A Minimum-Area Circuit for 1-Selection

Pavol Durig, Ondrej Sykora,
Clark D. Thompson,
Imrich Vrto

Report No. UCB/CSD 85/244
June 1985

Computer Science Division (EECS)
University of California
Berkeley, California 84720

A Minimum-Area Circuit for 1-Selection

Pavol Durd
Ondrej Sikora
Clark D. Thompsont
Imrich Vrlo

Institute for Technical Cybernetics
Slovak Academy of Sciences
Diibravska cesta 9
842 37 Bratislava, Czechoslovakia

tDivision of Computer Science
573 Evans Hall
U.C. Berkeley, CA 94720
U.S.A.

ABSTRACT

We prove tight upper and lower bounds on the area of semelective, when-
oblivious VLSI circuits for the problem of [—selection. The area required to select
the [-th smallest of n k-bit numbers is found to be heavily dependent on the
relative sizes of I, k, and n. When [/ < 2% the minimal area is A =
©(min{n, [(k - logl)}). When! > 2*, A = 6(2" (logl - k + 1)).

June 13, 1985

{ This work was supported in part by National Science Foundstion grant ECS 84-06408 and by the Slovak
Academy of Sciences.

A Minimum-Area Circuit for 1-Selection

Pavol Duri¥
Ondrej Sikora
Clark D. Thompsont
Imrich Vrito

Institute for Technical Cybernetics
Slovak Academy of Sciences
Dibravsk4 cesta 9
842 37 Bratislava, Czechoslovakia

+Division of Computer Science
573 Evans Hall
U.C. Berkeley, CA 94720
US.A.

ABSTRACT

We prove tight upper and lower bounds on the area of semelective, when-
oblivious VLSI circuits for the problem of [—selection. The area required to select
the {—th smallest of n k-bit numbers is found to be heavily dependent on the
relative sizes of {, k, and n. When | < 2, the minimal area is A =
O(min{n , { (k - logl)}). When | >2¢, A =6(2"(logl -k + 1)).

1. Introduction

Practical limitations on the size of VLsI chips have raised a host of interesting questions of
the following form. Given a function, what is the smallest chip that can compute this function?
In this paper, we answer this minimum-area question for the function that selects the /-th smal-
Jest of a set of integers. We prove a lower bound on circuit area, then describe a circuit whose
area matches our lower bound to within a constant factor. Our minimal-area selection circuit

may have application in the design of cost-effective back-end processors for databases.

In the course of our research, we found that there are two good input formats for [—selector
circuits. When n , the number of input words, is relatively small, our minimal-area circuit reads
each input word in bit-serial format. On the other hand, when n is relatively large, our
minimal-area circuit reads all the bits of each input word simultaneously. It remains an open
problem to find a single input format that is appropriate for all n, !, and k. (Here k is the
number of bits in each binary-coded input word).

Our proof is based on two assumptions, that chip 1/0 is semelectivell and when-
oblivious.% 8 By “semelective”, we mean that each input bit is read by the circuit exactly once.

1 This work was supported in part by National Science Foundation grant ECS 84-06408 and by the Slovak
Academy of Sciences.

-92.-

The “when-oblivious” assumption means that the I/O timing is independent of the data values.

In particular, the circuit has no control over when it reads its inputs.

A third common assumption is that I/O be “where-oblivious”, s.¢., that the location of each
chip I/O event is not data-dependent. We do not make such an assumption in our lower bounds.
For example, a hypothetical circuit could request its next input(s) on any I/O pin. However, our
upper bound shows that non-where-obliviousness is of no use to the designer of a minimum-area
selector. Our where-oblivious selector is as small as any selector can be, even if the selector is
allowed to be non-where-oblivious.

We know of no previous results on minimal-area selection. There has been a lot of recent
activity in a closely related topic, minimal-area sorting. The strongest result, quoted below, is
due to Siegel.12 When- and where- oblivious sorting circuits that read their inputs r times have

the following constraints on their area:

O(logn + 2* (log% —k+1), ik < log%

A —
O(logn + —’L(k ~logZ + 1)), ifk > log—:_i and k¥ = O (logn)
r r

Working independently, the authors of this paper obtained the same result for the semelective
case (r = 1).8 Our result is superior to Siegel’s in two respects: we do not require circuits to be
where-oblivious, nor do we require k¥ to be O (logn). Gianfranco Bilardi independently obtained
a theorem similar to ours, as part of his Ph.D. research.?

The main result of this paper is that a semelective, when-oblivious, minimal-area circuit
that selects the [—th smallest of n k-bit numbers has area

{ 8(2* (logl - k + 1)), if £ < logl
O(min{n, [(k - logl + 1)}), if k¥ > log!

Comparing this result with Siegel’s bound on semelective sorting (r = 1), we see that finding a

median (I = n /2) is no easier than sorting, for the case of short wordlengths ¥ < logn . Sorting

is strictly harder than median-finding, however, when k > (1 4 €)logn. Also, it is remarkable

that the problem of finding the minimal element (I = 1) has area complexity
= O(min{n, k}).

A number of other minimal-area results have been published in the past five years. The
semelective, when- and where- oblivious multiplication of two n-bit integers takes ©(n) area.*
Vuillemin showed that ©(n) area is necessary and sufficient for the semelective, when- and where-
oblivious computation of any “transitive” function of order n .15 Semelective, when-oblivious
Fourier transformation or Walsh-Hadamard transformation of n k-bit numbers requires ©(nk)
area.? The interested reader is referred to Ullman’s monograph!4 and to Rosenberg’s bibliogra-

phy10 for more information on minimal-area circuits and related issues.

This paper is organized in the following fashion. In the next section, we define our model of
VLsI computation and introduce our proof techniques. Section 3 contains our lower bound proof
for |-selection. Our upper bound proof appears in section 4. We close the paper with a discus-

sion and a list of open problems.

2. Model
For our lower bounds, we use the following assumptions.

1. Semelective input: each input variable is read only once, and externally-imposed variations
in I/O timing and location reveal nothing about any input variable. ’

2. When-oblivious input and output: the timing of I/O events is data-independent.
3. Unit-area bits: each bit of memory occupies one unit of chip area.
Our upper bounds depend on two additional assumptions.

4. Processing elements: a microprocessor with a constant number of p -bit registers fits in ©(p)
area. Such a microprocessor can execute compiled versions of Pascal programs. If a
microprocessor is attached to a memory with mp bits (and hence with 6(mp) area), the
microprocessor can perform a machine instruction on p -bit operands in 8(p + logm) time.
Permissible machine instructions are add, subtract, shift, move, conditional branch, and I/0

load and store.

5. Wires: unit-width wires may be used to interconnect the I/O ports of microprocessors,
allowing parallel computation. No wire fanout is allowed - each wire connects one output
port to one input port. A wire of length w transmits data with unit bandwidth and
O(logw) delay.

~ We have modified the standard assumption of semelective I/0 to avoid multiple “reads” of
input bits through subtle means. If the external interface to a chip were allowed to vary the tim-
ing and location of an I/O event, then the chip could obtain more than one bit of information by
reading a binary input variable. Pathological behavior of this sort is discussed in Kolla’s article®
and on page 44 of Ullman’s monograph.14

The remainder of our assumptions are fairly standard, but all merit some discussion. We
would like to weaken the assumption of semelective input, allowing inputs to be read multiple
times. As a result, our proofs would get more complicated, judging by Siegel’s paper.12

We would also like to weaken assumption 2, allowing some form of data-dependent 1/0. In
practice, circuits are sometimes given a random-access interface to a memory buffer containing
their inputs and outputs. Indeed, such an interface may be the most cost-eflective way of rear-
ranging a given input data stream into the form required by a when-oblivious algorithm. This
raises an interesting open question. Are our lower bounds valid for circuits with random-access

I/O interfaces, if each input/output bit is read/written only once? We believe the answer is yes.

The third assumption is not controversial. Quantum-mechanical considerations show that a
unit of information has the dimensions of energy divided by temperature. Thus, outside of black

holes and absolute-zero temperatures, each bit must occupy a finite amount of volume.

Our fourth assumption is a matter of taste, not necessity. We could have constructed our
circuits from a stored-program RAM or a bounded-worktape Turing machine. We chose a parallel
microprocessor model in order to estimate the time performance of our constructions when imple-

mented as a VLSI circuit.

Our fifth assumption is not entirely accurate as regards delay. Several authors have pointed
out that the delay of a wire is not necessarily logarithmic in its length.% 3 We chose the loga-
rithmic assumption because it seems to lead to the most accurate circuit conmstructions. The

constant-delay assumption is too permissive with regard to the use of long wires. The linear-delay
and quadratic-delay assumptions are even more remote from current design practice. When long
wires are penalized this severely, meshes and linear arrays are the only possibilities for optimal
designs. As a case in point, the structure of commercial random-access memories could not be
predicted from the linear- or quadratic-delay assumptions. Under the logarithmic-delay assump-
tion, however, commercial RAM designs are reasonable.

Finally, note that our lower bounds allow non-where-oblivious computation. A chip could
conceivably send control signals through its output ports, causing its external I/O interface to
place the next input value on any of several input ports. We do not make use of this possibility
in our constructive upper bounds.

3. Proof technique
Our lower bounds are based on the following method.

Let (y1, Y2, - Ym) = f (21, Z2, ..., 2o) be a function from a subset of {0,1}* into {0,1}"
computed by some semelective, when-oblivious VLSI circuit. Each instant of time ¢ partitions the
input bits into two sets: those which have been read and those which are as yet unread. Let
Tiys Tigs o T, be the variables read by the circuit by time ¢, and let Ciyr Cigy weer G be the
values assigned to these inputs. Similarly, let Vi Yigr - U5, be the variables which have

already been output by the circuit. The remaining portion of the circuit’s computation may then

be described as a subfunction of the original function f , namely f, - (:1:,-,+l » Zipgr
t 2 Y

i,) = (yj,_H: Yjo o = Yip)

LEMMA 1. Let there exist ¢ distinct subfunctions produced by the assignment of values to vari-
ables Tips Tiys vor Ty Then any semelective, when-oblivious circuit computing f has area

A = Q(logg).

The method described above is the kernel of the methods of Baudet,! Brent and Kung,*
Savage,!! Ya0,16 and Ullman.14

4. Lower bounds for l-selection

Let us consider the problem of selecting the ! —th smallest of a set of n numbers. Without
loss of generality, we assume 1 < { < n /2. The input variables to the {-selection function are
Z,, Tg, ..., Ty ; €ach z; is represented in binary, z; = z; -1)1,.,(1:—2) -+ - ;0. The output variables
are y(""), y("'l), oy y(o). The ! -selection problem may now be described by a function ¢: (y(" -1,
y® oy =gV, 2O 2 D 20, -, 25D L2 0).

THEOREM 1: Any semelective, when-oblivious [—selection circuit has area

{ Q(2* (log! - k + 1)), if k < logl
= | Q(min{n, {(k -logl + 1)}), if ¥ > log!

Proof. First we show that every output bit depends on the most significant bit, z,-("'l), of

each input. To show this, it is sufficient to construct two input values, differing only in z,-(" '1),

-5-

such that y(j) takes on two different values. For simplicity, we assume ¢ > [; the other case fol-
lows analogously.

Let us set: zl("") =0, z}"'l) =0, .. z,(_’i’l) = (, z,(k'1)= 1, z,g’{l) =1, ..,
) =1, ¢ =1,) =1, ..., 2,.-) = 1. In addition, if j < k-1, then let us set
) =) = - = P =z0) = - = z/) =1, = £;/) = 0. Finally let us set all

other input bits except z,-("'l) to zero. It is evident that if y = k-1 then yU) = z,-("’l), other-
wise if z,-("'l) = 0 then y(j) =1 and if z,-("'l) = 1 then y(") = 0.

Let ¢t be the latest time such that fewer than n /2 of the most-significant bits of numbers
z,, o °° ‘', Z, have already been input. Up to this time no output can have been produced

because of the dependencies exhibited above and because of the when-obliviousness of the circuit.

Let p <n /2 be the number of numbers from z,, 5, * - -, z, which have been completely
input by time ¢. That is, all of these numbers’ bits have been read. According to p we distin-

guish two cases.

Case 1: p > n /4. Without loss of generality we can assume the numbers z,, z,, - - -,
z, /4 Were input entirely and that the (k-1)-th bits of numbers z, /341, Za j242, ** *, 2, have not
yet been read. Now we can restrict our attention to the case that I < n /4 because at least the
same asymptotic result holds for I > n /4.

Let us consider the subfunctions of the [—selection function ¢ which are generated in the
following way: set 2, To, * * * , Zs o to such values that

a. the numbers z,, 2o, * - -, 7; create a nondecreasing sequence of numbers from the interval
[0, 2¥-! - 1], and

b. the numbers 7,4y, - - -, 2,/ are equal to oF _ 1.

All other input bits which have been read are set to zero. Simple combinatorial consideration
shows that there are

[2"“+l—1]
I

such subfunctions of g. Now we will show that these are all distinct.

Let there be two subfunctions of ¢ (namely g, and g,) distinct in at least one bit which is
in z,,1<r <l. Let z, be set to ¢, (d,) by subfunction g, (g2) respectively. Evidently ¢, # d,.
Set the unread input bits as follows: exactly n /2-I+r bits from ::,,(72'1) , -, 2% are one, all
others are zero. The output of g, is then ¢, and the output of g, is d,. Using lemma 1 and the
relation

-1
(%5 1) = (1Y
for a > 2 and B > 1, one can easily derive the result:

QU(k -1-1logl)), if k > logl
A =1{aw, if k = log!
Q(2* Ylogl - (k ~ 1)), if k < logl

Case 2: p < n /4. There exists a set X of at least n /4 numbers which satisfy the follow-
ing two conditions: the most-significant bits of each z; € X, have been input, and each contains
a bit which has not yet been input. Let X; be a set of unread input bits such that there is
exactly one bit from each of the numbers in X, Choose a constant ¢ < 1 /8 so that for all
sufficiently large n there holds

cn ["6414] < 2/8,

Construct subfunctions of the [—selection function g as follows: let

{ 0 ifl < en
V=11 -cn otherwise

Set n /4 of the most-significant input bits in X, to all possible values. Choose exactly v numbers
from X — X, and set all bits of these v numbers to zero. Set all other bits except the bits in X,
to one. In this way we obtain 2*/4 subfunctions defined on X ;.

We assert that at least 2"/8 of our subfunctions are distinct. If not, then there would exist
at least 2°/8 equal subfunctions defined by some set Z of input settings for Xo. Each setting
z € Z can be understood as a boolean vector with n /4 components. Now let iy, o, * -, 1,
be indices with the condition: for each z € Z and for each §;, j=1,2,...,¢ there exists a

zl

€ Z such that the i;—th component of the vector z is different from the §; —th component of
the vector z' . It is evident that ¢ > n /8, because otherwise there would be at most 27 < 2* /8
different vectors in Z. Now we observe that there exists a zo € Z which contains at least cn
zeros in components with indices 1y, £, * * *, 1, because if each vector from Z contains less than

¢n zeros then
PARS E[") <en ("JA) <2,

a contradiction of ¢ < n /8.

We now show that our zo cannot exist, and thus that there is no set Z defining at least on/8
equal subfunctions. Set the values of the unread bits in numbers Ty Tiy T, T, tO zeros. Set

the other unread bits to ones. For such an input, the / —th smallest number is exactly the greatest
number from those containing at least two zeros. Let it be the number corresponding to the
i;—th component of zo, where j < l-v. There exists a zJ' € Z with a one in the ¢;—th com-
ponent a contradiction since zg and z,' define different subfunctions (note that the /-th smallest
number in input z,’ has at most one zero). We conclude that A = 0(log2" /%) = Q(n) by
lemma 1. (J

5. An area-optimal l-selector

Our lower bound for selection seemed suboptimal at first. We knew of no O (n)-area cir-
cuit for selecting the /—th smallest of n numbers of arbitrary length. And it seemed unlikely that
we would find a circuit whose area matched the other cases of our complicated lower bounds for-
mulae. We eventually realized, however, that our lower bounds were optimal. We demonstrate

this fact below, by a constructive upper bound.

-7-

Our upper bound is constructed in two parts, corresponding to two cases in our lower bound
formula. We know of no elegant way of combining our two-part construction to give an area-
optimal [-selector. An inelegant expedient is to put both constructions on a single VLSI chip,
allocating one-half of the chip’s area to each. This composite chip is asymptotically area-optimal.

Neither part of our composite construction has been reported previously, to the best of our
knowledge. Our construction is, however, similar in spirit to the sorting circuits invented

independently and contemporaneously by Siegel!? and Bilardi.2

5.1. An O(n)-area circuit for l-selection

If the input word-length is very long, it is best to compute the {—th smallest value in a bit-
serial fashion, as follows.

The most-significant bit of the output can be determined by examination of the most-
significant bit of each input. Let z be the number of zeros among the most-significant input bits.
If | < z, then ! —th smallest input begins with a zero. Otherwise it begins with a one.

The remaining output bits can be determined in a similar fashion. The j-th output bit
depends only upon the j—th input bits and upon n flag bits. The flags indicate which inputs have
been determined to be different from the /-th smallest, on the basis of the previously-read, more
significant bits.

Our O (n)-area selection algorithm is described by the code of Figures 1 and 2. Because our
circuit reads its inputs in a rather unnatural order, we describe this order by the I/O interface
procedure of Figure 1. This procedure is executed by hardware or software external to our chip.
Our chip executes only the code of Figure 2. Note that [and k appear as input parameters for
Figure 2: our circuit will operate on arbitrary | and k. However, the maximum number of input

words, nmaz , must be determined prior to manufacture.

To express our hardware algorithms, we have adapted the Pascal language to our needs.
We have been explicit about the length in bits of our integers, wherever possible. Sometimes this
is impossible. For example, the parameter k of Figure 1 may be arbitrarily long. Such parame-
ters are given the type ‘VAR_LENGTH INTEGER".

The algorithm of Figure 2 could be implemented in a chip of O (nmaz) area consisting of a
general-purpose (log nmaz }-bit microprocessor (see section 2) with 2-nmaz bits of random access
memory. The microprocessor must also have 6(1) registers of 8(log nmaz) bits each, for address

calculations and storage of 1, [, and z.

Alternatively, the vector operations of lines 6, 9, 11, and 14 could be performed in parallel
on & tree with nmaz finite state machines (FSMs) at its leaves. In such a tree, leaf node ¢ would
store two bits, flag[t] and z; (#) during iteration j of the main loop. A microprocessor, located at
the root of the tree, would store and update the (log nmaz)-bit integers ! and z. Additional
FSMs, corresponding to internal nodes of the tree, would each perform the function of a bit-serial
carry-save adder, to facilitate computation of z. The internal nodes would also broadcast y ()
values to the leaves, for use in updating flag values. Since each of the FSMs will fit in O (1) area,
the entire chip will occupy O (nmaz) area when laid out in H-tree format.14

We note, in passing, that the uniprocessor design could calculate a k-bit result in

O (k -nmaz) time since its (log nmaz }-bit operations can complete in O (log nmaz) time. The

H-tree design would be much faster. Assuming that I/O is not a bottleneck, the tree would
compute a k -bit result in O (k ‘log nmaz) time.

For the case | = 1 a simpler O (n }-area circuit will suffice. A pipeline of n bit-serial com-
parison circuits can find the minimum of n elements in O (max{k, n }) time.

5.2. Another area-optimal selector

As indicated by our lower bound results, the O (n }-area selector circuit of the previous sec-
tion is not necessarily optimal. Improvement is possible when either 2% or I is small in com-
parison with n .

Below, we describe a selection circuit with

{ O (2* (logl - k + 1)), if k < logl
=L Ok -logl +1)), ifk > logl

Our circuit is based on three elementary techniques of information theory: delta codes, run-
length codes, and variable length codes. Delta coding refers to the representation of a number in
a sequence by the difference between that number and its predecessor. In our application, the
sequence for delta-coding is a permutation of the actual input sequence transforming it into sorted

order.

In a run-length code, repeated values in a sequence are indicated by a COUNT field. In our
application, this leads to considerable savings in area when there are not many distinct input

values, f.e. when 2 is small.

Values in a variable-length code are represented by a variable number of code words. In our
application, code words are bytes in a string. We represent integers in a variable-length format,
one (fixed-length) byte per digit.

With these preliminaries our algorithm is quite simply described. The circuit maintains a
compressed, sorted list of the ! smallest numbers encountered so far. Each element or
CODED_DATUM of the list consists of two variable-length integers, a DELTA value and a
COUNT value. To process each input value, the circuit makes a linear scan of its sorted list.
DELTA values are subtracted from the input (in line 17 of Figure 3) until the remainder is non-
positive, or until the list is exhausted. If a zero remainder is obtained, the appropriate COUNT
field is incremented (see line 19). If a negative remainder is obtained, a new CODED_DATUM is
inserted into the sorted list (see line 24). If the list contains fewer than [input values, a new
CODED_DATUM may be appended to the end of the list (lines 29-30). A final list operation
occurs in line 32, when excess CODED_DATUM elements are dropped from the end of the list.

We assume the operation of a LISP-style garbage collector to reclaim unused list storage.

The simplest VLSI implementation of the algorithm of Figure 3 would be an 8-bit micropro-
cessor connected to a memory large enough to hold the list of compressed inputs. To conserve
space, list elements should be stored in sequential memory locations, thereby avoiding the need
for pointer fields. This does not affect the worst-case asymptotic run of our algorithm since we can
perform a list insertion “in place” by adding a few instructions to the serial scan loop of lines 13-
34.

Theorem 2, below, bounds the area required by procedure compress_select. Before stating
the theorem, we prove a useful lemma.

LEMMA 3. Let s, m, ¢, p1, P2, ..., o be positive real numbers such that 1 < s < m < ¢ and
Y p<gq. Then J] p < (2¢/m)".

1<sr<m 1<i<s
Proof. If s < m,we write p, ;1 =p,40= - =p, = 1. Thenforall 8 < m, we have
Y, i < g+m < 2
1I<i<m
and

Hl’i:HP;-

1<i<m 1<i <s

Since the geometric mean of a sequence is at most equal to its arithmetic mean (Jensen’s inequal-
ity),

I V™ < % pi/m < 2¢/m. [

1<i<m 1<i<m

THEOREM 2. Procedure compress_select requires O (min{l, 2* }(1 + | k - logl |)) area to find
the [~th smallest of n k-bit numbers.

Proof: Procedure compress_select represents a multiset B = {b,, by, ..., b;} as a delta- and
runlength-encoded string S(B) = d #c #doF#co# - - - #d,#c,. In this string, d, is equal to
min{by, ..., b; }, and ¢, is the number of times the minimum element appears in B. In general,

d; and ¢; are defined so that E d; is the value of the j-th smallest element of B, and ¢; is
1<5 <i

the number of times this element appears in B. Trivially, we have

Y, 4 <2 and Y, o <L

1<i<r 1<i<r
Furthermore, all d; and ¢; are positive integers, and r < min{/, 2k).
The length in bytes of an integer m represented as a variable-length string, with a one-byte
terminator “4£”, is length (m) = [log, (m +1)] + 1. Here b is the base of the number represen-

tation: b = 10 for ASCIl, b = 100 for packed BCD, ete. Thus compress_select represents B in
length (S (B)) bytes, where

length(S(B)) = Y, ([logd; + 1)] + [loge; + 1)] + 2)

1<i<r

< Y logd; + Y loge; +6r < 6r +log(T) +log(JT)

1<i<r 1<i <r 1<i <r 1<i<r
If 2 <1, by lemma 2 we have
length (S(B)) < 6:2¢ + 2%log(2*+1/2%) + 2Flog(21 /2F) = O(2*(logl - k + 1)).
Similarly, if | < 2%, we have
length (S(B)) < 61 + 1-log(2¥*!/1) + l-log(2l /) = O(I(k - logl + 1)).

Combining these bounds, we obtain

-10 -

length (S(B)) = O (min{/, 2* }(| k - log! | + 1)).

In addition to memory for storing S(B), a circuit implementing compress_select must also
contain O (k + logl) bits of memory for temporary variables. In comparison with length (S (B)),
this memory is insignificant, as is the O (1) area required for an 8-bit microprocessor to execute
the code. Thus a circuit executing compress_select can fit in O (length (S (B))) area. [

We note, in passing, that the uniprocessor implementation outlined above would find the
I-th smallest of n k-bit numbers in O(n min{l, 2* }(| ¥ — log! | + 1)) instruction cycles. An
instruction cycle requires O (k + logl) time, due to the size of the processor’s random access
memory.

Procedure compress_select could also be executed on a pipeline of O (min{!,
28 }(| k - log! | + 1)) FSMs, each with O (1) storage and O (1) area. Such a pipeline would find
the [-th smallest of n k-bit numbers in O (nk) time. We do not believe this to be an optimal
result, however we can not be sure: determination of the time complexity of minimum-area cir-
cuits for [—selection remains an open problem.

Finally, we note that procedure compress_select has a simple implementation in O (k) area
for the case { = 1. Using a single FSM each input word may be examined in turn, to see if it is
smaller than the value stored in a k-bit shift register. The minimum is computed in O (nk)

time.

8. Conclusions

We have completely determined the area complexity of when-oblivious, semelective circuits
for [-selection. Our lower bounds are based on previously-published techniques for bounding the
memory required for a computation.l» 411,14, 16 Thys although these methods were developed for
VLs1 models, they could be applied to tape-bounded Turing machine models or to memory-
bounded stored-program random-access machines. The converse is also true: lower bounds on
space in classical complexity theory can be interpreted as lower bounds on VLSI area. Note, how-
ever, that such classically-derived lower bounds for VLSI may be suboptimal because they ignore
the area contributions of wires and gates. Nonetheless, for the problems studied in this paper,

memory-based lower bounds are sufficient.

We showed that our lower bounds on VLSI area are optimal by describing a minimal-area
VLSI circuit. Our circuit construction was based on a refined and simplified version of a

previously-proposed upper bound model for VLs1.13

Although we have completely determined the minimal area requirements for [-selection,
some interesting questions remain:
1. Is our upper bound for /-selection still optimal if the when-oblivous restriction is dropped?

We believe so, but are unable to prove it.

2. Can our lower bound techniques be combined with those of Siegel, dropping the where-
oblivious restriction from his bounds and dropping the semelective restriction from our

bounds?

3. What is the optimal time complexity for minimal-area ! -selectors?

© 0N TR w0 =

I o ol O
C'® W Ne R WD~ O

- 11 -

. VAR nmaez: INTEGER CONSTANT := 1024;
. PROCEDURE interface_for_radiz_select{ I, n: (LOG nmaz) BIT INTEGER VALUE;

k: VAR_LENGTH INTEGER VALUE;
z: ARRAY [1..n] OF 1 BIT INTEGER VALUE;
y: k BIT INTEGER RESULT) =

. BEGIN

ASSERT(n < nmaz); /* Raise error flag if n is too large */

VAR zs: OUTPUT STREAM OF BIT INTEGER;

VAR ys: INPUT STREAM OF 1 BIT INTEGER;

y := 0; /* Output is constructed in g, bit by bit */

PARBEGIN /* Circuit runs concurrently with its I/O interface */

radiz_select(l, zs, ys); /* Start circuit */ ‘
FOR j:= k- 1STEP -1 TO 0 DO /* I/O begins with most sig. bit */
BEGIN »

FOR ¢ := 1 TO n DO SEND(zs,z[f] <j>); /* Send bit j to circuit */
y := 2 * y + RECEIVE(ys); /* Update y */
IF j = 0 THEN TERMINATE(zs); /* Send ‘“‘end of input” signal to circuit */
END;
PAREND;

. END snterface_for_radiz_select,

Figure 1. Procedure tnterface_for_radiz_select.

. PROCEDURE radiz_select{ I, n: (LOG nmaz) BIT INTEGER VALUE;

1
2
3.
4. BEGIN
5
6

8.
9.

10.
11.
12.
13.
14.
15.
16.

zs: INPUT STREAM OF 1 BIT INTEGER;
ys: OUTPUT STREAM OF 1 BIT INTEGER) =

VAR z;: ARRAY [1..nmaz] OF 1 BIT INTEGER,;
VAR flag: ARRAY [1..nmaz] OF BOOLEAN := TRUE;
/* Our circuit has 2nmaz bits of local array storage. zj holds one bit of each input word.
flag[y] is true iff the Fth smallest inp]xt agrees with z{1] on all the inputs computed
so far. */
WHILE MORE(zs) DO /* Loop until input is exhausted */
BEGIN
FOR i := 1 TO n DO z]s] := RECEIVE(zs); /* Read n bits */
VAR z: (LOG nmaz) BIT INTEGER := 0; /* z counts the number of Os in flagged inputs */
FOR i := 1 TO n DO [IF ((zj[s] = 1) AND flag[s]) THEN z:= 2z + 1;
output_bst: 1 BIT INTEGER := IF (» < /) THEN 0 ELSE 1,
SEND(ys, output_bit); /* Output a bit */
FOR i := 1 TO n DO flag[s] := flag[s] AND (zj]s] = output_bit);
IF (output_bit = 1) THEN l:= [- z
END

17. END radiz_select;

Figure 2. Procedure radiz_select.

© 0 NGO A w N

[T e T O e
W N oo W= O

19.
20.
21.
22.
23.
24.
25.
26.
27.
28.
29.

30.
31.
32.
33.
34.
35.

-12 -

. PROCEDURE compress_select{ . VAR_LENGTH INTEGER VALUE;

z. INPUT STREAM OF VAR_LENGTH INTEGER;
y. VAR_LENGTH INTEGER RESULT) =

. BEGIN

TYPE CODED_DATUM: STRUCTURE = (DELTA, COUNT: VAR_LENGTH INTEGER);
VAR coded_data: LIST OF CODED_DATUM := NIL; /* Initially empty */

WHILE MORE(z) DO

BEGIN /* Linear scan through coded data */

VAR scan_ptr: POINTER TO CODED_DATUM := FIRST(coded_data);
VAR remainder: VAR_LENGTH INTEGER := RECEIVE(z); /* Read an input */
VAR rank: VAR_LENGTH INTEGER := 0
y := 0; /* Output is calculated anew on each scan */
WHILE (scan_ptr 2 NIL) DO
BEGIN /* Keep scanning until coded_data list is exhausted */
IF (remainder > 0) THEN
BEGIN /* Still looking for a match to latest input */
remasnder ;= remainder — DELTA scan_ptr;
IF (remainder = 0) AND ((rank + COUNT.scan_ptr) < {)
/* List contained an exact match for z */
THEN COUNT.scan_ptr :—= COUNT.scan_ptr + 1
ELSE IF (remainder < 0)
THEN BEGIN /* zis less than this datum */
VAR temp: CODED_DATUM := (remainder + DELTA.scan_ptr, 1);

DELTA.scan_ptr := — remainder;
INSERT(scan_ptr, temp); /* Insert a new datum into list */
END;

y := y + DELTA.scan_pir;
rank := rank + COUNT.scan_ptr;
END;
IF (NEXT(scan_ptr) = NIL) AND (remainder > 0) AND (rank < 1))
/* Append the new datum to the end of the list */
THEN INSERT(scan_ptr, CODED_D:ATUM(rcmaindcr,l));
IF ((rank — COUNT.scan_ptr) > |)
THEN NEXT(scan_ptr) := NIL; /* Delete the tail of the list */
scan_ptr :== NEXT(scan_ptr);
END

END

36. END compress_select;

Figure 3. Procedure compress_select.

-13-

References

1.

10.

11.

12.

13.

14.
15.

16.

Gérard Baudet, “On the area required by VLSI circuits,” in VLSI Systems and Computations,
ed. H. T. Kung, Bob Sproull, Guy Steele, pp. 100-107, October 1981.

Gianfranco Bilardi, “The area-time complexity of sorting,” ACT-52 (Ph.D. dissertation),
Coordinated Science Laboratory, University of Illinois at Urbana-Champaign, December
1984.

G. Bilardi, M. Pracchi, and F. P. Preparata, “A critique of network speed in VLSI models of
computation,” IEEE Journal of Solid-State Circuits, vol. SC-17, no. 4, pp. 696-702, August
1982.

R. Brent and H. T. Kung, “The area-time complexity of binary multiplication,” JACM, vol.
28, no. 3, pp. 521-534, July 1981.

B. Chazelle and L. Monier, “A model of computation for VLSI with related complexity
results,” in Proc. 18th Annual ACM Symp. on Theory of Computing, pp. 318-325, March
1981.

Pavol buri§, Ondrej Sykora, Clark Thompson, and Imrich Vrto, “A tight chip area lower
bound for sorting,” Computers and Artificial Intelligence, 1985.

Pavol ﬁuri’é, Ondrej Sykora, Clark Thompson, and Imrich Vrfo, A lower bound on the area
of DFT and DWHT circuits,” submitted to Information Processing Letters, 1985.

Reiner Kolla, “Where oblivious is not sufficient,” Information Processing Letters, vol. 17,
pp. 263-268, December 1983.

Richard J. Lipton and Robert Sedgewick, “Lower bounds for VLSL” in Proc. 18th Annual
ACM Symp. on Theory of Computing, pp. 300-307, May 1981.

Arnold L. Rosenberg, “References to the literature on VLSI algorithmics and related
mathematical and practical issues,” SIGACT News, vol. 16, no. 3, pp. 54-64, Fall 1984.

J. Savage, “Planar circuit complexity and the performance of VLSI algorithms,” in VLSI Sys-
tems and Computations, ed. H. T. Kung, Bob Sproull, Guy Steele, pp. 61-68, Computer Sci-
ence Press, October 1981.

Alan Siegel, “Tight area bounds and provably good AT? bounds for sorting circuits,” Report
number 122, Courant Institute, NYU, 22 pp., June 1984.

C. D. Thompson, “The VLsI complexity of sorting,” IEEE Trans. Computers, vol. C-32, no.
12, pp. 1171-1184, December 1983.

J. Ullman, Computational Aspects of VLSI, Computer Science Press, 1984.

J. Vuillemin, “A Combinational Limit to the Computing Power of VLsI Circuits,” IEEE
Trans. Computers, vol. C-32, no. 3, pp. 294-300, March 1983.

A. C. Yao, “The entropic limits of VLSI computations,” in Proc. 18th Annual ACM Symp.
on Theory of Computing, pp. 308-311, May 1981.

