy.es V1

Ce; €3 =
' dn.ez - dvz.ez

Note that the last equation frees us from the need to find a normal n; of unit
length, because the non-normalized distances appear both in the denominator

and the numerator. Therefore n; can be found simply by
ng = (V30Y — VoY, VT — U3—I).

Also, we don’t care which one of d,, ., and d,, ., is positive and which is negative,
for exactly the same reason.
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To achieve maximal accuracy we compute dg, ., — do,.c,, and if its absolute
magnitude is larger than that of dy, ¢, — do, e, We exchange the roles of ¢; and e,
in the computation. This method is more stable and accurate than directly solving
the linear system of the parametric line equations, especially when an endpoint of
one edge is very close io the line of the other edge.

4.1.2. Cutting Edges

The calculation in the previous section only finds the projection of the crossing
point, i.e., only its X and Y coordinates are known. To find the corresponding
two points on each edge, we calculate the Z coordinate from the edge endpoints
in a similar way to that described in the previous section. Having found 2, for e,
and z, for e; we compare them and find which edge is on top (call it topDog), and
which is below (call it underDog). The following is done for both edges:

e The ACTIVE-EDGE structure is duplicated. That includes the active-face
structures in the leftFaces and the rightFaces lists as well. The original active-
edge entry will represent the lower part of the edge, and the new entry the
upper part.

e The upper sub-edge is flagged as ending and the lower as starting.

e If the original edge was not a starting edge (i.e., it had already existed on the
previous scanline), and was visible on the previous scanline, then the upper
sub-edge is flagged as visible. If the edge is the topDog then the lower sub-edge
is flagged as vissble as well.

e A VERTEX structure is allocated for the cross vertex. Its coordinates are set
to the X and Y of the crossing point, and the Z coordinate calculated for this
edge. The vBot pointer of the upper sub-edge and the vTop pointer of the
lower sub-edge are set to this vertex. If any of the upper or lower sub-edges
is a SHE, then its vTop and vBot may have to be exchanged to conform to
the SHE conventions (see 2.4.1). The vertex is put in an auxiliary list besides
the static data structure, and will be deallocated when not needed any more.

e The original edge is removed from the AEL, and the two sub-edges are inserted
into it at the correct X-intercept positions.

Recall from chapter 2 and figure 2.1 that a vertex has a list of all the edges that
use it. We now create such an edge-list for the two new vertices. Even though each
new vertex is connected to only two sub-edges, the list includes all four of them!
This is because for border enhancement purposes there is no functional difference
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between a cross and an ordinary vertex with four edges. The only difference is
that in the case of a crossing we know the topDog/underDog relations, and can
use them to infer visibility of one edge from that of the others.

4.2. Display of Borders

The display module gathers contiguous spans of the same visible face into a
single span that ends when a span from a new face starts. Then it determines
the horizontal extent of the edge-cluster that bounds the span from the right,
and both extents are sent to the output device: first the face span with the
corresponding shading value, and then the edge extent with with maximal contrast
to the background. Pixels that are overlapped by the span and the edge, belong
to the edge. This scheme covers all edge-clusters except those that bound a span
from the left, and the previous visible face is NULL. In these cases the extent of
the left cluster is determined as well, and the order of output is: left cluster, face
span, right cluster.

If during this process, a vertex is found to be visible (if at least one edge
connected to it is visible), it is marked in the vertex structure (either in the static
vertex list or in the auxiliary list of cross-vertices). Vertex visibilities are used in
determining visibilities of SHE’s, as will be described below.

If the edge is not a starting edge, it corresponds to the simple case illustrated
in figure 4.2(a), and the range that must be blackened for border enhancement is
set by the X-intercepts of the edge with the previous and current scanlines.

If the edge is a starting edge, the initial range to be blackened is determined
from its zPrev and zCur as before. Then we check all the ending edges that are
connected to the top vertex of that edge, and if any of them is visible, the range is
expanded to include the X-extent of that edge in the current swath. Let’s return
once again to figure 4.2 and see how this is done.

o In example (b), when span (F — G) from face f; is sent out, we find that its
left edge, F, is visible. The initial range is thus [F—zCur, F—zPrev]. Since
F is a starting edge, we check the ending edges connected to vertex a, namely
edge E. E is the boundary of a face that was visible on the previous scanline
(f1), 8o it is visible, and the right limit of the range is expanded to E—zPrev.

When span (G — H) from face f, is sent out, edge G determines the initial
range, and E expands its right limit. Notice that there is no need to send
this range to the display, because it is already included in the previous border
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range. The display module can detect it and prevent the extra work.

In example (c), when span (? — E) from face f, is sent out, the lower part of
edge E is visibie and sets the initial range. Now there are two ending edges:
the upper part of £, and the upper part of F (call them upperE and upperF
respectively). Since g is a crossing, we make use of the knowledge that E is
the topDog, and F is the underDog:

upperE is the other half of an edge that is visible and a topDog, therefore it
is visible as well, and the range is expanded to E—~zPrev.

upperF belongs to an underDog edge, and the starting visible edge belongs
to the topDog edge. In such cases we have to check if the topDog hides this
side of the underDog: The distance of the second vertex of upperF (i.e., not
q) from E is found, and from the sign of the result we find that upperF lies
on the left side of E. Now since E has a face in its leftFaces list (f1), then
this face hides upperF, and it is invisible.

When span (E — F) is sent out, and edge F is enhanced, we already know
that out of the set of edges that end at g, only upperE is visible. But let’s
assume that we don’t know their visibilities, and see how they are found
when the visible starting edge is an underDog: upperE is the topDog, o if the
corresponding underDog is visible, it is also visible. upperF is the second half
of a visible underDog, therefore it must be invisible because the topDog has
at least one face which will hide it.

In example (d), when span (I — E) of face f; is sent out, the lower part of I is
enhanced, and applying the above set of rules for crossing point ¢, the upper
part of E is found visible.

Similarly, when the lower part of F is enhanced, the upper part of F, and the
edge between r and s are found visible. Notice that edge (r,8) is a starting
edge, therefore we recursively apply the same procedure for it and check the
vigibilities of the ending edges that are connected to s, namely the upper part
of G (which is found visible), and (s,t) (which is found invisible).

When edges H and J are enhanced, we have to find the visibility of edge
K. This time it is a SHE that is connected to the starting visible edge with
an original vertex, so we don’t have the helpful information provided by a
crossing. It is easy to figure out the visibility of K here, so let’s look at
figure 4.3, when span (F — G) is sent out. The situation is similar to case (b)
in figure 4.2, but this time edge H is a SHE between the original vertices a
and b.
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y+1

Pigure 4.3. Finding visshslity of a SHE.
F is the visible starting edge, and H 13 a SHE; Face f, overlaps H and hides st, so

H 13 snvssible.

Finding the visibility of such an edge is done in two steps. First we find
whether it is potentially visible, which it is if it has the current visible face in
any of its face lists, and /or if its two vertices are visible. Here, the visible face
fa is also in H’s leftFaces list, so H is potentially visible. In the second step
we check if any of the faces that use the connecting vertex, hides the SHE
edge. Only faces that are not in the SHE’s face lists are checked, so in our
example it is only f;. For each such face the following is done:

e The contour list of the face is searched to find the two incident edges
that comprise the face corner at our vertex. In our example, those edges
are G and E.

e With simple trigonometry we check if the face corner overlaps our SHE.
In our example, corner GaE indeed overlaps H.

e The X and Y coordinates of the second vertex of the SHE (b in the
example) are substituted into this face equation to get the depth of that
point on the face. If this point is closer to the viewer than the second
vertex, then the face hides the SHE, and therefore the SHE is invisible. If
the point lies on the face’s plane then the whole edge lies in that plane and
we assume that it is visible. In our example we substitute b’s coordinates
into f1’s face equation and find that the resulting depth is less than b—z,
so H is invisible.

o Figure 4.4(a) illustrates a situation where no edge intersects the current
scanline, and as a result there is no access to the edge-cluster that consists
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y+1

(a)

y+1

(b)

Figure 4.4.

()

(b)

An edge-cluster with no connection to the current scanline poses a problem to

edge enhancement.

An equivalent construct without problems.

of edges E, F and G. Clearly this cluster is not negligible. It occurs very
frequently in UNIGRAFIX scenes, and should be handled correctly. All such
clusters are characterized by one or more vertices without starting edges, such
as vertex b in this exampleT. The solution is to treat such vertices as if they
were positioned on the current scanline. This means that all the ending edges
of the vertex now participate in the STACK algorithm, and provide access
to the cluster. In our example, treating vertex b in this way results in an
equivalent situation to that described in 4.4(b); edges F and G participate
in the STACK, and enable regular access to E as described in the previous

paragraphs.

4.3. Borders with Intersecting Objects

When doing intersections with shaded faces only, we didn’t care where exactly

the intersection edge started and ended; knowing the starting and ending scanlines
was enough for intersection processing.

t

Notice that F is a starting edge of vertex a, 8o a is not in the above category.
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y+1

7

intersection edge

Pigure 4.6. Finding the top endpoint of an intersection edge.
The intersection line ss dotted, and becomes solid where the sntersection edge starts.

Finding the bottom endpoint is relatively easy because intersection edges are
terminated during the updating of the AEL. All the conditions listed in section 3.4
are checked, and when termination is detected, we find the crossing point between
the intersection edge and the other edge. The edges are cut as in a normal edge
crossing, and the lower part of the intersection edge is immediately removed. If
there were other crossings on the intersection edge below the termination point,
then all those sub-parts are deleted as well.

Finding the top endpoint is more difficult because it happens during execution
of the STACK module, and we don’t have the bubble-sort to find all the crossings
for us. Instead we test the new intersection edge (call it newlsect) for crossings
with a section of the AEL. The left and right limits of this section are chosen
such that every edge that crosses the new edge is included. For each edge in that
range we check if it crosses newlsect, and if it does, we find the crossing point and
insert it into a list sorted by an ascending Y coordinate. When the list is ready,
we start at the list’s head (lowest crossing) and perform a cut (as in section 4.1.2)
for each crossing in the list, until we get to the end of the list, or until one of the
crossing edges belongs to any of the two edges that had originated the intersection.
Figure 4.5 shows an example of finding the top end of the intersection edge between
faces f; and f;. The crossing points are represented by circles; circles 1 and 2 are
crossings that were made into actual cuts, and circles 3 and 4 are crossings that
occur on a higher Y coordinate than the top endpoint. That endpoint is at circle
2, and it was determined by a crossing with edge E that belongs to f;.

Intersection edges that start and end on the same swath are a special case.
Both ends of the edge are determined in a way similar to finding the top endpoint
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of a normal intersection edge, and from then on this edge is treated like a SHE for
edge enhancement purposes.
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5

Smooth Shading and Embedded Text

This chapter describes two extensions to the hidden surface removal
algorithm: smooth shading of faces using the Gouraud model, and
copyfitting text onto visible faces.

5.1. Smooth Shading

Smooth shading of faces greatly enhances the realism of a picture. It can
be applied to a polygonal scene, to give it a look of smooth curved faces without
resorting to more complicated design methods, like spline surfaces, and to more
expensive rendering tools, like ray tracers. The Gouraud shading model |[2]
was added to UGDISP with a minimal effort. This is a simple model, but more
advanced models, like Phong shading, could be implemented in an efficient manner
as well.

To achieve continuous shading across faces boundaries, shading values are
computed for vertices and then interpolated twice: along the edges and along
scanlines. The surface normal at a vertex is found by averaging the normals of all
the faces that use the vertex. The weighting factor for each face is the angle of the
face corner at that vertex. The shading value for the resulting normal is computed
like that of an ordinary face normal: each ambient light source contributes its full
intensity, and each directional source contributes its intensity according to the dot
product between its direction and our normal.

Two more fields are added to the ACTIVE-EDGE structure to hold the
shading data:

e sCur is the current shading of the edge.
e As/Ay is the increment in shading for one scanline.

The initial value for sCur in a new active-edge is set to the shading value
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of the vTop vertex of the edge, and whenever the AEL is prepared for the next
scanline, it is incremented by As/Ay. This achieves the first interpolation of the
shading values.
The second interpolation is done in the display module. The information to
display a smooth span from face segment f; consists of:
e y is the current scanline.
e z; and z, are the left and right limits of the span.
o active edges aer and aep are the left and right boundaries of face fi.
The snverse shading slope along the face segment is calculated from the

bounding edges:
aeg—zCur — aey—zCur

Az/As =
/ aeg—sCur — aep—3sCur

Shading values are in the range [0,1]. The output device has a finite number of
black and white stipple patterns to represent this range, and the mapping from a
shading value to the corresponding stipple index is done simply by multiplying by
the largest index:

$ = |2 $max),
and we thus define the snverse sndez slope to be:

Az/Ai= Az/As

tmax

The shading index for the left boundary of the face is:

i, = aep—8CUr - $max

Notice that i is not truncated to its integer part; this is because the 11’8 of all
spans are the key to the shading continuity across edges, and we want to keep
them accurate. The indices for the beginning and the end of a certain visible span

[z1, 2] are:
.., 3 —aeL—zCur
=l =y b
Y z, — aep—zCur
b=l =2 A

Now starts an incremental process that sends subspans of [z, z,] to the device.
The division to subspans is made such that each one is painted with a single stipple
pattern. The limits of subspan j that corresponds to the index §; < 4; < 4, are:
z,, = ae,—zCur + (i; — i1 )Az/Ad,
z; = ae,—zCur + (i; + 1 —1.)Az/Ad.
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If i, < i; < 1, then z; and z;, are computed with the indices 1; + 1 and 13,
respectively.

5.1.1. Smooth Shading with Intersections

Smooth shading across an intersection edge can be be done in two ways:
shade the two intersecting faces independently to enhance the intersection line,
or “smooth” the intersection line by treating it like any other seam edge. My
design decision was to choose the first way, because intersections in UNIGRAFIX
are quite rare, and when they do occur, they are usually introduced on purpose
and in order to see them. The second way is more suitable to a CSG system where
intersections are more common and part of the design process.

Recall from chapter 3 that between the two intersecting faces, the face that
is hiding on the left of the intersection line stays untouched, and the other face is
cut into two segments. Therefore the former needs no special treatment, and its
smooth shading will depend on its original bounding edges. We do however have
to assign shading values to the intersection edge such that the resulting shading
of the second face would be as if there was no intersection at all. This is done
simply by interpolating the shading data of the original bounding edges.

Let ae; and aep be the left and right bounding edges of the face segment f;,
and Isect be the new intersection edge. The interpolation factor for Isect is given
by
Isect—zCur — aep—zCur

6z/Az =
/ aep—zCur — aep —zCur

and the shading value for Isect is therefore
Isect—sCur = aep—sCur + (aeg—sCur — aep—sCur)éz/Az.

The shading value of Isect on the next scanline is found in a similar manner,
using the X values incremented by their respective Az/Ay’s, and the shading
values incremented by their respective As/Ay’s. Subtracting Jsect— sCur from
this value gives Isect—As/Ay.

The resulting inverse shading slope is only an approximation, because the real
value depends on the shading of the bottom vertex which does not exist at the
time that Isect is created. However, experiments have shown that it is a good
approximation, and no degradation is noticed in the shading produced.
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5.1.2. Edge Enhancement

Just like border enhancement for uniform shading, it is sometimes useful to
enhance some of the edges in the scene to make the picture more comprehensive.
The edges I chose to enhance in this mode are any of the following:

e Contour edges, i.e., edges with faces on one side only.
o Edges with more than two faces.
e Intersection edges.

o Edges with one face on each side, with the dihedral angle between those two
faces less that some constant. This constant is user defined, and defaults
to 100°. Using the default value results in smooth uninterrupted shading of
curved surfaces, and enhanced edges on corners that are sharper than slightly
more than a right angle.

Figure 5.1. Sphere and Cylinder.

Figure 5.1 shows an intersection of a cylinder with a sphere. Both objects
are polyhedral and smoothly shaded. The enhanced edges are the contour edges,
intersection edges and the edges on the perimeter of the cylinder base which form
a dihedral angle of 90° between the base and the envelope.
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5.2. Embedded Text

Combining Graphics with text is common, and most text formatting systems
provide some graphics capabilities. For example, the troff [6] family of text
formatting programs is capable of drawing straight lines, curved lines and filled
polygons. Pictures can be created with the Gremlin (8] illustrator, and converted
by the grn [12] pre-processor to troff commands. More advanced systems like
POSTSCRIPT (7] have more powerful graphics and even allow the inclusion of an
arbitrary raster file into a document.

UGDISP features a similar idea but from the other direction, namely adding
text to an arbitrary picture, such that the picture elements control the shape of
the text paragraphs. In other words, copyfitting the text into specified control
polygons. The STACK algorithm provides the shape of the paragraph, and the
text formatting is done by TEX [4], with its unique \parshape command.

A tezt statement was added to the UNIGRAFIX language, specifying the input
text file, the face into which the text is to be copyfitted (target face), and an
optional magnification factor for the text:

t tezt-id (tezt-file face-name [magnification]) ;

The text file is a TEX source. This means that it can contain simple text, created
by someone who is completely unfamiliar with text processing, or it can contain
sophisticated TEX commands using its full powerf.

During the display of the picture, the display module tracks the visible part
of the target face, and keeps the shape of the resulting paragraph in a list of
tert-lines. Each such text-line contains the vertical position of the line (i.e., the
corresponding scanline), the line indentation (i.e., the horizontal position of the
beginning of the line) and the line length. There is one text-line entry for each
underlying line of text. Therefore text can cover only the first span of the control
face on any line, and no multiple column formatting is available. When the picture
is done, the list of text-lines is translated to the \parshape command format, and
TEX is called to format the text into the designated paragraph. The resulting dvs
(device independent) file is merged into the raster picture and displayed. Device
drivers for text currently exist only for the Sun workstation and Varian/Versatec
plotters. In figure 5.2 the target face is the CRT screen. It was given a maximum
illumination such that the background for the text will be white, and pushed

t A few restrictions apply though, due to the external control on the paragraph
shape. See the section on \parshape in [4].
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The Three Laws of Roboties

A robot may not injure a human be-
ing, or, through inaction, allow a human
being to come to harm.

IZ] A robot must obey orders given it by
a human being except when such orders
would conflict with the First :
Law.

A robot must pro-
tect its own exis-
tence as long as such
protection does not
conflict with the First
or Second Law.
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Figure 5.2. March of the Robots.
Design of CRT, keyboard and tobor - courtesy of H.B. Siegel.

slightly back such that the robots will hide it and the text will wrap-around them.
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6

Evaluation and Conclusions

6.1. Run-Time Statistics

6.1.1. Comparisons with Other Renderers

The performance of the three UNIGRAFIX renderers was compared on several
runs involving various scene files, display options, and output resolutions; the test
scenes are shown in figure 6.1, and the results of three tests are presented in
table 6.1.

e The input in test mesh! is a 3-dimensional mesh of 288 interlocked rings.
Each ring is rectangular with a squared cross section. The file contains 4608
vertices, 6912 edges and 2880 faces. The output medium is a Versatec 36”
wide-bodied plotter with resolution of 200 dots/inch, so a full size raster
contains about 50 million pixels.

e The input in test mesh2is the same as before, but this time the plot is scaled
down to an 8 inches square such that the raster size is 3 million pixels.

e The input in test rubik-9is a Rubik’s cube with 9 cubes on each side, so there
are 5832 vertices, 8748 edges and 4374 faces. The output medium is a small
scale Versatec plot as in test mesh2.

e Each test includes three plots with different display options:
-8f is show faces mode; faces are shaded without border enhancement.
-s¢ is show edges mode; only enhanced borders (i.e., edges) are displayed.
-sa is show all mode; faces are shaded and borders enhanced.

o The table entries are cpu times in seconds. They reflect only the run-time
of the hidden surface algorithm and do not include reading or data structure
construction times. All tests were run on a VAX-750 with seven Megabytes
of memory.
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Renderer meshl mesh?2 rubsk-9

-sf -ho -8a -sf |-ho | -8a | -sf | -ho | -sa

UGSHOW || 476 | 516 | 581 | 155 | 167 { 175 | 146 | 150 | 159
UGPLOT 541 | 329 | 557 | 335|304 | 365 | 304 | 290 | 331
UGDISP 1536 | 1927 | 2049 | 446 | 800 | 817 | 420 | 629 | 639

Table 6.1

m
I
UL

Pigure 6.1. Mesh and rubsk-9 scenes for the performance comparisons tests.

Let’s first check the behaviour of each renderer with the various display
options and resolutions. The big win of UGPLOT is with showing edges alone;
it is fast and almost independent of the output resolution because processing is
controlled by vertices and edge-crossings, not by scanlines. Showing shaded faces,
however, is performed per scanline; it increases execution times and shows a clear
dependency on output resolution in both -sf and -sa modes. It should be noted
though, that this penalty for showing shaded faces is greatly reduced when the
output device is capable of displaying filled polygons.
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The two other renderers process each scanline, and consequently execution
times increase strongly with output resolution. UGDISP experiences a major
decrease in performance when border enhancement is done. This is caused by
calculation of crossing points and edge-cutting that do not occur otherwise. The
difference between -se and -sa is minor, and caused by sending the shaded spans
to the output device; the rest is exactly the same.

UGSHOW demonstrates a very stable behaviour in all display modes. It is not
as careful as UGDISP is with almost horizontal edges; therefore enhancing edges
does not affect execution time so much, but the difference in output quality is
significant: UGSHOW does not handle correctly cases like that in figure 4.2(d).

UGPLOT and UGSHOW are significantly faster than UGDISP in most cases.
The difference in run-time decreases as more complicated scenes are displayed on
lower resolutions, but still UGDISP is slower. A very important feature, presented
in the table below, is the memory requirements of each algorithm. The numbers
represent the size of the text and heap segments in Kbytes; they do not include
the size of the raster files created by the renderers.

Renderer || meshl | rubsk-9

-8a -sf

UGSHOW 3650 9305
UGPLOT 3526 3220
UGDISP 2975 2628

Table 6.2

UGDISP uses the least amount of memory and is thus capable of displaying
bigger and more complicated scenes than the others. The large memory usage
of UGSHOW on rubsk-9 is due to the high degree of face overlaps in this scene;
in most parts of the picture the depth of its face stacks is six to nine faces, and
hundreds of those stacks are kept in parallel.

6.1.2. Evaluation of Intersection Detection

We would like to know what is the performance penalty that is incurred
in UGDISP for detection and display of intersecting objects, and then how does
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UGDISP compare with pre-processing of the scene with the intersection remover
UGISECT and displaying it with the fast UGPLOT.

The three UGDISP columns of table 6.3 address the first question; they all
give run-times in seconds of UGDISP with the -sa display option.

The first column presents the run-time on a scene with a number of similar
objects. The objects are disjosnted, i.e., do not intersect.

The second column presents the run-time on the same scene, but this time
intersection detection is turned on. No intersections were found of course, so
no intersection edge was incorporated into the data structure.

The third column presents the run-time on a scene with the same objects,
but this time they are positioned in the same place, such that they intersect.
Intersection detection is turned on, and all detected intersections are made
into edges and added to the data structure.

To make the third case comparable with the first two, an orthogonal view was
used, and the translation of the objects to the point where they all intersect is
done along the eye direction. Therefore all face overlaps are exactly the same, and
the AEL is identical in all three cases.

The next three columns give the run-time of UGISECT on the scene with the
intersecting objects, the run-time of UGPLOT on the pre-processed scene with the
-sa display option, and the total of both. Unlike the previous table, all figures
include reading time, so real execution times can be compared to answer our
second question. Reading time is significant since the pre-processed file produced
by UGISECT is much larger than the original file.

e The input in test knots! includes two objects. Each one consists of eight
knots in a diamond lattice structure. When they are placed together one is
glightly rotated with respect to the other, such that many intersection lines
are visible. The test was carried on a VAX-750 and the output medium was
a small scale Versatec plot.

e Test knots? used the same input as above, but was carried on a Sun 3/160
workstation. The pictures were displayed on a window of 510 x 560 pixels.

e In test pipes there are four objects. Each one is a pipe with inner and outer
tubes. When they are placed together, they all intersect at their centers. This
test was also performed on the Sun workstation.

the test scenes are shown in figure 6.2.
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Test UGDISP UGISECT | UGPLOT | UGISECT
disjoint | disjoint | intersect and
-8a -8a -in | -sa -in -8a UGPLOT
knotsi 332 600 603 3284 226 3510
knots2 88 127 135 1216 121 1337
pipes 50 84 86 479 72 551
Table 6.3

62

Pigure 6.2. Knots and pipes scenes for the sntersection comparisons tests.

From the table we learn that checking intersections in UGDISP increases
execution times significantly. A number of additional tests indicate that the
increase is usually in the range of 50-100 percent, depending on scene complexity.
It is interesting to note from the second and third columns, that the number

of actual intersections in the scene does not affect execution times. The reason
for this is that the extra work of adding a detected intersection to the AEL is
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compensated by the fact that the Potential Penetrators Lists of the two faces that
intersected are now shorter and take less time to be traversed.

Comparing a single run of UGDISP with a single run of UGPLOT after pre-
processing by UGISECT, clearly favors UGDISP. In the knots test UGISECT found
and processed 3058 intersections, while UGDISP detected only the necessary 136
visible intersections from the given view direction. In the pipes test the figures
were 2176 for UGISECT, and 49 for UGDISP. Generally, on a scene with N
faces, UGISECT will run in O(N?) time, and produce O(N?) face intersections,
while UGDISP will run in a linear time, and detect O(N) intersection. This last
observation is empirical, and can be explained as follows: If the N faces are big and
have a high degree of overlap (as in rubsk-9), then many of them will be hidden
behind the front faces, and never become current visible faces. If on the other
hand, the faces are small and sparsely scattered in the scene (as in mesh), then
there are less potential penetrators for any visible face, and consequently there is
less work and less visible intersections.

6.2. Conclusions

UGDISP was developed over a period of one year as a Master’s project.
The basics of the STACK algorithm are taken from Hamlin & Gear; intersection
detection, border enhancement and text copyfitting are new algorithms, and
smooth shading follows the Gouraud model.

The front and back ends of UNIGRAFIX, i.e., reading input files and driving
output devices, are very similar to those of the previous renderers, and most of
the code was used directly. This part of the program is implemented in 11,000 line
of C code (7,000 input and 4,000 output). The core program is implemented in
an an additional 9,000 lines of C. The most difficult task in this project was the
border enhancement, with and without intersection detection. It still is far from
perfection, and I doubt if the problem can be completely solved in the framework
of a fast scanline renderer. Other modules, like the smooth shading and embedded
text were straight forward and took just a few days to implement.

New options provided by UGDISP are intersection detection, fast smooth
shading (a version of UGPLOT provides smooth shading through anti-aliasing, but
it runs very slowly), and embedded text. UGDISP also features robustness and
quick recovery from erroneous input scenes. An option that was not described in
this report even allows reasonable display of very warped (non-planar) faces.

The major drawback of UGDISP, as realized from table 6.1, is its speed.
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Further investigation of this issue and optimization of critical routines are called
for; my prediction is that it may reduce the run-time by as much as half. Asit is
now, UGDISP is the best choice for an interactive design session on intermediate
resolution devices, for scenes involving intersecting objects, coinciding edges and
faces, and unexpected scene illegalities that always occur in the first steps of
such designs. It is the previewing tool for Jessie, the interactive editor for
UNIGRAFIX [15], and for UGI, the UNIGRAFIX environment shell [1]. When
the design is finished, and intersections are removed with UGISECT, UGPLOT
becomes the better choice for a fast plot.
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Appendix A

UNIGRAFIX Language

Command Keyword Arguments
vertex: v ID TYz
wire: w [ID] (v1 va...v5) (...) [colorIDj;
face: f [ID] (vi va...v,) (...) [colorID] [illum] [< a b c d >];
definition: def deflD;
non-def-commands

end;
instance: i [ID] (defID [colorID] |xforms]);
array: a [ID| (defID [colorID) [pre-xforms)) size in-xforms |(post-xforms)];
text: [ID] (text-file faceID [magnification]);
light: 1 [ID] intensity [z y 2];
color: ¢ colorID intensity [hue [saturation]];
include: include file-name;
comment: { [anything {nesting is OK} but unmatched { or }} }
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NAME

ugdisp - render a UNIGRAFIX scene on a screen or plotter

SYNOPSIS
ugdisp [ options ] [< scene]

DESCRIPTION

Ugdisp can render a scene on many possible output devices. Scene description
is read from standard input, unless the —fi option was specified. The display is
controlled by the following groups of options:

Viewing Geometry

—~epzyz
Eye point for perspective view from this point.

-edzyz
Eye direction for parallel projection.

-vezyz
View center for a perspective view; i.e., the display is centered at that
point in the scene.

~va angle
View angle for a perspective view; must be between 0 and 180, exclu-
sively. It defines the maximum angle of a square-based viewing pyramid,
anchored at the eye point. The default view angle is 90 degrees.

—vr angle
View rotation. By default the y-axis points up; the displayed scene is
rotated CCW around the viewing direction by angle degrees.

Ugdsisp centers the scene and scales it to the maximal size that would still fit in
the rectangle of the screen or plot. Specifying view center or view angle for a
perspective view overrides this auto scaling, and the picture may occupy only
part of the screen or plot. If no eye direction or eye point is specified, the default
view is —ed 0 0 -1, i.e., an orthogonal projection from the negative g-axis.
Clipping is not performed with hidden feature removal, so the user should be
careful when specifying a perspective view not to position the eye point too close
(or inside) the scene. This will hopefully be remedied in the future.
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-hn Hide nothing, make no visibility checks (Default).
-hb Hide back-faces, i.e., faces with face normal pointing away from eye.
-ho Hide overlaps; remove all features hidden by overlaps. Implies ~hb .
—ab Add back-faces. Overrides any specific or implied —hb .
—-se Show edges and wires only (Default).
—sf Show only faces without edges or wires. Implies —ho and -hb .
—sa Show faces and edges. Implies —ho and -hb .
—fw zyzdld?
Fade against white background in the interval dI - d2.
—fbzyzdl d?
Fade against black background in the interval d1 - d2.
z, y and z specify the eye point; dI and d2 are distances from this eye
point.
-8g Show smoothly shaded faces (with Gouraud shading). Implies —sf .

If the —sa option is combined with gouraud shading then only a subset of the edges
is displayed; those edges are wires, contour edges (edges with faces on one side
only), intersection edges, and edges with one face on each side and with a dihedral
angle that is less then the value of some specified corner angle. This corner angle
defaults to 100 degrees, and can be changed with the following option:

—ca angle

—st

Release 1986

The corner angle is set to angle degrees. The default is 100 degrees.
Show text. The first text statement in the input scene is executed.
Show coordinate axes.

Detect and correctly display intersecting faces.

Perform extra checks to display warped (non-planar) faces.
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Label vertices. The vertex identifier is printed next to the vertex
pcsition. Tf ~hb was specified (or implied) then vertices that belong

.to back-faces are not labeled.

Label faces. The face identifier is printed on the center of gravity of the
face. Faces are not labeled if hidden features are removed.

Label wires. The wire identifier is printed on the center of gravity of the
wire.

Label edges with their length.

Label all (vertices, faces, wires, edges).

Identifiers starting with the character ’#’ are not printed. If an identifier contains
a ’#’ then only the suffix following the last ’#’ is printed. Some devices do not
support labeling.

Output Devices

—dv

—dw

—dm

—da

—dx

—dr

—di

Output device is a Benson Varian plotter.

Versatec 36” wide-bodied plotter.

Imagen printer.

AED 512 color display (set GRTERM to appropriate /dev/tty?7).
Vectrix color display (se¢ GRTERM to appropriate /dev/tty?7).
IRIS graphics terminal (set GRTERM to appropriate /dev/tty?7).

Tkonas frame buffer. A raster file called “rast.iv” is created, and can be
displayed with the sv program.

Output is also sent to a variety of display terminals that usually serve as the user’s
console or tty. If the environment parameter TERM is set to the terminal’s name
then no device option is necessary. Otherwise (or when ugdisp is used from ugs
with a permanent device option different from the console) the terminal type
should be specified:
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—dt Tektronix 4115 (TERM = 4115).

—dT  Tektronix 4691 plotter.

—dk Tektronix 4010 (TERM = 4010).

—dK  Tektronix 4107 (TERM = 4107).

—dh  Hp 2648a (TERM = hp2648a).

—dS  Sun microsystems workstation (Default, TERM = sun). If hidden
feature removal is performed the picture is sent to the screen in 10 or
more equal chunks. If only edges and wires are plotted then the picture
is sent to the screen only when it is complete.

—ds Sun microsystems workstation. If hidden feature removal is performed
the picture is sent to the screen scanline by scanline (it is slower than
with the default —dS and useful only for debugging purposes). If only
edges and wires are plotted then the picture is sent to the screen line
by line; this is useful to preview complicated scenes before doing the
hidden feature removal.

—df frame-file

Sun microsystems workstation. Frame-file is a name of a raster file that
will contain the picture. The raster dimensions are 256 x 256 and it
is meant to be an input for the framedemo program. The uganimate
program allows easy creation of simple animations with framedemo.

If no device option is specified, and the TERM parameter is not set to any of the
above terminals then a dumb terminal is assumed; the output is in a crude form
of ascii characters.
The output to the plotters and to some of the terminals can further be controlled
by setting its size:

—8x number

x-size of the plot is adjusted to fit into number inches. The default is
the width of the display device.

—sy number

Release 1986

y-size of the plot is adjusted to fit into number inches. The default is
the height of the display device. On the Varian and Versatec plotters
the default is 8” and 36” respectively; specified y-size can be up to twice
the default.

1085-9-3 4



UGDISP(UG)

Files

UNIGRAFIX User’s Manual UGDISP(UG)

-l snput-file

Read input scene from file snput-file.

—fe command-file

Read options from file command-file.

—cm colormap-file

Read color map description from file colormap-file.

—fr raster-file

Put raster file in file raster-file. Raster files are named by default
“/usr/tmp/ug???7??”. This is useful if there is not enough space in
Jusr/tmp on your machine.

Keep raster file. By default raster files are deleted after plotting; with
this option the raster file name is printed on standard error and the file
is not deleted. This is useful if you want to plot several copies of the
same scene.

Keep the temporary files that are created during the processing of a text

No plot. The raster file is not sent to the plotter.

File-names can be expressed with all the csh conventions except globbing,
i.e.,, start with “Tuser/..” or “7/..”, contain environment parameters like
“$WORKDIR”, contain “$$” etc. I the file is not found in the current directory,
and the —fl or —em options are used, then ugdisp tries to read ““ug/lib/snput-

file”.

The ~fr , -kf and —np options apply only to the Varian and Versatec plots.

EXAMPLE

ugdisp -ep -1 2 -10 -va 30 -8a -in -dw -sy 8 < scenefile
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FILES

~ug/bin/ugdisp

“ug/src/ug2/ugdisp
SEE ALSO

ugi(UG), ugisect(UG), ugshow(UG), ugplot(UG), uganimate(UG)
DIAGNOSTICS

Ugdisp prints to standard error the elapsed user and system times (in seconds)
after each step in the processing. This printout is suppressed on some devices
where is would interfere with the picture, and when ugdssp is called from ugs.

If the —v option is specified, ugdisp will print more detailed statistics: number
of intersections in —in mode, number of warped faces in —w mode, and the cpu
times of the hidden feature removal module.

BUGS

Does not clip to the viewing pyramid in perspective view, so behavior is unpre-
dicted if the eye-point is too close or inside the scene.
Horizontal edges may be excessive or missing in ~ho and —sa modes.

AUTHOR

Nachshon Gal
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