Issues in Caching Prolog Goals

Barry Fagin
Computer Science Division
University of California, Berkeley

ABSTRACT

A technique for improving the performance of Prolog and Prolog implementations, goal
caching, is proposed. The algorithmic modifications necessary to accommodate goal caching
are outlined, some implementation issues are considered, and results of benchmarks executed
by a goal caching Prolog interpreter are analyzed. The principal barriers to improved

performance using goal caching are discussed, and future directions for research are suggested.

Introductionccccovevveeeennans

TABLE OF CONTENTS

..

Modifying the Prolog Execution Algorithmccooooiiiiniiiiiiiiiiiinns

Goal Caching Hardware

Experimental Results

...

..

Some Comments on the ReSUILSouuueeeeeeeieeeerietceevreteteereneecenenniisssesesiessesessesnsnnsnsses

Problems and Unresolved ISBUEScccceveveiieiiiieeirireemenereceiererreesiasessssssoeseessessssssmrennernssssases

Conclusionscceceenveneenenee

Referencescccceevvvuvennnne

Appendix: The Benchmarks

..

..

..

24

42

46

48

51

54

55

INTRODUCTION

This paper is the result of an investigation into the feasibility and desirability of caching
Prolog goals and their solutions. This investigation was undertaken with the aid of the
University of New South Wales Prolog interpreter, which was modified to incorporate goal
caching. We hoped that such caching would avoid redundant computations and yield a
considerable performance improvement over the conventional Prolog execution algorithm. In
the course of investigating goal caching, we also hoped that we would gain insight into
hardware issues would be gained that would assist in resolving design questions in a Prolog

machine currently under construction.

Our study indicates that the presence of a cache for redundant inferences necessitates
pontrivial modifications to the Prolog execution algorithm. The extra hardware required,
however, is relatively simple. The results of experiments with a Prolog interpreter that
incorporates goal caching indicate that a cache for Prolog inferences can be implemented
successfully on a Prolog machine. Further investigation indicates, however, that two principal
issues must be resolved before implementing a hardware goal cache: the problem of side

effects, and the problem of determining exactly how much overhead goal caching requires.

This report is divided into six chapters. Chapter 1 outlines the modifications to the
Prolog execution algorithm dictated by goal caching. In chapter 2, some implementation
issues are considered, and the execution of a simple program under the modified algorithm of
chapter 1 is traced. Chapter 3 contains the results of some benchmark programs executed by

the modified Prolog interpreter, while chapter 4 discusses what those results indicate.

Chapter 5 deals with some problems and unresolved issues in goal caching, and chapter 6

sums up the results of the investigation and points out future directions for research.

.Fa

CHAPTER 1

Modifying the Prolog Execution Algorithm

This chapter will discuss what is meant conceptually by a goal cache, and will then
discuss the LUSH algorithm Prolog uses to execute programs. The use of a goal cache will be
shown to be incompatible with the conventional LUSH algorithm, and necessary modifications

will be explained.

1. The LUSH Algorithm

A Prolog program is essentially a collection of statements indicating what conditions
must hold for certain goals to be satisfied, or solved. These statements are called Horn
clauses; they are members of a simple subclass of general logical statements. A horn clause
consists of a head and a body, which may in turn consist of several single or compound terms.
(A clause with no body is a unit clause). Each clause may be interpreted declaratively as
expressing the natural language statement »The statement at the head of this clause is true if
the statements in the body of this clause are true.” Hence a unit clause has the declarative

interpretation "This statement is true.”

The execution of a program amounts to the attempt to satisfy a given goal. To solve a
goal, Prolog searches for the first clause whose head unifies with the goal. This unification
process is a simple pattern matching algorithm for finding the most general common instance
of two terms possessing variables and constants. Once a match is found, the goals in the
body of the matching clause are executed, from left to right. If Prolog cannot match a goal,
it rejects the most recently activated clause and tries to find another clause whose head will

match the previous goal. This process is called backtracking. Execution terminates when

there are no more goals waiting to be executed (success) or when all matches for the original

goal have been rejected (failure).

This basic algorithm is known as the LUSH algorithm ! , for Linear resolution with
Unrestricted Selection for Horn clauses? ; the procedure in the UNSW Prolog interpreter that

implements this algorithm is described by the following pseudocode:?

lush(GOAL)

PARENT: points to the parent of the goal being attempted

ENV: points to the top of the control stack

GOAL: the current goal being attempted

CLAUSE: the current clause in the database GOAL is being
matched against

NEW CLAUSE:
PARENT = top of environment stack

NEW_GOAL:
IF no goal remains to be tried
GOTO SUCCEED
ELSE
CLAUSE = first clause that can match GOAL

BACKTRACK_POINT:
/* restore various variable values;
. not relevant to this discussion */
ALTERNATIVE:
[F no more alternatives remain that can match GOAL
GOTO FAIL
ELSE
IF head of CLAUSE unifies with GOAL
increment ENV
save environment on control stack
GOAL = first goal in body of CLAUSE
GOTO NEW_CLAUSE
ELSE
CLAUSE = next clause in procedure
GOTO ALTERNATIVE

B. Fagin: MS Report

SUCCEED:

IF PARENT > base of coatrol stack
restore parent environment
GOAL == GOAL to right of goal that just

succeeded

GOTO NEW_GOAL

ELSE
print variables

FAILL:
IF ENV > base of control stack
restore environment by popping control stack
GOTO BACKTRACK_POINT

ELSE
return

It is useful to view the result of applying this algorithm on a Prolog program as a tree
with alternating "AND” and "OR” levels. We shall refer to the tree produced by LUSH for a
given program as the execution tree for that program. For example, the Prolog program of

figure 1 has an execution tree shown in figure 2.

B. Fagin: MS Report

a(X)?

OR
a(X):- a(X):- a(X):-
AND
e(X)
bX) X)) dX) f(X) g(X)
OR
f(a) g(a) g(b)

2. Adding a Goal Cache to Avold Redundant Computation

One apparent deficiency of the LUSH algorithm is that a great deal of effort may be
expended in solving goals that have been solved during previous computation, or have been

determined to have no solution. For example, consider the Prolog program in figure 3. Its

B. Fagin: MS Report

execution tree is shown in figure 4.

q(5,3).

5(1,4).
5(5,4).
5(8,5).
a(2,3).
)

a(3,4) - (X,3), s(Y,4).

b(3,5) = a(X,Y), (1,Y).
(X,Y) - a(X,Y), b(3,5).

£(X,Y)?

figure 3

lepc

f(X)Y) =-
/4_\
a(X,Y) b(3,|5)
a(3,4):- a(2,3). b(3,5):-
quS) s(Y,4) a(X,Y) s(1 ,IY)
q(53). s(14). s(54). (1,4).
a(3,4):- a(2,3).
q(X,3) s(Y,4)

a53). s(14). s(54).

figure 4

First, Prolog attempts to solve the query "f(X,Y)”. This unifies with the head of the only
appropriate clause, and next Prolog tries to solve "a(X,Y)”. This eventually leads to the
solution X = 3, Y = 4. Prolog then attempts to solve "b(3,5)”. This unifies with the head of
the only clause for b, and then Prolog proceeds to solve ”a(X,Y)” again. Notice, however,
that one answer to this query has already been computed; we know already that one solution

to this goal is X = 3, Y = 4. Hence all computation done to solve this goal again is really

B. Fagin: MS Report

OR

AND

OR

10

unnecessary. We would like Prolog to be able to remember goals it has solved previously and

what their solutions were, so that we can avoid redundant computation.

It is true that the amount of superfluous computation in this example is trivial; solving
a(X,Y) again involves only a few extra unifications. Consider what would happen, however, if
the program instead had procedures for q and s that were not simple unit clauses, but clauses
that called other procedures that in turn called others. Such a program might have the

execution tree shown in figure 5.

.Fa

H(X,Y)?
|
f(X,Y) :-
—
a(X,Y) b(3,|5)
8(3,4) - 3(2,3). b(3,5):-
Q(X’?’) S(YA)

figure 5

11

If the depth of the subtrees with roots at q and s were significant, we would be

performing a huge amount of redundant computation.

B. Fagin: MS Report

OR

AND

OR

AND

OR

AND

12

The contrived nature of this example may lead to an impression that redundant goal
solution does not occur that often in real Prolog programs. In fact, measurements taken of
several Prolog benchmarks do show redundant inferences; this will be discussed at the end of
the report. For now, let us assume that redundant computation does in fact occur in Prolog
programs, and that such computation could be avoided if Prolog had the ability to remember
which goals had been solved previously and what their solutions were. To give Prolog this
ability, the addition of a goal cache is proposed; a small memory that Prolog would access
before attempting to unify with clauses in the program. We will now examine how the LUSH

algorithm must be modified in the presence of such a cache.

3. How Goal Caching Affects the Prolog Execution Algorithm

There are five basic questions that must be dealt with when adding a goal cache to

Prolog. They are:

1) When should answers be stored in the cache?

2) When should the cache be accessed?

3) How should goals with multiple solutions be handled?
4) What action(s) should be taken on a cache hit?

5) What action(s) should be taken on a cache miss?

We will address each one of these questions in turn.

3.1. When to Write to the Cache

The goal cache can be viewed as containing the accumulated "knowledge” of a Prolog
program; it contains a set of facts. These facts may take the form of solved goals, in which
case the solutions themselves will be in the cache, or they may be of the form of goals that
are known to have no solution, in which case the cache simply records this information in
some way and associates it with the goal. This indicates two different points in the LUSH

algorithm at which we wish to write to the cache:

.Fz

13

1) When a goal succeeds
2) When a goal fails

When a goal succeeds, we will store its solution in the cache. When a goal fails, we will
(among other things), set a bit in the cache called the failure bit. This bit will be useful in

determining that a goal has no more solutions.

Thus we may tentatively modify the LUSH algorithm in this manner:

SUCCEED:
Store solution to GOAL in cache

FAIL:
[F GOAL actually failed (didn’t fall through
from SUCCEED)
Set failure bit for the goal in cache

3.2. When to Access the Cache

We wish to position the cache access at a point in the algorithm after the current goal
has been determined that will guarantee that redundant computations will be avoided, but at
the same time will ensure that the cache is accessed no more often than necessary. The first
constraint indicates that the cache be accessed somewhere between NEW_CLAUSE and the
point immediately before the unification operation, below ALTERNATIVE. It is pot
immediately apparent, however, what is indicated by the second constraint. Let us ignore, for
the moment, what actipns should be taken on a cache hit, and instead consider only cache
misses. Suppose that we access the cache after ALTERNATIVE, get a miss, and attempt to

unify with an appropriate clause in the program. Suppose that the unification fails.

B. Fagin: MSR rt

14

According to LUSH, a new candidate clause is found and control proceeds back to
ALTERNATIVE. As things stand now, the cache would be accessed again. But such an
access would be pointless, since we know by virtue of the previous cache miss that no
solutions to the current goal lie in the cache (we have not had a success or a failure to update
the cache since then). Hence in order to avoid accessing the cache any more often than
necessary, the cache access should be done before ALTERNATIVE. We have, then, three
remaining possible points in the algorithm at which to insert a cache access: between
NEW_CLAUSE and NEW_GOAL, NEW_GOAL and BACKTRACK_POINT, and

BACKTRACK_POINT and ALTERNATIVE.

The first choice is not satisfactory. After a goal in the body of a clause succeeds the next
goal to the right (if there is one) becomes the current goal and execution continues at
NEW_GOAL. If the cache access were placed between NEW_CLAUSE and NEW_GOAL, we
would fail to access the cache after such a transfer of control; the cache would be checked
only when the current goal is the first goal in the body of a clause. Clearly this is not what is

desired.

The second choice, between NEW_GOAL and BACKTRACK_POINT, is also
unsatisfactory. Placing the cache access there would mean that we fail to check the cache
when Prolog is attempting a retry, endeavoring to solve a goal again. When Prolog attempts
to solve a goal again and another solution to it lies in the cache, we would like to avoid
carrying out the redundant computations associated with finding that solution. Hence we

wish to access the cache on retries.

We are left then with one remaining point for cache access: between
BACKTRACK_POINT and ALTERNATIVE. Placing the cache access here will satisfy the
twin constraints of avoiding as many redundant computations as possible while minimizing

cache accesses. Hence we may further refine LUSH as follows:

Fa;

15

BACKTRACK_POINT
check cache for a solution to GOAL
IF cache hit /* goal solved previously */

/* take as yet unspecified action */
?

ELSE /* no (more) solutions in cache */
/* take as yet unspecified action */

3.3. Goals With Multiple Solutions

Given that goals can have multiple solutions, we must somehow develop a mechanism
that enables Prolog to indicate which solution from the cache is desired. To do this, we
associate a number with each goal instance. This number is maintained so that it is always
equal to the number of times the goal has been solved. We can then store this number with
cache solutions to distinguish multiple solutions to the same goal. When accessing the cache,
we supply along with the goal to be solved the number indicating how many previous
solutions to the goal have been found. We will call this number the cache counter, or cc for
short. Since we desire the next solution from the cache, a cache access with a cc of zero

indicates that the first solution from the cache is being sought.

The challenge, then, is to properly maintain the cc of each instance of a goal (the same
goals can, and indeed most of the time will, have different cc’s at different points in the
program). Let us examine what must be done to LUSH in order to manage these cache

counters.

Clearly, when a goal is first attempted it’s cc must be set to zero; if any solutions to it
lie in the cache we desire the first one. It is almost as obvious that the cc of a goal should be

incremented by one after the goal has been solved, since the cc is defined to be the number of

B. Fagin: MS Report

16

solutions that bhave been found for the goal. It is less obvious, however, that the cc of a goal
must be reset to O when it fails. This is because when a goal fails, the goal to its left (if it
exists) will be attempted again. Should it succeed, the goal that previously failed will be
attempted again, this time possibly with new bindings; hence when we try the goal again we
desire the first solution from the cache, if a solution exists at all.

Finally, when we store to the cache, we must store the cc of the goal as well. Having
the cc in the cache will prove essential to extracting a particular solution from the cache, as
well as in determining that a goal has no more solutions. This will be shown in the next

chapter.

Thus the LUSH algorithm may now be further modified as follows:

NEW_GOAL:
GOAL.cc = 0

BACKTRACK_POINT:
n = GOAL.cc
Check cache for (n+1)st solution to goal t

SUCCEED:

store solution, GOAL.cc in cache
GOAL.cc++

FAIL:
IF GOAL failed

store GOAL.cc in cache
set cache failure bit
GOAL.cce =0

Fa;

17

3.4. Actions to be Taken on a Cache Hit

A cache hit correspouds to one of two events: either we have found a new solution to
the goal, or the goal is known to have no (more) solutions. In either case, the action is
straightforward. If the cache has yielded a new solution then the current goal has succeeded,;
hence we should take whatever actions are taken upon success. If, however, the goal has no
(more) solutions, we should take whatever actions are taken upon failure. We can test for the
absence of solutions by examining the failure bit in the cache. Thus simple GOTO statements
are all that are necessary to fill in some of the blanks in the previous LUSH algorithm,

yielding:

BACKTRACK_POINT:
n = GOAL.cc
Check cache for (n+1)st solution to goal t
IF cache hit
IF failure bit = 1
GOTO FAIL
ELSE
GOTO SUCCEED
ELSE

3.5. Actions to be Taken on a Cache Miss

A cache miss means that the desired solution to the goal was pot in the cache, but may
still lie in the program (i.e. the goal is not known to have no more solutions. We will refer to
such a goal as being active). Hence we must continue execution in the program. But where?
In our present version of LUSH, there is no way to know where to resume execution since we

do not know which clause in the procedure will produce the newest solution, the next solution

B. Fagin: MS Report

18

that is not already in the cache. What is needed then is a pointer for each active goal that
indicates the next clause to try when a goal triggers a cache miss. Such a pointer will be
called a resume pointer as suggested by Dobry4, since it indicates where to resume execution

in the program.

Let us assume the existence of some arbitrary data structure which enables us to
uniquely associate a pointer to a clause with a given goal. We would like to maintain such a
structure so that, on a cache miss, we could simply find the resume pointer associated with
the current goal, and continue execution there. The main task then is to make sure that at
any time the resume pointer is always correct. Let us trace through the LUSH algorithm and
see at which points it is necessary to add to, delete from, and update the resume pointer data

structure.

Clearly, when a goal is first tried we would like to create an entry for it in the resume
pointer data structure (RPDS) and initialize it. Thus when the cache is accessed, if the goal
generates a cache miss and the first solution was desired, we should create an entry in the
RPDS for the goal, and set its resume pointer to the first clause in the appropriate procedure.
When a goal fails we want to remove its entry from the RPDS, since all solutions to it lie in
the cache, as would the knowledge that the goal had no solutions if such were the case. If we
create and delete RPDS entries only at these two times then we guarantee that each active
goal will have at least one and only one RPDS entry. We are left, then, to identify the points

in the LUSH algorithm at which it is necessary to modify the RPDS entry.

We wish the RPDS entry for a goal to point to the clause to try that will yield the next
solution on a cache miss. Consider what happens when the current goal successfully unifies
with the candidate in the database. Then the clause at which to continue on a cache miss is
the next clause in the database, since if any answers to the current goal will be generated

following the unification they will be cached as well, and the next clause in the program is the

Fa rt

19

one that will yield the newest soiution. Hence if the unification with the target clause in the
program is successful, we must update the RPDS entry for the goal to point to the next

clause.

Thus, to permit correct resumption of execution after a cache miss, we need a collection
of pointers to clauses in the program, one for each active goal. To correctly maintain such a

structure, we must modify the LUSH algorithm as follows:

B. Fagin: MS Report

BACKTRACK_POINT
n = GOAL.cc
Check cache for (n+1)st solution to goal t
IF cache hit
IF failure bit = 0
GOTO SUCCEED
ELSE
GOTO FAIL
ELSE
IF GOAL.cc =0
(i.e. first time goal tried)
create RPDS entry for goal
RPDS entry of goal = CLAUSE
ELSE
CLAUSE == RPDS entry of goal

ALTERNATIVE:

IF head of CLAUSE unifies with GOAL
RPDS entry of GOAL = clause following
CLAUSE in program

FAIL:
IF GOAL actually failed
store GOAL.cc in cache, set failure bit
GOAL.cc =0
Remove RPDS entry of GOAL

4. The LUSHC Algorithm

We are now finished with our modifications to the Prolog execution algorithm. What we
bave produced is different enough from the original to warrant a new name: the LUSHC
algorithm. It is this algorithm, we believe, that a Prolog machine with a goal cache must use

to execute programs; we sum up the results of this chapter with its complete description.

.Fa

Fa

21

NEW_CLAUSE:
PARENT = top of environment stack
NEW_GOAL:
IF no goals remain to try
GOTO SUCCEED

ELSE
CLAUSE == first clause that can match t
GOAL.cc =0
BACKTRACK_POINT:
n = GOAL.cc
check cache for (n+1)st solution to GOAL t
IF cache hit
IF failure bit = 1
GOTO FAIL
ELSE
GOTO SUCCEED
ELSE
IF GOAL.cc =0
create RPDS entry for goal
RPDS entry of goal = CLAUSE
ELSE
CLAUSE = RPDS entry of goal
ALTERNATIVE:
' IF no more goals remain that can match GOAL
GOTO FAILL
ELSE
IF head of CLAUSE unifies with GOAL
RPDS entry of goal = clause following
CLAUSE in program
increment ENV
save environment on control stack
GOAL = first goal in body of CLAUSE
GOTO NEW_CLAUSE
ELSE
CLAUSE = next clause in procedure
GOTO ALTERNATIVE
SUCCEED:

store solution to GOAL, GOAL.cc in cache

increment GOAL.cc

[F PARENT > base of control stack
restore parent environment
GOAL == goal to right of goal that succeeded
GOTO NEW_GOAL

ELSE
print variables

FAIL:

[F GOAL actually failed (didn’t fall through from SUCCEED)

store GOAL.cc in cache

set failure bit for cache entry
GOAL.cc =0

B.Fa

22

remove RPDS entry of goal
IF ENV > base of control stack
restore environment by popping control stack
GOTO BACKTRACK_POINT
ELSE
return

B. Fagin: MS Report

CHAPTER 2

Goal Caching Hardware

We have seen how the presence of a goal cache requires substantial modifications to the
Prolog execution algorithm. Having outlined these modifications, we proceed to the more
difficult question of implementation: what mechanism should be used to access the cache and
trigger the transmission of the correct solution? To answer this question, we first outline the
similarity between conventional caches and the goal cache. We then show that the
associative comparison used in comparing tag fields in conventional caches is complicated
slightly by the problem of unbound variables in the goal. Fortunately we can solve this
problem, so that goals with unbound variables can be associatively compared with one
another. We conclude with a detailed analysis of the program of figure 3, executing it using

the LUSHC algorithm and the cache mechanisms developed in this chapter.

§. Conventional Caches and the Goal Cache

Conventional caches are accessed by comparing associatively the tag field of the desired
address with the tag field of a set of cache entries. A match indicates that the data
associated with the tag is in the cache (a cache hit), causing the data to be gated out through
the port of the cache memory. A goal cache for Prolog would work in a roughly similar
fashion. The ”address” supplied to the goal cache would be the goal Prolog was trying to
solve, along with the cc of the goal. The tag fields in the cache would be representations of
goals, while the data items in the cache would correspond to solutions to those particular
goals. The tag ﬁeldé would also include the cc stored there when the solution was written to

the cache, to indicate which solution corresponds to each associated data item. In a cache

25

access cycle, the current goal and its cc would be compared to all tags in the goal cache. A
match would indicate that the desired solution was in the cache, and the goal would then be

unified with the associated data.

6. The Problem of Goal Comparison

How are the current goal and the cache tags to be compared? At ﬁr;t glance, a simple
associative match on the characters of the goal might appear to be adequate. The problem
with simple matching is that it will fail to detect a large number of previously solved goals,
and hence will lead to unnecessary computations. This problem occurs because Prolog often
attempts to solve goals that were equivalent to previously solved ones, but not identical. We
say two goals are equivalent if they are isomorphic to one another; that is, if they differ only
in the names of their variables. For example, the goals glork(A,B) and glork(X,Y) are

equivalent, as are the goals foo(a,X,X) and foo(a,C,C).

Equivalent goals have identical solution sets; hence if a goal equivalent to the current
one has already beeﬁ solved then we may use its solutions as solutions of the current goal. An
exact matching comparison algorithm, however, will not permit us this luxury. Suppose, for
example, that all the answers to the query "glork(X,Y)” were in the cache, and that a Prolog
program was currently attempting to solve "glork(A,B)”. The answers to this query are
identical to the answers to glork(X,Y), which already lie in the cache. Unfortunately, exact
matching would yield the result that none of the answers to glork(A,B) are in the cache; only

the answers to glork(X,Y). Clearly this is undesirable.

At first glance, it might appear that since only the variables cause difficulty in goal
comparison, ignoring the variables in comparing goals will solve our problem. Unfortunately,
this is not so. While the goals glork(A,B) and glork(Q,W) are equivalent, glork(A,B) and

glork(C,C) are not: the set of all things that glork other things is not the same as the set of

B. Fagin: MS Report

26

all things that glork themselves. Thus the variables in a goal must be considered in some way

when determining if goals are equivalent.

Fortunately, there is an easy way of comparing goals with one another. Wherever an
unbound variable in a goal appears, we can replace it with a unique identifying pumber within
the goal (this number is easily determined at compile time). -We then use this number in the
goal when accessing the cache, and simply compare the goals. For example, the goals
glork(A,B) and glork(X,W) would both be reduced to glork(v1,v2) since A and X are the first
variables in their respective goals, while B and W are the second. (Here, the "v” indicates
that the number represents a variable. In an actual implementation, the bytes corresponding
to the variables would probably be tagged to indicate their values represent unbound
variables). Similarly glork(A,B) and glork(C,C) would be reduced to glork(vl, v2) and
glork(v1l, v1), respectively, and a simple comparison would show them to be nonequivalent.
Glork(c, A, A, C) and glork(c, D, D, Y) would both be reduced to glork(c, v1, v1, v2); a

comparison would show them equivalent.

7. An Example

We now illustrate how goal caching might work by tracing through the execution of the

program of figure 3 using the LUSHC algorithm.

First, Prolog will attempt to solve the goal "f(X,Y)”. Its cc will be set to zero, and the
cache will be accessed with "address” f(v1,v2) 0. Since the cache is empty at this point, we
will have a cache miss. The cc of f(X,Y) is zero, so we create an entry in the RPDS and set
its value to be equal to clist, the first clause that can match f(X,Y). Thus the cache and the
RPDS are as shown in figure 6. (In this and all the following figures, ”fb” stands for failure
bit). f(X,Y) unifies with the head clause of clist, so the RPDS entry for f(X,Y) is updated to

the next clause in the procedure (in this case the nil clause), and we have figure 7.

Fa,

CACHE
empty
RPDS
goal

£(X,Y)

figure 6

CACHE
empty
RPDS

goal

f(X,Y)

figure 7

B. Fagin: MS Report

27

clause to resume at

£(X,Y) = a(X,Y), b(3,5).

clause to resume at

NIL

Prolog then proceeds to access the cache with goal a(v1,v2) 0”. This triggers a series
of actions similar to those taken for f(X,Y). Once a(X,Y) unifies with a(3,4) and the RPDS is

updated, we obtain figure 8, and after q(X,3) unifies with q(5,3) we obtain figure 9.

Now, however, a goal has succeeded. Following the LUSHC algorithm, we store the goal
that succeeded, ¢(X,3), in the cache, along with its cc and the solution. This gives figure 10.

We then increment the cc of q(X,3), and attempt to solve "s(Y,4)".

CACHE
empty
RPDS
goal

f(X,Y)
a(X,Y)

figure 8

CACHE
empty
RPDS
goal
f(X,Y)

a(X,Y)
Q(X’?’)

figure 9

. Fagin

28

clause to resume at

NIL
a(2,3).

clause to resume at

NIL

a(2,3).
NIL

CACHE
tag fb data

q(v1,3) 0 0 5

RPDS
goal clause to resume at

£(X,Y) NIL

a(X,Y) a(2,3).
a(X,3) NIL

figure 10
The cache is accessed with the "address” s(v1,4) O; a goal equivalency check with the
only tag in the cache fails, so we have a cache miss. This was the first time the goal had been

tried, so after it unifies with 5(1,4) we have figure 11.

Now 5(1,4) has succeeded, so we update the cache to yield figure 12. We restore the
parent environment, and find that the parent goal has succeeded as well. Thus we now store

the parent goal, a(X,Y), in the cache. The cache and RPDS now look like figure 13.

Prolog then tries to solve b(3,5). This is a new goal, so0 after it unifies with b(3,5) in the

database the cache and RPDS will be as shown in figure 14.

Now, however, the first redundant computation is attempted. The cache is accessed
with the goal "a(vl,v2) 0”. An associative comparison yields a unique cache hit, and the
answer "a(3,4)” is obtained. Since the failure bit is not set, the goal has succeeded, and we

have avoided the computation involved with solving "a(X,Y)” again.

B. Fagin: MS Report

30

CACHE

tag fb data
q(v1,3) 0 0)

RPDS
goal clause to resume at
f(X,Y) NIL
a(X,Y) a(2,3).
q(X,3) NIL

s(Y,4) s(5,4)

figure 11

.Fa

CACHE
tag
qv1,3)0
s(vl,4) 0

RPDS
goal

f(X,Y)
a(X,Y)
CI(X’3)
s(Y,4)

figure 12

31

fb data

o o

clause to resume at

NIL

a(2,3).
NIL

3(5,4)

B. Fagin: MS Report

CACHE

tag

q(v1,3) 0

s(v1,4) 0
a(v1,v2)

RPDS
goal
f(X,Y)
a(X,Y)

q(X,3)
s(Y,4)

Fa

0

figure 13

32

fb data
0 5

0 1

0 3,4

clause to resume at

NIL
a(2,3).
NIL

s(5,4)

CACHE
tag fb data
q(v1,3) 0

s(v1,4) 0
a(vl,v2) 0

C OO
o M= QN

RPDS
goal clause to resume at

f(X,Y) NIL

a(X,Y) a(2,3).
q(X,3) NIL

(Y 4) s(5,4)
b(3,5) NIL

figure 14
Next, Prolog attempts to solve s(1,4)". This yields a cache miss, and a successful
unification with s(1,4) updates the RPDS. The goal then succeeds, so we update the cache
and increment the cc of s(1,4) to 1. The parent goal, b(3,5), has now succeeded as well, so we
update the cache again. Notice that this goal has no associated data with its solution; its

»answer” was simply ”yes”. We now have a cache and an RPDS as shown in figure 15.

The success of "b(3,5)” means that the original query, "f{(X,Y)”, has at last succeeded.
We update the cache again, and print the solution *X = 3, Y = 4. Now, however, no more
new goals remain to be tried, so we fall through to the FAIL portion of LUSHC. We restore

the environment of the last goal that succeeded, ”s{(1,4)”, and go to BACKTRACK_POINT.

B. Fagin: MS Report

34

CACHE
tag fb data
q(v1,3) 0 0 5
s(vl,4) 0 0 1
a(v1,v2) 0 0 3,4
s(1,4) 0 0 none
b(3,5) 0 0O none
RPDS
goal clause to resume at
f(X,Y) NIL
a(X,Y) a(2,3).
q(X,3) NIL
(Y,4) s(5,4)
b(3,5) NIL

s(1,4) s(5,4)

figure 15

The contents of the cache at this point are shown in figure 16.

The cache is now accessed again, with the goal ”s(1,4) 1. Notice the importance of the
new cc value of the goal; it says that the second solution from the cache is desired. Thus the
solution to this goal that is already in the cache will be rejected, because its tag is ”s(1,4) 0”.
The query yields a cache miss, but as this was not the first time this goal was attempted, the

next candidate clause is taken from the RPDS; thus Prolog will now try to unify "s(1,4)” with

Faj

35

CACHE
tay fbo data
q(v1,3) 0 0 5
s(v1,4) 0 0 1
a(v1,v2) 0 0 34
s(1,4) 0 0O none
b(3,5) 0 0 none
f(v1,v2) 0 0 3,4
RPDS
goal clause to resume at
f(XY) NIL
a(X,Y) a(2,3).
q(X,3) NIL
s(Y,4) s(5,4)
b(3,5) NIL

s(1,4) s(5,4)

figure 16
"s(5,4)”, instead of "s(1,4)”. This unification will, of course, fail, as will the unification with
8(8,5). As there are now no more alternatives, the goal "s(1,4)" fails. According to LUSHC,
we store the goal and its cc in the cache and set the failure bit, and remove its RPDS entry.
This yields the configuration of figure 17. Notice that this cache entry also does not have any

associated data, because none is necessary. Should we access the cache with the same tag

B. Fagin: MS Report

36

again, we will get a hit with the failure bit set, and hence we will know that no more solutions
are to be found.

The failure of s(1,4) causes backtracking. Its cc is set to O, and the goal to the left,
a(X,Y), is asked again. Notice, however, that its cc was incremented to 1 when it succeeded

previously. Hence the cache is accessed with the goal ”a(v1,v2) 17, which misses. We then

CACHE
tag fb data
q(vl,3) 0 0 5
s(v1,4) 0 0 1
a(vl,v2) 0 0 3, 4
s(1,4) 0 0 none
b(3,5) 0 0 none
- f(vl,v2) 0 0 3,4
s(1,4) 1 1 none
RPDS
goal clause to resume at
f(X,Y) NIL
a(XY) 2(23).
q(X,3) NIL
(Y,4) 5(5,4)
b(3,5) NIL

figure 17

37

continue at the clause indicaied by the goal's entry in the RPDS: a(2,3). a(X,Y) unifies
successfully with a(2,3) and succeeds, yielding a cache and RPDS with contents as shown in

figure 18.

CACHE
tag fb data
o(v1,3) 0 0 5
s(v1,4) 0 0 1
a(v1,v2) 0 0 3,4
s(1,4) 0 0O none
b(3,5) 0 0 none
f(viv2) 0 0 3,4
s(1,4) 1 1 none
a(v1v2) 1 0 23
RPDS
goal clause to resume at
f(X,Y) NIL
a(X,Y) NIL
q(X,3) NIL
s(Y,4) s(5,4)
b(3,5) NIL

figure 18

B. Fagin: MS Report

38

Next, s(1,3) is attempted. No way exists to solve this goal, so after all possibilities have
been tried, the goal fails. The cache is then accessed with the goal "a(vl,v2) 27, yielding a
cache miss. Recovering at the clause indicated by the RPDS entry, nil, we see that this goal
now fails as well. Thus we store this fact in the cache, and remove the RPDS entry for the

goal. We now have figure 19.

Now that a(X,Y) has failed, the parent goal b(3,5) has failed as well. We update the
cache and the RPDS appropriately, reset the cc of b(3,5) to zero, and attempt to solve a(X,Y)
again. The cache is now accessed with a(v1,v2) 1 as this instance of the goal has only been
solved once. This produces a cache hit, and b(3,5) 0 is attempted. This also produces a hit,
avoiding all work done in the previous solution of b(3,5). The original goal f(X,Y) has now
succeeded again, so we update the cache and RPDS to give figure 20. We then print the
solution "X = 2Y = 3",

Next, b(3,5) is attempted again. The cache is accessed with b(3,5) 1. This yields a cache
hit, but the failure bit is set, so the goal fails. The goal a(X,Y) is attempted again and fails,
and finally f(X,Y) is attempted again and fails. No more alternatives remain, so LUSHC
returns. At program termination, the contents of the cache and RPDS are as shown in figure

21.

39

CACHE

o

tag data
q(vl,3) 0
s(v1,4) 0
a(vl,v2) 0
s(1,4) 0
b(3,5) 0
f(vi,v2) 0
s(1,4) 1
a(vl,v2) 1
s(1,3) 0
a(vl,v2) 2

3, 4
none
none
3, 4
none
2,3
none
none

—_—O = O O 00 0OO0

RPDS
goal clause to resume at

f(X,Y) NIL
q(X,3) NIL
s(Y,4) s(5,4)
b(3,5) - NIL

figure 19

B. Fagin: MS Report

CACHE

o

tag data
q(v1,3) 0
s(v1,4) 0
a(vl,v2) 0
s(1,4) 0
b(3,5) 0
f(vi,v2) 0
s(1,4) 1
a(vl,v2) 1
s(1,3) 0
a(vl,v2) 2
b(3,5) 1
f(viv2) 1

3,4
none
none
3, 4
none
2, 3
none
none

none
2,3

O = O == OO O0COO0OO0

RPDS

goal clause to resume at

f(X,Y) NIL
q(X,3) NIL
(Y,4) s(5,4)

figure 20

Fa M

41

CACHE
tag fb data
g(v1,3) 0 0 5
s(v1,4) 0 0 1
a(vl,v2) 0 0 3, 4
s(1,4) 0 0 none
b(3,5) 0 0 none
f(vi,v2) 0 0o 3,4
s(1,4) 1 1 none
a(v1,v2) 1 0o 23
5(1,3) 0 1 none
a(vl,v2) 2 1 none
b(3,5) 1 1 none
f(v1,v2) 1 0 23
a(vl,v2) 2 1 none
f(vi,v2) 1 1 none

RPDS
empty

figure 21
Having analyzed how a Prolog goal cache might be implemented, it is now appropriate
to inquire what kind of performance improvement could be expected if all the features
discussed up to this point were to be implemented in 2 Prolog machine. It is to this topic

that we now turn.

B. Fagin: MS Report

CHAPTER 3

Experimental Results

A Prolog interpreter that implements the LUSHC algorithm, incorporating all the
modifications discussed in the previous chapters, is now running under Bérkeley 4.2 BSD
UNIX. Several benchmark programs were executed using this interpreter, and statistical
measurements made to predict the performance improvement. We believe that, since the
basic operation in Prolog is unification, counting the unifications made in accessing the
database in a goal caching implementation and comparing with the number of unifications in
a conventional implementation yields an accurate measure of the speedup obtained by goal
caching. Caveats that follow from this assumption as well as others will be outlined after the

results are presented.

8. The Benchmarks

A total of twelve benchmarks programs were analyzed:

A Symbolic Differentiatior (diff)
One of the benchmarks from Warren’s thesis;> computes various derivatives
symbolically. Run to compute various tenth power derivatives, and to differentiate (x+1)*(x

242)*(x3+3) with respect to x.

The Towers of Hanoi (hanoi)

Taken from Clocksin and Mellish;® solves the towers of hanoi problem. Run with two,

four, and eight disks.

43

The Missionaries and Cannibals Problem (mis.can)

Written by Claude Sammut. Solves the problem of trausporting three missionaries and

three cannibals across a river in one boat.

A Mobeius Counter Simulation (mob)

Written by Jung-Herng Chang. Simulates a mobeius counter, using JK flip flops. Run

to produce simulations of length zero through four.

A "Mu Math” Theorem Prover (mu.math)

Written by Al Despain. Generates theorem of the mu math” system 7 Run to generate

all theorems with derivations of length 2, length 3.

Two Circuit Design Programs (nand.designl, nand.design2)

Written by Jung-Herng Chang. Designs optimal NAND gate circuits for a given
functional specification. Nand.design2 does the design more ”intelligently” by examining

fewer superfluous cases. Run to produce two-input circuits with one, two levels.

Quicksort (gsort)

Another benchmark of Warren's; the quicksort algorithm. Run to produce a sorted list

of fifty numbers.

The Queens Problem (queens)

Written by Rowland Sammut. Solves the problem of arranging n queens on an n by n

chessboard so that no two queens threaten each other. Run with n = 3.

Database Query (query)

B. Fagin: MS Report

44

A third benchmark from Warren; searches a database to find countries of similar

population density.

The Sieve of Eratosthenes (sieve)

Taken from Clocksin and Mellish. Uses Eratosthenes’ algorithm to compute all primes

below a given integer n. Run with n = 16.

List Reversal (reverse)

The last benchmark from Warren; run to reverse a thirty-element list.

8. The Results

The results of running the benchmarks under the interpreter are summed up in the
following table. The predicted speedup S and the hit ratio ¢ are shown for various queries
that the programs were asked to solve. U is the number of unifications, N is the number of
solutions cached rounded up to the nearest power of two (hence N represents the minimum

size cache required), and C is the number of clauses in the benchmark program.

Benchmark Results

program query S ¢ U N C
diff divide10 23 26% 230 16 10
log10 1.01 5% 375 32
ops8 118 32% 386 16
times10 220 24% 224 16
hanoi 2 disks 1.18 8% 78 16 3
4 disks 273 23% 174 32
‘ 8 disks 2333 29% 366 128
mis.can solve the problem 1.16 20% 1935 256 18
mob level 0 1.00 0% 11 2 9
level 1 109 8% 77 16
level 2 131 14% 127 16
level 3 149 19% 174 32
level 4 1.82 24% 205 32
mu_math level 2 1.58 4% 731 128 17
level 3 2.21 5% 1594 256
nand.designl level 1 1.74 22% 548 64 14
level 2 18.08 47% 7845 512
nand.design2 level 1 155 26% 635 64 13
level 2 3.45 51% 11214 1024
qsort 50 numbers 1.01 1% 3776 528 6
queens 3 x 3 board 1.23 12% 765 128 17
query search database 11.38 1% 4636 32 52
reverse 30 numbers 100 0% 3097 512 4
sieve primes below 16 100 0% 715 0 8

B. Fagin: MS Report

45

CHAPTER 4

Some Comments on the Results

One of the first things one notices after glancing through the table of results is that
there is virtually no correlation between the expected speedup and the hit ratio. This shows
that what is important to speedup in a goal caching scheme is not how often cache hits occur,
but where they occur in the execution tree. Programs with high hit ratios may have the bulk
of their redundant goals occurring at or near the leaves and hence little work is avoided by
keeping their solutions in a cache. Conversely, a program with only a few hits may have
redundant computations near the root, in which case large amounts of computation can be

avoided.

The wide range of speedups is also striking. Some problems, in particular the
numerically oriented omes, exhibit little or no potential speedup. Others, however, can be
sped up by factors ranging from a little less than two to about twenty-three. These results
suggest that programs that search for solutions over a problem space are far more likely to
have their execution time improved by goal caching than numerically oriented programs.
This is fortunate, since while Prolog is well suited to searching over a set of alternatives, it is

not likely to be used for mathematical calculations.

The results of the circuit design programs are also enlightening. Nand.designl exhibited
a tremendous speedup when given the task of constructing a relatively simple circuit, while
pand.design2 construction showed far less improvement. This is because nand.design2
constructs the circuit in a more "intelligent” manner by making fewer redundant calculations;

hence less is gained by avoiding redundancy. If goal caching will produce significant speedups

47

only for poorly written programs, then goal caching will not be very interesting. Fortunately,
the results indicate that even well written programs contain at least some redundant queries
that are not apparent to the programmer. Every single program that performed a search
over a solution space exhibited a speedup. Even if the speedup increases linearly with the
depth of the tree, and not exponentially, the potential performance improvement for
execution trees ten times larger than the ones tested is still an order of magnitude. Of course,

if the increase is exponential then the expected speedup will be even greater.

One qualification should be made regarding the speedup estimates. These figures were
obtained by dividing the number of unifications during conventional execution by the number
of unifications made in accessing the program by the goal caching interpreter. In fact, some
unifications are associated with cache access. However, only those involving unbound
variables need actually be considered. It is believed that the number of these unifications is

negligible when compared with the total number of program unifications.

It is conjectured that speedups of more significant magnitude are to be found in
programs with very deep execution trees. The author bases this conjecture on the increase in
speedup that is always found (in searching problems) when the tree increases. Solving the
queens problem for larger board sizes, designing more compléx circuits for nand.design2, and
longer derivations for “mu_math” are all believed to exhibit speedups of an order of
magnitude. Unfortunately, the current version of the interpreter that employs goal caching is
too slow to solve queries that are this involved in a reasonable amount of time. A much

faster version is currently under construction.

B. Fagin: MS Report

CHAPTER b

Problems and Unresolved Issues

In this chapter we discuss some open implementation questions, and point out some

difficult problems.

10. Cache Management Schemes

Up to now, the type of memory assumed has been a fully associative one. In fact, this
may be too expensive, as we expect the necessary cache size to be quite large. Hence a direct
mapped or set associative scheme might be more desirable. In this case, a hash function
would be applied to the goal to produce a binary address, which would then be used to access
a conventional memory. The contents of that memory location would then be compared with
the original goal (several comparisons may be made if the cache is set‘associative), with a
match indicating a hit and triggering unification with data stored in another memory. Should
this particular implementation be chosen, it will become important to develop a good, fast
hashing function to generate addresses from goals, so as to minimize collisions. A collision
resolution policy will have to be developed; it is not immediately clear what course of action is

best when two goals map into the same cache address.

11. The Problem of Overflow

Regardless of the cache management strategy chosen, only a finite amount of memory
will be available. Thus, the possibility of overflowing that memory must be considered. Once
there is no more room in the cache, the only acceptable possibility appears to be to ignore
further writes to the cache. Goals attempted after the point in time at which the overflow

occurred should only consult the database, while goals still on the environment stack would be

49

permitted to consult the cache as before. Flushing the cache would not ensure program
correctness, because RPDS entries indicate the next clause to try after all answers from the
cache have been rejected. Flushing the cache would make the RPDS entries invalid; updating

them appropriately would be a difficult and time-consuming operation.

12. Side Effects

Consider what would happen if a statement with a side effect, such as ”print(X)”, was
cached. The first time "print(X)” was attempted, it would succeed. It would be stored in the
cache, and whatever X was instantiated to would be printed by the interpreter, since print is
a built in function. Now, suppose the same statement is attempted again. The cache is
checked first, yielding a hit (since we have "solved” this goal before). Tl;e ”solution” is
transmitted, and control proceeds, without the associated side eflect of printing X! Although
this may not appear to be a serious problem from this example, consider the issues involved in
caching assert and retract statements; Prolog instructions that actually modify the program.
If the side effects associated with these statements are not executed, goals that succeeded in a
conventional Prolog implementation could fail, if their success depended on the assertion or

retraction of a clause!

Swinson, Pereira, and Bijl8 have done work on a related problem, with their analysis of
base facts and derived facts. Base facts are assertions in a Prolog database, while derived
facts are those produced during execution. The authors maintain consistency in a system in
which base facts are constantly being inserted and deleted through a fact dependency system,
in which any derived facts obtained from a base fact are deleted when the base fact itself is
removed. A similar solution would have to be employed in a goal caching scheme, when a
clause that lead to the addition of solutions in the cache is retracted. The "derived facts” in

the cache would somehow have to be flushed when the clause or clauses that led to them

B. Fagin: MS Report

disappear.

Only two solutions seem immediately practical. We can a) not use goal caching on
programs with side effects, or b) rewrite programs to remove the side effects. Until recently,
it was believed that a third option existed: invalidating cache entries associated with all nodes
in the execution tree from the root to the statement with the side effect, so that statements
with side effects would always get executed. Unfortunately, such cache invalidation presents
the same problem with the RPDS entries that flushing does in the overflow case. While
option b was chosen for the benchmarks presented in this report, it is not clear which choice is
better. It is certain, however, that the side eflects problem will have to be effectively

addressed in any successful implementation of goal caching on a Prolog machine.

13. Variable Length Cache Tags and Data

Prolog goals have variable length; clearly fixed length tags and data will be desired when
the cache is actually implemented. One eflective way to do this might be to limit the
arguments a goal may have, and then simply ignore unused argument slots in the cache. The
data items in the cache, however, also have variable length. One solution to a goal may be a
constant, while another may be a list or a structure. It is unclear at this point exactly how
this problem can best be dealt with, but it is certain that the hardware will impose some

structure on Prolog goals and solutions.

CHAPTER 6

Conclusions

We have seen how the presence of a goal cache calls for modifications to the LUSH
algorithm of Prolog, and have outlined in detail what those modifications are. We have also
seen that the underlying hardware is relatively simple. Finally, we have gained some insight
into the effect of goal caching on Prolog performance, using a modified Prolog interpreter. It
pow remains to evaluate the merits of goal caching in light of what has been shown, to arrive

at an informed decision on the desirability and feasibility of goal caching.

This report has discussed an algorithm for goal caching: the LUSHC algorithm. Even if
a Prolog implementation does not employ the LUSHC algorithm directly, it still must deal
with the five basic issues that LUSHC addresses. It has also pointed out, however, the two
most serious obstacles that bar the way to improved Prolog performance: the problem of side

effects, and bookkeeping overhead.

There does not seem to be a simple way to successfully deal with side effects, apart from
removing them entirely from the program. One future direction of investigation might
involve the examination of Prolog programs written for a Prolog machine and determining
how often side effects occur, and how crucial they are to the program. If most useful Prolog

programs contain substantial side effects, then goal caching becomes less desirable.

The amount of bookkeeping necessary to manage a goal cache may be prohibitive as
well. Operations that occur frequently, such as recovering from the RPDS, deleting and
adding RPDS entries, and updating the cc’s, inay greatly reduce the numbér of LIPS per

second of a Prolog machine. Unfortunately, the amount of overhead associated with goal

51

52

caching is extremely model dependent. As an example, consider the problem of goal
comparison in the UNSW interpreter and the PLM. In the UNSW interpreter, goals are
represented explicitly as data structures; hence comparing two of them is slow. In the PLM,
however, the goal being tried is never explicitly represented; it is implied by the current block
of code being executed (and hence is implicit in the program counter). Comparing goals and
arguments in the PLM would be simpler and faster, since instead of comparing data
structures we would be comparing bytes. Thus it is possible that one implementation would

require very little overhead, while for another the extra instructions might be prohibitive.

The results obtained from the UNSW interpreter indicate that some programs do indeed
contain significant amounts of redundant computation. While this was a necessary condition
for implementing goal caching on a Prolog machine, it is not a sufficient one. The results do
not tell us anything about the amount of overhead required to implement goal caching on the
PLM ¢ , the Prolog machine currently under construction here at Berkeley. In order to
determine if the required overhead on the PLM is prohibitive, Dobry’s PLM simulator should
be modified to incorporate goal caching just as the UNSW interpreter was modified. Such
modification will shed some much-needed light on the biggest unresolved question in goal

caching implementation: how much bookkeeping is required and how is performance affected?

Only if 1) the side effects problem can be effectively dealt with and 2) the overhead
involved is not prohibitive can goal caching significantly improve the performance of a Prolog
machine. Future research should concentrate on resolving these two questions. However,
should these two obstacles be overcome, it is believed that the performance improvement
justifies whatever other implementation costs might be associated with goal caching (such as
the cost in hardware of a large associative memory). Two factors support this claim: 1)
programs that did not exhibit a significant speedup were, for the most part, designed for

applications for which it is not likely Prolog will be used, and 2) the results indicate that the

performance improvement obtained from goal caching increases with the depth of the
execution tree. Future work will attempt to strengthen the latter conjecture by enabling the
interpreter to measure the expected performance improvement of programs with deeper

execution trees than is currently possible.

The supercomputers of tomorrow will have to contain new architectural ideas in order
to solve currently ”impossible” problems. Since these problems often involve search
operations over a solution space, architectural features that support searching should be
investigated as candidates for implementation in hardware. Goal caching is just such a
feature. This report has outlined a theoretical basis for goal caching, and has examined some
results that show a- necessary condition for implementing goal caching: redundancy in
programs. It has also pointed out the two principal questions that should be resolved before
attempting a goal caching implementation. It is believed that if these questions can be
answered satisfactorily, them goal caching should be considered for inclusion in the

architecture of a supercomputer.

B. Fagin: MS Report

References

R. A. Kowalski, “Predicate Logic as Programming Language,” Proc. IFIP74, pp. 569-
574 (1974).

M. H. van Emden, “Programming With Resolution Logic,” pp. 266-269 in Machine
Intelligence 8, Elis Horwood, Chichester (1977).

C. A. Sammut, R. A. Sammut, “The Implementation of UNSW-PROLOG,” The
Australian Computer Journal 15 pp. 58-64 (1983).

Tep Dobry, Implementing Goal Caching on the PLM, University of California, Berkeley
(1983). Unpublished paper

David H. D. Warren, “Logic Programming and Compiler Writing,” Software--Practice
and Ezperience 10 pp. 97-125 John Wiley & Sons, Ltd., (1980).

W. F. Clocksin , Programming in Prolog, Springer Verlag, New York (1981).

Douglas Hofstader, Godel, Escher, Bach: An Eternal Golden Braid, Basic Books, New
York (1979).

Peter S. G. Swinson, Fernando C. N. Pereira, and Aart Bicl, “A Fact Dependency
System for the Logic Programmer,” Computer-Aided Design 15 pp. 235-243 ().

David H. D. Warren, Prolog Engine, SRI International, Menlo Park, CA (1983).

54

APPENDIX A

The Benchmarks

DIFF

% Differentiation program.

d(U + V, X, DU + DV) - !,
d(U, X, DU),
d(v, X, DV).
d(U-V,X,DU-DV) =1,
d(U, X, DU),
d(v, X, DV).
d(U‘V,X,U*DV+V*DU):—!,
d(U, X, DU),
d(v, X, DV).
dU/V,X,(DU*V-U*DV)/V"2)=],
d(U, X, DU),
d(V, X, DV).
du - N,X,DU*N*U " NI1):-
integer(N), !,
N1lisN-1,
d(U, X, DU).
d(- U, X, - DU) =,
d(U, X, DU).
dle "U,X,DU*e " U) -,
d(U, X, DU).
d(sin(U), X, DU * cos(U)) =- !,
d(U, X, DU).
d(cos(U), X, - DU * sin(U)) - !,
d(U, X, DU).
d(la(V), X, DU / U) =1,
d(U, X, DU).
dx X, 1) - L
d(C, X, 0).

(X)) *x)*x)*x)*x)*x)*x)*x,x, Y)?
d(((((((x/x)/x)/x)x)[x)[x)[x)/x)[x.x, Y)?
d(ln(In(In(ln(ln(ln(ln(ln{ln(x))))))).x,Y)?
d((x+1)*(x"2+2)*(x"3+3),x,Y)?

55

HANOI

9% This is the Tower of Hanoi problem. Typing ”hanoi(N)?”, where
% N is the number of disks on the tower, will execute the correct
% sequence of moves. From Clocksin and Mellish.

% To have it print out each move as it does it, invoke inform(A,B)
9% in the body of the third clause, in between the two move goals.

hanoi(N) :- move(N,left,center,right).

move(0,_,_,_).
move(N,A,B,C) - Mis N-1, M >=0, move(M,A,C,B), move(M,C,B,A).

% inform(A,B) - write([move,disk,from,A,to,B]),nl.

3.F

MIS.CAN
% Missionaries and Canibals program.
% Written by Claude Sammut.
% Execute by ’run!’

op(650, yfx, =>)!

newmove(state(M1, C1, left), state(M2, C2, right)) -
move(M, C),
M <= M]l,
C <=C1,
M2is M1 - M,
C2is C1-C,
ok(M2, C2).
newmove(state(M1, C1, right), state(M2, C2, left)) -
move(M, C),
M2is M1 + M,
C2is C1 + C,
M2 <=3,
C2 <=3,
ok(M2, C2).

print_soln(start).
print_soln(X => Y) -
print_soln(X),
write(Y),
nl.

run :-
solve(start => state(3, 3, left), X),
print_soln(X).

ok(X, X) =- ..
ok(3, X) - L.
ok(0, X).

solve(Init =>> state(0, 0, right), Init => finish) :- !.
solve(Init => S1, Final) :-

newmove(S1, S2),

not(member(S2, Init)),

solve((Init => S1 => $2), Final).

move(2, 0).
move(1, 0).
move(l, 1).
move(0, 1).
move(0, 2).

member(X, Y => X) - L.

B. Fagin: MS Report

57

member(X, Y => Z) - member(X, Y).
run!

Fai

59

MOB

© % The following program simulates a two-bit Moebius counter.

% Queries are in the {ollowing format:

% fun(|X,Y], Length)?

% where [X,Y] is the initial state, Length specifies the length of

% counting sequence.

% definition of JK_FF

jkf(S, 0, 0, S).

jkfi(S, 0, 1, 0).

jkfi(S, 1, 0, 1).

jkfi(1, 1, 1, 0).

jkf(0, 1, 1, 1).

% definition of an INV function

inv(0, 1).

inv(1, 0).

% description of a two-bit Moebius counter implemented by JK_FF

function([X,Y], Length) - M is Length-1, M >= 0, inv(Y, JO0),
inv(X, K1), jkfi(X, Jo, Y, Q0), jkfi(Y, X, K1, Q1),
function([QO, Q1], M).

function(_, 0).

B. Fagin: MS Report

MU_MATH

% MU MATH SYSTEM OF HOFSTADER (GODEL, ESCHER, BACH; PP 35-36).

rules(S, R) :- rule3(S, R).
rules(S, R) :- rule4(S, R).
rules(S, R) :- rulel(S, R).
rules(S, R) :- rule2(S, R).

rulel(S,R) =- % RULES
append(X, [i], S),
append(X, [i, u}, R).

rule2([m, ..T}, [m, ..R]) - append(T, T, R).

rule3([], -) - fail.

rule3(R, T) -
append([i, i, i}, S, R),
append([u], S, T).

rule3([H, ..T], [H, ..R]) :- rule3(T, R).

rule4([}, -) - fail.
rule4(R, T) :- append([u, u], T, R).
rule4([H, ..T], [H, ..R]) - rule4(T, R).

theorem(Depth, [m,i]).
theorem(Depth, []) :- fail.

theorem(Depth, R) :- % TREE TRAVERSAL
Depth > 0,
D is Depth - 1,
theorem(D, S),
rules(S, R).

append([], X, X).
append(|A, .B], X, [A, .B1]) - % UTILITY
'

append(B, X, B1).

theorem(2,X)?
theorem(3,X)?

). Fagin

61

NAND.DESIGN1

% %% Automated Design of 2-input Combinational Logic Circuits with NAND
%

% Queries are in the following format:

% fun(A,B,C,D Level [])?

9 where vector (A, B, C, D) corresponds to the output of the circuit

9% when the 2 inputs are (00), (01), (10), (11) respectively,

% Level is the level of the circuits in order to control search

% space.

% Output is is the file “result”.

% All the possible configurations of the circuits can be found out by

% tracing backward within each successful instance.

% Reference: " Automated Design of Multiple-Valued Logic Circuits by

% Automatic Theorem Proving Techniques® by W.Wojciechowski and
% A.S.Wojcik, IEEE Trans. Comput., vol. ¢-32, pp. 785-798,

% Sept. 1983

% NAND function

nand(0, 0, 1).

nand(0, 1, 1).

nand(1, 0, 1).

nand(l, 1, 0).

% INV function

inv(0, 1).

inv(1, 0).

% a NAND gate

function(l, 1, 1, 0, Level, Leg):- M is Level-1, M>=0.

% inputs

function(0, 0, 1, 1, _, Leg).

function(0, 1, 0, 1, _, Leg).

function(l, 1, 0, 0, _, Leg).

function(1, 0, 1, 0, _, Leg).

% gates composition whose last stage is a NAND gate

function(CO, C1, C2, C3, Level, Leg):- M is Level-1, M>=0,
nand(A0, B0, C0), nand(Al, B1, C1), nand(A2, B2, C2),
nand(A3, B3, C3), function(A0, Al, A2, A3, M, [1,..Leg}),

function(BO, B1, B2, B3, M, [2,.Leg]).

% gates composition whose last stage is an INV gate

function(CO0, C1, C2, C3, Level, Leg):- M is Level-1, M>=0,
inv(A0, C0), inv(Al, C1), inv(A2, C2),
inv(A3, C3), function(A0, Al, A2, A3, M, [0,..Leg}).

B. Fagin: MS Report

62

NAND.DESIGN2

% Queries are in the following format:

% fun(A,B,C,D, Level,[])?

% where vector (A, B, C, D) corresponds to the output of the circuit
% when the 2 inputs are (00), (O1), (10), (11) respectively,

% _ Level is the level of the circuits in order to control search

% space.

% All the possible configurations of the circuits can be found out by

% tracing backward within each successful instance.

% Reference: ” Automated Design of Multiple-Valued Logic Circuits by

% Automatic Theorem Proving Techniques” by W.Wojciechowski and

% A.S.Wojcik, [EEE Trans. Comput., vol. c-32, pp. 785-798,
% Sep. 1983

% NAND function

nand(0, 0, 1).

nand(0, 1, 1).

nand(l, O, 1).

nand(1, 1, 0).

% a NAND gate

function(1, 1, 1, 0, Level, Leg):- M is Level-1, M>=0.

% inputs

function(0, 0, 1, 1, _, Leg).

function(0, 1, 0, 1, _, Leg).

function(1, 1, 0, 0, _, Leg).

function(l, 0, 1, 0, _, Leg).

% gates composition whose last stage is a NAND gate

function(CO, C1, C2, C3, Level, Leg):- M is Level-1, M>=0,
nand(A0, BO, C0), nand(Al, B1, C1), nand(A2, B2, C2),
nand(A3, B3, C3),
‘weight(AO, A1, A2, A3, J), weight(BO, B1, B2, B3, K),
order(AO, A1, A2, A3, B0, B1, B2, B3, M, Leg, J, K).

% to avoid, as much as possible, generating the same configuration

order(AD, Al, A2, A3, BO, B1, B2, B3, M, Leg, W1, w2).-
W1 > W2, function(AO, Al, A2, A3, M, [1,. Leg]),
function(BO, B1, B2, B3, M, [2,..Leg]).

order(A0, Al, A2, A3, BO, Bl, B2, B3, M, Leg, W1, W2)--
W1 == W2, function(A0, Al, A2, A3, M, [1,..Leg]).

% weight of the output

weight(AO, A1, A2, A3, J)- J is (((((A0*2)+A1)*2)+A2)*2+A3).

.Fa

QSORT

% Quicksort program.
% NOTE: '<’ works for atoms as well as numbers

sort(LO, L) :- gsort(LO, L, []).

gsort([X, .L], R, RO} - !,
partition(L, X, LO, L1),
gsort(L1, R1, RO),
gsort(LO, R, [X, .R1]). -
gsort([], R, R).

partition([X, ..L], Y, [X, ..L0}, L1) =-

X<Y,!,

partition(L, Y, LO, L1).
partition(|X, ..L], Y, Lo, [X, .L1]) - !,

partition(L, Y, LO, L1).
partition([}, _, [}, [1)-
sort([27,74,17,33,94,18,46,83,65,2,32,53,28,85,99,47,28,82,6,11,55,
29,39,81,90,37,10,0,66,51,7,21,85,27,31,63,75,4,95,99,11,28,61,74,
18,92,40,53,59,8],X)?

B. Fagin: MS Report

64

QUEENS

size(3).

int(1).

int(2).

int(3).

q(X, 3) -

solve(]], X). % the work starts here

% newsquare generates legal positions for next queen

newsquare([], square(1, X)) :- int(X).
newsquare([square(l, J), ..Rest], square(X, Y)) -
XisI+1),
int(Y),
not(threatened(l, J, X, Y)),
safe(X, Y, Rest).

% safe checks whether square(X, Y) is threatened by any
% existing queens

safe(X, Y, [)).

safe(X, Y, [square(l, J), ..L]) =~
pot(threatened(], J, X, Y)),
safe(X, Y, L).

% threatened checks whether squares (I, J) and (X, Y)
% threaten each other

threatened(l, J, X, Y) :-
(I=X),
)

threatened(l, J, X, Y) -
J=Y),
i

threatened(l, J, X, Y) =-
(UisI-1J),
(VisX-Y),
U=V),
!

threatened(l, J, X, Y) =-
UisI+1J),
(VisX +Y),
(U=V),
!

.Fa

% solve accumulates the positions of occupied squares

solve(|square(X, Y), .L], [square(X, Y), ..L]) :- size(X).
solve(Initial, Final) :-
newsquare(Initial, Next),
solve(|Next, ..Initial], Final).
q(3,X)?

B. Fagin: MS Report

65

query(|C1,D1,C2,D2]) -
density(C1,D1),
density(C2,D2),

D1>D2,
20*D1 < 21*D2.

QUERY

density(C,D) :- pop(C,P), area(C,A), D is (P*100)/A.

pop(china, 8250).
poplindia, 5863).
pop(ussr, 2521).
pop(usa, 2119).
pop(indonesia, 1276).
pop(japan, 1097).
pop({brazil, 1042).
pop(bangladesh, 750).
pop(pakistan, 682).
pop(w_germany,
pop(nigeria, 613).
pop(mexico, 581).
pop(uk, 559).
pop(italy, 554).
pop(france, 525).
pop(phillipines,415).
pop(thailand, 410).
pop(turkey, 383).
pop(egypt, 364).
pop{spain, 352).
pop(poland, 337).
pop(s_korea, 335).
popl(iran, 320).
pop(ethiopia, 272).
pop(argentina, 251).

query([C1, D1, C2, D2|)?

area(china, 3380).

area(india, 1139).
area(ussr, 8708).
area(usa, 3609).

area(indonesia, 570).
area(japan, 148).
area(brazil, 3288).
area(bangladesh,55).
area(pakistan, 311).
620). area(w_germany,
area(nigeria, 373).
area(mexico, 764).
area(uk,86).

area(italy, 116).
area(france, 213).
area(phillipines,90).

area(thailand, 200).
area(turkey, 296).
area(egypt, 386).
area(spain, 190).
area(poland, 121).
area(s_korea, 37).
area(iran, 628).
area(ethiopia, 350).
area(argentina, 1080).

B. Fagin: MS R

96).

rt

66

SIEVE

% The Sieve of Eratosthenes, from Clocksin and Mellish
% primes(N,L) instantiates L to a list of primes <= N

primes(Limit,Ps) :- integers(2,Limit,s), sift(Is,Ps).
integers(Low, High, [Low, .Rest]) -

Low <= High, !, M is Low+1, integers(M,High Rest).
integers(_,_.[})-

sift([].[})-
sift([l, ..Is],[I, ..Ps]) - remove(l,ls,New), sift(New Ps).

remove(P,[|,[})-

remove(P,[I, ..Is],[I, ..Nis]) :- not(0 is I mod P),!,remove(P,Is,Nis).

remove(P,[I, ..Is|,Nis) - 0 is Imod P, !, remove(P,Is,Nis).
primes(16,X)?

B. Fagin: MS Report

67

REVERSE

preverse(|X | LO], L) :- nreverse(L0, L1), append(L1, {X], L).
nreverse([], {])-

append([X | L1], L2, {X | L3]) = !, append(L1, L2, L3).
append({], X, X).

nreverse(|1,2,3,4,5,6,7,8,9,10,1 l,12,13,14,15,16,17,18,19,20,21,22,23,24,25,26,27,28,29,30],X)?

B. Fagin: MS Report

B. Fagin: MS Report

69

