UniQuadrix

Eugene Kenneth Ressler

The Unigrafix Group
Professor Carlo Séquin
Computer Science Division
University of California at Berkeley
Berkeley, California 94720

ABSTRACT

UniQuadriz is a simple graphics modeling program for objects
represented as the intersection of quadric and planar half-spaces. It runs
under the 4.2 BSD UNKXt operating system on the DEC VAX super-
minicomputer and the M68000-based Sun Workstation. The program
accepts scene descriptions in a language much like that of Unigrafiz, a
polygon-based modeler developed at UC Berkeley, and generates black-
and-white, smooth-shaded, smooth-edged images on several output devices.
UniQuadrix uses implicit equations to represent the surfaces and boun-
daries of objects throughout the rendering process. This allows a “scan
line” hidden surface algorithm to efficiently identify visible “‘spans’. The
algorithm exploits scan line as well as object coherence. An efficient incre-
mental algorithm shades pixels within spans. Images of one hundred half-
spaces with one-million shaded pixels commonly require three minutes of
VAX time.

4 UNIX is » trademark of Bell Laboratories.

Acknowledgements

This work merely focuses the knowledge and caring of those around me. My wife,
Freddie, and kids, Daniel and Julia, were supportive beyond reason. Professor Carlo
Séquin, my faculty advisor, had the original ideas and pushed me forward when things
looked bleak. Fred Obermeier was 3 friend and doubled as a UNIX expert. The members
of the Unigrafix group provided advice and encouragement on countless occasions. [n par-
ticular, Nachshon Gal’s insight on hidden surface algorithms saved many hours. Thanks
also to Professor Brian Barsky, who generously agreed to review this paper in the face of
many other commitments.

My initial investigations in the world of quadric equations were aided greatly by
VAXIMA, the computer algebra system built and maintained by the symbolic computa-
tion group headed by Professor Richard Fateman at UC Berkeley.

The final UniQuadrix code for the DEC VAX contains fast versions of the C library
square root written by members of the elementary functions group directed by Professor
W. Kahan.

Support for this work was provided in part by the Semiconductor Research Coopera-
tive under grant number SRC-82-11-008.

Table of Contents

Chapter 1. INtrOdUCHION coreeeussurimmsssssseesssssssinissssssssssssss sz oess 3
Chapter 2. USing UBIQUAATIX wvvvuuuumrrismsessssecissmsmmsssssenmmssssess s ssssssmmss e s 5
9.1, The LADGUAEE .cvveucurcrrmrnresssersusiasmssmasssessassasaasaasasessosensnasassnssusnassssasssasssssessses 5
2.1.1. Half-Space Boundsccccceireuerimmmesssisssnsssnsmssasisusmensmsnsasesesnsassares 5

D.1.2. BOGIES wevurivereressesesscsissnesssarsesssessssmssassssssasastsssisssisussassasasas st c st 6

0.1.3. DEBMItIONS ..verereeseecrsirmsenmsssscnsssssmsssasssttssssasasmiassssescstasasusmassssasiissees 6

2.1.4. Instances and Arrays eeerevaseateseauessaseseasesseasatsresRessanaesentsasennnaness 7

PRTTE FT3: - SRR RERER SRRt 8

D.1.8. VIEWS oovuunrerneseeureecnsnerssarssssssasssnassstssasessasassassasasasiasasmsasussacasicsssess 8

D.1.7. REAA eeeceerrereeemcesemsrerasssaessas s s st s s 9

2.1.8. COMIEDLS .cureurmruresssssressismenssasssssasasasssssmsssssmsssismsnsssasatasasasssasaseses 9

2.1.9. SYMODYIS «cvevrerrmsrsesssesssassrssasssstassisssmsssssmascmssassinsssssmsssasessessemssssssases 10

2.9, Bateh MOGE ..vueeeerrecressmrmssnsasusessssnsmsssssseasmssassassssaseasissasssnsmsuseasosensasssssases 10

2.3, TNLETACLiVE MOGE .oeevmsrucresrarsiocsesusisrsssstssunsssnsnsassssensinsassasmsaseasusssens s 11
Chapter 3. Manager, Reader, AN FIALLETET .eoovertieeeressriseersasesssstesmassansansssnssnsanssnasacntens 13
3.1, MADAGET .errvneesremsssnemsssssensssassassssssmsssissssssssassmassassiossinssaassssssasenasessssssssnssnsess 13

3.0, REAAET .veemreerracrassssenceesessasmessssssresbassassassssass it s s st S s s 13

3.3, FIALLEDET «vovecrereranermesseirssssastscssasssssssssstasasbstansamssastasssissmtassasmsissssosensssssasss 13
ChApter 4. RESOIVET ..covvuuusnrrerensssssssssssssssssessssnmmsss sz 16
4.1. A Preview of ReDAErer ..oooveccuiinimismnsusrsusisnsinsss st ssessssesssees 16
4.1.1. SBOW-FACES ourureeermcrcrmriranesessrsssnassaistaes s sasn st st ens 16

4.1.2. SHOW-EAGES oevurermrinransirnsseensasmssanssssssasasiasmasmssassasissasnstssasscnsesseses 16

4.2. Resolver Data SLIUCLURES ..oecoceecruemmssnismusmssssassasmenscnsessasmsassanasasessassssasasssess 17

4.3. Building 1-Line Tables ..ocooweiiunimiiimmisciscssssrsmssnscnsssaseassnsmssensensssssinssssees 19

4.4, Making SBOW-EdEES ..oucrreueemmerosemssmmimsseusensssemmsssmsenssesmsmssssss s esss s 21

4.5. RESOIVET'S TOOIS w.vuvemcceriaersinarsncassssissmasmasssssasissnasnasraseasessossassassmsmsasensssecsenss 22
4.5.1. CODVENMLIONS erveucurerersrenmmsasassssssssasnssssssistasmassassataesissasasasusseracassssees 22

4.5.2. Coefficients of Intersection Lineccooccuiummmricnicscscrucasusmassasareescass 23

4.5.3. Coefficients of Intersection COMIC ...occrirmemsmamsnsnscrasususesmsasmeaseenens 23

4.5.4. Quadric Surface NOFIAL 1oeeeeereerverresceseessnessnssessnssnesassnssnnssesssnsnnasss 23

4.5.5. Coefficients of Limb Planeccooimiecissisinssennisnscsccnsusnsnssaneaseseess 24

-1-

4.5.8. Coefficients of Limb ..coeiiiiiminiiioiiiinieiicnn st 24

4.5.7. Existence of LIMDb ..cccoceeineirmninniecniiiistisntsssessciissensssensisecnces 24
4.5.8. I-vertices of Type ISECT

(plane-plune-plane IDLETSECLIONS) .uroeeurrvirnirnernaresusscesessisissnensasanssnsacene 24
4.5.9. Intersection of Line and ComiC ..cocvviniimimnneninisissessncniiansnnenseccentonnenees 25

4.5.10. l-vertices of Type ISECT
(plane-plane-quadric INLErSECiONS) ..covverrerrerrestesnesnssnsssnssnsnensasneseoancs 25
4.5.11. I-vertices of TYPe LIMB ..ouvceeiiiiiinirnisneecnsssninnsnsssnsacensacnss 25
4.5.12. Extreme I-Vertices and Insert-Planesc.ccocccvvcecencncne eeneressassesanes 25
4.5.13. ZETO TESS ueeerreerrceersusrerrinsrsassasesisstsnsanasasasssansatsanesssssnsnasssnsasessens 26
4.6, IMPlEMENtAtiON ..ouevruerrusiasistsirsinssmsustsses st sia sttt 2e
CRAPLer 5. REDAETEroiureuseussiasscannisssssssssssessssssssas s st s s 28
5.1. OVEIVIEW .eooruruierereesaeseeseonessossarssesessestssissemesmansatsststunastsnsasantantnestossastansnsnes 28
5.9. More On Show-Faces and Show-Edgescccoiniirciciiniimnnsiscsccncscnnennnes 28
5.3. Passes TWo and THIEE ...cccociiniiimienencescntiinentesissest s snsasssssnessassasnees 28
5.4, PPASS OIDE veeveereerrerrarrereeneeesesrsraessastassassest st aansanasstatssussnisnssatantssestassinesrnsesanntes 29
5.4. Renderer’s TOOIS ..coeieereeeceririsistenssreentsassestsisssatassssestsctsssansnsisssnsacstntanstas 29
5.4.1. Depth COMPATISONS ..eovureucurmiimsisnismssssesssussnsaststsssssassecasssasasensases 29
5.4.2. Tracing ShowW-Edges .cuorneececiminininiecsstsienttnntinsssassneasnsncacs 30
Chapter B. SHAEToomivrrrriuscreemsinsssrssssti st 31
8.1. The Lighting Modelcrimmrmrencnmininniinnsssnstsistsasnsnnsnssnsncasssensasossasasnenecs 31
6.2. The Model Applied to ShOW-Facescocoveieerimcisninitinmnnsnincenicsnssnsnnasenee 31
B.3. QUOATIC Z cooevorssessssressesesessssessssssss s s s s s s 32
8.4. Piecewise Matrix Multiplicationcceceeieeiiiiimiininieciininiennnessesenineenees 32
8.5, IMPIEMEDLALION ..curvrmirrrreasnossinisssstsssssetasesesasts st sttt s 32
6.5.1. Non-Unit Shading INCrementscccoeiiuirnieriniiiinnssssnionnisnninanneneseses 33
6.5.2. The Device INtErfacecoccveremerencmniesiinisiiennsssseesteeincnisananesnsessens 33
6.5.3. Driver PrOGTamsccoveuriemreicscstscinimesnsssnsssssasesasassensasasassasassssacacs 33
Chapter 7. Evaluation and Conclusionsoecoeiuvemimmisrmmsrucsmssssssnsmmsssnsnassusensenacssecnss 35
7.1. Some Run-Time Statisticscccoeeeseeessiiisieninniasiscserscssesnnantaneensascsscsncanens 35
7.0, CONCIUSIONS ..veoverveeererresseniseesisssssasassssssasossonsssssssnsssssssssstssstsnssmssannsscsssestsisnce 37
T.2.1. WIS cvveeveeueerrerssesassssesnssssessmesnesasassssasossessesssssasssassnssssestrsssssstasnaosacsecs 37
7.9.2. LOSSES .eeecerurerrarrenrerassntossssnesssnsassastosasisssstesssttesaanissstesssntessntaaasasiessaitis 37
7.9.3. Work Still To Be DODE ..cccoevieriniriinsenccesiisiesissnnssssiessetssesstsentonnsnnanees 38
7.3. SUIIMATY ..veveceeseressesessenssssasesessatstiassmsssnsanassscstostansatsssamessasstssisisssssnnasasinsacs 38
RESETEICES o.vveueenrivirsesseenssstostonsonssssesnastaseasaest it iesssssastansastasssntentaniotassestessississtnssntannestes 40
Appendix — UniQuadrix DFawings ..ccocoecmersecseeussinssmnmmsnmsesmasenssssssmasssassssssassnsensenasess 42

-2-

1. Introduction

Quadric equations and the surfaces they represent lend themselves well to computer
graphics applications. Many of the sub-problems that must be solved to model and render
them efficiently have usable closed-form solutions. For example, equation coeflicients may
be transformed with homogeneous matrices to orient a surface in space. A single homo-
geneous vector-matrix multiplication supplies the quadric surface normal. Even tracing
general quadric intersections, in general projective curves of degree four, has been reduced
to a second degree problem by Levin [Levin 76, 77}. Certainly, such a powerful facility
merits attention. .

Quadrics have received attention, though their history in computer graphics is a
great enigma. On one hand, they are used as primitives in some of the earliest attempts
at geometric modeling [Weiss 86]. This is to be expected; a student painter’s first exercise
is to produce the image of light falling on a sphere or cone exactly because variations on
these forms are prevalent in pature. Quadrics seem even more intrinsic to man-made
objects; developers of Computer Aided Design systems have found that spheres, cones,
and planes are sufficient to model ninety per cent of the parts in a modern American auto-
mobile [Hakala 81},

On the other hand, the complexity and potential for numerical instability of general
purpose algorithms for manipulating quadrics are well known. Perhaps this is why
rendering of curved surfaces is commonly done using planar polygons for approximation
[Gouraud 71}.

None the less, researchers after Weiss have continued to seek merit in the idea that
an intermediate, approximating object representation is not necessary for efficient render-
ing. The work of Woon [Woon 71] is closely related to the algorithms of UniQuadrix. He
demonstrated that an algorithm designed to draw the edges of polygonal objects with hid-
den lines removed can be used to draw quadric objects with minimal modification.

This work exploits Woon's idea with a hidden surface algorithm. UniQuadriz is a
simple graphics modeler for objects represented as the intersection of quadric and planar
half-spaces {bodies). It runs under the UNIX 4.2 BSD operating system on the DEC VAX
super-minicomputer and the M88000-based Sun Workstation. The program accepts scene
descriptions in a language much like that of Unigrafiz [Séquin 83| and generates black-
and-white, smooth-shaded, smooth-edged images on several output devices. These include
the Sun’s bit-mapped screen. UniQuadrix uses implicit equations to represent the surfaces
and boundaries of bodies throughout the rendering process. This allows a ‘scan line’ hid-
den surface algorithm to efficiently identify visible ‘spans’ in a scene. The algorithm
exploits scan line as well as object coherence. An efficient, incremental algorithm shades
pixels within spans.

The system described here is fully implemented and working at UC Berkeley. How-
ever, current UniQuadrix handles only objects with plane-quadric intersections and plane-
plane intersections. Extension to include quadric-quadric intersections is a topic for future
study.

UniQuadrix is written in about 10,000 lines of the C language divided among forty-
six source modules. The input parser was built with the Yet Another Compiler Compiler
(yace) facility of UNIX [Johnson 78]. The grammar and actions input to yacc account for
another 800 source lines.

Chapter 2 explains how one uses UniQuadrix, for the scene language introduces most
clearly what is required of the rendering algorithms. The following Chapters describe the
steps of scene processing. Chapter 3 covers the parsing of scene files and construction of

-3-

UniQuadrix Introduction

the scene data structure. Chapter 4 describes the rather complicated algorithm used to
compute boundaries. Chapter 5, describes the hidden surface algorithm, drawn directly
from the “stack’ algorithm of Unigrafix [Strauss 82]. Chapter 6 details the shading algo-
rithm »f UniQuadrix. Finally, Chapter 7 examines the performance of UniQuadrix and

draws conclusions about this work.

2. Using UniQuadrix

2.1. The Language

The UniQuadrix language is modeled on that of Unigrafix with minor exceptions. It
is a terse, yet readable way of describing scenes.

2.1.1. Half-Space Bounds

The building block of UniQuadrix scenes is the Half-Space-Bound (HSB). Each HSB
is potentially two things — a zero-thickness surface, possibly of infinite extent that is
shaded in the final image and a bourd on the surfaces of other HSB's.

The language allows two types of HSB's — planar ones:
plane [Planeld| < A, B, C, D, > [=t][=o];
and quadric ones:
quadric [Quadricld | <A, B,C, D, E F, G, H, J, K,> [=t][=0
Id’s in UniQuadrix are strings of letters, numbers, sharps (#), and underscores (_), though
the first character may not be a number. Ouly the semicolon (;) is honored as a termina-

tor, so statements may share a line, and spaces, tabs, and newlines (white space) may be
used freely to enhance readability.

The coefficients in the HSB statement describe the half-space inequality (HSI) that
gives the HSB its surface and bounding characteristics. The HSI’s of the statements above
are:

P(z,y,z)=A,z2 + B,y + Cpz + D, <0 (2.1)
and .
Rz, y, z)=Aq:t2-!-B'yz+C'*,z2 (2.2).
+ 2D zy + 2E, yz + 2F 2z
+2G,z +2H,y +2J,z + K <0

Option ==o0 makes an HSB opaque and ==t, transparent. Opaque is default. The
surface of an opaque HSB is shaded, and its HSI potentially bounds other HSB surfaces in
the same body. Transparent HSB’s have only the latter quality.

UniQuadrix generally assumes that quadric HSIs are defined such that the portion
included in any body is convex, though it will work for some cases that do not meet this
condition. In particular the algorithm handles hyperboloids of one sheet defined as
“pecked” cylinders. It is dangerous to include the apex of a cone within a body. In addi-
tion, redundant intersections are illegal. A redundant intersection results when three or
more HSBs of the same body intersect in the same three-space curve (point intersections
are allowed). Examples of legal and illegal intersections are shown in Figure 2.1. This
rule does not restrict the topology of bodies, because any redundant intersection may be
eliminated without changing the appearance of the final image. Hence, the rule is impor-
tant mainly to writers of programs that generate UniQuadrix input.

-5

UniQuadrix Using UniQuadrix

RN
F~O
7 N
N AN
N
N
/ /
STt - =
Nlegal because tntersection Legal if excluded
occurs in final ymage from final image

Figure 2.1 — Redundant Intersections

HSB statements are essentially macro definitions. Nothing is rendered unless an HSB
is pamed in a body statement as discussed in the next section.

2.1.2. Bodies
A body statement lists HSB's:

body [bodyld] ([[!] planeld | [{!] quadricId]..)

In the final image, the body appears as the visible portions of its opaque HSB surfaces
that satisfy all its HS inequalities. Prefix " depotes the complement of the named HSB,
including its surface. Thus, a quadric HSB can be 3 “hole” even though its HSI is convex.
For example, a tube with inside radius 1, outside radius 2, and length 4 on the y axis is:

quadric outer_tube <101000 000-4>;

quadric inner_tube <101000 000-1>;

plane top_surf <010-2>;

plane bot_surf <010 2>;

body tube <outer_tube linner_tube top, surf 'bot_surf>;

2.1.3. Definitions

Definitions are the basis of hierarchical scene descriptions, exactly as in Unigrafix.
They, like HSBs, describe objects that are not rendered unless named elsewhere. Planes,
quadrics, and bodies, as well as the instances and arrays to be described may be included

in definitions:

UniQuadrix Using UniQuadrix

definition [defId |;
[plane. . .]
[quadric . . .|
[body .. .]
[instance . . .]
[array ...]

enddef;

The id's of plane and quadric HSB's given within a definition are local to that
definition. Likewise, bodies may reference only HSB's given within the same definition.

2.1.4. Instances and Arrays

Instances and arrays are used to render the contents of a definition in one or several
copies:

instance | instld | (defId [transforms]);
array | arrayld | (defld [initTransforms 1)
[numCopies | [deltaTransforms |;

Transforms consist of one or more of the following transformations separated by white
space:

=tx number Translate number in X, y, 2 axis or all axes
=ty number

=iz number

=ta number

=8X number Scale by number on x, y, z axis or all axes
=gy number

=ss number

==sa number

=rx number Rotate by number degrees on given axis
=ry number (right-hand convention applies)

=rg number

==vxy number Shear number along the second axis
=—vxs number for each unit along the first axis
=vyx number

=vys number

=vzx number

=vgy number

Transformations are concatenated left to right and used to orient the definition named
defId as it is rendered. For instances, trans forma give the orientation of a single copy of
defld. For arrays, initTransforms give the orientation of the first of numCopies of defId
and deltaTransforma describe the change in orientation between copies. A bundle of six
of the tubes described above is:

-7-

UniQuadrix Using UniQuadrix

definition tube;
statements for body tube above

enddef;
array bundle_of_ tubes (tube =tx 2) 8 =ry 60;

Hierarchies of objects are created by namirg instances and arrays within definitions.
A stack of three tube bundles is:

definition bundle_of_tubes;
array statement above

enddef;
array stack_of_bundies (bundle_of_tubes =ty -7) 3 =ty 5;

2.1.5. Lights

UniQuadrix supports multiple light sources in a manner similar to Unigrafix. Isotro-
pic, ambient lights are specified with:

light [lightId] intenaity;
Parallel lights have the form:
light [lightld] intensity 2 ¥ z;

Vector [z y z] is the direction to a parallel light. Intensity of both types of lights is
expected to be in the range zero to one. UniQuadrix truncates values outside this range.

Multiple parallel sources may be defined, however, only one, the last by default, is
used for rendering. This is a practical restriction; the smooth shading algorithm runs in
time proportional to the number of parallel lights.

A very approximate constant shading of curved surfaces is invoked with the -f
option in the command line or the show fast statement as described below. This shor-
tens computation time while providing an image useful for debugging images and adjust-
ing view geometry.

Uniquadrix automatically creates a light that is used if no other parallel light 1s
specified:

light default 100 -1;

The sum of all ambient intensities plus a portion of the parallel intensity given by
Lambert's Law is used to shade the surfaces of each body. Areas where this sum is one or
more are rendered at maximum device intensity.

2.1.8. Views

UniQuadrix treats view specifications as objects. A scene may contain any number
of views, but only one is used for rendering. Again, this defaults to the last one defined.
Views are specified as in the Simple Graphics Package of Foley and VanDam [Foley 83]:

view [viewld | viewParams;

ViewParama consist of one or more of the following:

-8

UniQuadrix Using UniQuadrix

vrp zyz View Reference Point

vpn zyz[=v][=p] View Plane Normal Vector
vup zyz[=v][=P] View ‘Up’ Vector

dop zyz|=v][=P] Direction of Parallel Projection

cop zyz|[=a][=r] Center of Perspective Projection

whh aize Vertical half-size of view window (parallel to
projection of vup on view plane)

whw size Horizontal half-size of view window (perpen-
dicular to projection of vup on view plane)

fbp d1d2 Front/back clipping plane distance (meas-

ured frcm vrp along vpn)

Multiple viewParams are separated by white space. Option ==v means that [z y z]isa
direction vector (default), =p that [z y z]is a point at the tip of a vector from vrp.
Similarly, =a denotes an absolute cop (default) and =T, an offset in world coordinates
relative to vep. ViewParams are parsed and set left to right, so vrp should be given first
before parameters with =p and =r. Of repeated parameters, only the last is remem-

bered.

UniQuadrix makes inferences based on the presence and absence of view parameters.
The view projection is assumed parallel when dop is given and perspective when cop is
given. If whh or whw is omitted, the image is translated and scaled to fit the device in
height or width respectively. Of course when both are missing, auto-scaling is applied to
both axes. Front-back clipping is performed only when fbp is given. It has no eflect on
auto-scaling.

When view parameters are missing the following defaults apply:

Missing Default

vrp Origin

vpn Opposite dop for parallel projection and opposite the direc-
tion from vrp to cop for perspective

vup Positive y axis

dop and cop Parallel projection with dop [.3 .3 -1]
UniQuadrix automatically creates a view that is used when no other is given:
view default dop .3 .3 -1;

This is equivalent to a user view specification in every way.

2.1.7. Read
The statement:
read “pathName";

causes the named file to become the source of UniQuadrix input until end of file.
Thereafter, statements following the read are processed. Reads may be nested to a depth
of 16. The quotes (* ') may be omitted if the file name is acceptable as a UniQuadrix id,
with no dot (.), slash (/) or other special characters.

2.1.8. Comments

Comments are enclosed in curly braces ({ }). They are valid anywhere in licu of
white space and may be nested te great depths. The latter facilitates ‘‘commenting out”

-9

UniQuadrix Using UniQuadrix

portions cf files that themselves contain comments.

2.1.9. Synonyms

The following synonyms are available for language keywords. All keywords and
synonyms are reserved from use as id’s:

Keyword Synonym | Keyword Synonym
array a light |
body b plane P
definition def quadric q
device dev view vw
instance i cop ep
read include dop ed
enddef end vrp ve

2.2. Batch Mode

To process an image in batch mode, the command line is

uq [options] | files] [options | [fles]...

Files are UniQuadrix files. Files and options are processed in order from left to right. If
po file or “-" option is given, the standard input is read. Any error more severe than a
warning noted during input processing aborts rendering. If such an error occurs while
rendering, “‘soft”’ devices (those with screens) merely stop drawing. If a “hard’’ drawing is
being generated, raster files are de'eted unless the -k option is in effect.

A complete list of options is:

—cStmts Execute the statements Stmts. If Stmts are missing, Uni-
quadrix enters interactive mode; on quit, the rest of the
command line is processed.

—dDeviceName DeviceName is used to draw the scene

—ePathName Redirect error messages to PathName

-f Turp on fast constant shading for debugging

-F Turn of constant shading after —f

-k Turn on raster file ‘keep’; file name is reported

-K Turn off raster file ‘keep’ after -k

-n No warnings; shuts up the error handler unless something
serious happens (good for running in background)

-N Turn warnings on after -n

—sxInches Force the drawing to be of size Inches across.

~syInches Force the drawing to be of size Inches in height.

~-sdCount Do smooth shading calculation at intervals of Count pixels
instead of the device default (usually eight).

—tPathName Turn on trace; put trace information in stream PathName
(stderr if PathName is missing).

-T Turn off trace after -t

~vViewName Use view ViewName instead of the last defined.

-x Do not render an image after the last file/stdin is read

- Read the standard input as a file

If no —d option is given, UniQuadrix checks for device names in environment variable
UQDEV, then TERM. The last causes a Sun workstation to use it's own screen. The

-10-

UpiQuadrix Using UniQuadrix

following DeviceNam:ca are known:

a, ascii, file Human-readable file uq.out

cs, colorsun, Sun work station with color board and monitor
sun Sun work station

v, va, var, varian Benson Varian

x, vXx, vectrix Vectrix

w, vp, ver, versatek Versatek wide-bodied plotter

Sun and colorsun are not supported if UniQuadrix is compiled for the VAX. Colorsun
requires a Sun workstation with color board and monitor.

2.3. Interactive Mode

UniQuadrix supports a primitive interactive mode that makes it easier to edit a
scene. The command line to invoke it is:

uq —i [options | [files] | options] [files] ...
After options and files are processed, the user is prompted with:

uq>

Any UniQuadrix statement is valid in response to the prompt. If an error is noted, all
input is ignored and no prompt given until the next semi-colon (;).

The following statements enhance the interactive environment:

redef light lightld;

redef light lightId intenasity;

redef light lightId intenaity z y z;

redef view viewld;

redef view viewld viewParams;

device deviceName [keep] [nokeep] [xsize Inches)] [ysise Inches);

show [viewld] [fast];

quit;

read;
In interactive mode there is a notion of the current view, parallel light, and device —
those that were last defined or redef'ed. Redef can also assign new values to an object
already defined. Device sets the current device just as the —d batch option. Keepon
and keepoff are similar to -k and —K in the command line, and the size keywords set the
drawing size in inches just as -sx and -sy. The statement:

show Viewld
is shorthand for:

redef view Viewld;
show;

The fast keyword is identical to -{ in the batch command line. Quit quits. These state-
ments are also valid within batch files.

Naked read enters interactive mode during batch processing, e.g., to specify a view
and device. In this case, quit returns control to the batch file.

-11-

UniQuadrix

Using UniQuadrix

A typical interactive session might be:

% uq —-i —dcolorsun;

uq> read scenefile;

no user errors

uq> light glow .3;

ug> light .7 4-4-1;
warning: id 1#1 created
uq> view top_down dop 011
uq> show;

uq> dev varian keep;

uq> show fast;

raster file: /tmp/uql23456
uq> redef light glow 0;

uq> redef light default;
uq> show default;

raster file: /tmp/uql23457
uq> quit;

warnings:1

{ start up uq }
{ read a scene }

{ ambient light }

{ parallel light }

{ uq makes up id }

{ parallel view }

{ render on color Sun }

{ current device ss Varian }

{ show with constant shading }

{ change ambient to zero }

{ make default light current }
{ show with default vicw }

{ keep still on }

parser:0 syntax:0 input:0 command line:0

%

-12-

3. Manager, Reader, and Flattener

3.1. Manager

Manager is the caller of subprograms in UniQuadrix. Its jobs are twofold: Handle
files and options from the command line and handle the show operation that results in a
picture. Manager’s chief underlings are Reader, the processor of batch files and interac-
tive statements, and Flattener, Resolver, Renderer, and Shader. These process the scene
at the end of a batch command line or when Reader recognizes a show statement.

3.2. Reader

Reader scans the content of UniQuadrix files and interactive input and builds scene
data structures. This may be on call from Manager, or in response to a read statement
in the input stream. In the latter case, Reader calls itself, so it is implemented as a recur-
sive function. Scenes are stored in hash tables in a conventional manner; the hash func-
tion operates on id's. These data structures contain no information beyond what is in the
statements that generate them; Reader does no coordinate transformation.

3.3. Flattener

Flattener begins the show process for Manager by doing a depth-first traversal of the
trees of definitions, instances, and arrays in a scene bierarchy. Figure 3.1 shows the tree
for stack_of_ bundles in Chapter 2. Each instance and array in a scene corresponds to an
internal nodes in such a tree; body statments outside any definition are just the leaves of
trivial trees. All leaf nodes are bodies in the final image.

(stack-of-bundles

ty -7 ty -7ty S ty -7ty 10
{ bundle-of-tubes) (bundle-of-tubes) (bundle-of-tubes)
AR RV N w = e
tz 2 tr 2ry 60 tz 2 ry 120

Ve) e)

Figure 3.1 — Tree formed by stack-of-bundles

As Flattener encounters an internal node, it computes and stores a homogeneous
transformation matrix that is the concatenation of all its ancestors’ transforms plus its
own. Figure 3.1 shows the tranasforms stored at the parent as each new node is reached.
Note that array deltaTransforms accumulate. On reaching a leaf node, Flattener has
discovered a body to be rendered. It applies the matrix stored at the parent to the body's
HSIs, placing the transformed HSB's in a table that serves as input for Resolver.

-13-

UniQuadrix _ Manager, et al

Flattener also applies the view transformation matrix. This is computed as part of
its initialization and treated as the transforme of a pseudo-node at the root of each tree
in the scene forrest. The view matrix transforms HSB's in the scene from world coordi-
nates to Resolver Coordinates (RC). It includes a translation, rotation, and potentially a
perspective transformation of the scene into a acenc boz as shown in Figure 3.2.

If the user specifies any combination of window width, height, or front-back clipping
distance, it is used to fix the z, y, and z size of the box respectively. Clipping is per-
formed by adding planar HSBs that represent appropriate sides of the box to each body.
For window axes not given by the user, the image extent gives the box size and no clip-
ping is necessary. Resolver fits the scene box to the device.

?

y

// 8D Scene Boz

Figure 3.2 — Resolver coordinates

The transformation of HSIs is most easily explained by restating them as matrix
equations. The plane equation (1.1) in homogeneous space is:

P(z,y,z,w)= A,z +B,y+0,z+D,w == (3.1).
Let:
4, |
B,
x—[zyzw] and P=|, (3.2).
?
| °r
Thes, (3.1) becomes:)
P(x) = xP (3.3).

Given a homogeneous transformation matrix T, we wish to obtain P'==f(P, T) such that
each point x satisfying xP == 0 maps to 3 point x' == xT satislying z’P' == 0. Straightfor-
ward matrix algebra yields:

P = TP (3.4)

-14-

UniQuadrix

In a similar manner, the quadric HSI in (1.2) in homogeneous space is:
Q(z,y, 2, w)= quz + quz + C'z2
+2D,zy + 2E yz + 2F 2z
+2G 2w + 2Hyw + 2J, 2w + K,w*=0

and can be restated:

Q(x) = xQxT =0 where

So, the coefficients of the transformed quadric

Equations (3.4) and (3.7) influence the design of Flatte
the node transformation matrices discussed above are compu

S

O

O
o e

Y

=

)

Q

o]
=

Q

HSI are given by:
Ql - T-l Q (T-l)‘r

Manager, et al

(3.5)

(3.8).

(3.7).

ner. Since they use only T,
ted and stored as inverses.

4. Resolver

4.1. A Preview of Renderer

Resolver accepts transformed bodies from Flattener and outputs the data structures
used by Renderer. This chapter begins with a partial description of these output data
structures.

4.1.1. Show-Faces

To draw planar HSBs, Renderer uses the same structures as would a ‘“scar line’" hid-
den surface algorithm for planar polygons. The planar show-face contains a precalcu-
lated intensity of reflected light (uniform with our simple lighting model) and a plane
equation for depth calculations.

Likewise, Renderer uses quadric show-faces to do depth calculations and shading for
the curved surfaces of quadric HSBs. Each of two quadric show-faces per HSB corresponds
to a portion of surface that is single-valued in z. Thus, each contains the same ten HSI
coefficients and a one bit sheet flag that labels it as front or back. Chapter 6 discusses
the shading information in quadric show-faces.

The boundary between a quadric HSB's pair of show-faces is called the limb. We will
show that the limb of a quadric always lies on a plane, the limb plane, so that the limb is
a conic section. The limb conic may be degenerate. For example, the limb of a sphere is
a circle and the limb of a cone is a pair of intersecting lines or degenerates to a point.
Figure 4.1(a) highlights the show-faces and limbs of a cylinder and sphere truncated by
transparent planar HSB's.

4.1.2. Show-Edges

Show-Edges are used to draw the boundaries between pairs of HSBs in a body.
These HSB's are represented by show-faces. Hence, in addition to a description of its own
shape, each show-edge contains two pointers to show-faces. Objects in the final image
may well have more than two show-faces intersecting in the same three-space line, but
such images result from multiple bodies with a common boundary.

Linear show-edges result when two planar HSBs intersect or when a quadric inter-
sects a plane perpendicular to the view plane. End points are sufficient to describe their

shape.

Conic show-edges result from general quadric-plane intersections and from limbs.
Renderer is able to treat these much like linear show-edges when they satisfy the following
rules:

(1) They are single-valued in z.
(2) They are incident to the same show-faces throughout their length.

Figure 4.1(b) marks show-edges for a cylinder and sphere. These satisfy an additional rule
imposed as a simpliiying design decision:

(3) They are single-valued in y.

Note that (1) and (3) make the conic show-edges of a body dependent on its orientation in
the final image.

In addition to its end points, a conic show-edge contains six coefficients to describe
its shape. Just as the show-face sheet flag selects one of two values of z for point (z, y¥),

-16-

UniQuadrix Resolver

back front
front
‘2
back A
(a) Show-Faces and Limbe (b) Show-Edges

Figure 4.1 — Renderer structures for quadric HSBs

s0 a conic show-edge includes a leg flag that selects the left or right value of z for a given
y of the edge shape. The value of the leg flag is never ambiguous due to (1).

4.2. Resolver Data Structures

To convert the transformed bodies from Flattener to the show-faces and show-edges
of Renderer, Resolver uses private data structures called s-line tables, one per body. For
a body of n HSBs, HSB;, 0 < €< n—1, an i-line table is a lower-triangular array of i-
lines with n rows and columns. I-line;;, ¢ < 3,02 i <n—1,0¢ 5 < n—1, describes the
intersection of HSB; with HSB;, and i-liney, 0 < k < n—1 describes the limb of HSB,.

An i-line table for n = 6 is shown in Figure 4.2.

An i-line stores enough information to create show-edges. One field describes the i-
line's shape as an array of real numbers. These may be two coordinates of a point, three
linear coefficients, or six conic coeficients; a flag field indicates one of these:

POINT Two planar HSBs intersect and both are perpendicular to the
view plane.

LINEAR Two planar HSBs intersect and at least one of is not perpendic-
ular to the view plane.

CONIC A quadric intersects a plane that is not perpendicular to the
view plane. Quadric limb i-lines are also CONIC.

EDGE A quadric intersects a plane that s perpendicular to the view
plane.

NOEXIST No intersection curve or limb can be calculated.

I-lines may also have lists of s-vertices. An j-vertex is a point on an i-line. I-vertices
serve to cut up i-line shapes into pieces that will become show-edges. In this capacity,
only their z and y coordinates are of interest. However, since each i-vertex must be
tested in its body's HSIs, Resolver also calculates the z coordinate of the point in three-
space that projects each i-vertex. The following types of i-vertices are sufficient to delimit
show-edges that meet the three criteria above. Figure 4.3 shows examples of each type
with labels given in parenthesis below:

-17-

UniQuadrix

8

0 | HsB @("D

1l { HSB ——3(.—!—)

2 | HSB

3 BB S

{ | HSB

5 | HSB —ﬂm

Table

aseocia

of HSBs and

ted show-faces

coeffictente

tneert-plane

flage

limb

limb

limb

limb

limb

Resolver

limb

Table of s-lines

with limbs on diagonal

lset O

__’—-—-PC t-vertez H i-vertez)—-)’C sverter)

list 1

Figure 4.2 — Resolver data structures for a body with six HSBs

\5(i-vertez j—b(t-vertez)

Single i-line with aseociated i-vertez lists

HEXTRM (h) A horizontal extremum of a CONIC i-line shape (dz/dy is

VEXTRM (v)
LIMB (1)
ISECT (i)

zero).

A vertical extremum of a CONIC i-line shape (dy/dz is zero).
The projection of a planar HSB's intersection with the limb.
The projection of the iniersection of three HSBs.

Resolver assumes that adjacent pairs of i-vertices on an i-line’s list delimit sections of
the i-line’s shape that should be considered as potential show-edges. To support this
assumption, lists are sorted on a key of ascending y, and the i-vertices in a single list fall
on sections of i-line shape that are single-valued in z. Hence, CONIC i-lines have two
lists. These are labeled left and right just as the show-edges they will produce. Since an
EDGE i-line is just a CONIC in y and 2 rather than y and z, EDGEs also have two lists
corresponding to portions of the shape single valued in z. These are labeled front and
back just as show-face sheets, and LIMB i-vertices are their vertical extrema. LINEAR
The lists of five simple i-lines are

i-lines have just omne list.

highlighted in Figure 4.3.

POINTs have none.

UniQuadrix Resolver

. Right conse
e Linear - --

Figure 4.3 — The i-vertex lists of five i-lines

Finally, i-lines contain a planar half-space called the insert-plane that helps Resolver
put i-vertices in the correct list. An i-vertex that satisfies the insert-plane inequality lies
on the left or front leg of a CONIC or EDGE i-line, respectively.

4.3. Building I-line Tables

Resolver receives an HSB table from Flattener for each body. It begins processing by
creating show-faces — one for opaque planar HSBs not perpendicular to the view plane
and two for quadric HSBs that are not cylinders perpendicular to the view plane. Each
HSB has two pointers to its own show-faces. Where no show-face was created, the pointer
is null.

An i-line table for the body is completed in two steps. First, the table is created and
the coefficients for each non-limb i-line are calculated. For CONIC and EDGE i-lines, the
insert-plane is also determined. When valid coefficients do not exist, as for limbs of planar
HSBs and for HSB pairs that do not intersect, the i-line is labeled NOEXIST. The follow-
ing pseudo-C code constructs an i-line table for n HSBs:

create an n X n i-line table;
for (i == 1;i < n; ++i)
for (j = 0; j < i; ++j) {
determine type of s-line, ;;
if (type '= NOEXIST)
calculate coefficients of 1 -line; ;;
if (type === CONIC || type === EDGE)
calculate insert-plane;

}

Resolver now calculates all possible i-vertices for the body and checks them in each of the
body's HSI's. It throws away i-vertices that fail in any HSI, then carefully inserts any
that are not thrown away in the list or lists of appropriate i-lines. Limb i-line coefficients
are computed along with limb i-vertices:

-19-

UniQuadrix Resolver

for (i =2;i < n; ++i) { /* one paas for ISECT i-vertices */
for(j=1;j <i;++j) {
for (k =0; k < j; ++k) {
create ISECT i-vertices of HSB;, HSB;, and HSB,;
for (each i-vertez thus created) {
for (each HSI of body)
if (i -vertez does not satisfy HSI)
throw ¢ -vertez away;
for (each §-vertez not thrown away) {
insert in §-line; j;
insert in i-line;;;
insert in ¢-linec;,;

Y » ¥ })

for(i=1;i <nm++i){ /*onepass for LIMB i-lines and i-vertices */
find type and coefficients of limb i-line;;;
if (limb i -line; ; is not NOEXIST) {
for (j =1;) < m; ++j) {
if (i == j) continue;
create LIMB i -vertices where i-line;; and i-line;; intersect;
for (each i-vertez thus created)
for (each HSI of body)
if (i -vertez does not satisfy HSI)
throw s -vertez away;
for (each i -vertez mot thrown away) {
insert in i-linc“;
insert in ¢-line; ;;

) I T S

for (i=1;i < n; ++i) { /* one pass for HEXTRM and VEXTRM i-vertices */
for (j =0;] <=1i; ++j) {
if (¢ -line; ; is CONIC) {
create HEXTRM and VEXTRM i-vertices for i-line; ;;
for (each HSE of body)
if (i -vertez does not satisfy HSI)
throw s -vertez away;
for (each i-vertez not thrown away)
insert in ¢ -line; ;;

}) }

I-vertices are inserted in an i-line by first picking the correct list, then the correct
place within the list on 2 key of ascending y. Picking a list is trivial for LINEAR i-lines
— there is only one. There are rules for CONIC and EDGE i-lines:

(1) If the i-vertex is VEXTRM, insert in both lists
(2) Else if the i-vertex is LIMB and the i-line is EDGE, insert in both lists
(3) Else insert in one list using the list insert-plane

If an i-vertex already occupies the place of a new one, the new one is merged with the old.
The merged vertex retains the type of the old one. This is explained in the next section.

UniQuadrix Resclver

4.4. Making Show-Edges

Resolver builds all the i-line tables and saves them so that a final transformaticn, D,
to device coordinates can be applied before creating show-edges. Matrix D cannot be
applied nor can show-edges be produced ‘“on the fly” because the size of the scene box
itself determines D for auto-scaled images. The size of the box is known only after
Resolver is done with its work.

With sorted i-vertex lists, a simple algorithm determines show-edges for an i-line. In
the pseudo-code below, bottom and top are pointers to i-vertices that become end points of
show-edges:

for (each ¢ -line in the table) {
for each list in i-line {
bottom = head i-vertex in list;
top = bottom = nezxt;
while (neither bottom nor top point past end of list) {
generate a show-edge between bottorn and top with shape of i-line
if (top is ISECT or top is LIMB and i-line is a limb)
bottom = top +nezxt;
else
bottom == top;
top = bottom < nezt;

} })

As mentioned above, coincident i-vertices are merged by the algorithm. This is to
prevent the edge creation algorithm above from becoming confused. An explanation by
example follows. Consider the five-sided pyramid in Figure 4.4a. If coincident i-vertices
were not merged, the apex of the pyramid would appear as two consecutive ISECT i-
vertices in each of its four incident i-lines. With this as input, the algorithm above would
improperly create a single zero-length show-edge for each i-line instead of the correct
show-edge. This is a general problem with point intersections of more than three HSBs.
Repeated LIMB i-vertices in limb i-lines have the same effect. Merging multilple instances
of the same i-vertex is an acceptable solution in all cases but one. Resolver must be care-
ful not to create any i-vertex when i-line shapes intersect in a tangent point. As illus-
trated in Figure 4.4b, this case also produces a double ISECT. However, to merge such a
pair would cause the edge creation algorithm to omit one show-edge entirely.

As the last processing step, a show-edge is assigned pointers to the show-faces that it
bounds. These depend on the type of i-line that produced the show-edge. For LINEAR
i-lines, processing is trivial — the show-face pointers of both planar HSBs are copied to
the show-edge. Show-edges from limb i-lines are similar. The front and back show-face
pointers of the quadric HSB are copied.

The lists of EDGE i-lines are single valued in z and thus correspond exactly to front
and back show-faces. In producing linear show-edges from EDGE i-lines, one show-face
pointer is given by the list being processed, and the other is null because the associated
planar HSB is perpendicular to the view plane.

CONIC i-lines are more demanding. First, the show-face of the i-line's planar HSB,
is copied. For the other pointer, Resolver must choose between front and back show-face
pointers of the i-line’s quadric HSB,. Two decision criteria are used:

-21-

UniQuadrix Resolver

(a) More than three HSBe {b) Singular intersection

intersect in @ point

Figure 4.4 — Multiple ivertices

(1) The sign of the z component of HSB,'s surface normal at an interior point
of the show-edge
(2) The existence of a limb for HSB,.

The possible outcomes when (1) is non-zero are given in the following table:

Sign of normal z \V/

Limb ¥ - +
yes front back
no back front

When (1) is zero, the show-edge is coincident with a limb, hence the i-line’s planar HSB,
is coincident with the limb plane. In this case, Resolver uses the sign of the z component
of HSB,'s surface normal. A positive value implies that HSB, has cut away the front
quadric show-face along the show-edge, so “back" is the answer; vice versa for a negative
value. A zero value cannot occur; this would make the i-line an EDGE.

4.5. Resolver’s Tools

It is easy to see that Resolver’s algorithms rely heavily on calculations involving
plapar, quadric, linear, and conic coefficients. This section outlines these calculations
without elaboration. Many were derived or checked with the computer algebra system
VAXIMA at UC Berkeley.

4.5.1. Conventions
Quadratic Equation:

R(z)=A,zz+B,z +C,=0 (4.1)
Line Equation:

Liz,y)=Az +By+C =0 (4.2)

-29-

UniQuadrix Resclver

Conic Equation:

C(z,y)=A,zz+B,y2+C,zy+Dcz+Ecy+F,=0 (4.3)
Planar Half-Space:
P(z,y,2)=A,z + Byy + Cpz + D, <0 (4.4)
Quadric Half-Space, Long Form:
Q(:r,y,z)-——-A,zz-i»B,yz-{—C‘,z2 (4.5)

+2D,zy + 2E yz + 2F 2z
+2G,z + 2Hy +2J,z + K,<0
Quadric Half-Space, Matrix Form:

[]
A, D, Fy G,
Q(x) = xQx” where x = [z yz1], Q= b, B, E, H, (4.68)
Fy Eg Cp Y,
LGq H, J, Kq‘

4.5.2. Coefficients of Intersection Line

Eliminate z from two plane equations whose coefficients are denoted by subscripts 1
and 2:

A= Aplcpz _Apchl
B‘ = Bplcpz -— szcpl (4.7).
C = Dplcp2 _Dpchl

4.5.3. Coeflicients of Intersection Conic
Eliminate z from plane and quadric equations:

A, = L (AJC, + CJA,) — A, C, F,

B, = +(BjCy + CyB)) — B, G, E,

C, = A,B,C, — A,C,E, — B,C,F, + C; D,
D, = A,D,C, = A,C,J, = D,C, F, + C;G,
E, = B,D,C, — B,C,J, — D,C, E, + C;H,

F,= £ (D;Cy + CK,) —D,C, J,

(4.8).

4.5.4. Quadric Surface Normal

In matrix form, the quadric surface normal, n, at point x is given by:

n(x) = [%—g— . (4.9)

where subscript three denotes truncation of the homogeneous vector in parenthesis to a
three-space vector. This simplifies to:

UniQuadrix Resolver

n(x) = xE + E™x" = 2xE (4.10)

because E is symmetric. The length of n is not important, so the multiplier two is ignored
in computation.

4.5.5. Coefficients of Limb Plane

Given a quadric surface that has been transformed to the three-dimensional scene
box shown in Figure 3.2, its limb is the locus of points where n, =0, or from (4.6) and

(4.10) above:
n, =zF, + yE + 2C + Jo=0 (4.11).
Thus, when the quadric limb exists, it lies on a plane, the limb plane, and the limb is a

conic section.

4.5.8. Coefficients of Limb
Solving a special case of the general plane-quadric intersection yields:
A, = 5(A,C, — F7)
B, = (B,C, — E{)
C.,=D,C,—EF,
D,=G,C,—FJ,
E,=H,C,—EJ,
F, = 3(K,Cy =)

(4.12).

When the quadric is a cylinder or cone with a non-degenerate limb, the conic given above
will be factorable into lines. UniQuadrix makes no distinction for this case, nor for general
intersections that are similarly degenerate.

4.5.7. Existence of Limb
A sufficient condition for a quadric half-space not to have a limb is:
lim Q <0 (4.13).

2 %00

That is, when the half-space (in Resolver Coordinates) includes the z axis at icfinity.
Since the growth of Q with respect to z is controlled by its z* term, (4.13) fails if:

C, >0 (4.14),

UniQuadrix uses this as its test for existence of the limb. This test also gives the desired
result, indicating no limb exists for cylinders parallel to the z axis, cones with exactly one
ruling line parallel to the z axis, and paraboloids with axis parallel to the z axis, even
though these may not satisfy (4.13).

4.5.8. I-vertices of Type ISECT (plane-plane-plane intersections)

Solve the system of three plane equations using Gauss elimination.

-24-

UniQuadrix liesolver

4.5.9. Intersection of Line and Conic

This is a subroutine for finding i-vertices. If A, <Bj, eliminate y from line and conic
equations to obtain a quadratic in z with coefficients:

A, = By(BjA, —AC.)+ A!B.
B, = C;(24;B, — B, C.)+ Bi(B; D, —AE,) (4.15).
C, = B/(B,F, —C| E.)+ C?B,

Otherwise, eliminate z to obtain coefficients of a quadratic in y:
A, = B(B;A, — A C.) + A’B.
B, = C{(2B, A, —AC.)—A(B D, —AE,) (4.16).
C, = AAF, —CD,)+ CPA,

Solve the quadratic that results. The number of real roots corresponds to the pumber of

intersection points. Back-substitute into the line equation to obtain the second coordinate
of each intersection.

4.5.10. I-vertices of Type ISECT (plane-plane-quadric intersections)

Given the conic of a plane-quadric and the line of a plane-plane intersection, find
their intersections in the view plane using (4.15) or (4.16). If the quadratic has double or
imaginary roots, create no i-vertex; otherwise, create two. Finally, obtain their z coordi-

nates by back-substitution into one of the plane equations.

4.5.11. I-vertices of Type LIMB
Given a quadric HSI, and a planar HSI, that truncates HSI,, LIMB i-vertices are
at the intersections of the HSI,, its limb plane, and HSI,.

Therefore, if the i-line formed by HSI, and HSI, is CONIC, find the line of intersec-
tion for HSI, and the limb plane using (4.7), then find this line's intersections in the view
plane with the limb conic using (4.15) or (4.18). If the quadratic has double or imaginary
roots, create no i-vertex; otherwise, create two. Finally, obtain z coordinates for intersec-
tions by back-substitution into the limb plane equation.

If HSI, and HSI, form an EDGE, find the intersections in the view plane of its line
equation and the limb conic, then proceed as with the CONIC above.

4.5.12. Extreme I-vertices and Insert-Planes

As discussed in Section 4.2, the i-line insert-plane is Resolver’s test to determine the
correct list of an i-vertex. This and the vertical and horizontal extrema of a conic i-line
are calulated with the same relationships. Make (4.3) homogeneous in z. The result is a
quadratic in z with:

A=A
B,=C.y+ D, (4.17).
C,=By*+Ey+F,
Now, make (4.3) homogeneous in y, then:
A, =B,
B,=C.z +E, (4.18).
C,=A,z*+ D,z +F,

-%-

UniQuadrix Resolver

Call:
B} —4A,C, (4.19)
the discriminant of these quadratics. VEXTRM i-vertices occur where the discriminant

of the quadratic given by (4.17) is zero. The discriminant is, itself, a quadratic in y with
coefficients:

A, =C?—4A.B,
B, =2C.D, —4A E, (4.20).
C, = D? —4AcF,
HEXTRMs occur at the zeros of the discriminant given by (4.18). This is a quadratic in
z:
A, = C?—4A.B,
B, =2C,E, —4B.D, (4.21).
C, = E? —4BcF,
Furthermore, the line:
94,z + B, =0 (4.22)

with A, and B, from (4.17) divides the conic into legs single-valued in z and passes
through any VEXTRM i-vertices. Equation (4.22) restated as a plane inequality with C,
set to zero serves as the insert-plane for CONIC i-lines. A similar inequality in y and z
(A, zero) serves as the insert-plane for EDGES. Similarly,

24,y + B, =0 (4.23)

with coefficients from (4.18) divides the conic into parts single-valued in y and passes
through HEXTRM i-vertices. Lines (4.22) and (4.23) are used to find z and y
corresponding to the y and z solutions of (4.20) and (4.21). Figure 4.5 shows the relation-
ship between these i-vertices and lines.

4.5.13. Zero Tests

The following tests for zeros support Resolver algorithms:

(1) Is a plane perpendicular to the view plane?

(2) s the axis of a cylinder perpendicular to the view plane?
(3) Does a quadratic have double roots?

(4) Does a point satisfy an HSI?

(5) Do two i-vertices on a list coincide?

For each, UniQuadrix computes E, the estimated worst case error. If the tested number is
within E of zero, the test returns true, otherwise, false. The effectiveness of these tests
has not been studied in detail, but they have been reliable in practice.

4.8. Implementation

It was more difficult to describe the algorithms of Resolver than it was to implement
them. The Resolver code of UniQuadrix is contained in five modules totaling about 1200
lines. This includes all the coefficient formulae above and routines to generate show-faces
and edges.

-26-

Resolver

UniQuadrix

(4.22) (4.28)

Figure 4.5 — Lines given by (4.22) and (4.23)

-27.

5. Renderer

Renderer receives show-edges from Resolver and outputs visible spans to Shader in
the form:

[zleﬂ, Lrght, Vecaniiner ‘how'facc]

The hidden surface algorithm of Renderer is taken almost directly from that of Unigrafix
1's program ugshow by Paul Strauss [Strauss 82]. This chapter briefly outlines the algo-
rithm then details changes that make UniQuadrix simpler.

5.1. Overview

Renderer places show-edges from Resolver in an array of buckets with one bucket
per scan line. This is the Edge Start List (ESL). An edge is assigned to a bucket by the
y coordinate of its bottom vertex. Within a bucket, edges are sorted on a key of ascend-
ing z and then dz/dy at their bottom vertices.

Scan lines are processed onme at a time from minimum tc maximum device y.
Renderer maintains an Active Edge List (AEL) of edges that intersect the current scan
line (CSL). The AEL is maintained in ascending z order. Each scan line requires three
passes through the active list. During pass one, edges whose tops are below the CSL,
called finishing edges, are deleted from AEL and edges in the ESL bucket for CSL, sta:t-
ing edges, are inserted. Pass two is an incrementing step that readies show-edges in AEL
for the next scan line. Pass three is used to inspect AEL to determine visible spans.

Readerer does not currently implement the enhanced edge option of ugshow. Uni-
Quadrix also gains some space and speed advantage by using show-edges that point to two
adjacent show-faces. (Ugshow created coincident show-edges, each with one show-face
pointer.) Of course, the support routines for Renderer must distinguish between planar
and quadric show-faces for depth comparisons and between conic and linear show-edges
when calculating points.

5.2. More On Show-Faces and Show-Edges

Show-faces and show-edges contain information other than the end points, shape,
and show-face pointers discussed in Chapter 4. Show-edges have a current z that is ini-
tialized to z of the bottom vertex and updated during pass two. Show-edges also have a
stack of pointers. Stack elements point to show-faces that are in front of or behind the
show-edge on the CSL. In addition, the stack contains a pointer to any face that its
show-edge bounds on the left. Renderer maintains stacks in order of increasing depth (z)
so that the head of a show-edge’s face stack points to the face visible immediately to its
right.

5.3. Passes Two and Three

Passes two and three of Renderer are exactly as in Unigrafix. Pass two updates the
current z of each edge on AEL then bubble sorts the list to maintain ascending z order.
Swaps performed during the sort carefully adjust the face stacks of swapped edges.

Pass three begins with the show-edge at the head of AEL. Renderer remembers the
show-face at the head of this edge’s face stack and chains through AEL until it finds an
edge without the same face at the head of its stack. The pixels between these edges are a
span. The new stack head is remembered and the process repeats. Spans are discovered
until the end of AEL.

-28-

UniQuadrix Renderer

5.4. Pass One

Pass one uses a recursive procedure to make the Renderer algorithm simpler than
ugshow. Like Unigrafix, Renderer's pass one consists of a loop that is executed until all
edges in AEL have been touched and all starting edges for CSL have been inserted in
AEL. Let CE be the current edge pointer initialized to the the head of AEL. Then the
following pseudo-code describes the loop:

while (still edges in AEL or still starting edges) {
while (CE is finishing)
process the top vertex of CE;
if (CE=current_z > head_starting_edge +current_z)
process the bottom vertex of ESL_bucket_head;
else {
touch CE by updating flags;
CE = CE +nexzt;
} }

A vertex is processed in three steps. First, any finishing edges that are incident are
removed from AEL. If the edge to be deleted is not CE, it is first moved to the position
adjacent to CE by successive swaps, just as the sort in pass two. These swaps make the
face stacks of intervening edges consistent. If the deleted edge is CE, the CE pointer is
moved to the next in AEL. Second, each incident starting edge that lies completely within
CSL (nominally both starting and finishing) is removed from ESL and its opposite vertex
is processed recursively. Finally, remaining starting edges are removed from ESL and
inserted in AEL.

In this manner, we eliminate the need to treat horizontal edges as a special case as in
Unigrafix. The insertFL and remeveFL lists of ugshow are no longer required.

5.5. Renderer’s Tools

5.5.1. Depth Comparisons

Only one low-level routine of Renderer is aware that some show-faces are curved and
others are flat — the one that inserts faces in stacks in order of increasing depth. An
insertion of face F into the stack of edge E requires successive comparisons with faces G
already on the stack. The comparison answers the question:

Is F in front of G at the point P = { E+current_z, ycst)?

In many cases, it suffices to compute z(P) of faces F and G. The lesser 2 certainly
belongs to the face in front. There are still three cases, however, where the depths may
be equal at P while faces F and G are not coincident. These are shown in Figure 5.1.
The heavy line in each case represents E. Renderer resolves case (a) by recomputing
depth at point @ where E intersects the next scan line. When the depths are again equal
as in (b), it computes slope dz/dz or dz /dy at Q@ depending on whether edge E projected
on the view plane is more or less than forty-five degrees from the horizontal at Q. The
face with lesser slope is in front. Finally, when the slopes are equal as for the tangent
faces in (¢), d%z/dz? or d%z/dy? gives the rate of change in slope. The face with the
smaller rate of change is in front. When two quadric show-faces are tangent and perpen-
dicular to the view plane at Q (planar show-faces perpendicular to the view plane are
pever created), rates of change are evaluated as % | 42z /dz2| or = |d?%y /dz*1. The sign
is + if the show-face is of type front and vice versa. Again, the face with smaller rate of

UniQuadrix Renderer

change is in front. If these rates are equal, Renderer assumes that the faces are coincident
and that their order on a face stack is cot important.

(a) Point (b) Angle (c) Tangency
Figure 5.1 — Cases of equal depth

To compute depth for planar show-faces, the plane equation is solved for z:

Az + By + D
z2(z,y)=— C” (5.1).

For quadric show-faces, z and y are fixed, and the resulting quadratic is solved with the
quadratic formula. One root is picked using the show-face sheet flag.

The chain rule for partial derivatives provides formulae to compute show-face slopes
and rates as well as the slope of a show-edge at a point. Equations (5.2) give these formu-
lae for z dependent on z in the implicit plane or quadric equation F(z,y,2)=0. For-
mulae for other variables and for functions in the view plane follow by simple substitu-
tion:

aF 3*F F d:

dz oz d2z 79;-2--’- 920z dz

=—3F = o (5.2)
Bz re

Naturally, slopes are constant and rates are zero for planes and lines. Even for quadrics
and conics, these formulae are straightforward to calculate.

5.5.2. Tracing show-edges

There is also only one procedure in Renderer that knows some edges are straight
lines and others are curved — the one that updates current z at each scan line.

The current z of linear show-edges is updated by merely adding dz /dy. For conic
show-edges, y is fixed for CSL and the resulting quadratic (5.3) solved for z. One root is
selected by the leg flag.

A=A,
B,=C.y + D, (€.3)

C,=B.y*+E.y+F.

Coefficients (5.3) are not computed at every scan line. Rather, their first and second
differences are used to update them incrementally. This requires five additions.

-30-

8. Shader

Shader accepts visible spans from Renderer and cuts them up into device spans
These are sets of pixels on a scan line that have the same integer intensity. Shader is
called up to 10° times to draw an image of moderate complexity on the large plotters. Its

algorithm must be efficient.

6.1. The Lighting Model

Current UniQuadrix uses a very simple monochrome lighting model based on
Lambert’s Law:

K (Sgmp + Sparcosd) 8 < n/2
§ = (6.1),

Ki,w otherwise

where ¢ is an integer device intensity in (0. . max)s fams 13 total incident ambient inten-
sity, and p4, is the incident intensity of a single parallel source. Angle 8 is between a vec-
tor to the parallel source, iogr) and the reflecting surface normal, b, as shown in Figure
6.1.

Figure 8.1 — Lighting Model

The factor K scales diffusely redected world intensity units to the device. Since the
language calls for unit world intensity to produce saturated white in the final image, K 1s
just § oy

8.2. The Model Applied to Show-Faces

Referring again to Figure 6.1, assume ipe, has length K i, and o = K $gmp-
Now, (6.1) becomes:

ni,

. per .

“'"'b+‘|_l-!|_ ,nig, >0

Q- (8.2).

', . Otherwise

-31-

UniQuadrix Shader

Vector i,,, and constant i!,» are calculated only once per show operation. Hence, Shader
is concerned mostly with computation of niz,/Inl. Fora plane:

n= [A, B, C,,] (8.3),
so i is constant for planar show-faces. Its value is computed and stored once as each
planar show-face is created. Shader need only look this up and output a single device
span.

For a quadric, n is given by (4.10) and, of course, varies over the surface. After the
quadric is subject to the view and device transformations, T, we obtain:

ni;r _ (XT-IQ)3i;¢r

Inl " "
JxT1Q)y (xT' Q)
But, x is a three-space vector. Before Shader can use (8.4) to find intensity at a given
pixel (z, y), it must calculate z(z, y) on the surface of:

xT1Q(T!) xT =0 (8.5).
Since these calculations may occur 107 times in a large drawing, it pays to do them

efficiently. We have sought a way to shade quadrics without calculating z. The interest-
ing albeit disheartening results are outlined in Chapter 7.

(8.4).

8.3. Quadric Z

Shader makes use of the following characteristics of pixels in a span to compute 2
efficiently:

(1) Pixel y coordinates are all the same
(2) Neighboring pixels differ by one in their z coordinates

Another way of stating (1) is that pixels in a span are all projected from points where a
scan plane perpendicular to the y axis intersects the quadric (8.5) in device space. The
intersection of the quadric on the scan plane is a conic in z and z whose coeflicients need
be determined only once per span. Successive values z(z) on this conic are evaluated by
the same procedure used for successive z(y) on conic shcw-edges in Renderer. The
show-face sheet flag serves in place of the show-edge leg flag.

8.4. Piecewise Matrix Multiplication

Of (6.4), two terms are constant and may be calculated and stored once as each
show-face is created — the 4¢3 matrix:

N =(T'Q), (6.8).
and the 4)<1 matrix:)
L=Nig, (6.7)

The arithmetic at each pixel after z is calculated can now be shown as:

nig, _ / (xL)?
ml N (xN)xN)" (6:8)

Where the square root is a fast integer calculation that assumes the result to be in
[0..{my] But Shader does not carry out complete matrix multiplications xL and xN at

each pixel. Rather, by (1) it precomputes terms in y once per span, and by (2) it

-32-

UniQuadrix Shader

computes each successive value of terms in z by addition. Only terms in z are computed
at every pixel and only when xL > 0.

8.5. Implementation

8.5.1. Non-Unit Shading Increments

The Shader algorithm is easy to implement so that intensity in a span is calculated
at fixed integral increments instead of at each pixel. We correctly judged that UniQua-
drix would spend a large share of iis running time executing Shader. Thus, a simple
heuristic gives the user some control over the trade-off between image quality and running
time. Each span is treated separately, with intensity calculated at its left and right ends,
z; and z,, and at intermediate points separated by A. In C integer arithmetic:

(zr_zl)
k

A = min +1, Amax (6.9).
Constant k is a compile-time parameter, and O,y is a user parameter that forces evalua-
tion at least every A, pixels. Within each & interval, Shader renders the integer aver-
age of intensities at the ends. For efficiency, the device driver is called only when inten-
sity changes as Shader moves across the span. The “+ 1"isa computationally cheap way
of keeping A greater than zero when there are fewer than k pixels in the span. A value of
sixteen for k produces images almost identical to those with intensity calculated at each
pixel.

8.5.2. The Device Interface

All parts of UniQuadrix see the same device interface regardless of the device used
for rendering. A C structure defines this interface. It includes device characteristics such
as Ap,, the number of intensities it can render, the number of pixels on each axis, and
pixel aspect ratio. It also contains pointers to routines to open and close the device, out-
put a span, and apply controls. Manager maintains a hash table of such structures. One
is picked as the current device by the last device statement, by the -d command line
option, or by UNIX environment variables as described in Chapter 2.

The current device structure has proven to be a powerful and clean abstraction.
Among many other functions, it provides information to calculate the device matrix (D) to
Resolver, identifies bottom and top scan lines of the image for Renderer, and passes the
routine to output a span to Shader. The commands and options to change image size and
A pay merely modify this data structure that represents the current device.

8.5.3. Driver Programs

UniQuadrix programs that interact with physical devices are very much the same as
Unigrafix. The Sun's monochrome screen and the Varian and Versatek plotters are bi-
level devices. These drivers use stipple patterns to emulate the dots of lithographic half-
tones. Device span intensity provides an index into a stipple table that contains bit-
images of the patterns. For the plotters, appropriate runs of stipple pattern are masked
and ored to a raster buffer that represents a number of scan lines in the final image.
Complete buffers are written to a temporary file that is finally printed with a system call
to the UNIX lpr program. The Sunwindows interface copies stipple patterns to the Sun’s
bit-mapped screen.

-33-

UniQuadrix Shader

Color Sun and Vectrix drivers merely load the color map with an even gray scale as
the device is opened and use device span intensity as a color map index. No zamma

correction [Foley 83] is performed.

7. Evaluation and Conclusions

7.1. Some Run-Time Statistics

UniQuadrix includes code that counts interesting events and prints the CPU time
required for portions of scene processing. This chapter presents these statistics for some
images given in the Appendix. Table 7.1 reflects Resolver input and output. Table 7.2
counts the computationally expensive operations that Renderer performs. Finally, Table
7.3 gives run times. These were collected on a VAX 750 with two megabytes of memory.
UniQuadrix runs faster on a larger VAX 780 by a factor of 1.3 to 1.7. All VAX machines
used for testing have floating point accelerators. lmages measure eight and one half by
eleven inches (some were photographically reduced to fit the Appendix pages) and were

produced on the Varian plotter. This plotter has a resolution of 200 dots per inch.

Table 7.1 — Resolver statistics
. HSBs'! Ivertices'®) Show-Edges
Image Bodies - - - -
planar quadric created® inserted¥) | linear conic
clover knot 24 72 24 622 292 36 328
gear 23 106 53 1253 324 80 350
name 85 270 85 2267 1050 131 1002
triangles 30 60 30 408 360 0 419
Notes

(1) HSBs of all bodies in the fiattened scene hierarchy
(2) I-vertices inserted in more than one i-line are counted only once
(3) Al i-vertices that could be calculated
(4) Created i-vertices that satisfy their bodies’ HSIs;
inserted in at least one i-line

<35

UniQuadrix Evaluation and Conclusions
Table 7.2 — Renderer statistics
Depth Face Edge Spans Intens- Pixels
Image Calc’s Inserts Swaps P ities (>1000)
(5) (6) 7) (8 (9) (10
clover knot 2325 614 500 8991 143808 1683
gear 3509 841 286 13238 59297 1453
name 638 1941 1541 9624 118157 773
triangles 10633 2475 1118 17048 228490 902
Notes
(5) Finding z(z,y)ona planar or quadric show-face
(6) Adding a face to a show-edge stack on a key of ascending z
(7) Exchanging two edges on AEL during sorts and deletions
(8) Input to Shader (not device spans)
(9) Intensity calculations on quadric show-faces
(10) Total shaded pixels in image
Table 7.3 — Run time statistics
Image Reader Flattener- Renderer Shader Total
Resolver
(sec) (sec) (eec) (sec) (aec)
(1) (12) (13) (14) (18)
clover knot 1.72 3.76 34.72 138.9 179.16
gear 45 9.60 15.86 42.89 68.87
pame 5.06 14.66 23.79 116.86 159.78
triangles 1.80 4.18 36.52 178.30 219.93
Notes
(11) Includes UniQuadrix initialization and reading scene file(s).
(12) Includes creation of show-faces and insertion of show-edges in ESL
(13) The portion of Renderer-Shader time spent in Renderer
(determined using the UNIX gprof [acility)
(14) The portion of Renderer-Shader time spent in Shader and in the device

driver writing spans (determined using the UNIX gprof facility)
(15) Gross CPU time at exit; includes Manager functions

It is easy to see that UniQuadrix is compute-bound by the shading algorithm for
images with even small quadric surfaces. Clearly, the pains taken to minimize calculation
in Shader and the fast shading option for image debugging were worthwhile.

UniQuadrix Evaluation and Conclusions

7.2. Conclusions

7.2.1. Wins

This project began with the idea that by generalizing the definitions of edges and
faces in an image, quadric surfaces can be rendered using the same algorithm used in
ugshow to render planar polygons, which exploits object coherence as much as possible.
UniQuadrix is a working system which demonstrates the viability of this idea.

Response to UniQuadrix from a user community accustomed to the vertex-face world
of Unigrafix has been favorable with regard to the quality of UniQuadrix images. of
course, the rigors of producing half-space input are a shock for those who regularly enter
imagined object descriptions directly into 3 Unigrafix file. As a partial solution to this
problem, programs have been built that produce UniQuadrix files from descriptions with
far more intuitive meaning than cocfficients. Some of the images in the Appendix were
produced with these programs. In particular, ‘‘clover knot” and “triangles’” used a new
version of mkworm that produces automatically the specifications for all cylinders and
the terminating planes or spheres at every joint from a piecewise linear specification of the
axes of the used tubular elements. “Name" was produced with a new program ugpipe
which permits the proper mitering of more than two elements and also accepts the
specification of a spherical ball at each joint.

Turp-around time is altogether reasonable for the type of images produced by Uni-
Quadrix. A Dnew Unigrafix rendering program called ugdisp under development by
Nachshon Gal performs Gouraud shading [Gouraud 71] in an efficient manner. It operates
in time comparable to UniQuadrix for objects with similar appearance, but it cannot
avoid the ragged piecewise linear outlines produced of the underlying polyhedral object
definition. The run time of any polygon renderer using a polygonal mesh fine enough to
present conic edges accurate to one pixel in the final image would far exceed the run time
for equivalent UniQuadrix images.

7.2.2. Losses

Early in the development of UniQuadrix, we sought a very simple and fast incremen-
tal algorithm to shade pixels across whole spans on visible quadric show-faces. We calcu-
lated an exact expression for the reflected intensity of a parallel light:

f(i,z,y)=0 (7.1)

where f is the result when z is eliminated from the equation of the quadric surface,
Q(z,y,2)=0, and the implicit form of (6.8), I(s, z, ¥, z)=20. The approach was to
fix y in f for the current scan line, then evaluate points on the resulting function in ¢ and
z using the method described by Jordan, et. al. [Jordan 73]. Computation in this algo-
rithm consists entirely of integer additions and comparisons and is bounded in number of
steps for a span by the number of pixels plus twice the number of device intensities.
Unfortunately, Jordan's algorithm is practical only for conics. The fully general expres-
sion of (7.1) is of the form: ‘

f=A(z,y)i*+B(z,y)i* + C(z,y) =0 (7.2),

where A, B, and C are fully general expressions of degree four in z and y, each with
fifteen terms. Moreover, the coefficient of each term is a matrix expression in the
coefficients of Q and i,,. Even if there were a method to evaluate (7.2) efficiently for s as
z is incremented, the calculation required to find A, B, and C and the storage for once-
per-image and once-per-span intermediate terms are likely to be very large.

.37-

UniQuadrix Evaluation and Conclusions

In the special cases of cylinders and spheres viewed with orthographic projections,
(7.2) simplifies to a conic in §, z, and y. Small tests evaluating this conic using Jordan's
method indicated that such a special purpose shader would run at least ten times faster
than the UniQuadrix Shader in average cases.

Finally, current UniQuadrix does not fit well in the interactive window environment
of the Sun workstations at Berkeley. These workstations lack hardware for floating point
operations. Thus, an image rendered with 2000 3 2000 pixels in three minutes on a VAX
takes a similar amount of time with 300) 300 pixels on the Sun with no other processes
competing. Even the _f fast constant shading option does not lead to what we feel is an
acceptable interactive turp-around. Sun does offer a hardware option for floating point
and we will certainly try UniQuadrix on such a system if the opportunity arises.

7.2.3. Work Still To Be Done

UniQuadrix is a no-frills implementation of a rendering algorithm. It is ripe with
opportunities for enhancement and expansion. Here are some proposals for a continuation
of this work.

The performance measurements indicate that UniQuadrix would become far more
useful on the Sun workstation and even on the VAX if the wire-frame rendering options of
Unigrafix were available. By drawing show-edges with no consideration for hidden surface
removal, the user could envision quickly how a final, smooth-shaded image would be
oriented. Even a re-implementation of the ugshow enhanced edge option in UniQuadrix
would cut run time by a factor of almost three, producing wire-frame images with hidden
edges removed.

Using the ‘‘traced edge” technique of Woon [Woon 71], it is possible to extend
Resolver to produce the quartic show-edges of general quadric-quadric intersections and to
give Renderer the tools to trace them. I-lines for general intersections need four i-vertex
lists. A new type of i-line is peeded to represent cylinders that are perpendicular to the
view plane, similar to the function of EDGE i-lines for planes. The main problem to be
solved is giving a topological order to the four roots of a quartic; show-edge leg flags
would have four possible values instead of two, and we must map this value to a continu-
ous segment between two extrema of the quartic i-line shape.

The algorithm of Resolver should be re-evaluated in the context of numerical stabil-
ity. The key areas were briefly mentioned in Section 4.5.13. Indeed, a formal analysis of
the entire algorithm is certain to provide fresh insights.

The primitive interactive mode of UniQuadrix was incorporated mainly to test the
rest of the program in repeated runs. A much richer interactive environment could be
easily implemented over the existing code.

A front end should be provided to UniQuadrix that makes it easier for the user to
specify spheres, cylinders, and other quadric surfaces than through the use of the
coefficients of the quadric equation; the use of half-axes, center coordinates, and orienta-
tion angles is more easily understood by the user.

It would be easy and desirable to incorporate in UniQuadrix a simple color model
such as the one in Unigrafix.

-38-

UniQuadrix Evaluation and Conclusions

7.3. Summary

UniQuadrix is a system for rendering objects composed of quadric and planar hall-
spaces. It uses implicit equations to represent the scene throughout the rendering process.
The program reads scene descriptions in a terse language like that of Unigrafix. It flatters
the scene hierarchy and computes intermediate data structures that represent the boun-
daries between half-spaces. These structures are used to produce edges and faces for a
tgcan line” hidden surface algorithm that exploits scan line as well as object coherence.
Curved edges and faces are rendered exactly and pot approximated with polygons and
straight lines. Output is to any of several bi-level and gray scale devices. Compute time
is rather short considering the quality of image produced.

[Appel 87]

[Bayer 73]

[Boyse 81]

[CRC 74]

[Foley 83]
[Gouraud 71]

[Hakala 81]

[Jarvis A76]

[Jarvis B76]

[(Jordan 73]

[Knowlton 77]

[Levine A76]

[Levine B78]

[Mahl 72]
[MAGI 88]
[Max 79]

References

Appel, A., “The Notion of Quantitative Invisibility and the Machine
Rendering of Solids,” Proceedings of the ACM National Conference,
Thompson Books, Washington D. C., 1967, pp. 37-45.

Bayer,B.E. “An Optimum Method For Two-Level Rendition of Continu-
ous Pictures,” International Conference on Communscations, Con fer-
ence Record, 1973, pp. (26-11) - (26-15).

“Data Structure for a Solid Modeler,” SIGGRAPH 81, Seminar Notes:
Solid Modeling.

CRC Standard Mathematical Tables, Edited by Samuel M. Selby, CRC
Press, 1974.

Foley, J.D. and A.Van Dam, Fundamentals of Interactive Computer
Graphics, Addison-Wesley, 1982.

Gouraud, H., “Continuous Shading of Curved Surfoces, " IEEE Tran-
sactions on Computers, C-20(6), June 1971, pp. 623-628.

Hakala, D.G., R.C. Hillyard, P.J. Malraison, B.E. Nourse, ‘‘Natural Qua-
drics in Mechanical Design,” SIGGRAPH ‘81 Seminar Notes: Solid
Modeling, published in Autofact West, Vol. 1 (CAD/CAM VIII), pp
363-378, Society of Manufacturing Engineers, Dearborn, Michigan,
November 1980.

Continuous Tone Images on a Bilevel Display,” IEEE Transactions on
Computers, C-24(8), August 1976, pp. 891-898.

Jarvice, J.F, C.N. Judice, W.H. Ninke. “A Survey of Techniques for the
Image Display of Continuous Tone Pictures on Bilevel Displays,” Com-
puter Graphics and Image Processing, 5(1), March, 1976, pp. 13-40.

Jordan, B.W., W.J. Lennon, B.C. Holmes. “An Improved Algorithm for
the Generation of Non-parametric Curves,” IEEE Transactions on
Computers, C-22(12), December 1973, pp. 1052-1060.

Knowlton, K. and Cherry, L., “ATOMS - A Three-D Opaque Molecule
System for Color Pictures of Space-Filling or Ball-and-Stick Models,”
Computers and Chemistry, 1, 1977, pp. 161-166.

Levin, J.Z., “A Parametric algorithm for drawing pictures of solid
objects composed of quadric surfaces,” Communscations of the ACM,
19, 1976, pp. 555-563.

Levin, J.Z., “Mathematical Models For Determining the Intersections of
Quadric Surfaces,” Computer Graphics and Image Processing, 11,
1979, pp. 73-87.

Mahl, R., “Visible Surface Algorithm for Quadric Patches,” IEEE Tran-
sactions on Computers, C-21, January 1972, pp. 1-4.

Mathematical Applications Group, Inc., “3-D Simulated Graphices,
Datamatson, February 1968.

Max, N., “ATOMLLL: - ATOMS with Shading and Highlights,” SIG-
GRAPH '19 Proceedings, published as Computer Graphics 13(2),

-40-

UniQuadrix

[Porter 78]

[Porter 79]

[Sarraga 83]

[Séquin 83]

[Staud 78]

[Strauss 82]

[Weiss 66]

[Woon 71]

References

August 1979, pp- 300-307.

Porter, T., “*Spherical Shading,” Siggraph '78 Proceedings, published as
Computer Graphics, 12(3), August 1978, pp- 282-285.

Porter, T. “The Shaded Surface Display of Large Molecules,” SIG-
GRAPH '79 Proceedings, published as Computer Graphics, 13(2),
August 1978, pp- 282-285.

Sarraga, R.F. “Algebraic Methods for Intersections of Quadric Surfaces
in GMSOLID,” General Motors Research Publication GMR-3944R,
July 1, 1983, published in Computer Vision, Graphics and Image Pro-
cessing, 22, May 1983, pp-222-238.

Séquin, C.H. and P.S. Strauss. WUNIGRAFIX,” IEEE 1983 Proceedings
of the 20th Design Automation Conference,” pp 874-381.

Staudhammer, J., “On Display of Space Filling Atomic Models in Real-
Time,” SIGGRAPH '18 Proceedings, published in Computer Graphics,
12(3), August 1978, pp. 167-172.

Strauss, Paul S., «“The Unigrafix System: Implementation Guide,”
Master's Project Report, UC Berkeley Computer Science Division,
August 1982.

Weiss, R.A,, “BeVision, a Package of IBM 7090 Fortran Programs to
Draw Orthographic Views of Combinations of Planes and Quadric Sur-
faces,” Journal of the ACM, 13(2), April 1966, pp- 194.

Woon, P.Y. and H. Freeman, A Procedure for Generating Visible-Line
Projections of Solids Bounded by Quadric Surfaces,” Proceedings 1971
IFIP Congress, North-Holland Pub. Co., Amsterdam, 1971, pp. 1120
1125.

-41-

Appendix — UniQuadrix Images 42

Most of the images on the following pages were produced by students in a course on
geometric modelling at UC Berkeley. They are rendered on the Benson Varian plotter.

-49-

Appendix — UniQuadrix Images

C'lover Knot

44

Appendix — UniQuadrix Images

Gear

48

Appendix — UniQuadrix Images

Triangles

48

Appendix — UniQuadrix Image3

Hilbert Curve

