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ABSTRACT

Parametric spline curves are typically constructed so that the first n
parametric derivatives agree where the curve segments abut. This type
of continuity condition has become known as C" or nt® order parametric
continuity. We show that the use of parametric continuity disallows many
parametrizations which generate geometrically smooth curves.

We define n'® order geometric continuity (G"), develop constraint
equations that are necessary and sufficient for geometric continuity of
curves, and show that geometric continuity is a relaxed form of parametric
continuity. G™ continuity provides for the introduction of n quantities
known as shape parameters which can be made available to a designer
in a computer aided design environment to modify the shape of curves
without moving control vertices. Several applications of the theory are
discussed, along with topics of future research.
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number N0OO039-82-C-0235 and the National Science Foundation under grant number ECS-8204381.



Geometric Continuity of Parametric Curves 1

1. Introduction

In recent years computer-aided geometric design (CAGD) has relied heavily on math-
ematical descriptions of objects based on parametric functions. A parametric function,
such as F(u) = (X(),Y(u)), defines a mapping from u, called the domain parameter,
into Euclidean two-space. This function can be used to define a curve by letting u range
over some interval I, of the u axis. If the domain parameter is thought of as time, the
parametric function is used to locate the position of the particle in space at a given instant.
As time passes, the particle sweeps out a path, thereby tracing the curve (see figure 1.1).
A parametric function therefore defines more than just a path; there is also information
about the direction and speed of the particle as it moves along the path.

A special kind of parametric function known as a parametric spline function is gener-
ally used in CAGD. A parametric spline function is a piecewise function where each of the
segments is a parametric function. An important aspect of these functions is the manner
in which the segments are joined together. The equations that govern this joining are
called continuity constraints. In CAGD, the continuity constraints are typically chosen to
impart a given order of smoothness to the spline. The order of smoothness chosen will
naturally be application dependent. For some applications, such as architectural drawing,
it is sufficient for the curves to be continuous only in position. Other applications, such as
the design of mechanical parts, require first or second order smoothness.

F(u)

Pigure 1.1. A typical parametric curve.

We have been intentionally vague about what is meant by “smoothness”. In fact,
there is more than one type of smoothness; the type that is used should be application
dependent. For instance, if parametric splines are being used to define the path of an object
in an animation system, it is important for the object to move smoothly. It is therefore
not enough for the path of the object to be smooth, the speed of the object as it moves
along the path must also be continuous. From elementary kinematics [Arfken70], this type
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of motion can be guaranteed by requiring continuity of position and the first parametric
derivative vector, also known as the velocity vector. If higher order continuity is required,
one can demand continuity of the second parametric derivative, or acceleration vector.
However, in CAGD only the resulting path is important; the rate the points along the
curve are swept out is irrelevant. This second notion of smoothness allows discontinuities
in speed as long as the resulting path is geometrically smooth. We shall refer to the
first kind of smoothness as parametric continusty, and to the second kind as geometric
continusty. N*P order parametric continuity (denoted by C™) is currently being used in
CAGD, largely due to the popularity of spline techniques such as parametric B-splines
[Gordon74] [Riesenfeld73]. However, as we will show in section 3, parametric continuity
disallows many geometrically smooth curves.

In [Barsky81] and [Barsky85], Barsky defined first order geometric continuity (G')
as continuity of the unit tangent vector. The unit tangent vector points in the same
direction as the velocity vector, but has unit magnitude. Thus, the direction of motion is
continuous, but the speed may change discontinuously. The magnitude of the discontinuity
is controlled by the shape parameter called bias, or fi. Second order geometric conlinuity
(G?) was defined as continuity of the curvature vector. The curvature vector is related to
the second parametric derivative, but it is possible for the latter to change discontinuously
with the former changing in a continuous manner. The magnitude of the discontinuity is
controlled by 8; and an additional shape parameter called tenston, or fFa.

In this paper, we extend the notions of geometric continuity to obtain G™ continuity,
for an arbitrary integer n > 0. We show that for each level of continuity there is a new
shape parameter introduced. We call these quantities shape parameters because they can
be made available to a designer in a CAGD environment to change the shape of curves and
surfaces. Since geometric continuity provides for the introduction of shape parameters, it
is desirable to generalize existing spline techniques to obtain their geometrically continuous
analogs. For instance, the geometric continuous analog of the C? cubic uniform B-spline
is the G2 Beta-spline [Barsky81] [Barsky85] which possesses the two shape parameters b1
and fA; mentioned above.

2. Mathematical Preliminaries

A scalar function such as g(z), defined for all values of z on some interval [a, b] of the
real line, describes a mapping from [a,b] to the reals (R), often written as g : [a,b] — R.
That is, each point z on [a,b] has an image point, denoted by g(z). The totality of image
points is known as the image of g and is denoted by g([a,b]) or Im(g). That is,

9((a,b]) = Im(g) = {9(2) | z € [a,b]} -

It is also possible to define mappings from the reals into d-space (R?). For instance,
the function q(u) = (q1(u),q2(u)), defined on an interval [uo, u1], describes a mapping
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Figure 2.1. The closed interval [uo,uy] s mapped snto the curve Cq by the
conlinuous parametrization q.

from [ug, u;] into R2, denoted by q : [ug, u1] — R2. The image of such a mapping, denoted
by q(|uo, u1]) or Im(q), represents the point set

q([to, u1]) = Im(q) = {q(u) | u € [0, 1]}

Derivatives of such a mapping are defined by component-wise differentiation:

d'q _ d'qy d'qa

du’ ( dut’ du’ )

Loosely speaking, a map is said to be continuous if all neighboring points are mapped into
neighboring points.

Throughout this paper, we will adhere to the following notational conventions: scalars
and scalar-valued functions will be written in italics, vectors and vector-valued functions
will be written in boldface, and curves (defined below) will be set in a script font. Fi-
nally, the statements of definitions, theorems, and lemmas will be set in slanted type to
distinguish them more clearly from the surrounding text.

In the discussion that follows, it will be important to maintain the distinction between
functions (mappings) and curves. Whereas a function is a rule for obtaining image points,
we shall treat a curve as a set of points. For instance, the curve § traced when plotting
g(z) against z, z € {a, b}, is the set of points

§={(z,9(2)) | z € [a, 8]}

Each point on the curve has an X coordinate of z and a Y coordinate of g(z). A more
general way to define a curve is parametrically. Parametric definitions have the form

§ = {(z(u),y(u)) | v € L}.

In a parametric representation, each of the coordinates is a function of u which is allowed
to range over the interval I,. Thus, we are led to the following definition of a curve.

Definition 1: A curve in d-space is the image of a continuous mapping q : [ug, u1] — R4,
uo < u; (see figure 2.1). We shall use the notation Cq to mean the curve generated by q;
that is, Cq = Im(q). q is called a parametrization, or parametric representation for Cq.
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It is sometimes convenient to denote a parametrization as the restriction of a func-
tion to an interval, as in q(u),u € [uo, u1]. We will generally use q(uo,t1;u) to denote
q(u), 4 € [uo, u1]. The independent variable u is called the domain parameter of the rep-
resentation.

As it will often be necessary to evaluate parametrizations and their derivatives at
particular points of interest, we use the notation ‘;—!ﬂ y to mean %:f} yoyes Where u* is
chosen such that q(u*) = J. Although u* will exist if J is a point on the curve, it will not
be unique if J is a point where the curve intersects itself. We will say that a point is ssimple
if it is not a point of self intersection. To avoid ambiguity, we will only use the notation
3:—3] y When J is a simple point. Finally, if u* is the left parametric endpoint (u* = uo),
then :—‘;“1 is taken to be the i*® right derivative (c.f. [Buck56)); if u* is the right parametric

endposint (u* = u,), then ‘;—;—? is taken to be the 1P left derivative.

The domain parameter is not itself a geometric quantity like a point on a curve;
rather, it is used to indirectly define geometric quantities. For this reason, there are
many (in fact, infinitely many) parametrizations for the same curve. We will say that two
parametrizations q and r are equivalent if Cq = C.. In other words, two parametrizations
are equivalent if they generate the same curve (see figure 2.2). As we will see in section 4,
a special type of equivalent of parametrizations plays a crucial role in the development of
geometric continuity.

PR

Figure 2.2. The parametrizations q and r depicted above are equivalent because
they have the same smage.

Since curves are defined as point sets, it is natural to speak of the union and intersec-
tion of two curves. However, the point set resulting from one or more of these operations
may not represent a curve (see figure 2.3). In general, the union of two curves will be a
curve if and only if the constituent curves have a non-null intersection. This follows from
the fact that a continuous map has a connected (positionally continuous) image.
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Figure 2.3. The point set resulting from the union of the two curves above 3s
disconnected, and therefore does not constitute a curve.

Definition 1 is extremely general; in fact, it is too lax for many applications since
it only requires that the point set comprising the curve be positionally continuous. To
discuss curves of higher order smoothness, we will impose a given level of differentiability
on the parametric representations. We begin with some preliminary definitions.

Definition 2: C™ and Regulanty:
o A scalar function g(z) belongs to the class C™ on an interval I if it is n-times contin-
uously differentiable on I. It is regular on I if

dg
E#O vz el

e A parametrization q(uo, u1;u) = (q1(u),q2(%),.,q4(u)), v € [uo,u,] is C™ if each of
the coordinate functions g;(u),s = 1,...,d is C™ on [ug, u;]. It is regular if

d
E%#O VUG[UQ,UI].

e A curve is regular if it can be generated by a regular parametrization.

Definition 3: Given a parametrization q(ug, u1;u), the function u = u(t), defined on an
interval I, represents a regular C"™ change of parameter if

(i) u(t) is regular and C" on I,

(ii) w(l) = [uo, u1]-

Given a parametrization q(uo,#;;u) and a regular C" change of parameter u = u(t),
the equivalent parametrization r(to,?;;t) is simply computed by functional composition,

r(t) = a(u(t)) t€ [to,ta]

In such an instance, q is said to have been reparametrized in terms of &. The reparametriza-
tion process is depicted in figure 2.4. A regular change of parameter u = u(t) must either
be monotonically increasing or monotonically decreasing since the first derivative is not
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allowed to vanish. If it is monotonically increasing, it is said to maintain sense, or be
sense-preserving. Conversely, if a change of parameter is monotonically decreasing, it is
gaid to reverse sense. These terms are motivatived by the fact that if two parametrizations
r and q are related by a sense-preserving change of parameter, then as their respective
domain parameters are increased over their respective ranges, points on the resulting curve
are generated in the same order. Conversely, if they are related by a sense reversing change
of parameter, points on the curve are generated in opposite order. We will deal exclusively
with sense-preserving changes.

to ty

Pigure 2.4. Using the regular C™ change of parameter u = u(t), the snterval
[to,t1] is mapped into [uo,u], and then into Cq by the mapping q. This s
tdentical to the composite mapr = qo u.

Theorem 2.1: If u = u(t) represents a regular C" change of parameter, then its inverse
t = u~!(u) also represents a regular C" change of parameter.

Proof: Corollary of the Inverse Function Theorem, c.f. [Buck56). a

Theorem 2.2: If q(uo, 4;;u) is a regular C™ parametrization, and u = u(t) represents a
regular C™ change of parameter on [to, 1], then r(t) = q(u(t)),t € [to, 1], is a regular C™
equivalent parametrization.

Proof: The fact that r is C™ follows from the fact that composition of C™ functions results
in a C™ function [Buck56). Regularity of r can be shown by use of the chain rule:

Since q and u are regular, %} does not vanish; therefore r is regular. n
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Unless otherwise stated, we will restrict the discussion to regular parametrizations, and
hence to regular curves. We do so for two reasons. First, irregular parametrizations allow
cusps (visual discontinuities), even though the parametrization may be as differentiable
as one wishes (see figure 2.5). Second, as theorems 2.1 and 2.2 show, the transformation
between equivalent regular parametrizations is smooth and invertible; this will prove to be
useful in the development of a measure of continuity that is based solely on the geometric
ghape of the resulting curve.

— }

Figure 2.5. Consider the parametrization r(t) = (t3,t%),t € [-1,1]. C, 1s plot-
ted above. Note that a cusp appears at the origin even thoughr 1s C™ everywhere.
This occurs because r ts srreqular at the origin.

Among all the parametrizations for a curve, there are certain parametrizations that
deserve special attention; they are the arclength parametrizations. We will only present
those properties of arclength parametrizations that are needed for our discussion. The
reader is referred to a standard text on differential geometry for a complete treatment
[DoCarmo76| [Kreyszig59).

Definition 4: Let r(to, t;;t) be a regular C™, or piecewise regular C* parametrization (i.e.,
a finite number of derivative discontinuities are allowed), for n > 1. The total arclength of
the curve generated by r is defined to be

dr(t')

1
| 4t (2.1)

ty
length(C.) = /

to

By replacing the upper limit of the integral in (2.1) with t, the integral becomes an
increasing function of t, denoted by s.(%):

selt) = [

dr(t’
—d(t,—) dt'. (2.2)
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Suppose that r is regular C® (not piecewise), then it is easy to show that s¢(t) represents
a regular C™ change of parameter, and hence by theorem 2.1, so does its inverse. This
implies that arclength s, may be introduced as a parameter using the sense-preserving
regular C™* change of parameter t = t(sy). By theorem 2.2, the arclength parametrization
pr(0, length(C:); s¢) thus obtained will also be regular C™. In general, a parametrization
is said to be an arclength parametrization if the first derivative vector is of unit length.
That is, a particle moving along a curve in accordance with an arclength parametrization
moves at constant unit speed. The particle may, however, undergo a discontinuous change
in direction. By this definition, a given curve can have many arclength parametrizations
(see figure 2.6).

Figure 2.8. The curve above has four arclength parametrizations. The first gen-
erates points in the order 1,2,3,4,2,5, the second in the opposite order 5,2,4,3,2,1.
The last two generate points in the order 1,2,4,3,2,5, and 5,2,3,4,2,1.

To uniquely identify one arclength parametrization, we shall call p,, computed by
equation (2.2), the natural parametrization of r. The natural parametrization p, generates
points on the curve in the same order as r, and is as differentiable as r, but it generates
points at a different rate. We therefore have as a theorem:

Theorem 2.3: Ifr is a regular C™ parametrization, then py, the natural parametrization
of r, is also regular C™.

3. Parametric Continuity

Let us now examine how continuity has been imposed on parametric functions in
CAGD. As mentioned in section 1, it is typical to stitch pieces of parametric functions
together to obtain a parametric spline. Borrowing concepts from fields such as numerical
analysis and approximation theory, it seems reasonable to require that the derivatives of
the pieces agree at the joint (the point where the segments abut). This process may be
formalized as:
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Definition 6: Let r(to,t;;t) and q(uo,t1;u) be regular C* parametrisations such that
r(t1) = q(uo) = J. That is, the “right” endpoint of r agrees with the “left” endpoint of q
(see figure 3.1). They meet with nth order parametric continuity (C") at J if

d"q

d*r
:it-’-‘_lh = mlﬂo k= 1,...,n. (31)

q(u,)

r(t,)=q(uo)=J

r(t)

Figure 3.1. The canonical C™ joint situation with r(t) and q(u).
gu

The problem with parametric continuity is that it places too much emphasis on the
particulars of the parametrizations, as the following example shows.

Example 8.1: Let r(t) = (2t,t),t € [0,1] and q(v) = (2u + 2,u + 1),u € [0, 1].
Differentiation reveals that these parametrizations meet with C* continuity at (2,1) (see
figure 3.2). We can reparametrize r in terms of t with the regular C* change of parameter
t = 21, to obtain ¥(f) = (4¢,2%),% € [0, 1/2]. Since r and ¥ are equivalent parametrizations,
Cr = C3, and hence the composite curve Cr U Cq = (7 U Cq. Note however that rand q
do not meet with even C! continuity, even though the composite curve, and therefore the
geometric appearance, has not changed. °

As example 3.1 shows, parametric continuity does not necessarily reflect the smooth-
ness of the resulting curve, rather, it is a measure of the smoothness of parametrizations.
Thus, parametric continuity is not based solely on the geometric properties of the curves
generated by the parametrizations. Example 3.1 also shows that parametric continuity
disallows many parametrizations that would generate visually smooth curves.

4. Geometric Continuity

Ideally, we would like a measure of continuity that is parametrization independent
— that is, a measure of continuity that treats parametrizations as tools for describing
curves, without introducing parametric artifacts. This can be accomplished by using the
parametrizations to describe the point set comprising the composite curve, and then using



Geometric Continusty of Parametric Curves 10

i
1~

Figure 3.2. A plot of CrUCq as defined in ezample 3.1.

an arclength parametrization for the composite curve to determine smoothness. If the
composite curve has a smooth arclength parametrization, then the initial parametrizations
are deemed to meet smoothly, at least in a geometric sense.

If the joint is a simple point of the union curve, then there are only two possible
arclength parametrizations in the neighborhood of the joint: one whose sense is the same as
r and g, and one whose sense is opposite. Sense can always be reversed without changing
differentiability; thus, as far as questions of continuity are concerned, it is sufficient to
consider only arclength parametrizations that have the same sense as r and q. Every
sense-preserving arclength parametrization locally looks like the natural parametrization
for r on one side of the joint, and like the natural parametrization for q on the other. Thus,
if the joint is a simple point, the definition of geometric continuity may be formalized as:

Definition 6: Let r(to,?;;t) and q(uo,u;;u) be regular C" parametrizations such that
r(t;) = q(uo) = J, where J is a simple point of Cr U Cq. They meet with nt® order
geometric (G™) continuity at J if the natural parametrizations of r and q meet with C*
continuity at J.

Complications arise if J is not a simple point. For instance, consider the situation
depicted in figure 4.1. The union curve does have a C ! arclength parametrization, but the
sense of r or q must be reversed. Thus, there are more than two arclength parametrizations
for the unjon curve in the neighborhood of the joint. This situation is not common in
practice and adds complexity to the development that follows. We will therefore assume
that joints are simple. For a complete treatment of geometric continuity for joints that are
not simple points, see [DeRose85b].

The definitions above are stated in a rather abstract way, so to gain a feeling for
their geometric meaning, we will consider the cases of n =1 and n = 2 in more detail.
For n = 1, definition 6 requires that the first derivatives with respect to arclength agree.
This is equivalent to requiring that the unit tangent vectors agree at J. Similarly, for
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n = 2, the second derivative with respect to arclength is required to be continuous, that
is, the curvature vectors must match at the joint. These are exactly the requirements of
G' and G? continuity given in [Barsky81] [Barsky85]. Definition 6 therefore represents a
generalization of the concepts laid down in [Barsky81] [Barsky85].

P J

Figure 4.1. Let q generate a circle with q(uo) = q(uv1) =J, and let r generate
a line ending at J. The sense of these parametrizations s as sndscated by the
arrows.

Although definition 6 is stated in a concise manner, it does not directly provide con-
tinuity constraints necessary for the construction of geometrically continuous splines. We
now undertake the task of determining constraint equations. We begin by presenting the
following lemma.

Lemma 4.1: Let r(to,t;;t) and q(uo,u;;u) be regular C™ parametrizations such that
r(ty) = q(u) = J, where J is a simple point of Cr U Cq. These parametrizations meet
with G™ continuity at J if and only if there exist regular C" equivalent parametrizations
?(?0,?1;5 and q(%o,¥,; %) that meet with C™ continuity at J.

Discussion: The lemma states that it is not necessary to check the natural parametriza-
tions of r and q for continuity; any regular C™ equivalent parametrizations of r and q that
meet with C™ continuity at J will do. This is fortunate since natural parametrizations are
difficult to compute in general.

Proof:
Sufficiency: We assume that there exist T and q satisfying the above conditions. From
these, we construct the piecewise parametrization h defined as

h(v) = {E@')’ . v € o, By
(v -t + %), veE(t,t —bo+ul

Since ¥ and q are each regular C™, and meet with C™ continuity at J, h is also a regular C*
parametrization. By theorem 2.3, the natural parametrization for h is also C™. In partic-
ular, it is C™ in the neighborhood of J, and locally looks like the natural parametrization
of r on one side of J, and like the natural parametrization of q on the other side. We have
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therefore established that the natural parametrizations of r and q meet with C* continuity
at J, which by definition 6, implies that r and q meet with G™ continuity at J.

Necessity: We assume that r and q meet with G™ at J, so by definition 6, the natural
parametrizations p, and pq for r and q, respectively, meet with C™ continuity at J. The
existence of ¥ and q is established by making the identifications ¥ = pr and q=pq. °®

Lemma 4.1 is the first step toward our goal of a new set of continuity constraints that
ensure G™ continuity. However, the lemma is an existence statement and does not directly
result in concrete constraints. The following theorem completes the development.

Theorem 4.1: Let r(to,t;t) and q{uo,u1;u) be regular C" parametrizations such that
r(t;) = q(uo) = J, where J is a simple point of Cr U Cq. They meet with G™ continuity at
J if and only if there exists real numbers f; > 0 and f3, ...y Bn such that

dér
Flj:gk k=1,..,n

where gx is a vector differential expression which depends on q, B, ..., Pn, and is computed

using the following rules:
1. Expand
d*q(u(%))
duk
using the chain rule, treating u(¥) as a regular C" change of parameter. The
expression should only involve derivatives of q with respect to u, and derivatives

of u with respect to 4.
2. Evaluate at J and make the substitutions

d’u

ﬂj=d—§';-|, i=1..,k

This process generates the following set of constraints

%ll = b %'J (41-1)
%l.,:ﬁf %IJ"'ﬁz g‘%i: (4.1 - 2)
%|;=ﬁf %l;"’zﬁlﬂz%h + s g%l, (4.1 -3)
%IJ = ﬁ:%l; +6ﬂ?ﬂz§1—3|5 + (48185 + 3ﬂ§)%|, +ﬁ4g%|J (4.1 - 4)
= Tl 4+ s (1=
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Discussion: Although the details of the proof are fairly cumbersome, the basic idea is quite
simple: Don* base continusty on the parametrizations at hand; reparametrize sf necessary
tn order to find ones that meet with C™ continusty. The real trick is to express derivatives
of the new parametrization (q) in terms of derivatives of the original parametrization (q).
The chain rule is used to accomplish this, with the f’s determining exactly how q and q@
are related in the neighborhood of the joint. In practice q is not computed, but the form
of the constraints guarantees that such a parametrization exists.

Proof:

Sufficiency: Starting with the assumption that the G" constraints (constraints (4.1 —
1) through (4.1 — n)) are satisfied, we will show that there exist regular C" equivalent
parametrizations for r and q that meet with C™ continuity at J. By lemma 4.1, this will
in turn show that r and q meet with G™ continuity at J.

We will not reparametrize r, but we will reparametrize q as follows: Let u(%) be any
regular C" change of parameter such that

u(0) = uo
g . 4.1
%',:ﬂ,’ i=l,...,n. ( )

Evaluation at J is taken to mean evaluation at ¥ = O since q(u(0)) = J. A change of
parameter satisfying (4.1) always exists for B1 > 0. In fact, a polynomial of order n can
be used. By theorem 2.2, §(%) = q(u(%)) is a regular C™ equivalent parametrization for
q. Now, consider the first derivative of q evaluated at the joint:

dq du, dq .
El’ = Ell E{;l’ (by the chain rule)
d
=h -ﬁll (by construction)
d
= E;-L‘ (by assumption)

Thus, r and q meet with C' continuity at J. Rules 1 and 2 of theorem 4.1 for obtaining
the G™ constraints guarantee that the higher derivatives of r will agree with those of q at
J, and therefore r and q meet with C™ continuity at J. By lemma 4.1, r and q must meet
with G™ continuity at J.
Necessity: Starting with the assumption that r and q meet with G™ continuity at J, we
must show that the G™ constraints are satisfied for some assignment of the §’s.

Let p=(0,length(C,); sr) and pq(0, length(Cq); 34) be the natural parametrizations of
r and q, respectively. Since r and q meet with G" continuity at J, py and pq meet with
C™ continuity at J. Thus, the arclength parametrization p(s) for Cr U Cq defined by

()= {p,(s) s € [0,length(C.)];
PUS)= 1 pals — length(Cy)) s € (length(Cy), length(Cr U Ca)l
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is regular C™. The idea is to use a change of parameter to reparametrize p(s) so that r
is recovered on the portion of the composite curve corresponding to Ce. This can be done
by constructing a regular C™ change of parameter s(t) defined by

s.(t) teElto,thl;
s(9) = {g(t) tE (8 ta].

For s(t) to represent a regular C" change of parameter, it is sufficient for g(¢) to be any
regular C™ function that agrees with s.(t) in position and the first n derivatives at ¢, and
t, must be chosen so that g(t;) = length(Cr U Cq) (see figure 4.2).

&(t)

Iength(C,. U Cq) ............................................ 5

length(Cy)

Figure 4.2. Construction of the reqular C™ change of parameter s = s(t).

Using s(t), an equivalent regular C™ parametrization h(t) for Cr UCq is obtained. As
mentioned above, the construction of s(t) was chosen so that h(t) = x(t) for t € [to, ]
Specifically,

Pr(se(t)) =x(t) t€[to,t];
h(t) = t)) = ~
=20 = { N5 te bl
The parametrization q has two important properties:
i) q and r meet with C™ continuity at J. This follows from the fact that h is C™ at J.

i1) q and q are equivalent parametrizations, and are related by a regular C™ change of
parameter. This can be verified by noting that

d=pq°yg
=(qos;')og
=qo(s;'og)
=qou.
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From property 1), we know that
dr, _ 4
@l =zl

Using property i) together with the chain rule to expand %—?l 5 Yields

dr) _ du) da
dt'd  dt'Idu'd’

The quantity %ﬂ 3 18 a positive real number (since u is an increasing function of £), so let
B = %"—‘-I 4 to obtain the first order G™ constraint. Thus, if the composite curve C, U Cq
has a C! arclength parametrization, then r and q satisfy the first order G" constraint for
some value of 8; > 0. In general, the i*® derivatives of r and q match at J, so expanding
derivatives of q in terms of derivatives of q and u results in the st G™ constraint. Thus,
if the composite curve Cp U Cq has a C" arclength parametrization, then r and q satisfy
the G™ constraint equations for some assignment of 8; > 0, and f3, ..., Bn. |

Now that constraints have been found, the general idea is to construct splines that
satisfy the G™ constraints instead of requiring that parametric derivatives match. Since
these constraints are stated in terms of 8y, ..., Bn, the resulting spline will have these quan-
tities as parameters; they should not, however, be confused with the domain parameter.
Changing one of the #’s will, in general, change the shape of the composite curve, but al-
ways in such a way that geometric smoothness is maintained (see section 5); we therefore
call the §’s shape parameters.

Referring back to the G™ constraints, note that the shape parameter f; is introduced
in the constraint relating the ¢*® derivatives of the parametrizations in question. For
example, f; is introduced in (4.1-1), and therefore controls the difference between the first
parametric derivatives, but always in such a way that the resulting composite curve is
geometrically smooth. Suppose that §; = 1, implying that the first parametric derivatives
agree. In this case, the shape parameter §; controls the difference between the second
parametric derivatives. If §; = 1 and f§3 = 0, the first two G™ constraints reduce to the
constraints for C? continuity. In general, if 3, = 1 and f3 = -+~ = fn = 0, then G"
continuity reduces to C", showing that geometric continuity is a strict generalization of
parametric continuity.

It is also important to realize that the shape parameters are local to a joint. If the
composite curve being constructed is composed of many curve segments, each of the joints
possesses its own set of shape parameters. Thus, for a composite curve of m segments
(m — 1 joints) generated by G" parametrizations, a total of (m — 1)n shape parameters
are introduced. In some applications (see section 5) it is convenient to associate the same
values of the n shape parameters with each of the joints, thereby making the assignment
of shape parameters global to the composite curve.
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5. Applications

In this section, we demonstrate the use of the G™ constraints by constructing the
geometric continuous analogs of some popular parametric continuous splines.

Example 5.1: Consider a piecewise quadratic spline defined as a weighted sum of
control vertices (Vo,..., Vm). The sequence of control vertices is collectively called the
control polygon. Let the ith curve segment be generated by

2
qi(u) = E bi(w)Vir; uwel0,1]. (5.1)

We will determine the weighting functions b;{u) such that q; and q;+; will meet with G!
continuity, for i = 0,...,m — 2. For simplicity, we will assume a global assignment of ;.
Under these assumptions, the positional continuity constraint is

qi+1(0) = qi(1), (5.2)
and the first derivative constraint is
aiV,(0) = Al (1), (5.3)

where superscript (p) has been used to denote the ptt parametric derivative. Substituting
(5.1) into (5.2) and (5.3) and expanding the summation results in

bo(0)Visy + b1(0) Viga + 52(0)Viya = bo(1) Vi + b1 (1) Viyr + ba(1) Vg2
B (0)Vigs + b (0)Viga + 6(0)Vigs = B (80 (Vi + 6 (1) Vs + 85" (1)Vis2) -

(5.4)
If equations (5.4) are to hold for any choice of the vertices, it must be that
= 0 =51
0= bo(l) 0
bo(0) = b, (1)  bEV(0) = A1
@ =b() 80 =AW 69

5:1(0) =b2(1)  {V(0) = BV (1)
b2(0) =0 65" (0) = 0.

Equations (5.5) represent 8 constraints on the 9 coefficients needed to uniquely determine
bo(u),b1(u), and bz(u). The additional constraint is a normalization, which is chosen to
be

bo(0) + b1(0) + b3(0) = 1.
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Using an algebraic manipulation system such as Vaxima [Fateman82], the solution of the
system of equations for the coefficients of bo(u), b1 () and by(u) can be shown to be

u? - 2u+1

bo(u) = ﬂl—_ﬁ::-_l——’

bu(u) = (B + 1;T2++12ﬂ1u + 1, (5.6)
u?

bg(u) = ﬁl T 1.

We call a spline of this type a G!, or quadratic, Beta-spline. When 8, = 1, the weight-
ing functions bo(u),b;(u), and bz(u) reduce to the uniform quadratic B-spline weighting
functions, thereby verifying that the quadratic Beta-spline is the geometrically continuous
analog of the uniform quadratic B-spline. Examples of the behavior of the G! Beta-spline
as a function of B are shown in figure 5.1.

The quadratic Beta-spline is called an approzimating technique because the curve is
not guaranteed to snterpolate (pass though) the control vertices. A G' spline technique
that does interpolate the vertices is presented in example 5.2. .

(a) (b) (c)

Figure 5.1. Figure (a) is a quadratic Beta-spline with 8, = 1, and is therefore
identical to a uniform quadratic B-spline. Figures (b) and (c) are defined by the
same control polygon as (a) with By = 1/2 and f, = 2, respectively. Note that
reciprocal values of By bias the curve in opposite directions.

Example 5.2: The so-called cubic Catmull-Rom spline [Catmull74] is a C! interpolating
spline where the itb segment of the curve is generated by

a(v) = - $5(w)Vir;  ue€[0I] (5.7)

Using a process similar to example 5.1, the weighting functions ¢;(¢), j = —-1,0,1,2,
can be constructed so that q; and q;4+; meet with G! continuity at their common joint
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[DeRose84]. The resulting functions are

3 2
porlu) = B,
polu) = LLHArLH DY = (288 +28 + Dul + (ff —Vu+ b +1
A+l (5.8)
b1 (v) = (B B+ - (28] 48 + 1)u? — fru
B1(B1 +1) ’
ud — u3
#alu) = Bi(Br+1)
The effect of 3, on the shape of the spline is shown in figure 5.2. °

R

.

v

L

(a) | (b) ‘ (c)

Figure 5.2. The above curves all share the same control polygon. Curve (a)
has B = 1, and is therefore equivalent to the C! Catmull-Rom spline reported in
[Catmull74]. Curves (b) and (c) have values of B, of 1/2 and 2, respectively.

Example 5.3: The Beta-spline originally introduced in [Barsky81] [Barsky85] should
properly be called the G?, or cubic, Beta-spline. The cubic Beta-spline is the geometrically
continuous analog of the uniform cubic B-spline. It has been well documented elsewhere
[Barsky81] [Barsky83| [Barsky85], and may be derived in a fashion similar to the method
used in example 5.1. A derivation of the cubic Beta-spline with local shape parameters
has been accomplished by Bartels and Beatty [Bartels84].

An aspect of the cubic Beta-spline that has not (to our knowledge) previously been
pointed out follows from the proof of theorem 4.1. In that proof, the parametrization
initially used on the “right” of the joint is supplanted by an equivalent parametrization
designed to meet the “left” parametrization with C" continuity. However, to do this for G2
contintuity with a polynomial change of parameter when B2 # 0, a polynomial of second
degree must be employed. Since the second degree polynomial is substituted into the cubic
polynomial basis functions, the resulting basis functions are of sixth degree with respect
to the new domain parameter (&). Therefore, when Bz # 0, the cubic Beta-spline basis
functions can produce curves that cannot be realized with cubic C? parametrizations; to
obtain a C? joint, a sixth degree polynomial must be used. ]
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Example 5.4: As our final example of the use of the G™ constraints, we will construct
the geometric continuous analog of the uniform quartic B-spline called, naturally enough,
the quartic Beta-spline. The sth curve segment is generated by

2
a(v)= D bW Vie; €01, (5.9)
j=-2

where the weighting functions are chosen to be quartic polynomials satisfying the following
system of constraints resulting from the G™ constraints for G* continuity:

0 =b_s(1) 0= publ3(1)
b_3(0) = b_,(1) 61)(0) = A6} (1)
b_i(0) =bo(1)  62)(0) = A (1)
bo(0) = b1(1) b (0) = BV (1)
by(0) = b2(1) bgl)(O) — ﬂxb(zl)(l)
b2(0) =0 b(;)(O) =0
0 = p26%)(1) + B251)(1) 0 = 26 (1) + 2618267 (1) + £261(1)

b2 (0) = 23 (1) + 82801 (1) 8E)(0) = AT (1) + 26,8262 (1) + Ba6) (1)
b2 (0) = A3 (1) + A6 (1) 6°)(0) = A3BEY (1) + 2818285 (1) + Baby) (1)
503 (0) = A26{2) (1) + B26{1(1) 53 (0) = B3b{% (1) + 28, B2617 (1) + 834 (1)
(0) = A6 (1) + Bt (1) b (0) = B3 (1) + 2082857 (1) + Baby (1)
b (0) =0 b (0) =0

b_2(0) + b_1(0) + bo(0) + b5 (0) + 52(0) = 1.

The basis functions resulting from the solution of the above system are listed in the ap-
pendix. The behavior of quartic Beta-spline curves as a function of 81, 52, and B3 is shown
in figure 5.3. Although we might expect that a G™ Beta-spline curve would remain within
the convex hull of the control vertices for positive values of the shape parameters, as figure
5.3 (i) shows, this is not the case. o



Geometric

Continusty of Parametric Curves

20

(g)

values of fs.

(b)

(i)

Figure 5.3. Each of the curves above is defined by the same control polygon;
only the shape parameters differ. Curve (a) has (B1,P2,03) = (1,0,0), and ss
therefore equivalent to a uniform quartic B-spline. Curves (b) and (c) have shape
parameters (.1,0,0) and (10,0,0), respectively, showing the effect of recsprocal
values of f;. Curves (d), (e), and (f) show the effect of increasing Bs; (d) s
defined by (1,10,0), (¢) by (1,20,0), and (f) by (1,100,0). Curves (), (k), and
(i) show the effect of increasing fB3; (g) is defined by (1,0,20), (k) by (1,0,50),
and (i) by (1,0,100). Note that the curve leaves the convez hull, even for positive

6. Future Directions

open questions:

Work on geometric continuity is really just beginning. Here we list geveral important
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In general, how does §; affect the shape of the curve? Early results seem to indicate
that the behavior of the shape parameters intimately depends upon the order of the
polynomial and whether the spline is interpolating or approximating.

e How do the concepts of geometric continuity generalize to curves with multiple points,
surfaces, volumes, etc.? Research in this direction is currently underway {DeRose85a]
[DeRose85b).

e The non-uniform B-spline basis functions [Gordon74] [Riesenfeld73] satisfy the C™
constraints, have local support, local shape parameters, sum to one, and are non-
negative. Is it always possible to construct piecewise polynomials that satisfy the G"
constraints, have local support, sum to one, and are non-negative for restricted values
of the shape parameters? Some progress in this direction has been made by Goodman
[Goodman84], and Bartels and Beatty [Bartels84].

o If the previous question can be answered in the affirmative, can a general theoretical
formalism for the extension of non-uniform B-splines to G™ be developed? Such a
theory would include:

e A Beta-spline recurrence relation similar to the Cox/deBoor relation [CoxT71]
[deBoor72]. Such a relation could lead to an efficient evaluation algorithm for
Beta-spline curves and surfaces. Goldman [Goldman84] has succeeded in deriving
a recurrence for the special case of arbitrary 8, with f3 = ;... = Bn =0.

e The Beta-spline equivalent of the Oslo algorithm [Cohen80] [Riesenfeld81] mak-
ing possible successive refinement design (Knapp79] of Beta-spline curves and
surfaces.

7. Conclusions

N'B order geometric continuity has been defined, and a set of constraints have been
derived that provide necessary and sufficient conditions parametrizations to meet with G™
continuity. Using these constraints, geometric continuity has been shown shown to be a
relaxed form of parametric continuity that is independent of the parametrizations of the
curve segments under consideration, but is still sufficient for geometric smoothness of the
resulting curve. However, geometric continuity is only appropriate for applications where
the particular parametrization used is unimportant since parametric discontinuities are

allowed.

By using the G™ constraints instead of requiring continuous parametric derivatives,
n new degrees of freedom called shape parameters are introduced. The shape parameters
may be made available to a designer in a CAGD environment as a convenient method of
changing the shape of the curve without altering the control polygon.
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Appendix: Quartic Beta-spline Basis Functions

The quartic Beta-spline basis functions are of the form:

4
1 ; .
bi(u) = ; E ci,ju’ i=-2,..,2

J=0
where
6= (B2 —1)Ps — 38183 —66a2(1+ B1)® —6(8 +1)2(B +1)(B2 + 81 +1)

and

c_2.0 = —68]

C-21 = 24ﬂ?

c_2,2 = —368]

c-z3 =240}

c_2.4 = —60

c_10 = BB — 36157 — (68; + 1842)8; — 603(38; + 56,1 + 3)
c—1,1 = 368362 — 246 (B} — 281 — 2)
¢_1.2 = —6B2Ps + 186,53 + 2453 B3 + 3683 (8} + B} — 1)
c_1,3 = 802Ps — 240, 53 — (243 + 3607 )Pz — 24B1(B} + A1 + 1)
c_1.4 = —36205 + 96153 + (683 + 1867)83 + 667 (B] + AL + A1 +1)
co.0 = —f3 — (186 + 6)Bz — 1865 — 3047 — 186,
co1 = —36020; — 488} — 480; + 246,
Co.2 = 6026a — 18613 + (12 — 2467)63 + 3607 (-7 + 1 +1)
co.s = (4 — 86%)Bs + 248,53 + 661 S2(4B7 + 601 + 36) + 245; (B2 + P, +1)
Cox = (382 — 3)Bs — 9P: 2 — 66a(B1 +1)° — 6(B} + B + 287 + B} + B1)
c1,0 = —6
1,1 = —245,
c1.9 = —12f3 — 36}
¢1,3 = ~4f3 — 36B1 61 — 240}
c1.4 =303 + (1861 +6)B2 + 6(F; + B; + A1 + 1)
2,0 =C3,3 =C33=2¢C33=0

C2,4 = -6
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