’

to appear, Proc. 1984 USENIX Summer Conference, Portland,
Oregon, (Hosted by University of Oregon), June 12-14, 1985

A File System Tracing Package for Berkeley UNIX

Songnian Zhou, Hervé Da Costa, and Alan Jay Smith

Computer Science Division
EECS Department
University of California
Berkeley, California 94720

Abstract

A tracing package for the UNIX file system has been imple-
mented and statistics have been gathered from a heavily and widely
used DEC VAX 11/780 running UNIX 4.2BSD. This tracing pack-
age is unusual in the comprehensiveness of the data gathered, the
clean and usable format in which the final trace appears, and the
use of a post processing step to assemble information in trace
records that is not easily (or at all) available at trace time. Trace
records are gathered for file opens, file creates, file closes, reads and
writes, renames, file deletes, executes, forks and exit calls. Some
preliminary analyses of the trace data are presented. We found that
the I/O activities are very bursty, that very few read and write
operations are performed in most of the open-close sessions, and that
the process lifetime distribution is highly skewed, with many short
lived processes and afew long term ones. The extensive data gath-
ered using the package is valuable for the studies of disk caching
and file migration algorithms, distributed file system performance,
and load balancing strategies.

*The material presented here is based on research supported in part by the National Science Foundation under grant
DCR-8202501 and by the Defense Advanced Research Projects Agency under contract N00036-82-C-0235. Partial support
bas also been provided by the Digital Equipment Corporation Eastern Research Laboratory.

$Unix is a trademark of Bell Laboratories

1. INTRODUCTION

Over the past years, Berkeley UNIX has undergone extensive modifications
and enhancements in its functionality and performance. In particular, the file sys-
tem was largely reimplemented in 4.2BSD to provide features such as larger file
blocks and contiguous block allocation [Mcku84], yielding considerably better per-
formance. With the increasing complexity of the system, it has become more and
more difficult to fully understand its behavior, and to identify performance
deficiencies and bugs by reading the source code. A comprehensive trace-driven
analysis of input/output activity can not only reveal many aspects of the system
and user file access behavior, thus indicating ways to improve system perfor-
mance, but also will provide invaluable data for the design of and research into
disk caches, file migration, network file systems, and load balancing straiegies.

In this paper, we describe a logical file system tracing package designed and
implemented for the Berkeley UNIX system. We also present some preliminary
results from analyses of the trace data generated using this package. Several
goals and requirements for the package were set up to guide its design and imple-
mentation, and they are discussed below.

1) Comprehensiveness. The tracing package should provide a clear and
detailed picture of the file system activities. For this purpose, we need to
trace all the relevant file operations, and collect all the useful information.
Efforts must be made to generate complete and accurate information in order
to avoid as much guess work as possible in the analyses of the trace. The
trace data should be useful for a wide range of analyses and simulation stu-
dies, many of which were unforeseen at the time the package was developed.

2) Flexibility. The package should be flexible enough to tailor to different trac-
ing needs. Besides tracing the complete system, it should be possible, by
specifying a number of parameters when activating the trace, to trace a sin-
gle user, a group of users, a single process, such as a system daemon, or a
group of processes. One should be able to activate and deactivate the trace
dynamically without disruption of system services. The package should also
be able to trace long term system behavior, as well as short term behavior.

3) Minimum performance impact. While a trace must by its nature gen-
erate some overhead, such a penalty should be kept to a minimum. When
the trace is not activated, there should be almost no extra system overhead
caused by the tracing package, and when activated, the tracing should not
cause noticeable degradation to the system performance. There are two
aspects to this: First, the extra amount of computing for extracting data from
the system should be kept low. Second, the amount of trace data generated
should not be so large as to constitute a significant portion of the system file
activity. Both aspects are important if the trace is to run for an extended

-3-

period, say several days, in order to eliminate the measurement error caused
by temporary variations in system and user behavior.

4) Minimum change to the system. It is important to minimize the amount
of code required for the tracer and to also minimize the degree of
modification to the system. This not only makes the package easy to main-
tain and reduces the probability of the package introducing errors, but tends
to reduce the performance impact on the system.

5) Convenience for Analysis. The trace data, in its final format, should be
usable; i.e. it should be possible to analyze it easily and simply, with only
simple computations required for simple outputs. Complex cross correlation
of trace records should be done as part of the trace preparation, and should
seldom be needed for trace analysis.

It is recognized that the above requirements often conflict with each other.
However, our experience indicates that, by careful design and implementation,
such conflict can be reduced and a reasonable compromise achieved. In the fol-
lowing sections, we will discuss how these requirements are met. The design of
the package, including its general structure and trace data content, is described in
Section Two. Section Three is a detailed discussion of the various issues involved
in the implementation. We present some analyses results of the trace data in Sec-
tion Four; potential uses of the package are also discussed there. The impact of
the tracing package on system performance is quantitatively studied in Section
Five. Section Six concludes this paper with an evaluation of the package.

2. DESIGN ISSUES

2.1. Design Considerations

The design of the tracing package follows the principle of achieving the func-
tionalities required with minimum possible complexity. We first discuss the level
at which the tracer runs and the reasoning behind our decision. This is followed
by a general description of the package structure.

2.1.1. Level of tracing

Selecting the level of tracing is the first step. We want to trace the file
operations performed by the users and system processes; this can be accomplished
on top of the UNIX kernel. There are, however, several ways a user can perform
a file operation: he can make a system call directly, or can use the system utility
routines. This implies that the hooks for catching the operations must be placed
in a number of places in order to capture all operations of the same type. Even
so, there is still the risk of missing some of them. Rather than performing the
tracing at the user level, we decided to do it inside the kernel. UNIX has a small

-4-

set of well defined system calls for handling all file operations, such as open, close,
read, write, and rename. These calls provide a clean interface used by every file
operation, thus enabling us to record all the operations by placing exactly one
hook for each type of relevant system call.

There are two disadvantages to tracing at the system call level, however.
First, by operating inside the kernel, the package has no way to tell where the file
operation comes from. We remedy this by tracing the commacnd that caused this
operation, and matching the two records together later. Another problem is that
the kernel has to be changed and debugging the kernel is generally much harder
than debugging a user program; an error in the tracing package can potentially
crash the system. We attempted to ease this problem by minimizing the changes
to the kernel and by careful implementation. (This would have been easier had
we been the only people attempting to modify the kernel at the same time.) Our
results show that placing the tracer in the kernel is not a serious problem com-
pared to the benefits achieved by an in-kernel tracing package.

Our interest in the trace data is primarily toward studying user behavior and
related research issues such as disk caching, file migration, etc. Conversely, we
are not strongly interested in ‘‘tuning” the system. Thus, our data collection is
directed toward the collection of “‘logical” I/O information rather than *‘physi-
cal”, and we want the logical read/write requests and not the physical block
transfers to and from disk. Because of the complexities of tracing physical
activity, such complexities including the use of a disk block cache and write
behind, we have chosen to trace only at the system call level, ignoring some of the
implementation details of the file system.

2.1.2. Structure of the tracing package

The package collects data about the file operations and records them in trace
files. The package is composed of four parts. The first part provides the mechan-
ism to activate and deactivate the tracing and to switch tracing files when they
grow too large. Because of the wide range of system calls traced and the
comprehensive set of information recorded, a large amount of data is generated in
an actively used system; the limited amount of system disk space requires that we
“ping-pong”’ between output files and dump them to tape as they become full.
The second part of the package includes all the hooks placed in the relevant sys-
tem call handling routines, and the corresponding routines to generate the trace
records. The third part is the buffer management, synchronization; and file
dumping routines. In order to reduce overhead, the individual records are not
written to the trace file right after they are generated; rather, they are first accu-
mulated in a large buffer in memory and then dumped. Since it is possible that
several processes are trying to access a buffer at the same time, synchronization
has to be provided to enforce strict time order of events and to avoid overwriting

other trace records.

The last part of the trace package is not used during the generation of the
trace, but rather at the post processing stage. Certain pieces of data are impossi-
ble to get during the trace, or are too expensive, in terms of processing time and
additional data structures to be set up. Instead, we process the raw trace off-line
by making several passes on it. The final trace generated from the raw trace and
other information of the system is much easier to use by analysis programs. The
details of the package implementation will be discussed in the next section.

2.2. Trace Data Content

2.2.1. What files are traced?

UNIX has a very general notion of files. Besides disk files, devices, such as
terminals (character special) and disks (block special), are also treated as files and
managed by the same naming mechanism. The inclusion of the IPC mechanism
in 4.2BSD further extended the concept of files to include communication end
points called sockets. Since we are primarily interested in the file system proper,
all these special “‘files” are ignored by the trace package.

2.2.2. What activities are traced?

We trace the file open, file close, read, write, file rename, and file delete
calls. In addition, three process control calls, fork (vfork), exec, and exit are
also traced. Besides ordinary data files, there are also a few other types of files
and file system internal data blocks stored on disk, including directories, symbolic
links, and the file descriptors, called inodes. An inode contains information about
a file, such as its owner, its size, its disk block addresses, and a unique number
called i-number. In order to operate on a file, its inode must first be brought into
the memory.

The files in UNIX are organized in a hierarchical structure. When a user
makes an open call, s/he specifies the name of the file. Directories must be
searched to find its inode. Because the way the directories are used is very
different from ordinary data files and is not through the same set of system calls,
tracing the directories would increase the complexity of the package by a substan-
tial extent. Also, many directory accesses can be inferred, given full path names
of nondirectory files accessed. Based on these two considerations, we decided not
" to trace directory activities. Similar considerations led to the exclusion of the
1/0's for file inodes and indirect disk pointer blocks of files. Another type of spe-
cial files is symbolic links. They simply contain names of other files so that multi-
ple directory entries in different file systems can share the same file descriptor.
We decided to ignore the symbolic links. Executable files in UNIX are accessed

-6-

by the virtual memory system. The I/O operations on them are initiated inter-
nally by demand paging, rather than by explicit user requests. Although we trace
the exee calls, which specify the executable files to be used, we do not trace the
paging activities. (Paging activity can also, as an approximation, be inferred.)

In favor of simplicity, we ignored a number of I/O activities. This implies
that a portion of the disk I/O is missing from the trace. Although this affects the
accuracy of our data as a characterization of the system and user file operations,
we feel that the most important and largest fraction of the I/O operations is still
retained; much of the rest can be inferred with little loss in accuracy.

2.2.3. What information is recorded?

Table 1 is a list of the system calls traced and the data fields for each of
them. Some of the data fields, such as the file close time in the open record, the
complete file names, and the number of bytes transferred while a file is open, are
impossible to derive during the tracing, at least at the proper time to insert them
in the appropriate record. An important feature of the tracing package is the
extensive amount of post processing performed on the raw trace to generate the
richer and reformated final trace data. (A similar procedure was used to gather
the data presented in [Smit85].) In the next section, we describe in detail the
meaning of the data fields and the way they are derived, as well as the post pro-
cessing.

3. IMPLEMENTATION ISSUES

We discussed the design of the tracing package in the last section, including
the level of tracing, the package structure, and the data content. In this section,
we consider a number of implementation issues in detail.

3.1. Synchronization and Buffer Management

Our scheme for buffer management is similar to the one used in an earlier file
tracing package developed by Tibor Lukac [Luca83], and to the accounting
mechanism available in 4.2BSD. As mentioned in the previous section, trace
records are collected into a big buffer and dumped to the trace file in large blocks.
When a system call of interest is invoked, the process enters a trace collection
routine which allocates a section of memory from the trace buffer. If there is not
enough space in the current buffer, a new buffer is requested from the system,
while the old one is dumped and returned to the system buffer pool. Synchroniza-
tion on the buffer must be provided, however, because the same buffer is shared
by all the processes in the system. This turns out to be fairly easy because a pro-
cess allocating space in the buffer is executing in the kernel mode, and therefore
may only be interrupted by totally irrelevant system activities, such as the device

RECORD TYPE

DATA FIELDS

open/create

record type, record length, real time, process time, file 1id,
open id, process id, user id, open mode, device number, last
modify time, last access time, user name, file size when open,
file size when close, file type, close time, number of 1/0, bytes
transferred while open, reference count, file name

close

record type, record length, real time, process time, file id,
open id, process id, user id, open mode, device number, file
size, file type, number of I/O, bytes transferred while open,
reference count

read/write

record type, record length, real time, process time, duration,
file id, open id, process id, user id, offset, bytes transferred

rename

record type, record length, real time, file id, process id, user
id, device number, last modify time, last access time, user
name, file size, old file type, new file type, old file name, new
file name

delete

record type, record length, real time, file id, process id, user
id, device number, last modify time, last access time, user
name, file size, file type, file name

execute

record lype, record length, real time, process time, file id, pro-
cess id, user id, device number, user name, file size, file name

fork

record type, record length, real time, process time, vfork flag,
parent process id, child process id, user id

exit

record type, record length, real time, process time, process td,
user td

Table 1. Trace Record Types and Their Data Fields (after post processing).

driver. Since the space in the buffer is allocated in strict order of time, chronolog-
ical ordering of event records is enforced.

3.2. File ID and Cpen-close Sessions

It is important for any meaningful analysis and understanding of ‘the data
that files have unique names. The path names of the files are not easy to use and
are difficult to get during the trace. The i-number stored in a file’s inode uniquely
identifies the file within a file system; unfortunately, the i-number of a file is
reused after the file is deleted, so it is only unique at a given time, and may not be
unique for the duration of the trace. We decided to generate and assign unique

-8-

file ID’s to files during the trace. A file ID (identifier) is a number that is never
assigned to more than one file for the entire duration of the trace. When a file is
seen for the first time by an open, rename or exec call, we mark it by setting a
flag in one of the unused locations in its inode. We also give it a file ID and
record the ID in its inode so that next time this file is accessed, we can use its ID
to identify it. These file ID’s are just consecutively assigned integers, and function
as unique, easy-to-use internal names of files.

Operations on a file generally follow the basic pattern of open/create -
read/write - close. We call this cycle an open-close session. Tying together the
data for a session provides insight into file access patterns; we use an open ID for
this purpose. When a file is opened, an open ID is generated and stored in its
inode so that all the operations on this file can be tagged with this ID. When the
file is closed, the open ID is erased and never reused; next time this file is opened,
a different open ID will be generated. These open ID’s are also just consecutive
assigned integers. There are two complications, though. First, the same file
might be opened by several processes concurrently. Clearly, they should be con-
sidered as separate sessions. However, because of the constraint of available space
in the inode, this scheme requires that they share the same open ID. In this case,
the open ID alone is not sufficient to specify a session; the process ID supplied by
the kernel must be used as well. Secondly, the same process might open the same
file several times before closing it, in which case even the process ID is not
sufficient. We choose to regard the multiple operations as belonging to the same
session, so the pair {process id, open id} can be used to provide a real unique ses-
sion id. A field in the open record, the reference count, remembers how many
opens have been performed on this file, thus giving an indication of the level of
file sharing.

3.3. Fork, Exec and Exit

These three system calls do not describe file activity directly, but tracing
them is necessary to correctly interpret the remaining data. For example, in
UNIX, new processes are created by a fork or vfork call. All of the open files of
the parent are inherited by the child, which means that it is possible for a process
to open a file, do some 1/O, and then fork a child process, which itself has a new
process id. The child may do some more I/O and finally close the file. This
sequence of file operations should be considered as a single open-close session,
involving multiple processes. In order to recognize this sequence, the creation and
destruction of processes must be recorded.

The exec call starts the execution of a new program. We would like to know
which system command or user program initiated a particular open-close session,
so that we can study the file I/O requirements and the CPU use of the various
commands. This can be accomplished by tracing the exee calls.

-9-

Including these three calls in the trace greatly enhances its usefulness, since
by looking at the trace, we know (almost) exactly what happened in the system.
The CPU overhead caused by the generation of these call records is small and the
amount of additional tracing code minor. For example, in a trace that we ran on
a production system for a whole (working) weekday, the records of these three
types constitute only 7.6% of the total number of trace records and 5.09% of the
volume (bytes) of trace data generated.

The UNIX mechanisins of the inheritance of open files by child processes, the
sharing of files by multiple processes, and the permissible multiple opens within
one process make the recognition of an open-close session fairly complicated. By
keeping track of process fork and exit calls, and by the use of open ID’s, however,
we have been able to identify all the sessions, thus making it possible to generate
statistics such as the distributions of the number of I/O operations and the
amount of data transferred in a session.

3.4. Complete File Names and File Types

We mentioned above that the user usually only provides partial file names;
i.e. the user makes references relative to a working directory. Complete file
names, however, are very useful; they often indicate the type and function of a
file. For example, files in *“/bin” are system provided utility programs, while files
in “/tmp” are usually temporary files generated by system utilities such as the
editors. File suffixes are also often informative. C language programs usually
have the suffix “.c”’, while object files have *.0"; fortran files are identified by
“f’. We have defined a number of file types based on file name prefixes and
suffixes. File type information is generated during post processing and stored in
the file open records of the final trace.

Complete file names are not easy to derive during the trace; instead, we
decided to find them during the post processing. We record the parent directory
information and the last component of the file name during the trace. Before and
after the trace, we obtain a static picture of the file system. This information
enables us to construct the complete names of most of the files by appending the
last component to the name of the parent directory. The names of the files under
directories that are created and destroyed during the tracing period cannot be
constructed using this method. Since the directories are orders of magnitude
more stable than data files, however, we do not believe we lose many file names.
It would have been possible to construct all the complete path names had we
traced the directory creation and deletion operations.

-10 -

3.5. Times

There are two types of times in the trace records: the real time is the time
since the trace started, and the process time is the total virtual time this process
has consumed. All the times included in the trace are in milliseconds, but since
the local VAX UNIX systems have a clock resolution of ten milliseconds, the times
in the data collected are only approximate. The process time suffers from a larger
error margin because it is derived by a sampling process—which ever process is
caught executing at the end of a ten millisecond interval is charged with ten mil-
liseconds of CPU time, no matter how long it actually spent running during the
interval. Despite this error margin, both types of times are very valuable for
studying file operations and process behavior. For example, the real time dura-
tions of the user read and write calls are recorded, and can be used to evaluate
the effectiveness of the read ahead and delayed write strategies in 4.2BSD file sys-
tem. Lifetime distributions of processes, both real and virtual, are useful informa-
tion for load balancing studies.

3.8. Post Processing

Post processing is an indispensable part of the tracing package. Although the
raw trace contains (somewhere) almost all of the information that appears in the
final trace, laborious processing would be required in any (and every) analysis to
understand and interpret the data, since as explained earlier, the raw trace was
generated with minimal overhead and consequently minimal user friendliness. We
have chosen to write a post processing program which does that laborious process-
ing once and for all. Post process consists of two phases: First, the raw trace is
parsed to generate session records for each open-close session. A session record
contains statistics such as the number of reads and writes performed during this
session, and the number of bytes transferred. The close time and the size of the
file at its close are also recorded. Static pictures of the complete file system taken
before and after the trace are also processed to extract all the directories and
their device numbers and i-numbers. In addition, a table is set up relating user
ID’s to user login names. Using the above pieces of information, the second phase
of the post processing converts the raw trace into the finished format.
Specifically, complete file names, file types, user names, and session statistics are
all included in the finished trace data.

4. TRACE ANALYSES

In the above sections, we discussed the design and implementation of the
tracing package in some detail. We are using the package to trace several
machines in the EECS department at UC Berkeley, and in this section, we present
some preliminary analysis results from one such (heavily used) machine; further
data collection and analysis is continuing. An earlier study of this same machine

-11-

appears in [Oust85], but relies on less complete and comprehensive trace data.
Some of the measurements presented here include the distribution of the file I/O
length and duration, the I/O transfer rate, the number of I/O operations within
an open-close session, the process lifetime distribution and the distribution of the
number of active processes.

4.1. General Statistics

The general statistics for the one-day tracing session are shown in Table 2.
The machine was moderately to heavily loaded, with the load average (average
number of ready processes) between 3 to 8, and sometimes as high as 12. The
number of users ranged from 20 to 50. It should be pointed out that the data
gathered are dependent on the system load characteristics, and will vary with the
number of users and the type of work that they are doing; one cannot generalize
from our data to different environments.

The distribution of the number of I/O operations per open-close session is
highly skewed. For the files opened for read, 97% of them have less than 4 read
operations. Eighty seven percent of files opened for write have only zero or one
write operation. Roughly, two reads and one write are performed on the average
during each session. The durations of open-close sessions are usually very short,
on the order of one to a few hundred milliseconds. (70% of the sessions last less
than 150 milliseconds, and only 17% of them last longer than 350 milliseconds.)
The number of concurrently opened files is a few hundred under normal system
load. The level of file sharing is fairly low. Of all the files opened, only about 8%
are shared.

The observations given in the paragraph above illustrate a very important
point: the behavior of the system at a detailed and low level, such as that given
by an I/O trace, is VERY hard to predict simply from a knowledge of what a
typical user appears to do on the system. It has been observed previously
[Smit85] that the bulk of the 1/O is generated by the system (only indirectly in
response to user activity) and similar loose coupling between user behavior and
system activity seems to also be present under Unix.

4.2. File I/O Transfer Sizes and Durations

4.2.1. File I/O transfer size and utility program behavior

Table 3 lists a few I/O sizes around which lzrge numbers of the 1/O opera-
tions concentrate; it is not a complete size distribution. Seventy-eight percent of
reads and eighty-one percent of writes have sizes less than 40 bytes, and around
512 bytes, 1 KB, 4 KB, 6 KB and 8 KB. The percentage of reads with 512 bytes

-12 -

Machine: ucbarpa, VAX-11/780, 4.2BSD
Friday Apr 26 8:43 to 6:29 pm (9 hrs, 46 mns)

amount of data read:

385,646,844 bytes

amount of data written: 204,970,844 bytes

amount of trace data generated: 21,821,604 bytes

number of shared files: 7,977 (
maximum number of active processes: 189

“8%)

Record Type Count Record Type Count
number of records | 538,588 (100%) || delete records 6,337 (1.2%)
create records 6,533 (1.2%) rename records | 168(3 in 10,000)

open records

87,664 (16.3%)

fork records

7,633 (1.4%)

close records

94,153 (17.5%)

vfork records

7,023 (1.3%)

read records

220,579 (41.0%)

exec records

11,641 (2.2%)

write records

82,266 (15.3%)

exit records

14,591(2.7%)

Table 2. General Statistics of a Tracing Session.

is unexpectedly high; so is the number of writes with 6 KB. Studies of the fre-
quently used commands show that the text processing command ‘“‘troff”’ reads
source files in 512 byte blocks, and writes to output files in 6 KB blocks. We also
noticed that the percentage of I/O’s with 1 KB size is much higher than those
with 4 KB and 8 KB. Since the 4.2BSD file system sttempts to improve the per-
formance by increasing the block size to 4 KB, and by doing read ahead, this indi-
cates that many system utility programs are not optimized for the reimplemented
file system. We examined a number of them by turning our tracer on, running
the commands, turning the tracer off, and then looking at the trace output.
Below are some of our observations.

e the text editor ‘““vi”’ reads and writes in 1 KB blocks;

e the C language compiler ‘“‘cc’ reads in 1 KB blocks;

e the pattern searching program ‘‘grep” reads in 1 KB blocks;

e the remote copy (across machine boundaries) command “rcp” reads and

writes in 1 KB blocks;

e the redirection mechanism (e.g., head filel > file2) is not buffered, but rather
sends data line by line.

We identified these block sizes without reading the usually complex utility pro-
grams, and the information is useful for the updating and tuning of system pro-
grams. (Some of these, such as the small block size for rcp, are not performance

-13-

bugs; the ethernet board buffer is too small to accomodate much larger blocks
[Cabr85].)

1/0 size range (bytes) || number of reads | percent || number of writes | percent
0-40 39,551 16.1% 18,191 22.1%

510-520 47,069 21.3% 1,076 1.3%
1020-1020 42,847 19.1% 20,946 25.5%
4090-4109 18,401 8.3% 3,332 4.1%
6140-6150 22,876 10.4% 22,979 27.9%
8190-8200 4,462 2.0% 1,756 2.1%

0-00 220,579 100% 82,266 100%

Table 3. I/O Size Distribution.

4.2.2. File I/O duration

Figure 1 shows the distributions of the durations of the read and write opera-
tions in real time. The file system performance improvements in 4.2BSD seem to
be quite effective; most of the I/O operations return within 20 milliseconds.

4.3. 1/O Transfer Rates

The read and write transfer rate of the file system at a resolution of two
minutes is plotted in Figure 2. We can see that the read and write rates are very
much synchronized: when read activity is high, the write activity is high also. As
might be expected, more data is read than written; the ratio of reads to writes is
2.68 and the ratio of bytes read to written is 1.88. We also observe that the I/O
transfer pattern is quite bursty; the peak rate is around 3.7 megabytes/sec. for
reads, and 3.3 megabytes/sec. for writes.

4.4. Process Lifetimes and Number of Active Processes

We observed earlier that the distribution of an open-close session duration is
bighly skewed. A similar pattern occurs, though less severe, in the distribution of
process lifetimes measured in real time. Figure 3 shows the lifetime distribution
of processes existing less than three seconds, which include 56.7% of all the
processes observed during the entire trace. Thirty-seven percent of the processes
last less than one second. Conversely, 26.7% of the processes exist longer than 10
seconds, 12.7% of them longer than 1 minute, and 2.86% of them longer than 10

-14 -

100000 107000

3000 .) — read operations
— Wwrite operations
2000 .
1000
0

1
0 20 40 60 80 100 120 140 160 180 200

duration in milliseconds

Figure 1. Distribution of File I/O Durations.

5000 kb

— data read
4000 - data written
3000
2063 -H\
1000

-

0

L
iy m&“

| B ¥

9:00 1000 11200 noon 1:00 2:00 3:00 4:00 5:00 6:00
time of the day (Friday Apr. 29th)

Figure 2. I/O Transfer Rate during the Day Measured in 2 Minute Intervals.

- 15 -

minutes.

600

500

400

300

200 |

100 _

0

T T T T T T T L T T ¥ T
0 25 50 5 1 125 150 175 2 225 250 275 3

processes life (seconds)

Figure 3. Process Life Time Distribution.

Although processes are born and die rather frequently, the number of active
processes in the system (those that performed some file operations in an interval
of a given length) does not fluctuate excessively. Figure 4 is a plot of active
processes seen in one minute intervals throughout the whole day. We can regard
this curve as an approximate pattern of system load. When the trace was started
in the morning, mainly only secretaries were logged on, doing some clerical work;
the peak load occurs around noon time, and then slowly decreases. (There is usu-
ally a pre-lunch peak, as everyone submits jobs before going to eat; there is often
a pre-5pm peak as the clerical staff leaves, although it isn’t evident in figure 4.)
The load remains high through the evening, as one might expect at a university,
although it isn’t shown in this figure. The maximum number of active processes
observed is only 188.

5. PERFORMANCE EVALUATION

In order to assess the impact of the tracing package on system performance,
and to decide if it is suitable for extended tracing periods, we performed a few
measurement experiments. Several factors contribute to the overhead incurred by
the package. First, hooks are placed in relevant system calls and information
gathering routines are executed every time these calls are made. Second, tracing
information is written to trace files using the standard file system facility, thus
competing with other activities in the system for I/O channel and disk bandwidth,
and disk space. Finally, trace records are accumulated in large buffers before

-16 -

150

100

0

L g | T LJ T L4 1§ LA { T L§ L] |

9:00 10:00 11:00 noon 1:00 2:00 3:00 4:00 5:00 6:00
time of the day (Friday Apr. 29th)

Figure 4. Number of Active Processes.

being dumped to the files, and new buffers are allocated on demand from the sys-
tem buffer pool, hence adding to the contention for the buffers. :

5.1. CPU Overhead

We wrote a test program that does nothing but a large number of file system
calls in proportion to the distribution of the calls observed in the trace. The pro-
gram was run on a VAX-11/750 a number of times with the trace turned on and
off. There was no other user on the system; this way, we eliminated the error
introduced by CPU and device resource contention, and by the fact that meas-
ured times under Unix are very sensitive to overall system load. Timing results of
the program executions show that the test program consumes 7.7% more system
time when running with the trace turned on than with the trace off. We can
regard this increase as a measure of the overhead of the tracing on the file system
calls. Since programs do other things besides making file system calls, it is reason-
able to expect that the overall overhead of the tracing should be much lower than
this number on a typical system. Although by running alone on a system, we
avoided the error caused by interactions with other users, the resource contention
overhead is also not measured in the above experiment. Hence, we performed the
same set of experiments on the production machine, ucbarpa, on which the trace
data were collected. The resulting overhead figures are slightly higher, but still
below 109. We also ran a few other I/O intensive test programs, and the relative
increases in their execution times are similar to the numbers cited above. Another
experiment with a CPU intensive program suggests a 2% to 4% increase in

-17 -

measured CPU time when the tracer is in use, although these numbers are very
approximate due to load average differences and fluctuations between the
trace/on and trace/off measurements.

5.2. 1/O and Buffer Allocation Overhead

Besides the CPU overhead of the package, the above experiments also partly
show the overhead on the I/O system and the buffer management. This over-
head, however, can be directly assessed by looking at the amount of trace data
written to the disk as a fraction of the total amount of data transferred by the
I/O system. These numbers are included above in the general statistics of the
tracing session. (The amount of data read and written in the statistics does not
include the dumping of the trace data because the dumping is not recorded.) We
see that the dumping constitutes about 3.6% of the total I/O calls (reads and
writes), and about 9.6% of the volume of data written to the disks. These
numbers are consistent with the CPU overhead given above. Since the trace data
are written onto the disks in large blocks whose sizes are chosen for good file sys-
tem performance, the actual I/O overhead should be somewhat lower than these
figures. Considering the extensive amount of information we collect, we feel that
such an overhead is acceptable. During the trace, we asked around and did not
get any complaints from the users about the system performance.

6. CONCLUSIONS

In this paper, we described the design and implementation of a logical file
system tracing package for Berkeley UNIX. We also presented some preliminary
analysis results derived from data generated by the package. We believe that the
package has met the design requirements specified in the introduction, except that
more tracing options could have been incorporated to provide more flexibility.
Although we are mainly interested in file system activity, the package sets up a
framework for tracing any event inside the kernel; this framework includes the
scheme to place hooks, the buflering and trace file switching mechanism, the data
format specification method, and the notion of internally generated unique object
ID’s (file_id, open_id,...). Experience obtained so far indicates that the package is
robust, easy to use, and relatively low in the overhead incurred. (For comparison,
one of the authors of this paper found that tracing IBM systems using GTF
caused CPU overhead upwards of 20%.) Since the size of the trace code is small,
the tracer has the potential to be incorporated in the future as a feature of Berke-
ley UNIX. An embedded tracing package provides the system administrators the
opportunity of turning the trace on whenever they want to examine the system
operations and/or to detect performance problems, (or to collect data for research
studies), without even bringing the system down in order to install a special
instrumented version; the package can thus serve as a monitoring and

- 18 -

performance debugging tool for the system.

The data generated by the tracing package can be used in a number of ways
to provide insights into various aspects of the UNIX file system and user file
access behavior. Although only some very simple analyses of the trace data are
included in this paper, that data is informative. For instance, we found that I/0
aciivity is very bursty, that very few read and write operations are performed in
most of the open-close sessions, and that most processes are short lived. The ana-
lyses also exposed some unexpected behavior and some performance deficiencies in
a number of frequently used system utilities, hence suggesting possible perfor-
mance improvements. Besides studies of system behavior, the trace data can also
be used in driving simulation models for the study of disk caching and file migra-
tion algorithms [Smit81a,b], and distributed file system performonce [Porc82]. By
providing detailed information about file and process activity, the data can also be
useful for load balancing studies. Extensive analyses and simulation experiments
on the trace data are being planned and will be reported in separate papers. We
believe that the techniques used in the design and implementation of the tracing
package are applicable in the construction of tracing packages for other systems
as well, and that the results of the analyses will provide significant additional
understanding of file system operations, above and beyond those aspects particu-
lar to the UNIX system.

7. ACKNOWLEDGEMENTS

The work presented herein would not have been conducted so smoothly
without a number of people’s support and help. We would like to thank Mike
Karels, Kirk McKusick and Jim Bloom for their patience in explaining the UNIX
kernel and system operation procedures, and for making available to us a number
of the research machines for our experiments. Joel Emer and Joe Falcone of the
Eastern Research Laboratory of Digital Equipment Corporation provided some
valuable suggestions during the development of the package. We are also
indebted to many other friends for their help, including the plots in the paper.

8. REFERENCES

[Cabre5] Luis Cabrera, private communication.

[Luka83] Tibor Lukae, “A UNIX File System Logical Trace Package”, Master
Report, University of California, Berkeley, August 1983. :
[Mcku84] Marshall McKusick, William Joy, Samuel Leffler and Robert Fabry, “A
Fast File System for UNIX"', ACM TOCS, 2, 3, August, 1984, pp. 181-197.

[Oust85] John K. Ousterhaut, Hervé Da Costa, David Harrison, John A. Kunze,
Mike Kupfer, and James G. Thompson, “A Trace-Driven Analysis of the UNIX
4.2BSD File System”, submitted to the 10th Symposium on Operating Systems

-18 -

Principles.

[Porc82] Juan Porcar, “File Migration in Distributed Systems’, Ph.D. disserta-
tion, UC Berkeley, EECS Dept., June, 1982.

[Smit81a] Alan Jay Smith, “Analysis of Long Term File Reference Patterns for
Application to File Migration Algorithms”, IEEETSE, SE-7, 4, July, 1981, pp.
403-417.

[Smit81b] Alan Jay Smith, “Long Term File Migration: Development and Evalua-
tion of Algorithms’”, CACM, 24, 8, August, 1981, pp. 521-532.

[Smit85] Alan Jay Smith, “Disk Cache - Miss Ratio Analysis and Design Con-
siderations’”, to appear, ACM Transactions on Computer Systems, 1985.

