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ABSTRACT

Some properties concerning the structure of the F-indistinguishability
operators are analyzed. It is shown that any of such operators is generated by a
family of fuzzy subsets. This result, since it gives the way to construct F-
indistinguishabilities, facilitates new applications of fuzzy relations. The links
between F-indistinguishability operators and a kind of generalized metrics in the
unit interval -which are also explored- are used to define the canonical generators
of a F-indistinguishability operator that is, the fuzzy partition associated with the
operator.

.. :NTRODUCTION

Fuzzy relations and their applications have been largely studied in the recent past. Since
{Zadeh,1971) a number of papers dealing with various aspects related with these relations have
appeared. Fuzzy partition, distance, Cluster Analysis, Clustering, Pattern Recognition, Prefer-
auce, etc., are common key words in these papers, and indicate the main topics with which fuzzy
rclations are concerned. In fact, fuzzy relations provide a unifying point of view for many con-
ccpts and techniques for categorization used in various fields (see, for instance, Trillas, 1982 and
Trillas and Valverde,1983a). In addition, as it is shown in (Bezdek and Harris, 1978; Ovchinni-
-ov,1981; Ruspini, 1982 and others), new concepts and methods arise from the theory of fuzzy
rclations.

In this paper, it is shown that any F-indistinguishability operator on a set X , ie. any
rcflexive, symmetric and F-transitive fuzzy binary relation, is generated by a family of fuzzy sub-
sats of X. This result, which includes the representation theorem for probabilistic relations given
in (Ovchinnikov,1982), allows the construction of F-indistinguishabilities in a more efficient way
than the transitive closure method (Tamura et al. 1971; Kaufmann,1975) and the graph theoreti-
cal methods (see Dunn,1974) and, consequently, facilitates new applications of these relations.

The links between F-indistinguishability operators and a type of generalyzed pseudo-metrics
{Trillas and Alsina, 1978; Schweizer and Sklar,1983) are also analyzed. These links are used to
sztend the definition and results of {(Ruspini,1982) concerning fuzzy cluster coverages, i.e. the
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counterpart -for F-indistinguishability operators- of classical partitions.

For the sake of completeness, there is a preliminary section concerned with the definition
and properties of the quasi-inverses of continuous t-norms and t-conorms, which are used through
cut this paper.

2. PRELIMINARIES
The standard notations and conventions related with fuzzy binary relations, t-norms and t-

conorms will be used in this paper. However, it is convenient to recall the following facts:

2.1.- For any continuous t-norm F, § gF $ will denote the quasi-inverse of F, i.e.

15 can be easily shown that the quasi-inverse of a continuous t-norm satisfies, among others, the
following properties:

(2.1.1) If F is an Archimedean t-norm generated by f, i.e. [ is a continuous and strictly
decreasing bijection from [0,1] into [0, $ + inf $ | with f(1)=0 such that

then

$ pf § being the pseudo-inverse of f.

[2.1.2) $ qF $ is a continuous function if, and only if, F is nilpotent, i.e. F is Archimedean
and such that $ f(0)" <~ + inf § for any additive generator f of F.
{2.1.3) $ qF § is non-increasing with respect to its first argument and non-decreasing with

respect to the second argument.
{2.1.4) Itis $ qF (x|y)"="14$if, and only if, § x’<="y §.
{2.1.5) $2°<="qF (x|y) $ if, and only if, § F(z,x)"<="y §.
{2.1.6) $ F(qF (x]y)x)"="y $ if, and only if, $ x">="y §.
(21.7)  $ qF (Max(x,y)Min(x,y))"="Min ( qF (xy), qF (y[x)) $
(2.1.8) $ F( qF (x]y), aF (y|2))"<=" qF (x|z) §.
{2.1.9) If$Fsubl <="F sub2$then $ F sub 1 sup *"" “>="F sub 2 sup”"” $

The following are examples of t-norms, with their quasi-inverses, used in this paper:
{(£.2.1) If $§ F(x,y)"="Min(x,y) $§, then

{(E.2.2) If $ F(x,y)"="xy $ then $ gF (x|y)"="Min (1, y over x ) §.
z.2. If $ F(x,y)"="Max(x+y-1,0) §, then $ qF (x]y)"="Min(l-x+y,1) $.
{(Z.2.4) If $ Fsub a(x,y) =" pf (f(x)+ f(y)-f(Max(x,y,a))) §, then

where [ is any continuous and strictly decreasing function from [0,1] into [0, $ + inf $]
and $ a epsilon [0,1] $. With respect to the family $ (F sub a ) sub {a epsilon [0,1]} $
1t should be emphasized that it is a family of continuous t-norms such that $ Fsuba

=" Fsubb$if $a°<="b$ and $ F sub 0 (x,y)’="Min(x,y) §, $ F sub 1
(x,y)‘=‘ pf (f(x)+ f(y)) $, i.e. that family varies continuously with the parameter a,
from the Archimedean t-norm $ F sub 1 $ to the t-norm Min, which is, as it is well
known, the greatest t-norm.
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2.2.- Analogously, if G is a continuous t-conorm, then $ qG $ will denote the quasi-inverse of G,
ie.

s7hich satisfies, with the corresponding modifications, the properties (2.1.1) to (2.1.9), that is:

(2.2.1) If G is an Archimedean t-conorm generated by g, then

{2.2.2) $ qG $ is a continuous function if, and only if, G is nilpotent, i.e. G is Archimedean
and such that $ g(1)"<" + inf § for any additive generator g of G.

{2.2.3) If $ x"<="x prime $ then $ qG (x|y)">="qG ( x prime |y} $ and $ qG (y|x)"<="
qG (y| x prime ) §.

{2.2.4) It is $ qG (x|y)"="0$ if, and only if, $ x"<="y §.

(2.2.5) Itis $ z°>="qG (x|y) $§ if, and only if, § G(x,z)">="y $.

{2.2.6) $ G (qG (x]y)x)"="y $ if, and only if, § x">="y $.

(2.27)  $qG (Min(x,y)|Max(x,y))"="Max( 4G (x]y), G (y[x)) $-

(2.2.8)  $G(qG (xly), 4G (y]z))">="qG (x[z) $.

{(2.2.9) If$Gsubl " <="Gsub2$, then $ Gsublsup ™" "<="Gsub 2sup”"" §.

The following are examples of t-conorms, with their quasi-inverses, used in this paper:
(7.2.5) It $ G(x,y)" ="Max(x,y) §, then

(Z.2.6) If $ G(x,y)"="x+y-xy $, then $ qG (x]y)"="Max(0,(y-x)/(1-x)) §.
(2.2.7) - 1f $ G(x,y)'="Min(x+y,1) §, then $ qG (x]y)"="Max(y-x,0) §.
(.2.8)  If $ Gsub a(x,y)'=" pg (g(x)+ g(y}g(Min(x,y,a))) $, then

23-1f Gis a continuous t-conorm, then

is a continuous t-norm for any continuous and order reversing bijection $ phi $ from [0,1] into
itself, and vice versa. When $ phi $ is an involution (i.e. a strong negation) then $ F sub phi $
(resp. $ G sub phi (x,y)"=" phi sup {-1} (G( phi (x), phi (y))) $ ) is termed the $ phi -dual $ t-
norm of G (resp. the $ phi -dual $ t-conorm of F) and $ (F,G sub phi , phi ) $ is called a DeMor-
con Triple. $ F sub phisup ”"” § and G also satisfy

(2.3.
2.3,

1) $ F sub phisup """ (x]y) =" phi sup {-1} ( qG ( phi (x)| phi (y))) $, and
(2.2.2)

If$Gsub 1 "<="Gsub28$, then $ F sub {1 phi } ">="F sub {2 phi } $ and vice
versa.

Fipally, let it be noticed that in (Schweizer and Sklar,1983) a detailed study of t-norms and
t-conorms can be found. In addition, some specific properties of t-norms and t-conorms from the
tandpoint of their use in Fuzzy Set Theory can be found in (Klement, 1981; Alsina et al. 1983;
Trillas and Valverde,1983b) and related papers.
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3. ON F-INDISTINGUISHABILITY OPERATORS

Through out this section the basic concepts and properties related to F-indistinguishability
crerators are given, paying special attention to the most relevant facts for the subsequent
development. However, the readers are referred to the basic papers on that topic already men-
tioned in the introduction.

In what follows X stands for a non-empty set and F for a continuous t-morm. F-
ir.distinguishability operators are defined in the following way:

Definition 8.1. A map R from XxX into [0,1] is termed F-indistinguishability operator if the
fcllowing properties hold for any x,y and z in X:

(3.1.1) $ R(x,x)"="1$, (Reflexivity)
2.1.2) $ R(x,y)"="R(y,x) $, (Symmetry)
(3.1.3) $ F(R(x,y),R{y,z))" <="R(x,z) § (F-transitivity).

A I"-preorder is a map R satisfying both (3.1.1) and (3.1.3).

In other words, an F-indistinguishability operator is simply a reflexive and symmetric fuzzy
tclation which satisfies some kind of weak transitive property or, if it is preferred, a F-
ir.distinguishability operator is a symmetric F-preorder.

If, as usual, R(x,y) is assumed to be the strength of the relationship between the elements x
and y, then (3.1.3) gives a threeshold which should be attained by the strength of the relationship
between x and z given both the strengths of the relationship between x and y and y and z. Since
$ F{x,y)"<="Min(x,y) $, this threeshold is less than both R(x,y) and R(y,z).

Later we will come back to the meaning of that property, but now let be noticed that the
similarity relations (Zadeh,1971) are F-indistinguishability operators with $ F(x,y)"="Min(x,y) $;
the same applies, for instance, to the probabilistic relations of indistinguishability (Menger,1951)
with § F(x,y)'="xy $ and likeness relations (Bezdek and Harris,1978; Ruspini,1982) with §
F{x,y) ="Max(x+y-1,0) §. On the other hand, any (classical) equivalence relation is a F-
indistinguishability operator with respect to any t-norm F so, in that sense, the concept of F-
indistinguishability operator is a generalization of the concept of equivalence relation. This fact
may also be justified by the following interpretation of the meaning of the F-transitive property:
assume that R(x,y) is the truth-value, $ v(p(x,y)) $ of the proposition p(x,y): "x and y are simi-
lar”. If we suppose that the truth-values of the compound propositions ”p(x,y) and
pix’,y’)”, ’p(x,y) or p(x',y’)”, "not p(x,y)” and "If p(x,y) then p(x’,y’)” are given, respectively, by

v(p(x,y)$ inter $p(x',y"))=F(R(x.y)R(x"y")),

v(p(x,y)$ union $p(x"y')=G(R(x,y)R(x"y’)),

v("p(x,y))=n(v(p(x.y))), and

v(p(x.y)$ -> $p(x"y’))=$ Isub F (R(x,y)R(x"y'))"=" oF (R(x,y)|R(x"y)),$
where (F,G,n) is a DeMorgan Triple and $ I sub F $ is the R-implication associated with F (see

Trillas and Valverde,1983b), then the F-transitive property is equivalent to the assertion of the
statement " If p(z,y) and p(y,z) then p(z,2)” i.e.

is equivalent to the inequality

>From this standpoint, the F-indistinguishability operators may be viewed as the
equivalences associated to that kind of multivalued systems, i.e. in that systems they play the
same role played by the equivalence relations in classical logic.
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F-transitivity may also be formulated in terms of the Max-F composition noted here as $o
::b F §, that is, a relation R is F-transitive if, and only if,

““’hen R is a reflexive relation, then F-trasitivity is equivalent to the equality

ia. if R is a reflexive relation, then R is F-transitive if, and only if,

It is also well known (Zadeh,1971; Kaufmann,1975) that similarity relations can be con-
structed by means of the transitive closure of reflexive and symmetric relations: the same method
oy be used to construct F-indistinguishability operators. To show this, first we have the

Proposition 3.1. Let $ (R sub i ) sub {iel} $ be a family of F-indistinguishability operators over
ke same set X. Then

‘s 3 F-indistinguishability operator.

Proof. Obviously R satisfies both reflexivity and symmetry. The F-traasitivity of R can be stated
=5 follows:

1ad that inequality holds for any § iel §, hence

Since the relation defined by T(x,x)=1, for all x in X, is a F-indistinguishability operator
2or any t-norm F, it turns out that, given a reflexive and symmetric fuzzy relation R, the set $ B
sub R § of F-indistinguishability operators R’ such that $ R prime "<="R $, is non-empty; con-
gaquently

is a F-indistinguishability operator containing R. § R sup F § is the so-called F-transitive closure
of R. Using similar arguments as for similarity relations ( see Kaufmann, 1975) it can be shown
hat

~sere $ Rsupa "="R" osubF ~“sup n) “osub F R §. When X is finite of cardinality p, then

result which allows the effective construction of the F-transitive closure of finite reflexive and
cymmetric fuzzy relations.

So far, in most algorithms which use fuzzy relations in Pattern Classification and Cluster
:..alysis, the indistinguishability operator is obtained computing the F-transitive closure of a
-iven reflexive and symmetric fuzzy relation. That process requires a large number of operations
.4, in each step of the calculation, storage for the upper triangular part of three matrices is
tequired. In the next section it will be shown that, for any given reflexive and symmetric fuzzy
:¢!ation R and for any continuous t-norm F, a F-indistinguuishability operator § R sub F $ exists
cach that $ R sub F "<="R $ and $ R sub F $ is the greatest F-indistinguishability operator

1. aich satisfies both



;or all x,y and z in X, i.e. $ R sub F $ may be viewed as a sort of "lower” F-transitive closure of
.. A method will be also given which allows $ R sub F $ to be computed in just one step, which
:neans that less operations will be used and only storage for the upper triangular part of two
matrices is required.

F-indistinguishability operators may also be constructed from F-preorders in the following
SENE

Croposition 8.2. Let U be a F-preorder, then

", a F-indistinguishability operator for any t-norm F’ such that $ F"<="F prime §.

Thus, since $ F(x,y)" <="Min(x,y) $ for any t-norm F, it turns out that, given a F-preorder
U, the fuzzy relation

is the greatest F-indistinguishability operator contained in that F-preorder.

Moreover, a straigthforward calculation shows that a F-tramsitive fuzzy relation is .
tramsitive for any other t-norm F’ such that § F prime “<="F $§ as well. So, any similarity rela-
tion is F-transitive for any t-norm F, as well as any $ F sub a $-indistinguishability operator, $ F
sub a § being the t-norm of the example (E.2.4), is a $ F sub 1 $-indistinguishability operator.

It should be noticed that, when X has only two elements, the set of F-indistinguishability
coerators coincides with the set of reflexive and symmetric fuzzy relations, i.e. such relations are
T-transitive for any t-norm F.

Z. THE REPRESENTATION THEOREM

In this section it will be proven that any F-indistinguishability operator on a set X is gen-
erated by a family of fuzzy subsets of X. That result, which also provides an effective method to
construct F-indistinguishability operators, works as follows:

Theorem 4.1. Let U be a map from XxX into [0,1} and let F be a continuous t-norm. U is a F-
nreorder if, and only if, there exists a family $ ”{” hj ”}” sub {jeJ} $ of fuzzy subsets of X such
that

Proof. Let U be a F-preorder. The F-transitivity of U entails
for any x,y and z in X. Thus
since U is reflexive, it follows that $ U(x,y)" =" qF (U{y,y)[U(x,y)) $, and therefore

where $ h sub z (x)"="U(x,z) § that is, the condition is necessary.
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Now, let $ "{” hj "}” sub {jeJ} $ be an arbitrary family of functions from X into [0,1], since
9 gF (x|x)"="1$, the fuzzy relation

is reflexive. In order to prove that U is F-transitive, for a given x,y and z in X and for each $¢t
epsilon J §, let be

> From the definition of U it follows that
tous

cr any $ t epsilon J §. Consequently, it is

To complete the proof, it suffices to show that

..nd this can be done in the following way: since $ F (aft , hsub t (z))"<="hsub t (x) $ and F
i3 associative it is

consequently, we have

and therefore

Taking into account the proposition 3.1 and the property {2.1.7) fulfilled by any continuous
t-norm F, the following theorem can be easily shown

Theorem {.2.(Representation theorem). Let R be a map from XxX into [0,1] and let F be a con-
tinuous t-norm. Then R is an F-indistinguishability operator if, and only if, there exist a family $
»{” hj ”}” sub {jel} $ of fuzzy subsets of X such that

(RT)
forall x,y in X,

It is worth noting that one of the main features of this theorem is that it allows to compute
the F-indistinguishability in just one step. Consequently it requires both less storage and less cal-
culations than the traditional methods. In addition, since no constraints to the fuzzy subsets gen-
erating the indistinguishability, it turns out that in Fuzzy Cluster Analysis, for instance, this
result is a very useful tool: assume that X is a set of elements which should be classified according
to some prefixed criteria (i.e. prototypes); after the evaluation of the degree of similarity of each
element $ x epsilon X $ to the criteria j (i.e. the similarity between x and the prototype i) which
is given by $ hj (x) §, what formula (RT) provides is a way to gather all these evaluations to get
a F-indistinguishability operator and therefore, as will be shown in the last section, a structural
description of the data sample.



ZXAMPLES
(£.4.1) If $ F(x,y)"="Min(x,y) $, then the F-indistinguishability operator (the similarity rela-
tion) associated to $ ”{” hj ”}” sub {jeJ} $§, § hj epsilon [0,1] sup X $, is given by

where $ Jsub xy"=""{" jeJ*|" hj (x)"!="hj {y)"}" .

{£.4.2) If $ F{x,y)"=xy §, then

(Z.4.3) If $ F(x,y)"="Max(x+y-1,0), § then

(Z.4.4) If $ F sub a (x,y) =" pf (f(x)+ f(y)}-f(Max(x,y,a))), § then

Finally, let it be noticed that, when the representation theorem is applied to construct the
F-indistinguishability operator $ R sub F § generated by a reflexive and symmetric fuzzy relation
R, i.e. when the functions $ hj § are the rows (or the columns) of R, then it is

that is, $ R sub F {x,y) $ is either $ R(x,y) $ or the greatest number among those which satisfy
both

for all z in X. The point is that, from the representation theorem follow both the existence of such
indistinguishability operator and the method to compute it. Moreover, the use of the representa-
tion theorem no longer requires a complete fuzzy binary relation, neither reflexivity nor symmetry
are required. The initial data may be just a few (even one!) arbitrary functions from the set X
into [0,1].

3. F-INDISTINGUISHABILITIES AND G-METRICS

Now we turn our attention to one of the most importants features of the F-
indistinguishability operators, which is their relationship with metrics. It is well known that if R
is a likeness relation, then $ d(x,y)"="1-R(x,y) $ is a normalized pseudo-metric on X; in fact that
nroperty is used as one of the major arguments to introduce likeness relations because the triangle
izequality refines the ultrametric inequality given by the similarity relations.

First of all, let it be noticed that any pseudo-metric may be transformed into a F-
izdistinguishability operator that is, we have the following

Theorem 5.1. Let d be a pseudo-metric on X and let f be a continuous and strictly decreasing
Lijection from $ [0, + inf | § into [0,1], then

is a F-indistinguishability, where $ F(x,y) ="f{f sup {-1} (x)+f sup {-1} (v)) $. Conversely, if R
is a indistinguishability operator with respect to an Archimedean t-norm F, then



is a pseudo-metric, f being any additive generator of F.

Thus, if d is a pseudo-distance, then N
is a probabilistic relation, as well as

is a likeness relation, and so forth. That is, when there is Archimedeanity, just by reversing the
»scale” -through the order reversing bijection f- a pseudo-metric is obtained and vice versa. F-
indistinguishability operators with respect non Archimedean t-norms do not give pseudo-distances,
but G-pseudometrics:

Definition 5.1. Given a continuous t-conorm G, a map m from XxX into [0,1] will be termed G-
rzeudometric if the following properties hold for all x,y and z in X:

(5.1.1) $ m(x,x)"="0%$

{5.1.2) $ m(x,y)'="m(y,x) $

(5.1.3) $ G(m(x,y),m(y,z))">="m(y z) §, (G-triangular inequality).

A G-metric is a G-pseudometric such that m(x,y)=0 if, and only if, x=y.

G-pseudometrics are simply an special type of Generalized Metrics introduced by Trillas (see
T:illas and Alsina, 1978; Schweizer and Sklar,1983). It can be easily shown that, for any continu-
ots t-norm G and any continuous and order reversing bijection $ phi $ from [0,1] into itself, the

o
Ry

5 a G-metric in [0,1]. The following are examples of that kind of G-metrics:

EXAMPLES.
(£.5.1)  Let be $ G(x,y)'="Min(x+y,1) $ and $ phi (x)"="1-x §, then

In general, If G is a nilpotent t-conorm generated by g and $ phi (x)"=" pg (g(1)-g(x))
$, then

(E.5.2) It $ G(x,y))"="xy $ and § phi (x)"="1-x §, then

{(£.5.3) If $ G(x,y)"="Max(x,y) § and $ phi § is any continuous and order-reversing bijection
from [0,1] into itself, then

i.e. $ mgp $ is an ultrametric.
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115.5.4) If $ Gsub a (x,y)" =" pg (g(x)+ g(y)}2g{Min(x,y,a)})) §, then

When $ g(x)"="x $ and $ phi (x)"="1-x §, we have

G-pseudometrics and F-indistinguishability operators are dual concepts in the following
suase:

= orem 5.2. Let R be a F-indistinguishability operator and let $ phi $ be a continuous and
<. er-reversing bijection from [0,1] into itself. Then

; 2 G-pseudometric and vice versa, where $ G(x,y)'=" phi sup {-1} (F( phi (x), phi (y))) $.

It should be noticed that when $ phi $ is a strong negation, the G-pseudometric $
m{x,y) =" phi (R(x,y)) § may be viewed as the degree of truth of the proposition “p(x,y): "x and
v are disimilar”, in that case, the "disimilarity” between x and y is measured by a distance. From
taat point of view, the G-triangular inequality is equivalent to the assertion of the proposition ”If
z and z are disimilar then z and y are disimilar or y and z are disimilar”.

Finally, it worth noting that, since F-indistinguishability operators and G-pseudometrics are
dual concepts, it turns out that the theorem 4.2 also provides a representation theorem for any
G-pseudometric that is, we have the following

Theorem 5.9. Let be G a continuous t-conorm and m a map from XxX into [0,1]. Then m is a
G-pseudometric if, and only if, there exists a family of functions from X into [0,1] $ "{” hj "}
¢ub {jeJ} §, such that

Thus, for instance, any ultrametric m on a set X is determined by such a family of functions
in the following way:

caalogously, any G-pseudometric m with respect to the t-conorm $ G sub a $ defined in the
axample (E.2.8) is determined by

.. FUZZY CLUSTER COVERAGES

Several authors have been dealt with the problem of how to extend to the fuzzy framework
‘be concept of partition. Thus, several attempts to define the so-called fuzzy partitions have been
made and the properties of the fuzzy relations associated with these fuzzy partitions (when that
makes sense) have been characterized (see, for instance, Bezdek and Harris, 1978; Ovchinnikov and
Riera,1982). Here the converse way will be followed as, for instance, it is done in {Ovchinni-
%ov,1981; Ruspini, 1982), that is, a fuzzy partition will be defined as a family of fuzzy subsets
satisfying some requirements which allow to characterize univocally a F -indistinguishability
cperator and we will be mainly concerned with the approach given in the last of the
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lorementioned papers, where the concept of fuzzy r-cluster is introduced in the following way:
siven a reflexive and symmetric fuzzy relation r on X, a fuzzy subset ¢ of X with non-empty core
{i.e. the set $ "{""x epsilon X"|"c(x)"="1""}" § is non-empty) is called fuzzy r-cluster if the fol-
lowing properties hold for any x,y and z in X:

3.1) If ¢(x)=1, then ¢(y)=r(x,y),

(6.2) $ | cx)ely) | <="1-r{x,y) $.

It is pointed out that the family of ”similarity classes” given by any likeness relation r (i-e.
1e fuzzy subsets of X defined by $ ¢ sub x (y)"="r(x,y) $) satisfies the two following properties:
8.3) $ "{” c sub x "}” sub {x epsilon X} $ is a fuzzy coverage of X (i.e. § Sup sub {x

epsilon X} ¢ sub x (y)"="1"=Sup sub {y epsilon X} c sub x (y) $),

(5.4) For any $ x epsilon X §, $ ¢ sub x § is a fuzzy r-cluster.

Conversely, if for a given reflexive and symmetric relation r, the family $ "{” ¢ sub x ”}”
sub {x epsilon X} $ defined as above is a fuzzy coverage of X satisfying the property (6.4), then r
should be a likeness relation. Thus, fuzzy r-clusters are the counterpart, for likeness relations, of
classical clusters (equivalence classes with respect to an equivalence relation).

In order to extend these results to any F-indistinguishability operator, let be noticed that
Ruspini’s definition involves a particular metric in the unit interval, the restriction to that inter-
val of the Euclidean distance. In fact, this definition may be viewed as a generalization of the
definition of classical clusters because, as it is easy to show, classical clusters can be characterized
by means of
(6.5) If $ musub A "="1,""then mu sub A (y)"="mu sub R (x,y) §,

(6.6) $ d sub 0 ( mu sub A (x), mu sub A (y))" <="1- mu sub R (x,y) §,
where $ mu sub A $ is the characteristic function of the set A and $ d sub O $ is the discrete dis-
tance in the two-point set $ ”{” 0,1 "}” §.

Consequently, it may be expected that, by taking different metrics, different kinds of fuzzy
r-clusters will be obtained and, therefore, different kinds of F-indistinguishability operators. In
other words, it should be expected that a "metric” m in [0,1] may be associated with any t-norm
F, in such a way that m allows , as the Euclidean distance does for likeness relations, the charac-
terization of the similarity classes of any F-indistinguishability operator. It will be shown that the
G-metrics $ mgp $ defined in section 5, play that role. To this end, the following definition is
ziven:

Definition 6.1. Let r be a reflexive and symmetric fuzzy relation on X. For a given G-metric §
mgp $, a fuzzy subset ¢ of X with non-empty core will be termed fuzzy r-cluster with respect
to $ mgp $, if the following properties hold for any x and y in X:

(6.1.1) If ¢(x)==1 then c{y)=r(x,y),

{6.1.2)  $ mgp (c(x),c(y))"<="phi (r{x,y)) $.
A fuzsy r-cluster coverage of X will be a fuzzy coverage of X such that each of its elements is
3 fuzzy r-cluster.

It is easy to show that if C is a fuzzy r-cluster coverage of X, then any two elements of C
cither coincide or have disjoint cores, i.e. the family of cores of the elements of C is a classical
-artition of X. Obviously, any one of such a partition is a fuzzy r-cluster coverage with respect to
any G-metric that is, the above definition extends, in that sense, the concept of classical partition.
Moreover, we have

Theorem 6.1. Let R be a F-indistinguishability operator on X and $ C sub R "=""{" g sub x
aysilon [0,1] sup X | x epsilon X ”}” §, where $ g sub x (y)"="R(x,y) $. For any continuous and
order-reversing bijection $ phi § from [0,1] into itself, $ C sub R $ is a fuzzy R-cluster coverage
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with respect to $ mgp $, where $ G(x,y)" =" phi sup {-1} (F( phi (x), phi (y))) $

Proof. >From the reflexivity of R it follows that $ C sub R $ is a fuzzy coverage of X. On the
other hand, if $ g sub z (x)"="1 §, since R is F-transitive, we have

shat is, $ g sub z (y)"="R(x)y) §.
Finally, again from the F-transitivity, both

and

Jollow, hence

Consequently, for any given continuous and order reversing bijection $ phi § from the unit inter-
val into itself, it is

that is,

where $ G(x,y)"=" phi sup {-1} (F( phi (x), phi (y)) §.
Similar arguments can be used in order to prove the converse, that is the

Theorem 6.2. Let be R a reflexive and symmetric fuzzy relation on X and $ C sub R $ the family
of fuzzy subsets of X defined as in the above theorem. If § C sub R $ is a fuzzy R-cluster cover-
age of X with respect to some G-metric $ mgp $, then R is F-transitive, where $§ F(x,y)"=" phi

sup {-1} (G( phi (x), phi (y))) $.

That is, with respect to the generalized metric spaces determined by the G-metrics in [0,1],
F-indistinguishability operators are the same as classical equivalence relations with respect to the
discrete distance. Thus, likeness relations are the indistinguishability operators associated with
the restriction to {0,1] of the Euclidean distance, as well as probabilistic relations are the indis-
tinguishability operators associated to the G-metric given in the example (E.5.2), and so forth.

Let it be noticed that the fuzzy cluster coverages may also be defined without any reference
to the relation r in the following way

Definition 6.2. A fuzzy coverage $ "{” g sub x "}” x epsilon X § of s given set X is called 3
ragp $-fuzzy cluster coverage if

(6.7)

>From this definition it also follows that the fuzzy relation

;s a F-indistinguishability operator, where $ F(x,y)"=" phi sup {-1} (G( phi (x), phi (y))) $.
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The requirement (6.7) is equivalent to the following equality

«hich also characterizes the fuzzy coverages associated with the F-indistinguishability operators
{at is has been shown in (Ovchinnikov,1981)). Although definition (6.2) looks more elegant than
definition (6.1), the latter has the advantadge of showing the metric interpretation of F-
indistinguishability operators better.

Finally, it is interesting to note that the representation theorem may be formulated in the
tollowing way: with any family of fuzzy subsets of a given set X a fuzzy cluster coverage may be
associated for any continuous t-norm F, or if it is preferred, for any G-metric in the unit interval
$ mgp $. In general, the fuzzy cluster will be different for different t-norms but, it is easy to show
that the classical partitions yielded by the cores of all fuzzy cluster coverages obtained from a
given family $ "{” hj ”}” sub {j epsilon J} $ will coincide. In fact, that common partition is the
partition associated with the equivalence relation defined by $ x ==y $ if, and only if, $
hj(x)" ="hj(y) $§ for ail § jeJ §.

Consequently, the use of different t-norms makes differences only in the membership values
to the fuzzy clusters which are different from 1 that is, since if $ F sub 1 "<="F sub 2 § then $
Fsub 1sup ”"” “>="F sub 2sup """ §, the greater the t-norm the smaller those values. From
that standpoint it makes sense to look for the "better” t-norm F (the better indistinguishability)
associated with a given family of fuzzy subsets. That question is partiaily analyzed in (Lépez de
Midntaras and Valverde, 1983).
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