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Abstract

Berkeley UNIX 4.2BSD is an operating system which provides easy networking among
4.9BSD installations and others supporting DOD’s Internet protocols. Moreover, it also offers
alternative ways for processes to communicate with each other both within and across machine
boundaries. Processes need not have a common ancestor to communicate and they may do so
using different addressing families and styles of communication. In addition, several protocol fam-
ilies may be supported simultaneously.

In this paper we present a detailed timing analysis of the dynamic behavior of the TCP/IP
and the UDP/IP network communication protocols’ current implementation in Berkeley UNIX
4.9BSD. These measurements show the effect that kernel buffer management has on the network
software performance. We discuss issues and tradeoffs involved when implementing network com-
munication mechanisms for multiple-protocol systems. We highlight the intricate interrelation-
ships arising from the simultaneous coexistence of different buffering policies within a system.

This study also sheds light on the inefficiencies encountered when software and hardware
perform the same actions on data, e.g., checksums.

Index Terms: Berkeley UNIX, 4.2BSD, benchmarking, interprocess communication, datagram,
virtual circuit, TCP protocol, UDP protocol, [P protocol, Ethernet, artificial workload, dynamic
program profile.

1. Introduction

Berkeley UNIX 4.2BSD is an operating system which provides alternative ways for user
processes to communicate with each other [9-10, 19, 23]. User processes may choose intermachine
communication medium, protocols [15-17], addressing families, and styles of communication. In
particular, user processes may use datagram or stream communication. In Berkeley UNIX 4.2BSD
two processes wishing to communicate need not have a common ancestor nor reside in the same
host. In this paper we present a study of the dynamic behavior of TCP/IP and UDP/IP in which
the impact that kernel buffering has on network software performance is highlighted. We have
studied the implementations which existed at Berkeley during the summer of 1984, nine months
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after 4.2BSD release, in Ethernet based environments [13—14]. Hereafter, we shall refer to this ver-
sion of Berkeley UNIX 4.2BSD as the ‘current’ system. (The system we measured already differed
in many aspects with the released 4.2BSD Berkeley UNIX.)

A secondary aspect we wanted to observe was the possible eflect that the reliability built
into the TCP protocol [17, 14] has on the user process-perceived network latency and overall net-
work performance. Two questions we are concerned with are: What are the tradeoffs of using
TCP compared to UDP if the underlying physical network does not lose packets? Given that
some Ethernet interface hardware provides CRC checksums, what is this cost for user applications
when using TCP?

The rest of this paper is subdivided as follows. In Section 2 we present the basic measure-
ment assumptions. Section 3 has a discussion of the experimental environment used in this study.
Section 4 contains a detailed dynamic timing analysis of the current TCP/IP and UDP/IP imple-
mentations. Finally, Section 5 consists of our conclusions.

2. Timing From User Process Space

Even though many studies have evaluated and modelled the performance of Ethernets under
various conditions [1-4, 6-7, 18, 20—21], measurements performed in most of those studies have
only determined the extreme limitations of this technology, and the degrees of performance degra-
dation which can be expected at the lowest level, i.e., when analyzing communication performance
from the hardware interfaces viewpoint. Indeed only [2, 7, 21-22] have measurements of the per-
formance a software system may expect. However, in [21-22] those measurements do not refer to
communications between user processes but between operating system processes. In [8] we find an
analysis which includes modelling the behavior of Ethernets under different parametric load condi-
tions, in the context of file servers.

In this paper we study the network software performance perceived by user processes. It
should be emphasized that all measurements were made from user space, and thus they include all
the overhead caused by the protocol implementations and by the operating system. Better under-
standing of how our local area network implementations perform makes it easier to design distri-
buted applications. It also provides a better knowledge of the current limitations of these distri-
buted applications, and where the improvements may come from.

3. The Experimental Environment

This paper describes a series of tests, performed at UC Berkeley, designed to determine the
dynamic performance properties of the TCP/IP and UDP/IP Ethernet-based [PC mechanisms
under Berkeley UNIX 4.2BSD. Given that IP, as currently implemented, cannot be accessed
directly by user processes (but can by privileged processes), we shall not report explicitly about it
in this paper. It should be clear, however, that since UDP and TCP use IP, the performance of its
implementation affects user process applications.

For our study we used the kernel configured for profiling and executed ad hoc routines to
stress desired aspects of the network subsystem. The assessment was then done through the use
of the commands kgmon and gprof |5, 11]. gprof profiling is known to add 15 to 20% cpu over-
head to the profiled code [11]. This should be kept in mind while reading the timings in Section 4.
A test program which sends a fixed amount of data a predetermined number of times was
designed for each protocol. The kernel monitoring facility was enabled during the execution of
the test program. All tests were run in single user mode to avoid interferences. The profiles were
determined later from the data collected by the monitor [5].

3.1. The Sizes of Messages and the Repetition Count

The six user message sizes used for the network tests were: 1, 112, 113, 1023, 1024, and 1025
bytes. This set of message sizes was chosen to stress border conditions in the buffer management
schemes provided by the protocol implementations. Some of them also represent traffic resulting



from common network operations, as is the case with the 112 byte size and the 1024 byte size.
Most system utilities use, for example, the 1024 byte size as it represents one logical page of data
in Berkeley UNIX 4.2BSD. Indeed the networking software has been optimized for the 1024 byte
size.

The networking software manages its own address space with two sizes of buffers: 128 bytes
and 1024 bytes. Mbufs are 128 byte buffers where 8 bytes are used for link pointers, 4 bytes for
the data offset, 2 bytes for the size, and 2 bytes for the type. Mbufs may contain up to 112 bytes
of data, or they may point to an associated 1024 byte data area which always contains exactly
1024 bytes of data. User supplied data is copied into a chain of mbufs with 1024 byte buffers for
each segment that is at least a page in size, and any remainder (or all if the segment is less than
1024 bytes) is copied into mbufs containing up to 112 bytes each. Internal copy operations
involve physical copying of the data segments inside of mbufs. Mbufs which point to 1024 bytes
of data are copied by augmenting an associated reference count. Internal copy operations are
required by the retransmission algorithm with TCP and for messages to be assembled into one
contiguous buffer after being given to the network driver. In Section 4 the effect that saving one
of these copy operations has on network performance will become apparent. IP protocol message
fragmentation was not assessed in this study.

It should be remarked that, for every message to be sent, the network software always
prepends a 128 byte mbuf for the 40 byte header that is required by the TCP/IP and UDP/IP
protocols. Messages with 1024 byte data segments may be transmitted by the link layer using a
trailer protocol [9, 12], which allows the TCP/IP or UDP/IP header to be moved to the end of the
data area in order to page-align the data area for both the transmitting and receiving hosts. This
optimization, which avoids message reassembly costs at the receiver end of a transmission, can
only be done while the headers of messages have constant length.

Each network test consisted of a user process sending a fixed size message a predetermined
number of times. These tests were run between two VAX 11/750s over a private 3
megabit/second ether. One processor was used to profile the kernel while the test program ran;
the other otherwise idle processor just sinks the data from the test programs. We call ‘repetition
count’ the number of times each packet was sent. The higher the repetition count, the larger the
degree of accuracy we could obtain from our profiling tools. To obtain values accurate to one
millisecond a repetition count of 10,000 was necessary. The same repetition count was used in
each of our runs.

4. Assessment of Protocol Implementation

In this section we present the study of the implementations of TCP/IP and UDP/IP in
detail. The primary goal of this study is to understand the specific costs of using TCP/IP and
UDP/IP as currently implemented. Secondarily, this study bas pointed out unexpected perfor-
mance penalties for certain message sizes.

Two similar test programs were designed, one for each protocol, which sent a specified
number of messages of a specified length to a predetermined host. In each run, from the profiled
kernel we obtained the execution history of sending a message with the specified amount of data.
The kernel profiling facilities were enabled only during the actual running of each test program.
The test programs were run in single user mode to avoid interferences as much as possible. The
test programs have been included in Appendix A.

It must be remarked, however, that lacking a hardware monitor to measure overall ether
message size distribution we did not have an absolute way of judging the effectiveness of the
current protocol implementations for the user process applications in general. What we do have,
however, is an excellent breakdown of kernel time spent while sending messages of the chosen
sizes, and a detailed knowledge of what would happen if, say, a user space application sent mes-
sages of any given size.



The raw data from these profiles appears in the following three subsections. The values in
Tables 1 and 2 represent the number of seconds spent processing in each routine during the 10,000
transmissions. Because these values were obtained from a single run for each message size, they
are mostly intended to show the relative ordering of the routines with respect to processor utiliza-
tion, and to show gross changes in the magnitude of time utilization of each routine. Obtaining
absolute timings would require further data stability analysis. (Some of the message sizes were
run more than once on different days. No significant timing differences were observed.) In Tables 1
and 2 we have highlighted in boldface those routines which exhibit larger timing variations as a
function of the amount of data to be processed. We have not tried to factor out the ‘Heisenberg’
effect of gprof’s overhead.

For both protocols, the buffer scheme used in the implementation appears to have an
overwhelming eflect on performance. Since UDP/IP sends data atomically, and only limits a
message’s maximum size, this protocol is not so semsitive to varying data sizes. The drastic
increases in overhead in the routines shown in bold appear to be due to the data buffer manage-
ment scheme chosen. On the other hand, TCP/IP, with its windows and data streaming, is sensi-
tive to the amount of data presented. Thus, in addition to the increased overhead seen in the
routines which deal with data within the buffer management system, the actual protocol imple-
mentation overhead appears to increase noticeably because of the varying amounts of data
presented.

A word of caution. Our analysis of TCP/IP was done based on a user process which sent
data using write, while that of UDP/IP used sendto. These calls have, for example, different
number of parameters and thus their overheads have to be compared with care.

4.1. TCP/IP

Table 1 presents the time spent in a selected group of routines that are called to process a
TCP/IP transmission with a specific amount of data. These values were obtained directly from
the gprof output.

The calling hierarchy for sending data via TCP/IP starts with a system call, syscall, to a
generic write operation. write calls rwuio to set up transfer data structures. In turn, rwuso calls
the specific routine which can perform the necessary operation for the type of object, in this case
soo_rw. soo_rw calls the appropriate internal routine that implements the original request to
‘send data’, sosend. sosend is responsible for allocating buffers and copying the data from the user
space via uiomove, which calls Copyin to do the actual copying. sosend first determines the
amount of buffer space available for this specific socket, and then copies the minimum of the
buffer space available or the amount of data to be sent, whichever is smaller, into mbufs. These
mbufls are then passed to the appropriate protocol, in this case tcp_usrreq. tcp_usrreg queues the
data buffers for this TCP connection with sbappend and then switches immediately to tcp_output,
the output sequencer for the TCP protocol. Based on the windowing policies, an amount of data
to be sent is selected. This data is copied from the TCP output queue by m_copy. Data and
header are checksummed in tcp_cksum, and then passed to the IP level, ip_output. The addi-
tional IP header information is checksummed in in_cksum. Finally, the message is queued and
possibly sent to the specific network interface for transmission. In this study, the network inter-
face is represented by the two functions en_output and en_start. Before such a transmission can
happen, the buffered data must be copied and mapped into a single contiguous memory space; this
is done in if_wubaput.

From the row entries in Table 1, we can see that, of the 21 different routines listed for
TCP/IP, 12 present processing costs which vary significantly with the amount of data sent. The
processing time of the other 9 routines remains practically constant. The five calls which show a
larger variation in the vicinity of the 1024 bytes region are sosend, uiomove, m_copy, sbappend,
and if_wubaput. All are associated with bufler management. The four calls which have a larger
impact in the processing of messages are sosend, if_wubacput, tcp_cksum, and m_copy.



TCP/IP Routines Message Size in Bytes
and System Calls 1 112 113 1023 1024 1025
syscall 291 2.79 2.76 3.02 3.01 3.12
write 0.72 0.81 0.81 0.78 0.84 0.90
rwuio 1.57 1.67 1.82 1.77 1.84 2.23
500_I'W 0.92 0.83 0.85 0.82 0.77 0.84
sosend 3.80 4.76 6.24 15.53 5.63 18.52
ulomove 0.9 1.02 177 0.23 1.38 8.85
Copyin 0.45 1.17 1.68 10.96 06.86 11.19
ipintr 0.19 0.93 0.94 6.31 4.88 b.11
tcp_usrreq 2.20 2.20 1.93 2.00 2.03 2.24
tep_lnput 0.06 1.32 1.67 11.14 10.68 10.97
tep_output 0.26 06.16 06.34 8.50 7.14 11.23
tep_xoutput 0.00 0.38 0.28 2.11 1.68 5.45
sbappend 1.65 1.63 2.11 8.33 1.11 8.02
ip_output 2.78 3.07 3.14 3.36 3.35 5.63
tep_cksum 2.23 3.13 3.85 16.16 10.52 16.72
in_cksum 1.89 1.72 1.57 3.60 2.88 4.41
m_copy 277 3.86 5.22 18.24 2.38 20.73
enoutput 2.74 3.38 3.45 3.09 415 5.08
enstart 2.87 2.53 2.81 217 2.78 4.53
if_wubaput 3.83 4.00 5.30 14.23 4.70 16.58
in_lnaof 2.44 2.21 2.23 2.76 2.72 3.43
total of boldface routines |24.21 30.08 36.77 124.43 ©50.52 144.78
total of lightface routines 19.15 1949 19.80 19.77 21.49 28.00

Table 1: Partial Decomposition of TCP/IP Processing Time in Seconds
for 10,000 Transmissions Between two Dedicated VAX 11/750.
[Highlighted in boldface are those calls with larger timing changes.)

gprof of TCP/IP

1

Message Size in Bytes

112 113 1023 1024

1025

Number of routines

233

266 260 264 265

265

Table 1a: Number of Routines in the Kernel gprof Profiling for TCP /IP.

tep_zoutput, which is a copy of tcp_output, is only called from tcp_input. This allowed us to
observe in isolation the cost of the flow control mechanism and of packet acknowledgement.
Clearly, the greatest impact comes from those routines which do copying of data within the inter-
faces. In the 1024 case, checksumming and servicing acknowledgements and window updates

through tcp_input and tcp_zoutput are the most expensive tasks.

As mentioned in Section 1, there are network hardware interfaces which provide checksum-
ming facilities. As can be observed from the entries for in_cksum and tcp_cksum, the time spent
in it is substantial. This, in fact, is true for both protocols (see Tables 1 and 2). It is clear, then,

that redundant checksumming in a system has definite performance penalties.




4.2. UDP/IP

Table 2 presents the time spent in a selected group of routines that are called to process a
UDP/IP datagram with a specific amount of data. These values were obtained directly from the

gprof output.

UDP/IP Routines Message Size in Bytes
and System Calls 1 112 113 1023 1024 1025
syscall 3.48 3.02 3.40 3.29 2.76 3.67
sendto 0.84 0.94 0.91 0.83 0.99 0.85
sockargs 0.80 0.93 0.87 0.81 0.77 0.84
getsock 0.79 0.62 0.46 0.63 0.64 0.71
sendit 2.92 2.84 2.94 2.85 2.69 2.46
m_freem 26569 235 298 3.20 4.43 2.28
useracc 0.56 0.55 0.55 0.60 0.63 1.03
sosend 5.07 b5.75 0.68 19.25 5.58 7.38
ulomove 1.20 1.48 2.05 10.66 1.34 2.52
Copyin 1.14 2.02 2.37 14.58 8.45 8.47
udp_usrreq 1.83 1.90 1.52 2.00 1.56 1.91
in_pcbconnect 2.24 2.45 2.13 2.56 2.65 2.17
in_pcblookup 095 113 081 128 096 103
in_netof 2.67 2.42 3.16 3.27 3.13 3.33
if _ifonnetof 0.46 0.46 0.53 0.64 0.73 0.62
in_pcbdisconnect 0.52 0.64 0.53 0.55 0.55 0.46
udp_output 2.61 2.45 2.28 3.66 3.07 2.78
m_get 1.06 146 1.8 193 3.54 2.08
ip_output 4.12 3.89 3.53 4.26 4.01 4.14
udp_cksum 2.23 3.37 2.40 12.82 8.79 8.28
in_cksum 4.19 4.54 4.43 3.44 3.56 4.01
in_lnaof 2.25 2.41 2.43 2.44 2.40 2.27
ipintr 4.42 3.71 3.96 2.69 4.34 4.36
enrint 3.07 3.51 4.44 3.37 3.90 4.14
enoutput 3.36 3.12 3.04 3.46 3.87 2.80
enstart 3.16 2.88 2.50 2.66 2.02 2.67
if_wubaput 4.02 431 b5.08 14.96 4.01 10.54
getf 0.39 0.36 0.41 0.27 0.48 0.44
total of boldface routines |18.21 20.74 23.42 77.40 38.14 41.53
total of lightface routines 4563 4477 4483 4556 4571 46.69

Table 2: Partial Decomposition of UDP/IP Processing Time in Seconds
for Sending 10,000 Datagrams Between two Dedicated VAX 11/750.
[Highlighted in boldface are those calls with larger timing changes.]

gprof of UDP/IP Message Size in Bytes
1 112 113 1023 1024 1025

Number of routines | 261 252 261 254 256 255

Table 2a: Number of Routines in the Kernel gprof Profiling for UDP/IP.



From the user process viewpoint, sending data through UDP/IP results from system calls
equivalent to write or sendto. sendto requires the destination address on each call; sockargs and
getsock produce the socket control block associated with this operation. With this information,
sendit is called, which in turn calls sosend as TCP/IP does. Again sosend calls uiomove, which
calls Copyin to actually copy the user data into buffers. These buffers are given to udp_usrreq
which calls udp_output after a pseudo connection is established via in_pcbconnect with its associ-
ated routines, in_pcblookup, in_netof, and if_ifonnetof. As with TCP, udp_output represents the
output processing of the UDP protocol. At this level the header is created and both the header
and data are checksummed by udp_cksum. The header and the data are then passed to sp_output
as in TCP/IP. ip_output checksums the header in in_cksum and passes the message to the
appropriate network interface, in this case en_output. Again, the mbufs must be copied and
mapped into a single contiguous memory space before transmission; this is done in :f_wubaput.

From the row entries in Table 2, we can see that of the 28 different routines listed for
UDP/IP, only 7 present processing costs which vary significantly with the amount of data sent.
The processing time of the other 21 routines remains practically constant. In contrast, m_freem
exhibits its largest processing time for datagrams of size 1024 bytes. The three calls which show a
larger variation in the vicinity of the 1024 bytes region are uiomove, as before with TCP/IP,
sosend, and if_wubaput. The first two are associated with the buffer management strategy, and
the latter with passing the data to be transmitted to the hardware interface in one contiguous
piece. The four calls which have a larger impact in the processing of datagrams in UDP/IP are
udp_cksum, sosend, if_wubaput, and Copyin. For UDP/IP, checksumming is, across most
datagrams sizes, the singie most expensive operation performed. As mentioned in Section 4.1,
redundancy of this operation should be avoided if the Ethernet is reliable [20-21]. (However, TCP
cannot avoid it.) For larger datagram sizes, the greatest impact comes from those routines which
do copying of data across the interfaces. sosend, as was also the case in TCP/IP, is an important
factor in the time spent processing messages.

Table 2 also shows that for UDP/IP’s implementation the processing costs are somewhat
more evenly distributed across many routines than for TCP/IP. This suggests that if checksum-
ming is eliminated, speeding up more UDP/IP will require streamlining many routines. In
UDP/IP there appear not to be many significant gains to be obtained from any one optimization.

4.3. Dynamic Proflle of both Protocols

We can view each protocol’s implementation in a different way by looking at the number of
times each routine was called. Table 3 presents, for TCP/IP, such a decomposition, while Table 4
has it for UDP/IP. We first note that sosend is called by each protocol exactly 10,000 times.
Moreover, uiomove, ip_output, enoutput, and if_wubaput are called about the same number of
times for user data amounts of 1 through 1024 bytes. Indeed no buffering occurs for TCP since
ip_output is called about the same number of times.

The 1025 byte size behaved quite differently. The most surprising behavior was uiomove in
TCP/IP, where the count, instead of dropping to something in the order of 20,000, remained very
high. This is so because of the ‘stream’ communication nature of TCP. As there are no record
boundaries, the use of ‘odd’ send sizes causes sosend to copy user data in a number of small seg-
ments once the send queue reached the last 1024 bytes of buffer space allocated. If there is more
than 1024 bytes of data to be transmitted but less than 1024 bytes of buffer space remaining for
the socket, sosend will send the remaining amount using mbufs. This is exactly what happened in
the 1025 byte case as witnessed by uiomove which is called once for each mbuf used. It is
interesting to note that the UDP/IP implementation is more immune than the TCP/IP implemen-
tation to packet size changes, with respect to the number of times individual routines are called.
This is mostly due to the fact that UDP preserves record boundaries and has no flow control pro-
visions. In TCP, estimating the amount of data to copy into mbufs based solely on the amount of
buffer space currently available is the problem, in similitude with the ‘silly window syndrome’. In
the UDP/IP implementation, however, m_freem and m_get exhibit a peak of activity for the 1024



TCP/IP Routines Message Size in Bytes

and System Calls 1 112 113 1023 1024 1025
syscall 10,882 10,884 10,882 10,884 10,882 10,882
write 10,002 10,002 10,002 10,002 10,002 10,002
rwuio 10,009 10,010 10,009 10,010 10,009 10,009
800_rw 10,000 10,000 10,000 10,000 10,000 10,000
sosend 10,000 10,000 10,000 10,000 10,000 10,000
ulomove 10,014 10,015 20,014 100,015 10,014 97,158
ipintr 356 1,532 1,686 10,035 10,238 10,012
tep_usrreq 10,011 10,020 10,021 10,119 10,022 10,046
tep_input 323 1,472 1,645 10,095 10,243 10,012
tcp_output 10,010 10,017 10,015 10,104 10,008 10,015
tep_xoutput 323 1,472 1,645 10,095 10,243 10,012
sbappend 10,000 10,000 10,000 10,088 10,000 10,000
Ip_output 10,016 10,049 10,032 10,182 10,024 20,081
tep_cksum 10,333 11,497 11,671 20,234 20,256 30,037
in_cksum 10,384 11,628 11,730 20,494 20,356 30,369
m_copy 10,007 10,022 10,024 10,136 10,010 20,022
enoutput 10,016 10,049 10,032 10,182 10,024 20,081
enstart 10,024 10,059 10,037 10,188 10,057 20,141
if_wubaput 10,016 10,049 10,032 10,182 10,024 20,056
in_lnaof 30,075 30,190 30,131 30,644 30,136 60,361

Table 3: Number of Calls per Function for 10,000 TCP/IP Transmissions.
[Highlighted in boldface are those calls with large variations.|
[Highlighted in italics are those calls with identical counts.]

byte case which contrasts with all other sizes. This is due to the handling of trailer protocol pack-
ets.

5. Concluslons

For users who want to implement distributed applications based on Berkeley UNIX 4.2BSD
computing environments interconnected through Ethernets, the system currently provides two
basic transmission protocols for interprocess communication: TCP and UDP. Both, in turn, are
based on IP for actual data transmissions. This paper has presented a microanalysis of the
dynamic behavior that the current implementation of these protocols exhibits. Even though there
are currently other protocol families at different stages of implementation which will coexist with
the above protocols in the kernel of Berkeley UNIX, this paper has only addressed performance
issues relating to TCP/IP and UDP/IP.

Let us define user process network latency to be the minimum time required to send a single
byte of data. When the ether and both the sending and receiving hosts had no other user activi-
ties in them but our tests, complementary results [2] show that, for the VAX 11/750, the latency
for TCP/IP is approximately 5.5 milliseconds, and for UDP/IP is 6.4 milliseconds. Sending 1024
bytes took 13.3 milliseconds with TCP/IP and 7.8 milliseconds with UDP/IP. We thus see that
the transmission cost per byte is substantially lower for 1024 byte messages. Moreover, because
of packet acknowledgements TCP/IP is sensitive to round trip network time while UDP/IP is not.

A detailed protocol implementation analysis has been presented for TCP/IP and UDP/IP.
For TCP/IP, those routines which do the copying of data appear to make preponderant contribu-
tions to the total elapsed time (see Table 1). For UDP/IP, the single most expensive operation is



UDP/IP Routines Message Size in Bytes

and System Calls 1 112 113 1023 1024 1025
syscall 10,886 10,888 10,886 10,888 10,886 10,886
sendto 10,000 10,000 10,000 10,000 10,000 10,000
sockargs 10,000 10,000 10,000 10,000 10,000 10,000
getsock 10,000 10,000 10,000 10,000 10,000 10,000
sendst 10,000 10,000 10,000 10,000 10,000 10,000
m_freem 10,003 19,406 19,204 19,331 20,104 10,848
sosend 10,000 10,000 10,000 10,000 10,000 10,000
ulomove 10,015 10,016 20,015 100,018 10,015 20,015
udp_usrreg 10,002 10,002 10,002 10,002 10,002 10,002
in_pcbconnect 10,000 10,000 10,000 10,000 10,000 10,000
in_pcblookup 10,052 10,055 10,049 10,089 10,069 10,073
in_netof 40,057 40,051 40,075 40,108 40,075 40,111
if_ifonnetof 10,0600 10,000 10,000 10,000 10,000 10,000
in_pcbdisconnect | 10,000 10,000 10,000 10,000 10,000 10,000
udp_output 10,000 10,000 10,000 10,000 10,000 10,000
m_get 20,023 20,021 20,030 20,040 30,0290 20,041
ip_output 10,019 10,017 10,025 10,036 10,025 10,057
udp_cksum 10,000 10,000 10,000 10,000 10,000 10,000
in_cksum 29,021 28,820 28,458 28,710 29,818 29,770
in_lnaof 30,108 30,105 30,122 30,196 30,143 30,183
ipintr 8,996 9,403 9,211 9,347 9,888 9,850
enrint 8,255 8,503 8,298 8,369 8,117 8,136
enoutput 10,019 10,017 10,025 10,036 10,025 10,037
enstart 10,037 10,039 10,037 10,056 10,028 10,044
if_wubaput 10,019 10,017 10,025 10,036 10,025 10,037
getf 10,840 10,840 10,840 10,840 10,840 10,840

Table 4: Number of Calls per Function for 10,000 UDP/IP Datagrams.
[Highlighted in boldface are those calls with large variations.
[Highlighted in italics are those calls with identical counts.|

the computation of the checksums (see Table 2). For both protocols, the buffer scheme used in
the implementation appears to have an overwhelming eflect on performance. Since UDP/IP has
no flow control, it sends data atomically and only limits a packet’s maximum size. This protocol
is not so sensitive to varying data sizes. The drastic increases in overhead in the routines shown
in bold appear to be due to the data buffer management scheme chosen. On the other hand,
TCP/IP, with its windows and data streaming, is sensitive to the amount of data presented.
Thus, in addition to the increased overhead seen in the routines which deal with data within the
buffer management system, the actual protocol implementation overhead appears to increase
noticeably because of the varying amounts of data presented.

The miscoordination of buffering between diflerent layers with independent data placement
policies can lead to severe inefficiencies. This is best exemplified by the behavior of sosend when
transmitting 1025 byte messages under TCP/IP. The strategy of completely filling the send
buffer, despite the induced buffer fragmentation, rather than waiting for additional buffer availa-
bility is inadequate. This is completely analogous to the ‘silly window syndrome’.
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6. Epllogue

Since this study was conducted several changes have been made to the implementations of
TCP/IP and UDP/IP, as well as to the bufler management policies and default buffer sizes. These
changes will be present in future BSD releases. We highlight some.

The buffer size at the socket level is now a settable parameter. When increased to 8 kilo-
bytes we observed an improved throughput for TCP/IP in the order of 20%. In TCP, a facility
has been added for coalescing messages to be sent while waiting for acknowledgement of outstand-
ing packets. This minimizes, in the case of receiver busy, the number of transmissions between it
and any sender. sosend has been changed so as to align 1024 byte messages whenever possible,
delaying if necessary. From the receiver end of transmissions, and having in mind that the pro-
cessing of acknowledgements consumes a substantial amount of processor resources, the scheme
for delayed acknowledgements has been tuned. This scheme works best with a larger socket
buffer size. For UDP, routing has been enhanced to cache the last computed route; if two con-
secutive datagrams go to the same destination, the route for the second need not be computed.
This routing change should improve throughput for multiple datagrams to the same destination.
A complete assessment of these changes has yet to be made.
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8. Appendix A

8.1. Software for TCP/IP Assessment (Sender)

$include <sys/types.h>
¢include <netdb.h>

#include <sys/socket.h>
¢include <netinet/in.hd

struct sockaddr_in address;
char sendbuf[1026);;

main(arge,argy)
char *argvil:
{
int §;
struct hostent ¢phostent;
int des;
int size;

des = socket (AF_INET,SOCK STREAN,0);

i? (des ¢ 0 )
perror(®socket®) exit(-1);

phostent = gethostbyname (argv[i]);

address.sin_fasily = AF_IKET;

address.sin addr.s_addr = #(int *)phostent->h addr;

address.sin port = 4321;

it (connect(des,@address,sizeo? (sddress)))
perror(®connect®), sxit(-1);

size = atoi(argv(2]);

tor (1=0; 1<10000; ie+)
write(des,sendduf, size);

8.2. Software for UDP/IP Assessment

#include <sys/types.h>
#include <netdd.b>

¢include <sys/socket.h>
¢include <netinet/in.h>

struct sockaddr_in sddress;

main(arge,argy)
char eargv(l:
{
int s, &;
char buf[1028];
struct hostent ¢phostent;
int size;
extera errzo;

1£((s = socket(AF_INET,SOCK DGRAN,0)) == ~1) perror("socket®) ;

phostent = gethostbyname (argv(il);

address.sin_fasily = AF_INET;

address.sin_addr.saddr = s(int *)phostent->h.addr;

address.sin_port = ntohs(1234);

size = atoilargv(2]);

print?(*Testing byte size of %d0,size);

for(i = 0; 1 € 10000; ie+)
sendto(s,buf,size,0, taddress, sizeot (address));

12 (errno) perror(®udp: *);





