A Study of An Internet Protocol Implementation

David A. Mosher

Computer Science Division
University of California
Berkeley, California 94720

ABSTRACT

This report presents a detailed timing analysis of the dynamic behavior of
TCP/IP and UDP/IP as they are implemented in the released 4.2BSD version of
the Berkeley UNIXt operating system. The analysis is based a series of perfor-
mance measurements in the kernel, directed by a specific task. The organization
of the code and the algorithms used in the implementation of each routine are
discussed. The eflects of this organization and these algorithms on the perfor-
mance of each protocol are discussed. A model is proposed to estimate the
minimum cost of a protocol implementation, and a comparison is made with the
measured results. The results of this paper suggest that the implementation is
responsible for a good deal of the overhead in the measured performance. In
addition, the overheads of both light and medium weight protocol do not appreci-
ably differ from each other, and are overshadowed by the performance penalties
due to interface to the user and to the hardware.

1. Introduction

This report presents a detailed timing analysis of the dynamic behavior of TCP/IP and
UDP/IP as they are implemented in 4.2BSD. The performances of TCP, principally, and UDP
have been of great concern to the Defense Department’s contractors. There is a long standing
debate about the use of light weight protocols, such as PUP [Boggs 80|, and of medium weight
protocols, such as TCP/IP [TCP 81]. Light weight protocols tend to be stateless and have simple
behavior, resulting in small amounts of code with higher readability but leaving the difficult task
of ~nsuring reliability to higher level facilities within the applications that need such reliability.
Heavier weight protocols have a tendency to keep large amounts of state information and have a
fairly complex state machine to drive their behavior, resulting in large volumes of hard to debug
code, but freeing applications from having to deal with the problem of reliability.

In general, protocols, including TCP and UDP, are simply a functional specification of a
chain of events which occur during a conversation and lead to some end result. The implementa-
tion of these functions may result in a great deal of delay (or overhead). For example, a function
in which the search of a long list or table is implemented using a linear scheme may perform
poorly in comparison with the same function implemented using a hashed lookup scheme. Obvi-
ously, there is a space/time trade-off here. Thus, either implementation may be more effective
depending on the constraints of the architecture. Evaluating these space/time trade-offs is an
important part of system design. A careful study of system usage is needed to ensure that the
correct choice has been made and that the implementation behaves as was intended.

Given a specific protocol, a set of functions must be performed. It is worthwhile to consider
an ideal model of how the functions should perform. This ideal performance will be referred to as

t UNIX is a trademark of ATET Bell Labs



-2-

the functional cost of a protocol. When the protocol is implemented, the overhead may be larger.
This additional costs will be referred to as the implementation cost of a protocol for a given
implementation. If the implementation cost far exceeds the functional costs and we have not
carefully determined both the functional cost and the implementation cost, we may be misled by
simple throughput measurements of the implementations of two different protocols in an attempt
to determine which protocol is more efficient.

2. The Study

To study the implementations of TCP/IP and UDP/IP provided in the 4.2BSD kernel, we
exercised the kernel with user level processes, and the UNIX commands kgmon and gprof were
used to provide an execution profile of the kernel. We designed two similar user level test pro-
grams, one for each protocol, which send a specific number of messages determined by their
repetition count to a given host. Each test program is run with a given amount of data at a time,
allowing the profile to show exactly the execution history of sending a message with that amount
of data. The kernel profiling facilities were enabled only during the actual running of each test
program. The test programs were run in single user mode to avoid interferences from system util-
ities and other user applications. (The listings of these test programs have been included in
Appendix A.)

These tests were run between two VAX 11/750's} over a 3 megabit/second Ethernett. One
processor was used to profile the kernel while the test program was run; the other processor just
sank the data from the test programs. The test programs sent a set of six different amounts of
data per message: 1, 112, 113, 1023, 1024, and 1025 bytes. These amounts were chosen to study
protocol behavior around boundary conditions for the network data buffer management system.

To determine the repetition count, the following calculations were made. Since the smallest
packet takes 5.5 milliseconds to be shipped and the VAX 11/750 roughly executes an instruction
every microsecond, this would imply that about 5,500 instructions are executed. If the profiler
samples every 1/60th of a second, we would need around 91 seconds (5500 samples at 60 samples
per second) of execution to allow for a hit on every instruction. Since each repetition results in
at least 5.5 milliseconds of processing time, a repetition count of 17,000 would result in 91 seconds
of execution time. Since our goal was to understand roughly how the time was divided and
because of the limited resources available for this profiling, we compromised with a repetition
count of 10,000. A greater accuracy could have been achieved with a larger repetition count, but
testing time for such accuracy would be exceedingly longer.

We do not have an absolute way of judging the effectiveness, for the user applications, of
the current protocols. We do have an excellent breakdown of kernel time spent while sending
messages of a chosen size, and a detailed knowledge of what would happen if a user level applica-
tion was to send messages of any given size.

3. Expectations

The basic function of a protocol, such as TCP or UDP, is to transfer data from one location
to another. The minimal cost of such a transfer is the cost of transferring data from one location
to another in memory. This cost will be referred to as the copy cost. The copy cost increases
linearly as the amount of data to be transferred increases.

In order to estimate the cost of transfers from one location to another through a communi-
cations media, we need to look at the number of times the data is copied, which is an implemen-
tation issue, and the overhead per byte transferred.

In the 4.2BSD implementation, the system chooses to copy user data into system buflers and

is constrained to copy the data into contiguous memory before transferring a data packet. In
addition, for streaming protocols such as TCP, the data is copied into system buffers and then

1 VAX 11/750 and VAX are trademarks of Digital Equipment Corporation
t Ethernet is a trademark of Xerox Corporation.



-3.

copied into the stream buffers. Then the data is copied from the stream buffers into data packets.

Beyond these copying costs, we have overhead due to formations of hedders and the proto-
col state machine. These costs will vary, and represent the costs of the specific protocol. We
should be able to derive these costs from the results of our study.

Thus, for UDP, we can expect a copy from user level into system buflers, and one from sys-
tem buffers into data packet, plus the cost for computing the checksum of the data. For TCP, we
can expect a copy from user level into system buffers, one from system buffers into stream buflers,
and one from stream buflers into data packets, plus the cost for computing the checksum of the
data. We include the cost of this checksum because time required for the addition of the stream
of bytes for the checksum is of the same order as that for copying data from one memory location
to another using a highly efficient VAX block move instruction. (The actual transfer of the data
from the data packet to the medium is not measured because it happens via direct memory access
by the device.)

4. How Each Protocol Works

4.1. TCP/IP
Figure 1 graphically displays the calling hierarchy of a send request for TCP/IP.

syscall
write
rwuio
800_IW
sosend
uiomove
Copyin
tcp_usrreq
sbappend
tcp_output
m_copy
tcp_cksum
ip_output
in_cksum
enpoutput
if_wubaput
enstart

Figure 1

The calling hierarchy for sending data via TCP/IP starts with a system call, syscall, to a generic
write operation. write calls the generic user requested data routine rwuso which forms a user
request structure. In turn, rwuso calls the specific routine which can perform the necessary opera-
tions for a socket, in this case soo_rw. soo_rw calls the appropriate internal routine to implement
the original request to ‘send data’, sosend. sosend is responsible for copying data from the user
level via uiomove, which calls Copyin to do the actual copying. sosend first determines the
amount of buffer space available for this specific socket, and copies the minimum of the buffer
space available and of the amount of remaining data from the user process into the system
buffers. sogend continues to fill system buffers until all data from the user level has been queued
for sending. These system buffers are then passed to the appropriate routine for handling TCP
protocol requests, in this case tcp_usrreq. tcp_usrreq queues the data buffers for this TCP connec-
tion by sbappend and then switches immediately to tcp_output, the output sequencer for the TCP
protocol. At this level (fcp_output), a specific amount of data is copied by m_copy. The amount
of data to be sent is based on the amount of data unsent and the amount of window space avail-
able on the receiving end. This copied data will constitute the data of the stream for a TCP
packet. A TCP header is formed, including a checksum by tcp_cksum of the header plus the data



- 4.

areas. Finally the TCP packet is passed to the IP level, ip_outpul. An IP header is formed,
including a checksum of the IP header computed by in_cksum. Finally the message is queued for
the specific network interface for transmission. In this implementation, the network interface con-
sists of en_output and en_start. Before such a transmission can happen over this network inter-
face, the buffered header and data must be located in a single contiguous memory space; this is
done by if wubaput.

4.2. UDP/IP
Figure 2 graphically displays the calling hierarchy of a send request via UDP/IP.

syscall
sendto
sendit
sosend
uiomove
Copyin
udp_usrreq
udp_output
udp_cksum
ip_output
en_output
if_wubaput
en_start

>From the user process’ viewpoint, sending data through UDP/IP is done by issuing a sys-
tem call equivalent to write, which is sendto. Each call of sendto requires the destination address.
sendit is called, which in turn calls sosend as TCP/IP does. Again sosend calls uiomove, which
calls Copyin to actually copy the user data into system buflers. These buffers are given to
udp_usrreq which calls udp_output after a pseudo connection is established. As with TCP,
udp_output represents the output sequencing of the UDP protocol. At this level(udp_output), the
UDP header is formed. The header and data are checksummed via udp_cksum, and then passed
to ip_output as with TCP/IP. ip_output forms the [P header, checksums the header via in_cksum,
and passes the buffered header and data to the appropriate network interface, in this case
en_oulput and en_start. Again, the buffers must be located in a single contiguous memory space
before transmission; this is done in if_wubaput.

>From our discussion in the previous section, uiomove and Copyin represent the copying
from user to system space and if_wubaput represents the copying from buffers to a single contigu-
ous packet. For TCP/IP, m_copy represents the additional copying from system buffers to stream
buffers. The costs of tcp_cksum and udp_cksum are of the same order as the above copy costs.

5. The Results

Using the test programs and the profiling facilities, we were able to obtain in seconds the
processing time of each routine called by our test program for a message with a specific amount of
data. These timings are shown in the following tables, Table 1 and 2. The values in the tables
were obtained by dividing appropriately what was observed by the repetition count, and represent
the number of milliseconds spent in each routine.



.5.

Number of bytes sent by User

Routine 1 112 113 1023 1024 1025
syscall 35 30 .34 .33 .28 37
sendto 08 09 .09 .08 .09 .08
sendit 29 28 .29 .28 27 .25
sosend .50 .57 .67 192 .56 Jq4
ulomove JAd2 .15 .20 1.07 .13 .25
Copyin Jd1 .20 .24 146 85 85

udp_usrreq .18 .19 15 .20 .16 .19
udp_output 26 .25 .23 .36 .30 .28
udp_cksum |.22 .34 .24 1.28 88 .83

ip_output 41 .39 35 .43 .40 41
ip_cksum 42 45 44 .34 .36 .40
enoutput 34 31 30 .35 38 29

If wubaput | .40 .43 .50 1.49 40 1.05

Table 1
UDP Kernel Profiling per Routine

Number of bytes sent by User

Routine 1 112 113 1023 1024 1025
syscall 29 28 .28 .30 30 31
write 07 08 .08 .08 .08 .09
rwuio .16 A7 .18 .18 .18 .22
SO0_IW 09 08 .08 .08 .08 .08
sosend 39 .48 .82 1.65 .56 1.65
ulomove 09 .10 .17 92 14 .88
Copylin 04 .11 .17 1.10 09 1.12
tcp_usrreq 22 22 19 .20 .20 .22
sbappend .16 .16 .21 .83 11 80
m_copy 28 .39 .52 1.82 24 297
tcp_output 63 62 63 .85 71 112
tep_cksum |.22 .31 .36 162 1.05 1.66
ip_output 28 .30 31 .34 34 .56
in_cksum 19 17 .16 37 .26 44
enoutput 29 34 34 31 41 .50
if wubaput | .38 .40 .53 1.42 47 1.68
Table 2

TCP Kernel Profiling per Routine

These values are only intended to show the relative ordering of the routines with respect to time
consumption, and to show gross changes in the magnitude of the time consumed by each routine.
Since the same amount of data is copied for both TCP and UDP for at least the 1 and 112 byte
case, we can see that these timings results vary significantly. Absolute timings require careful
attention to the stability of the results and sufficient samples to provide stable results. In these
tables, we have highlighted in boldface those routines which are most sensitive to variations of the
amount of data to be processed.

8. Analysis

For both TCP and UDP, a user process request to send data must be processed by the
socket scheme of 4.2BSD and finally passed to the IP layer for transport on the network. Thus,
we can try to factor those costs common to both TCP and UDP to understand their global costs.
The following sections analyze the results in Tables 1 and 2.



6.1. TCP/IP

SFrom Table 2, we can see that, of the 16 different routines used in TCP/IP, only 8
present processing costs which vary significantly with the amount of data sent. The proccssing
time of the other 8 routines remains practically constant.

These timings are relatively comstant until we reach the socket processing routines,
specifically sosend. Sosend, called once indirectly from the user level, generates a chain of system
buffers which contain the user level data. These buffers are referred to as memory management
buffers (mbuf's), defined by the mbuf structure. These buffers are used either to hold data or to
reference data. When the buffer is used to hold up to 112 bytes, it is referred to as a small mbuf.
When the buffer is used to reference data, it can reference a page of data, 1024 bytes, and is
referred to as a large mbuf. All lower routines in the calling hierarchy must follow this mbuf
chain and process the data in each mbuf. uiomove gets called to fill each mbuf and does no pro-
cessing of the data. Copyin is also called once per mbuf and copies the data from the user process
to the data portion of the mbuf. The amount of data copied has a fixed linear cost, but the pro-
cedure call and setup cost is significant. For data transfers of less than a page, i.e. less than 1024
bytes, the data is copied into a chain of small mbuf’s. Thus the difference between the overhead
of copying 1023 bytes and that of copying 1024 bytes is almost entirely due to the number of
mbuf’s or the number of times Copyin is called. sbappend puts these mbuf’s on a queue for this
TCP connection and tries to combine the data of two mbuf's into one. sbappend is aflected by the
length of the mbuf chain and the utilization of the data portion of each mbuf. The same is true
for m_copy, except that, in the case of a large mbuf, the data is not copied but referenced. This
results in a dramatic savings when large mbuf's are used. The time spent in tep_cksum is aflected
by the number of mbuf’s and by the amount of data in each mbuf as well. The checksum is com-
puted for blocks of data. Each mbuf causes a premature disruption of this block processing of the
checksum and this results in substantial overhead. sf_wubaput is very similar to Copyin except
that it copies data from mbuf’s to a contiguous segment. In the case of 1024 bytes, the data is
contiguous and need not be copied. If only a portion of a large mbuf is being sent, the whole
referenced data of the mbuf must be recopied into a page aligned segment. It would appear that
the buffer management strategy has a significant impact on the performance of this implementa-
tion. In the case of 1024 bytes, we see that a different buffer management strategy, using only
large mbuf’s, greatly reduces the overhead, and checksumming becomes the most expensive task.

6.2. UDP/IP

In Table 1 we can see that, of the 12 different routines used in UDP/IP, only 5 present pro-
cessing costs which vary significantly with the amount of data sent. The processing times of the
other 7 routines remain practically constant. As with TCP, sosend is responsible for the genera-
tion of the mbuf chain which will directly aflect the processing at the lower levels. As with TCP,
uiomove is called once per mbuf, and substantial overhead results from processing the mbuf
chains. Copyin suffers from the overhead of processing the mbuf chain, but its processing time
does vary as the amount of data to be copied varies. We can see from the difference between
1023 bytes and 1024 bytes that mbuf chaining results in a great deal of overhead which can not
be accounted for by the copying of a single extra byte. udp_cksum is similarly affected by the
mbuf chain. As with TCP, the copying of the data from the mbuf chain into a single contiguous
segment is dramatically affected by the number of mbuf’s. Note the dramatic change for 1024
bytes in if wubaput, where the data is not copied but referenced. Note that, for 1025 bytes, the
time taken in if_wubaput jumps higher, but not as high as for 1023 bytes. TCP has additional
processing related to its acknowledgements and window updates, which are not provided for in
UDP. If the user wished to guarantee the arrival of all of the data, an UDP acknowledgement
scheme would be needed, resulting in system overhead to send the acknowledgement packet from
receiving user process to the sending user process. As with TCP for the case of 1024 bytes, the
most expensive remaining cost is that of checksumming. Clearly the buffering scheme chosen in
sosend has a dramatic effect on the processing at the lower levels of both protocol implementa-
tions.



.7-

We can see from Table 1 and Table 2 that UDP and TCP have some of the same critical
routines, all of which are sensitive to mbuf chains. We can also see that UDP has little more to °
optimize than these routines, so improvements beyond those that might result from the reduction
of the mbuf chains seem unlikely. TCP has additional critical routines which may be improved
by better buffer management but which would still have a sizeable impact on the performance for
this implementation of TCP. >From the case of 1024 bytes were the costs of mbuf chaining is
minimal, we can see that the costs of the state sequencing routines in UDP amd TCP, udp_output,
and {cp_output, vary by a factor of 2 but have only a minor impact on the total performance.

6.3. Comparison of TCP and UDP
We can view the activities of each protocol’s implementation in a different way by looking

at the number of times each routine was called. Table 3 presents, for TCP/IP, such a decomposi-
tion, while Table 4 has it for UDP/IP.

Number of bytes sent by user process

Routine 1 112 113 1023 1024 1025
syscall 10,882 10,884 10,882 10,884 10,882 10,882
write 10,002 10,002 10,002 10,002 10,002 10,002
rwuio 10,009 10,010 10,009 10,010 10,009 10,009
800_TW 10,000 10,000 10,000 10,000 10,000 10,000
sosend 10,000 10,000 10,000 10,000 10,000 16,000

ulomove |10,014 10,015 20,014 100,015 10,014 97,158
tcp_usrreq | 10,011 10,020 10021 10,119 10,022 10,046
sbappend 10000 10,000 10,000 10,088 10,000 10,000
tep_output | 10,010 10,017 10015 10,104 10,008 10,015
m_copy 10,007 10,022 10,024 10,136 10,010 20,022
tep_cksum | 10,988 11,497 11,671 20,284 20,256 30,087
ip_output | 10,016 10,049 10032 10,182 10024 20,081
in_cksum 10,884 11,628 11,780 20,494 20,856 30,359
enoutput 10016 10,049 10,032 10,182 10,024 20,081
if wubaput | 10,016 10,049 10,032 10,182 10024 20,056

enstart 10,024 10,059 10,037 10,188 10,057 20,141

ipintr 356 1,532 1,686 10,035 10,238 10,012

tep_input 323 1,472 1,645 10,095 10,243 10,012
Table 3

Number of Calls per Routine for 10,000 TCP Send Requests

First we note that gosend is called by each protocol exactly the same number of times. In
addition, uiomove and the uncounted Copyint, ip_output, enoutput, and if_wubaput are called
about the same number of times for data amounts of 1 byte through 1024 bytes. Thus, the
behavior of these two protocols is approximately the same under these conditions for this imple-
mentation. Since both protocol implementations called ip_output about the same number of
times, we can deduce that no buffering occurs from system call to system call. Such buffering is
permissible for TCP, but is not for UDP. As noted before, TCP requires some additional process-
ing due to its retransmission concerns, represented by m_copy, ipinir, and tcp_input. As well,
calls to ipintr and tcp_input result in a proportionally higher number of calls to in_cksum and
tep_cksum.

We see quite a dramatic difference when the packet size reaches 1025 bytes of data, between
UDP and TCP as implemented in 4.2BSD. We note for UDP that ip_output is still only called

Copyin is an assembly language routine and cannot be instrumented with profiling from the C compiler



Number of bytes sent by user process

Routine 1 112 113 1023 1024 1025
syscall 10,886 10,888 10,886 10,888 10,886 10,888
sendto 10,000 10,000 10,000 10,000 10,000 10,000
sendit 10,000 10,000 10,000 10,000 10,000 10,000
sosend 10,000 10,000 10,000 10,600 10,000 10,000

ulomove 10,015 10,016 20,0156 100,016 10,015 20,015
udp_usrreq 10,002 10,002 10,002 10,002 10,002 10,002
udp_output 10,000 10,000 10,000 10,000 10,000 10,000
udp_cksum 10,000 10,000 10,000 10,000 10,000 10,000
ip_output 10,019 10,017 10,025 10,036 10,025 10,057
in_cksum 29,081 28,800 28,458 28,710 29,818 29,770

enoutput 10,019 10,017 10.025 10,036 10,025 10,037

if_wubaput 19,019 10,017 10,025 10,036 10,025 10,037

enstart 10,037 10,039 10,037 10,056 10,028 10,044
Table 4

Number of Call per Routine for 10,000 UDP/IP Send Requests

once per s0send, while for TCP ip_output is called twice per sosend. The second call is due to the
fact that the maximum segment size is 1024 bytes, so that the data must be sent in two packets.
This additional call to ip_output results in additional calls to lower level routines such as
tep_cksum, in_cksum, m_copy, enoutput, enstart, and if_wubaput. In addition, we see a consider-
able difference between the number of times uiomove and the uncounted Copyin are called for
1025 bytes between UDP and TCP. This difference is found at the socket level and would appear
not to be related to the protocol.

This behavior of the TCP implementation for packet sizes greater than 1025 bytes needs to
be careful studied and explained. We can clearly see that the number of mbuf’s used must be
significantly higher for TCP than for UDP since the number of times utomove is called is related
to the number of mbuf’s created. We would expect the number of calls to be one for 1024 bytes
for a large mbuf, and one for 1 byte for a small mbuf (as seen with UDP).

For TCP, the socket level scheme in sosend is dependent not only upon the amount of data
to be spent but also upon the amount of space available in the buffer. UDP does not use socket
buffering, but is limited to sending packets no larger than 2048 bytes. The buffer space for sock-
ets was 2048 bytes in TCP. So, if we send 1025 bytes on a TCP socket, buffered as 1024 bytes in
a large mbuf and 1 byte in a small mbuf, only 1023 bytes remain available in the buffer. When a
second send of 1025 bytes occurs before the previous 1025 bytes have been acknowledged, only
1023 bytes may be copied into the buffer. Since 1023 bytes is smaller than a large mbuf, the
data must be placed in small mbuf’s. When the last packet of 1025 bytes is acknowledged, the
remaining 2 bytes may be copied in, leaving again 1023 bytes available in the buffer space. But
since the 2 bytes where just sent, our next acknowledgement would be for the 1023 byte packet,
leaving only 1021 bytes available in the buffer. Depending on the amount of data acknowledged
per acknowledgment packet, a very complex behavior similar to the silly window syndrome{Clark
82] found at the TCP level occurs here at the socket level. As we noted previously, TCP will
send two packets for each 1025 bytes, one 1024 bytes and one 1 byte. Because of the delayed ack-
sowledgement scheme of this implementation, the acknowledgement is for 1025 bytes. We can
see that the number of acknowledgements happens to be about the same as those of the users sys-
tem calls, spintr and sosend, respectively. We would then expect the number of calls to utomove
to be about the same as for the 1023 byte case. The number of calls to uiomove for 1025 bytes is
slightly less, which indicates that sometimes the acknowledgement must have happened before the
user process had a chance to send its next 1025 bytes of data. This behavior is controlled by the
size of the buffer and the amount of delay in the acknowledgement. We can see from the 1024
byte case that, for every 1024 bytes sent, the acknowledgement appears to occur before the next
1024 bytes can be sent and acknowledged. If acknowledgements were sent much later, we might



-9-

see a more regular behavior. This behavior deserves more careful study in the future.

7. Conclusions

This report has presented a detailed timing analysis of the dynamic behavior of TCP/IP
and UDP/IP as they are implemented in 4.2BSD. We have discussed the i portance of accessing
the functional cost and the implementation cost so as not to be misled by simple measurements of
a particular protocol’s implementation. We have employed user level programs to exercise the
kernel and studied protocol behavior with the given memory management scheme. We have dis-
cussed the system behavior for both stream and datagram protocols, including costs in terms of
the number of times the data was copied. We have given a detailed description of the processing
of both TCP and UDP send data requests for each network layer. We have discussed the limita-
tions of the operating system interface and of the hardware interface. Measurements of the time
spent in each routine have been presented to show time consumptions and gross changes in the
magnitude of such consumptions. An analysis of these measurements was given. For both proto-
cols, the buffer scheme used in the implementations appears to have a substantial impact on per-
formance. In the case of 1024 bytes, checksumming becomes the most expensive task. When
further analyzing the number of times each routine is called, we have seen similar behaviors for
TCP and UDP for data transfers of less than one page. For transfers of more than one page of
data, we have discovered an unexpected behavior at the socket level, which dramatically aflects
the management of the data buffers for stream protocols, such as TCP. Overhead is also added
by the constraints of the maximum segment size limitation within TCP. We have seen that the
routines which implement the state sequencing for TCP and UDP differ by a factor of two in pro-
cessing time, but that this difference is small in comparison with the total costs of sending data.

8. References

[Boggs
David R. Boggs et al., "Pup: An Internetwork Architecture.” [EEE Transactions on Commun-
ications, Vol. COM-28, No. 4, April 1980, pp. 612-624.

[TCP
»Transmission Control Protocol.” RFC 793, Information Sciences Institute, Marina del Rey,
California, September 1981.

[Clark
Dave Clark, "Window and Acknowledgement Strategy.” RFC 813, Information Sciences Insti-
tute, Marina del Rey, California, July 1982.





