CoLab, Tools for Computer-Based Cooperation -
A Proposed Research Program

Gregq Foster

Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley 94720

ABSTRACT

CoLab is a laboratory to experiment with new forms of computer-assisted
collaboration. We argue that current tools for supporting meetings are antique. We
propose experiments using modern computational and display technologies to build tools for
better support of meetings and cooperative problem solving. Research objectives are
outlined, specifically: the goals of the project and our approach to computer-based support
for cooperative problem solving and the experimental basis for CoLab. We take a quick
tour of the Colab meeting lab being constructed. We outline an example tool and discuss
some possible future tools. Previous software systems for supporting group work and some
past efforts at structuring group problem solving are described. We present dimensions of
tool design and some experiments under consideration. The basic architecture and the
software primitives for group use of computers are presented. We discuss the current status
of the CoLab project and our immediate plans. We plan to use CoLab to explore the use of
computer software and advanced display devices to enhance and extend group problem
solving activity. It will also be used as a laboratory to investigate appropriate structures for
computer-based meetings.

1. Introduction

We live in a complicated world with complex problems that need to be solved.
Other people and computers are probably our two most useful problem solving aids. We
often need help so we call meetings to exchange information and approach problems. We
also spend a lot of time interacting with computers. But when we want to get people
together to intensively explore a problem we leave our computers behind and use antique
technological support. Blackboards, paper and pencil, and even slide projectors are 19th
century (or earlier) technology. Meetings relying on these old technologies are
unnecessarily handicapped. Arguments are often lost or forgotten. Overlapping group
participation is difficult. Strong personalities tend to dominate. Exploration structures
inappropriate to the issue at hand are pressed into service. The well known “committee
failure” problem shows us that committees tend to explore issues poorly and are normally
ineffective at solving problems.



-92-

We propose the use of modern computational and display technologies to build tools
to better support meetings and cooperative problem solving.* Although networks connect
computers and enable electronic mail and sharing of facilities, computer systems usually
aren't designed for group activities. When we want to use our computers for
demonstrations, sevcral people must gather around a display designed for a single person.
When records of a collaborative session must be entered into computer systems as a
separate step secondary ideas, arguments, and random notes are often lost,

misrepresented, or forgotten.

Recent technological advances (e.g. Ethernet, mice, EvalServert, bitmapped displays
and windows)!:2:3:4 have made collaborative software tools and new techniques of group
problem solving possible. High quality displays and speedy communication between
machines make tools for mediating and enhancing group activities feasible and an

interesting topic for research.

The rest of this proposal presents CoLab, a laboratory to investigate new forms of
computer-based collaboration. Section 2 outlines the overall research objectives and the
planned approach. Section 3 presents previous work in computer-based cooperation and
meetings. Section 4 mentions the dimensions for study, some experiments, and evaluation
criteria. Section 5 presents the CoLab architecture in more detail and discusses its

current status.

2. Research Program
The research plan has four parts.

1. Design and build software primitives for multi-machine display, data
synchronization, and communication.

2. Explore software tools and the necessary tool dimensions for various forms of
cooperative problem solving, so a tool (or suite of tools) can be built.

3. Experiment with these tools, their parameters and the structures and
techniques they enforce and encourage.

4. Redesign the tool(s) using evaluations of the experimental tool(s).

* The terms ‘‘Meeting””, “Group Problem Solving, and “Cooperative Problem Solving” are used in
this proposal more or less interchangeably. Technically, meeting refers to a group of people gathered
in the same place for any sort of information exchange. Cooperative problem solving or group
problem soluing refers to people working together to deal with a problem (though not necessarily in
the same place or at the same time).

t EvalServer is a Lisp version of Remote Procedure Call. It evaluates S-expressions on remote

machines, using the remote environment, and returns the value (if desired).



2.1. Goals
The following are the primary goals of this work:

e To see how new technology can enable new kinds of meetings and enhance
cooperative problem solving.

e To discover the dimemnsions of real-time tools critical for their utility in
meetings.

e To determine the appropriate software primitives to provide a flexible base
for support of a large class of interactive real-time group tools.

e To find the appropriate structures and user interfaces for different classes of
meetings.

Secondary goals include determining the classes and techniques of cooperative
problem solving suitable for computer application, capturing the methodology of meetings
and group problem solving, testing the effects of LiveBoard* technology on meetings, and
developing a terminology for talking about computer-based meetings.

2.2. The Meeting Lab . .

The initial experimental environment is the CoLab meeting lab at Xerox PARC.
The meeting lab is small conference room equipped with specially designed desks each
holding a Xerox 1100 display (with bitmapped screen, keyboard, and optical mouse). The
desks are designed to allow the displays to be raised and lowered for maintaining eye
contact among participants. The desks can be arranged in a variety of formations.
Computer displays in the meeting lab can be slaved to one another if desired. The
computational backing is Xerox D-machines (especially Dorados) running LOOPS (Lisp
Object Oriented Programming System)® and InterLisp. The machines are connected by
Ethernet and run EvalServer (an InterLisp utility that allows Lisp S-expressions to be
evaluated in a remote environment). Under development is a LiveBoard, a touch
sensitive whiteboard coupled to a projected display and Electronic Chalk, the ‘‘mouse”
for the LiveBoard. At a later time we expect to add video cameras and microphones for

analysis of CoLab use.

* See ““The Meeting Lab".



2.3. Hypotheses
The following are the major working hypotheses:

e Computer-based Intellectual Teuivvwerk tools will enable new kinds of
meetings and new meeting structures.

e Structured tools can elicit better response from the people involved in
cooperative problem solving.

e New computational display/input-output technologies enable formerly
difficult forms of group interaction such as simultaneous input, relaxed
WYSIWIS (What You See Is What I See), and anonymity.

e Software tools can express appropriate group problem solving techniques and

effective structuring.

2.4. Example Tool: Cognoter

Tool dimensions have not been explored sufficiently to commit to a design for a
central tool. However, Cognoter is presented here in more detail to give the feel of what a
tool would be like and what structures and techniques a tool could express.

Cognoter is a simple tool to organize ideas for an outline. It's major features are a
main window to hold the nodes (short description of ideas), the capability to highlight
nodes, move/add/delete nodes, and connect nodes with arrows. A slightly more
sophisticated version would allow text to be attached to nodes and have public display
windows, and one or more private display/edit windows for adding or displaying
comments, further description, and sub-outlines.

Here is the script {structure) for organizing the flow of the cooperative development

of an outline:

0. A goal for the outline is chosen.
The group decides to generate an outline for a paper, talk, or design. The
main window is created with (let’s say) ““CoLab paper” as its title.

1. Unconstrained Idea/Node Generation (Brainstorming).
The main window title changes to ‘‘CoLab Paper - Generation’. Nodes are
freely (asynchronously) placed in the main window by any participants.
Node deletion is not allowed in this phase. Criticism and counter-argument
is discouraged (though conflicting nodes are possible).

2. Nodes are ordered and clustered.
The main window title changes to ‘““CoLab Paper - Ordering’’. Generation
may continue but the goal of this phase is clustering the nodes and
establishing dependencies. Nodes are moved to be near related nodes. Lines
or arrows are added to connected or dependent nodes. A—B might mean
‘“we need A to appreciate B”'.



St
itng Aibha Genta e

Quite long ways away by car. May be a
feasible trip by Ion-Drive ship.

San Francisco
Important stuff

The Marianis Trench

The Himalayas

Alpha Centauri

Blah blah blah, so [l Quite long ways away by
there! car. May be a feasible
trip by lon-Orive ship.

Cognoter
Figure 1.

3. Node Connections and Dependencies are considered.
The main window title changes to ““CoLab Paper —-Partitioning’ Nodes with
po arrows in or out need to be justified or become flagged as candidates for
elimination. Nodes that point at nothing may be eliminated or may
represent conclusions or open questions. Nodes that are not pointed at may
be good starting points (either for the paper or for sections) and should be
highlighted.

4. Irrelevant nodes are excluded and a final order is chosen.
The main window title changes to *‘CoLab Paper ~ Adjusting”. Nodes may
now be deleted or regrouped. Some nodes or groups of nodes may be set



-6-

aside as interesting but not directly relevant to the current topic. Fine
tuning of the ordering takes place: the starting node and section headings are

chosen.

5. The task outline is generated.
The outline is generated either by hand or (somehow) automatically. It may
be pecessary to selectively re-use Cognoter on complex individual outline
entries to generate a finer grain in the outline.

Even in this simple tool various dimensions of tool structure need to be considered.
For example, in the brainstorming phase do we want input to be put on the screen as it is
typed (WYSIWIS)? or do we want to wait until everyone has typed for a while and then
merge all the generated ideas. Do we want authorship attached to ideas or should they be
anonymous? For more on tool dimensions see section ‘“Tool Dimensions for Meetings and
Cooperative Problem Solving™.

2.5. Possible Tools

For many applications the three basic phases, ‘‘generation - ordering — pruning’’ is
effective. In general, making arguments explicit and guidance (whether by enlightened
leader or tool structure) will focus the meeting and avoid circularity®.

The guiding principles for initial tool designs are utility and immediate interest. We
need to supply a tool that people will want to use so they will use it. These are some tool

designs under consideration.

o DesignReviewer, a tool for structuring group design reviews of software.
This tool would organize the assumptions, purpose and comstraints of a
project or program.

e Argnoter, a tool for creating and evaluating alternative proposals. It
displays multiple proposals and pro and con arguments for each. Explicit
goals, assumptions, and evaluation criteria are carried along. If arguments
were given validity weights this would also be an opportiunity to explore
evaluation functions for automatic ranking of proposals.

e Chessnoter, a tool for analysing a chess position. It would need no special
chess knowledge other than how to display a position. It would be used to
support alternate lines of analysis. This tool would be a good test bed for
exploring the capture and representation of alternate lines of reasoning.

e Negotiator, a tool for comparing and evaluating 2 (or more) positions in a
negotiation. It would display goals, offers, counteroffers, assumptions and
proposals.

e Qualsnoter, a tool for a PhD student’s presentation of a thesis topic. The
topic would be entered in a structured manner and explored interactively by
the student and a guiding committee.



-1

There are many other possible tools such as a cooperative spreadsheet tool, a tool for

administrative assistants, or a Parliamentary Procedure tool.*

3. Previous Work: Computer-based Meetings

There has been little previous work dealing with computer-based me-tings. There
have been proposals for computer-based group communication systems but only a few
working systems have ever been built. Most software “‘computer conferencing’ systems,
such as EIES?, are asynchronous; that is, participants interact at different times.

NLS/AUGMENT was developed at Stanford Research Institute (SRI) by Douglas
Engelbart. The main focus of NLS/AUGMENT is collaborative document
preparation® 910, AUGMENT supports many text processing features. “Televiewing” is
the AUGMENT feature most relevant to CoLab. It allow screens to be slaved together so
everyone in the meeting sees the events on the master screen. NLS and Engelbart will
likely be best remembered for the introduction of the mouse pointing device.

Talk in UNIX, Link in Tenex, and OS (Output Spy) at MIT are system utilities.
They synchronously link 1/O streams from terminal to terminal or machine to machine.
With Talk the connection is for displaying text only. OS allows more complex things like
remote debugging.

The meeting system most closely related to our work is RTCAL. RTCAL/IOLC
(Real Time CALendar / Interactive On Line Conferences) was developed at MIT by Sunil
Sarin in 1983!1, RTCAL allows a group of users to synchronously exchange information
from personal calendar databases to schedule a future meeting. The system is
synchronous; participants are all on-line at the same time, though usually not in the same
room. Both Interactive On-Line Conferencing and ColLab communicate by messages to
display objects over a local network. The IOLC prototype that supported RTCAL had a
central server. Any changes to a display object were sent to the master server and then
images were sent to the clients. CoLab supports non-central control of display objects.t

Single user idea processors and outline tools such as ThinkTank are finding
acceptance in mass markets. They are single-user tools but are related to our work in that
they express structures for problem solving. Their particular strength is allowing
interaction with different levels of views of the object (paper, etc.) under consideration or

construction.

¢ A Parliamentary Procedure tool could have the interesting feature that something “out of order”
would be seen by no one but the offender. In a courtroom setting the jury would never have to
“disregard the comments made by the witness” — they needn’t hear them.
t Sarin notes that a later version of IOLC will support non-central control.



4. Dimensions and Experiments

4.1. Tool Dimensions for Mexctings and Cooperative Problem Solving

Structured cooperative problem solving can be more effective and less confusing than
the usual committee free-for-alls with dominating personalities, individual fears, fuzzy
goals, and circular arguments. A major hypothesis of ours is that structuring group
processes will elicit better response from the people involved. There have only been a few
attempts at structuring group problem solving and issue exploration. None have been
specifically designed with computer support in mind except electronic mail. The Delphs
Method'2 and Nominal Group Technique (NGT)!3 are two structured problem
approaching techniques that have been used by governments and corporations. Electronic
Mail was not intended as a “Group Technique but it has developed a culture and has
been used for serious group problem solving (such as ARPANET use and CommonLisp
specifications).

These are some of the structure elements that should be considered in the design of a

tool:

e Simultaneous interaction. How much simultaneity can we support? It
appears to be a good idea to simply let participants interact at will without
waiting for ‘‘keys’” to objects — if you have a good idea, you want to put it
up now and let the underlying system keep things straight.

o Eztension of meetings in time and space. We will need to save some form
of a session. Latecomers to a conversation will need to brought up to date.
We will want to save the resulting outline or other goal state for later
revision or consideration. We may want to save the entire argument
structure so other groups can react to it.

e Monitoring. There are two kinds of monitoring to consider: internal and
external monitoring. Internal monitoring keeps records of tool method or
option use for later fine tuning and analysis. Ezternal monitoring could be
done with interviews and questionnaires as well as with cameras and taping

of sessions.

e Relazed WYSIWIS. WYSIWIS is ‘“What You See Is What | See””. We can
keep all views of a display object identical, but is this the best thing to do?
Computer-based tools can allow various relaxations of WYSIWIS: delayed
updating of windows, private windows, remote pointers only on request,
associated windows of different sizes or screen positions, different views of the
same model, and visible remote cursors only on demand.

e Anonymity versus Authorship. Anonymity encourages free interaction; but
who gets credit for the useful ideas and how do we follow them up?
Authorship gives participants information about the source of an idea, but



-9-

personalization of ideas can obscure their true merit.

Quality and Quantsty of ideas. ldeally, we want tools that help us generate
lots of good ideas and solutions. Generating many ideas seems to imply
generation of some good ideas. We also need to explore the form and
quantity of displayed information for best human comprehension.

Conflict Resolution. How are differences resolved? By system evaluation
function! By voting! By leader edict?

Highlighting. Objects and their entries will need to be distinguished at
various times. We will consider shading, blinking, wiggling, and musical

accompaniment.
Structure versus Frecdom.
“At first sight, the idea of any rules or principles being superimposed on the creative

mind seems more likely to hinder than to help, but this is quite untrue in practice.

Disciplined thinking focusses inspiration rather than blinkers it.” — G. L. Glegg

4.2. Experiments

These are some experiments under consideration for evaluation of CoLab tools and

dimensions:

Build a centerpiece tool with variable parameters and levels of meeting
structure.

Have a competition among alternate forms of a tool (or a tool with user
selectable options) to uncover preferences and tradeoffs in utility for
meetings.

Monitor tool use at the Semantic Event level with snoopy software or at the
group interaction level by observation.

Encourage an ongoing forum of tool use and observe which tools and options
are most useful.

Other more prosaic (but useful) approaches would be to have heterogeneous groups

use and evaluate tools or to have users choose the tools they think they would need for a

project and then observe their actual tool usage.



-10-

4.3. Evaluation Criteria

The following are the criteria that will be used to evaluate the success of the project
and individual tools:

e Tools work in real time.

o Task effectiveness. Ideally the objective effectiveness of the system/tool for a
given task would be measureable, but practically this is impossible. User
perceived effectiveness and user acceptance will probably have to suffice.

o The relationship of the tools to group problem solving techniques.

e To what extent does a tool’s structure guide and enhance meetings.

e Quantity of ideas. More memes!.

e Quality of ideas. Stronger memes.

In general, formal evaluation of CoLab tools will be difficult. Michael Anderson, a
consuitant to the Xerox Corporation, has long experience in the evaluation of meeting
eflectiveness. We hope to bring him in on this phase of the work.

§. CoLab Architecture

There are three basic layers of interest. The lowest layer is the system layer. This
includes the actual machines, the Ethernet, input/output devices, InterLisp, and LOOPS.
InterLisp is strongly display oriented; it provides software for easy manipulation of
windows, menus, bitmaps, and text fonts. LOOPS is a higher level programming
environment built on top of InterLisp. It provides object-based, active values, and
knowledge-based programming in addition to InterLisp's procedure-based programming.
We hope to take the system layer mostly for granted. The next layer up is the software
primitive level. Most of our effort so far has been at this level. This includes display
objects and Colab communication protocols. The next layer is the applications layer.
Near-future effort will be here. This is the Intellectual Teamwork tools layer. A possible
fourth layer is the group problem solving models being tested by the CoLab tools.

5.1. Software Primitives

CoLab requires a foundation of new software primitives for active and interactive
displays. Shared display objects and views of objects must be consistent and synchronized.
Network use must be coordinated for densely interacting machines.

Following are some of the existing primitives (for a more complete list, see the CoLab
glossary).

e RemoteEval is an InterLisp analog to Remote Procedure Call!8. It evaluates
Lisp expressions in remote environments.



-11-

CoLab Architecture Levels

tool application layer |

(Intellectual Teamwork Tools]

primitive layer |

[Display Objects and Communication Protocols]

|
l system layer
‘ [D-machines Ethernet InterLisp LOOPS]

Architecture Layers

Figure 2.

ActiveRegions are screen display regions that can perceive input events and
act on them.

Associatione are objects maintained consistently on several machines. A
semantic action performed on an associated object will propagate to its
associates on other machines.

UIDs are Unique [Dentifiers assigned to objects.~ UIDs are unique across
machines, consisting, perhaps, of the machine net address identifier and a
timestamp.

Semantic Actionas are object changing actions.

Conversations are collections of associations and information about the
people and machines involved. Conversations also maintain input and output
queues of semantic actions involving its associations or tools.



-12-

Output Queue

D213

¢ Conversation

~

lnput Queuse

messige
(Brozazastiienrod ((Moter NoteloGonverzarign, :
teif meizage; Machine
(™ TRalaiadorale r:
RS BXLLER 2R W
f®® THAEL X NOte 10 Al MeMbard of the
donvarzition ) Ethdrnet
{NF (FromMa™:
L= Telf DrzplasinfFesent?inagy
werzaae (Iourcelolismorster:
{Courcefate )} .
(= ze17 Dirplaving ) letngow meszans Machine
[Zsurceloilanorster
(fpurgelste;
mdssage
CQutput Queue

J

D #13

. Conversation

Input Queue

How a Remote Message is Sent
Figure 3.

¢ BrosdcastMethods cause semantic actions on a local object to be broadcast
to all associates of the object.

¢ ColabEzrec is the user interface to the high level Colab enviropment. It
handles some interaction with remote machines and fields local conversation
operations, such as adding a new conversation.



-13-

e RemoteMice are personalized images of mouse cursors active on remote
machines.

Figure 3 shows how a remote message gets sent. The lower Noter is given the
SendNote message locally. It tells its broadcaster (its Conversation) about the message.
The conversation puts the message into its output queue. A process runring on the queue
finds the message and packs it up to ship across the ethernet. The machines on the other
end evaluates the packaged message and this puts the SendNote message into the upper
conversation's input queue. The process running on this queue reads the message and
finally sends it the upper Noter (with the same UID). The Noter displays the message.
The code on the left side is the BroadcastMethod that causes all this to happen.

8. Conclusion

Realistically, the first serious users and evaluators of CoLab tools will be computer
professionals. However, computer savvy should not be required. The proposed tools have
no command language and will be mouse/menu driven — “you already know how to use
it". The only abilities necessary for useful interaction with the tools are acquaintance
with mice/menus, some typing ability (though most typing is done ‘“‘offiine” in a text
editor or bufler for presentation when ready), and some knowledge of the text editor used
by the system. Time for new users to learn the system will be a tradeoffl between ease of
interaction and the need to learn to interact in new ways.

8.1. Current Status of CoLab

The software primitives (after a 4th major overhaul) seem to be reasonably stable.*
We have reified windows and active regions. Remote message sending and system UIDs
are working. Conversations keep their client tools up to date across machines. Keys and
locking have been supplanted by broadeast queues, semantic actions, and conflict
resolution strategies. Conversations, collaborators and machines can be added or deleted
dynamically. The broadcast queues of semantic actions give a decent history of the
session -- newcomers can be brought up to date by processing the queues.

Noter, a simple message passing tool, works well. Cognoter and Argnoter are
partially developed. Constant RemoteMice are being replaced by Denoter, a request-based
pointing facility. We hope to get interesting tools up in the next few months and bring
them to a wider audience at Xerox and U. C. Berkeley.

* The software work thus far has been an excellent example of collaborative effort, Daniel Bobrow,
Mark Stefik and | have been at it steadily since June 1984. Steve Levy contributed summer 1884 and
Ken Kahn and Stan Lanning have been involved this fall (1984).



- 14 -

6.2. Why is CoLab interesting?
In summary, these are the main points of research interest.

e FEztension of meetings in time and space. We want to save meeting states
for future review and for consideration by people not involved in the original
meeting. ’

o Underlying object communication technology. The communication display
objects, associations, and conversations that allow group use of computers.

e Structures to organize meetings. The appropriate structures and levels of
structuring for different group problem solving applications.

o Capture of history. The capture of meeting history for analysis and the
capture of substructures like arguments, proposals, and outlines.

CoLab can be a big step toward enbancing the quality of meetings and therefore at
least a small step toward improving the quality of human thought. At Xerox there are
anthropologists and psychologists anxious to run experiments and analysis of their own on
tools we design. We expect to gain additional insight and new direction from their work.

8.3. Schedule

We need to build an evolutionary system to gain experience so we can build really
interesting and usable systems -- this schedule is necessarily tentative.

o June-August 1984, the first version of program foundations RemoteMice,
Associations, ActiveRegions, Conversations, etc.

e September-October, prototype tool design and preliminary testing. Redesign
of software primitives.

o November-December, testing, evaluation, and redesign of tools and
foundations.

o Winter 1985 the results of this Fall's tests and designs will be used to plan
the next phase of thesis work — the experimental tool(s).

7. Acknowledgements

I am grateful to my research advisor, Richard Fateman, for seeing the potential
value of this work and encouraging this departure from previous plans. I am indebted to
Mark Stefik, who first conceived of CoLab (though he thought it was called Meeting Lab),
for starting me off on such an interesting project. It has been a pleasure to participate in
the many discussions, design reviews, and brainstorming sessions with Mark Stefik, Danny
Bobrow, and other members of the Xerox Intelligent Systems Lab, especially the
Knowledge Systems Area. | would also like to thank the Xerox Corporation for personal
support and for providing a stimulating work and programming environment at the Palo
Alto Research Center (even though it's too far from Berkeley).



-15-

References

1.

10.

11.

12.

13.

14.

15.
16.

Robert M. Metcalfe and David R. Boggs, ‘‘Ethernet: Distributed Packet Switching
for Local Computer Networks,” Communications of the ACM, vol. 19, po. 7, July
1976.

Richard F. Lyon, ‘“The Optical Mouse, and an Architectural Methodology for Smart
Digital Sensors,” Xerox VLSI-81-1, August 1981.

Jon L. White, Evalserver, Xerox PARC, 1983???. Xerox Lispusers.
Larry Tesler, ““The Smalitalk Environment,” BYTE, pp. 90-162, August 1981.

D. G. Bobrow and M. J. Stefik, “The Loops Manual {Preliminary Version),"
Knowledge-based VLSI Design Group Technical Report KB-VLSI-81-13, August 1982.

Mark Stefik. Personal Communication.
Starr Roxanne Hiltz and Murray Turoff, The Network Nation, Addison-Wesley
Advanced Book Program, Reading Massachusetts, 1978.

Douglas C. Engelbart and William K. English, “‘Research Center for Augmenting
Human Intellect,”” Proc. Fall Joint Computing Conference, pp. 395-410, AFIPS press,
December 1968.

Douglas C. Engelbart, “Collaboration Support Provisions in AUGMENT,” OAC’84
Digest, Proc. of the 1984, AFIPS Office Automation Conf., Los Angeles, California,
February 1984.

Douglas C. Engelbart, “Toward High-Performance Knowledge Workers,” OAC’82
Digest, Proc. of the AFIPS Office Automation Conf., pp. 279-290, San Francisco,
California, April 1982.

Sunil K. Sarin and Irene Greif, ‘“Software for Interactive On-Line Conferences,”
Proc. ACM-SIGOA Conference on Office Information Systems, June 1984.

Harold A. Linstone and Murray Turoff, The Delphi Method: Techniques and
Applications, Addison-Wesley, Reading, Mass., 1975.

Andrew H. Van de Ven and Andre L. Delbecq, ‘‘The Effectiveness of Nominal, Delphi
and Interacting Group Decision Making Process,” Academy of Management J., vol.
17, no. 4, pp. 805-621, 1974.

G. L. Glegg, The Design of Design, Cambridge University Press, Cambridge, 1969.
Richard Dawkins, The Selfish Gene, Oxford University Press, New York, 1976.

Andrew D. Birrell and Bruce Jay Nelson, “Implementing Remote Procedure Calls,”
Xerox Palo Alto Technical Report CSL-83-7, December 1983.





