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ABSTRACT

We study the relation between a class of 0-1 integer linear programs and
their rational relaxations. We show that the rational optimum to a problem
instance can be used to construct a provably good 0-1 solution by means of a
randomized algorithm. Our technique can be extended to provide bounds on the

disparity between the rational and 0-1 optima for a given problem instance.
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1. General Outline

The relation of integer programs to their rational relaxations has been the subject of
considerable interest [1,4,7!. Such efforts usually fall into two categories: (1) Showing existence
results for feasible solutions to integer programs in terms of the solutions to their rational
relaxations, and {2} Using the information derived from solutions to the relaxations to comstruct

provably good solutions to the integer programs.

We present a technique here which we call rendomized rounding. This technique is
applicable to a class of 0-1 integer linear programs, and yields results in both the categories listed
above. Our technique is probabilistic; for the existence results, we prove that the solution to an
integer program satisfies a certain property by showing that a randomly generated solution
satisfies that property with non-zero probability. In this random generation of solutions, we make
use of the optimal solution to the rational relaxation linear program. By modifying the procedure
used to derive the existence result, we can obtain an algorithm that is provably good in the
following sense. We show that with high probability, our algorithm will provide an integer
solution in which the objective function takes on a value close to the optimum of the rational
relaxation (the optimal value of the objective function in the relaxed version is no worse than the

optimal value of the objective function in the original 0-1 integer program).

We now give a general outline of the technique. Let II; be a 0-1 linear program, with
variables z; € {0,1}. Let II; be its rational relaxation, with z; € [0,1]. The basic algorithm

consists of the following two phases:



(1) Solve Ilg; let the variables take on values z; € [0,1).

{2) In this phase, the variables z, are randomly set to one or zero according to the following

rule:

-~

Prob. jz; = 1} = =z, (1.1}

In proving results about the outcome of the two-phase process described above, we
repeatedly make use of the following results from probability theory. Let B{m,p,N) denote the
probability that there will be more than m successes in N Bernoulli trials each with success

probability p.

THEOREM 1.1 (Hoefiding): If ¥, ¥,... ¥y are completely independent Bernoulk trials such that

EV,)=p, ¥ =¥, + ¥+ ...+ ¥ ,; we have

P(¥ > m )< B{m,p.N) (1.2)
where
N
Z P
o k=
P N

The other fact that we require is the well-known bound due to H.Chernoff [2}:

THEOREM 1.2: If m = (1+8) Np, then for 0<5<1,

B(m,p,N) < ezxp( — ﬁgfp) (1.3)

-

Iin the next two sections, we provide some direct applications of the technique: section 2
deals with a routing problem that arises in the design of VLSI circuits, and the following section
treats the O-1 multicommodity flow problem. Section 4 provides an extension to the basic
technique in order to deal with some situations that cannot be directly handled. The problem of
simple k-matching is used to illustrate this extension, which we call scaiing. Sectiop 5 concludes

with remarks on whether our bounds can be improved.



2. A Routing Problem in VLSI

In this section we illustrate the basic principles of the randomized rounding technique by
means of a routing problem that arises in the design of a certain class of VLSI circuits. The

problem is that of global routing in gate-arrays [10], and is defined as follows.

We are given a two-dimensional rectilinear n Xn lattice L ; in the context of gate-arrays,
lattice~nodes represent logic circuit elements and lattice-edges represent channels in which wires
used to connect the nodes can be routed. In an instance of the problem, we are given a collection
of nets, where a net a, is 3 set of nodes to be connected by means of a Steiner tree in L,. In
addition, for each net a;, we are given a set of possible trees b;; that can be used for connecting
the nodes in that met. A solution to the problem conmsists of choosing one tree for each net in the
instance, from the allowed possibilities for that net, The number of trees in a solution that
contain a given edge is termed the width of that edge in that solution. The width of a solution is
the maximum width of an edge taken over all edges in the lattice. OQur objective is to find a

solution of minimum width.

This problem is readily formulated as a 0-1 integer program by assigning a variable for each
configuration of each net: thus, let z;; be an indicator variable denoting whether or not the s

tree b;; is chosen for net a;. Constraints of the form
E zy o= 1, V { (21)
r .

ensure that a choice is made for each net. The number of trees in the solution that contain a
given edge ¢ is bounded above by an unknown quantity W which we seek to minimize as objective

function. We express these notions by means of

Y g W, Ve (2.2)
by; contains &
and
Minimize W, st.(2.1), (2.2)and z4 € {01}V 1,5 (2.3)

Consider a linear programming reiaxation of (2.3) in which fractional solutions are allowed:




-4-

Minimize W, s.t.(2.1),{(2.2)and z; € 0,1V §,f (2.3a)

The optimum solution to {2.3a) ¢an be found in polynomial time [5]. Let the optimum {fractional)
value of z,; be 5,-J-. Furthermore, let W, be the optimum width obtained from the linear program
solution; W, is a lower bound on the best possible integer optimum width. We now seek to use
these fractional solutions to obtain integer solutions to {2.3). We do this by means of
randomization: for each {, set z,; to one with probability 5,-j. The choice is done in an exclusive
manner, i.e. for each i exactly one of the z;; is set to one; the rest are set to zero. {Constraint

(2.1) ensures that we can do this). This random choice is made independently for all ¢,

THEOREM 2.1: For any ¢ such that 0 < ¢ < 1, the width of the solution produced by the above

procedure does not exceed

W, +

onfn—1) |
2-W,-In —’E(LC';-L] (2.4)

with probability at least 1—«.

PROOF: The proof follows from the observation that the width of a lattice-edge ¢ is the sum of

independent Bernoulli trials. The expected value of this sum is no more than W,, since the biases

used for the coin-flipping were the 5,-3- determined by the LP. Hoefiding's lemma is thus applicable

W
with p = -ﬁi . Chernofl’s bound is now applied with

_ 12
in 2n(rz 1)

2

= W

This ensures that the rounded width of any edge does not exceed the figure in (2.4) with

€

- ; PP S
probability at least 1 Tl

. then the maximum of the widths of the 2n{n—1) edges in the
lattice does not exceed (2.4} with probability 1—¢, ®

The second (randomization) stage ¢can be repeated to improve the solution; we thus have a
Las Vegas procedure. In nXn gate-arrays, W, grows as n° [9] for some ¢ € (0.5,1]; the

approximation of Theorem 2.1 is thus asymptotically a good one.
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Theorem 2.1 gives (probabilistically) a provably good solution to the routing problem.
Viewed in a slightly different light, it is also a proof that there exists an integer solution to {2.3)

whose objective function value is related to W, by the following relation.

THEOREM 2.2: Let W, be the optimum objective function value of the linear programming
relaxation of (2.3). Then, there exists an integer solution of width not exceeding

Wi + {2:W I 2n{n—-1) e
PROOF: Similar to the proof of Theorem 2.1. Using the Chernoff/Hoefiding bounds, we show that
the probability that an edge has width exceeding the quantity in (2.5) is less than 1/2n{n—1). It
follows that the probability is non-zero that none of the 2n{n—1) edges has width exceeding (2.5),

in a randomly generated solution. This proves the existence of such an integer solution. 8

3. Undirected Multicommodity Flow Probiems

In undirected multicommodity flow problems, we are given an undirected graph G(V.E). In
ap iostance of the problem, various vertices are the sites of as sources and sinks {sources are
denoted by ¢; and sinks by ¢; , 1<i<k). A vertex v€V may be the location of more than one
source (sink). One unit of flow is to be conveyed from each source s; to its corresponding sink t;
through the edges in E. Each edge ¢ €E has a capacity c{e) which is an upper limit on the total
amount of flow in e. We insist that the flow of any commodity in any edge be either zero or one.
Note that an edge could have fiow going in both directions; for instance, the fiow from ¢, to ¢y
(hereafter referred to as the flow of commodity i) could be in a direction opposite to that of the
flow of commodity j in some edge e . Each of these commodities uses up one unit of the capacity

of that edge, regardless of their direction.

We consider two types of such multicommodity fiow problems. In the first kind, we try to
maximize the total flow subject to meeting the capacity constraints {as well as conservation
constraints for each commodity at each vertex). In a second variant of the problem, we require

that all edges must have the same capacity; we try to minimize this common capacity while
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realizing umit flows for all & commodities. In this section, we focus on the second variant; the
techniques used in its solution, together with some new ones to be introduced in the next section,
can be used to solve the first variant. The general integral problem is known to be NP-Complete
i3], although the pon-integral version can be solved using linear programming methods [6] in

polynomial time.
The algorithm consists of the following three major phases:
{1} Solving a non-integral multi-commodity fow problem.
(2) Path stripping.
(3) Randomized path selection.

Non-integral Multicommodity Flow: As in the previous section, we relax the requirement of 0-1
fows to allow fractional flows in the interval [0,1]. The relaxed capacity~-minimization problem
ean be solved, for instance, by linear pro§ramming. Let us then assume that we have solved the
non-integral probiem and assigned to each edge ¢ €E 2 flow file) € ]0,1] for each commodity :.
A capacity constraint of the form
2 ide) £ C (3.1)
=
is then satisfied for each ¢ €K, where C is the optimal solution to our non-integral edge-capacity

optimization problem. As before, C is a lower bound on the best possiblie integral solution.

Path stripping: The main idea of this phase is to convert the edge flows for each commodity ¢
into a set I'; of possible paths which could be used to realize the flow of that commodity.
Initially, ['; is empty.

For each ::

(1) Form a directed graph G; (V,E;} where E; is a set of directed edges derived from £ as
follows: For each e € E, assign a direction to e which is the direction of flow of commodity §

ine. If f;(e) =0, ¢ is excluded {rom E;.
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(2) Discover a directed path {e,,...,¢e,} in G; from s; to t; uwsing a depth-first search,

discarding loops. Let
Im= min {fde}, 1< <p} (3.2)
For 1< 7<p, replace f.{e;) by f:(e;) = fm. Add the path {e, , ..., ¢} to T'; along with its
wesght [ .-
(3) Remove any edges with zero flow from E;. If there is non-zero flow leaving &;, repeat step
(2). Otherwise, next i.

It is clear that the above process terminates, since at each execution of step (2), at least one
edge (the one with minimum flow in the path) is deleted from E;. Thus the number of times it is
executed is upper bounded by | E;|. [t is also evident that on termination, the sum of the

weights of the paths in ['; is one,
Randomization: For each i1

Cast a |T';|-faced die with face-probabilities equal to the weights of the paths in T,.

Assign to net N; the path whose face comes up, Next 1.
We can then prove a theorem similar to Theorem 2.1:

THEOREM 3.1: For any ¢ such that 0 < ¢ < 1, the integer capacity of the solution produced by

the above procedure does not exceed

C+ |2:Cin —

1/2
{E| ] 33)

with probability at least 1—e.
Proor: The proof is similar to that of Theorem 2.1, invoking Hoeflding's and Chernoff's
inequalities. The expected pumber of unit flows through edge ¢ is given by (3.1).

An existence result similar to Theorem 2.2 can be inferred readily from the above theorem.
In [10] it iz shown that the path-stripping and randomization phases described above can be

replaced by a random-walk, with the same results.



4. Random!zed Rounding with Scaling

The problems considered in the previous sections were similar in that the right-hand sides of
the major constraints were the objective function itself (W in the routing problem and C in the
flow problem). In this section we will consider the case when the righb-i:land sides of the
constraints defining the problem are parameters independent of the objective function. A new

technigue which we call scaling is introduced in order to handle such problems.

Let k be a fixed quantity. Suppose we have a constraint of the form
Yz £k {4.1)

where the z; are variables confined to the interval [0,1]. Moreover, suppose we have [ractional

values Z; for these variables (derived from the solution of the appropriate relaxation), and the Z;
are then interpreted as probabilities for a randomized rounding phase as in the previous sections.
The difficuity lies in the fact that there is a significant probability that the values of the =, after
rounding will not satisfy (4.1). Furthermore, it is not clear whether there is a non-zero probability
that the randomized rounding will yield a solution in which none of the comstraints is viclated.
We now present a device by which we can reduce the probability that a constraint is viclated to
less than 1/n we call this device scaling. In this manner, we reduce the probability that cny

constraint is violated to less than one.

The idea is to multiply each of the Z; by some fraction less than one. The resultant value is
used in the rounding stage as the probability that z; is set to one. Intuitively, this reduces the
number of variables that are set to one and thus the probability that a constraint is violated. The
example below illustrates the scaling technique, together with the details of determining the
fraction used. We conpsider the problem of simple k-matching defined below. We use the

terminology of Lovisz 7).

A hypergraph H is a finite set of edges, where an edge is a non-empty subset of an n-element
set V. The elements of V are called vertices. A k-matching of H is a set M of edges such that

each vertex in V belongs to at most k of the edges in M. The maximum number of edges in any
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k-matching of H is denoted by vi(H). A k-matching is simpie if no edge of H occurs more than
once in M. The maximum number of edges in any simple k-matching of H is denoted by ¥,(H).

The problem of determining 7 {H} can be formulated as an integer program as follows.

Suppose H has n vertices and m edges. Let A be an n Xm matrix in which all the entries
are either zero or one; A represents the vertex-edge incidence matrix of H. Let z;, 1</ <m be
0-1 indicator variables that denote whether or not edge ¢ is in M. Let x denote the m-vector of

these variables. Let & be a fixed quantity. The constraints are represented by
Ax < ku, (4.2)

where u, is the n-vector of all ones. Consider the 0-1 integer linear program:

Maximize 'z, , st.(4.2), z; € {0,1} (4.3)

i==l

As usual, we solve the LP relaxation with z; € [0,1]. Let 7 be the optimum value of the

objective function. Instead of directly proceeding to the randomization phase, we multiply the

optimal values 5,— for the variables by the guantity 1—¢; the computation of & is described below.

Let
= I (1-96) (4.4)

In the randomization stage, we now use the values z/; as the probabilities rather than the .
After rounding, the expected sum of any row of (4.2) is no more than k-{1—8). The expected
value of the objective function is ¥ -(1—§). In proving the quality of the rounded solution, we

require an additional result from probability theory:

THEOREM 4.1 (Bernstein [8]): Let A be one of the possible outcomes of an experiment, suppose
p = P(A) > 0 and put ¢ = 1—p. Let the random variable ¢, denote the relative frequency of

A in an experiment consisting of N independent trials. Then for 0 < ¢ < pg we have

2
P(1&n=p| 26 < 2explm —DEC (4.5)

€
2pq(1+ —)
( 294)




- 10-

Using Bernstein’s Theorem together with the Chernofl {Hoeflding results, we can now prove

THEOREM 4.2: Let §, and 6, be positive constants such that §o > noe” */4 and 5,46, < 1. Let

2
g = -
r

In -%and

(6% + 4a)/? -4

vy = % (1-6) = T¢ (1 - >

Then there exists an integer solution to (4.3) satisfying

bm

szufk"“ +1

2bv’, )12 b]-
(24 20, (m—tv'y)

2
where b = In T

1

(4.6)

(4.7)

REMARK: In essence, Theorem 4.2 guarantees the existence of an integer solution of value

o'y = O({v"k}'9).

PROOF: By Lemma 4.3 below,

é
Prob. | A constraint is violated I < ;2-

Thus the probability that any of the n constraints is violated is less than &. By Lemma 4.4,

Prob. | (4.7} is violated | < &,
Since &, + 5, < 1, the statement of the theorem foliows. 3

LEMMA 4.3: For the choice of & in equation (4.6),
s 8,
Prob. [ A constraint is violated P ==
n

o

PrRoOOF: Directly from the Chernoff/Hoeffding bounds, with § = T The condition on &, in the

statement of Theorem 4.2 guarantees that ¢ < 1/2 and thus that § < 1. .

LEMMA 4.4:

Prob. [ (4.7) is violated | < &,
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PROOF: Since we are bounding the probability of deviations below the mean, we use Bernstein's

!
v
Theorem here, with p = —k, to get an upper bound. Solving the quadratic equation that arises,
m

we find that if we choose the following deviation from the mean v/, the tail probability is no

more than &, :

(m—v')
+ b eerreeereee )12
b ( 2b Ve )

Deviation =
bm

] = ——r
2 vy (m=v'y)

bm ¢

13172 .
< ({2 )+ b1+ _21";;(7""”"1:)

Note that Theorem 4.1 applies only if ¥ > 4:In n, for otherwise §,>1. (Using a more
accurate form of the Chernofl bound we can handle values of & somewhat less than 4dn n, but we

still require k to be Qflog n)).

For the sake of vartety, we have chosen to illustrate an. existence result here rather than an
aigorithm as in the previous sections. By introducing a parameter ¢ representing the [ailure
probability, we can modify the above theorem so that the probability that the procedure succeeds
ts 1—¢ rather than merely non-zero. This provides us with a provably good algorithm for simple

k-matching.

In Theorem 4.2, we do not require all the RHS values in {4.3) to be the same. Consider the

medification
m
Maximize J z; st. Ax <r {4.8)
=

where r 15 an n-vector of RHS values r; , 1 <1 < n. This may be thought of as a resource
allocation problem where r; units of resource { are available. Each of m jobs requires one unit of
each of various resources; if all resources pecessary for a job are available, it can be scheduled.

We wish to maximize the number of jobs scheduled.
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~ The following Theorem is analogous to Theorem 4.2.
THEOREM 4.5: Let &, and &, be positive constants such that &,+8, < 1. Let
!

vl = U5 {1-9)

where 37 is the rational optimum of {4.8). If there exists a constant § in the interval (0,1/2] such

that

Zexp - ( } < b {4.9)

then there exists an integer solution to (4.8) with objective function value at least

bm +1

- |i2bor 2 + b] (4.10)

2v,,m Uk)

2

whete b == |n -g-l—

PROOF; Similar to Theorem 4.2, with Lemma 4.3 replaced by the condition (4.9). §

5. Conclusions

Qur results from the preceding sections deal with a c¢lass of 0-1 optimization problems. In
sections 2 and 3, we developed solutions to routing and multicommodity flow problems that were
close to the best possibie solution. In section 4, we studied a matching problem and a resource
allocation problem. In both cases, we were able to show the existence of solutions close to the

rational optimum.

We have been able to apply randomized rounding only to 0-1 optimization problems with a
very special structure. Furthermore, even for such structured problems, we require that the
problem parameters lie in specific ranges in order that the technique be effective. For instance, in

the k-matching problem in section 4, £ had to be Q(logn ).

It is worth examining the tightness of our results. In general, there are two main factors

that make the bounds loose. Analysis of the sum of independent Bernoulli trials of success
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probabilities p, , Py s e, ppy shows that Hoeflding’s inequality is tightest when the probabilities
are equal. If the probabilities in any problem instance IT,, span a wide range, Hoeflding's bound is
weak. A second weakness of our bounds is that they relate a feasible 0-1 solution to the rational
optimum, not to the 0-1 optimum. In some probiem instances, the 0-1 optimum difers
significantly from the rational optimum; our bounds would then be closer to the best possible than

is suggested by our theorems,

It is not clear whether we can extend the idea of randomized rounding to other convex 0-1
optimization problems. This is because Chernofi-type bounds only apply to the sum of
independent random variables; since we interpret optimal fractional values as probabilities, we
must have linear constraints and a linear objective function in order to use the Chernoff bound. It
would be interesting to explore the quality of the randomized rounding approximation in, say,

convex quadratic 0-1 optimization problems.
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