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ABSTRACT

TEMPO keeps the clocks of computers in a local network synchron-
ized with an accuracy comparable to the resolution of each individual
clock. In a loosely-coupled network the machines can only compute the
differences between the times of their clocks. A new algorithm has been
devised to perform this measurement; 3 protocol based on it can adjust the
clocks by means of a new system call that has been added to the kernel of
the Berkeley UNIX 4.2BSD operating system.

Several experiments show that a total quass ordering can be based on

the unique network timing maintained by the service.

Introduction

The abstract concept of time, and the problem of measuring it, have always been
one of the major concerns of human beings. Time has been related to the declination of
the sun, the phases of the moon, the position of the stars. The search for a simple device
able to measure this physical quantity has been the next logical step. From the sundial to
the hourgiass, from the mechanical to the atomic clock. there has been a constant
improvement in the accuracy of this measurement. But even in the days of high technol-

ogy, the problem of keeping geographically dispersed clocks well synchronized has not
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found a satisfactory solution. If the events of interest occur at the rate of the passage of
busses at a bus stop, then the precisions of the driver's and the passengers’ watches may
be sufficient to coordinate the actions of all the parties involved. When, on the contrary,
events follow each other at a much higher rate, then the precision and the stability of
standard quartz clocks may not be enough to assure coordination of activities in a com-

plex system.

All computers utilize one or more quartz clocks to synchronize the internal activities
of their constituent parts. One of the clocks, which consists of an oscillator and a count-
ing device, is often used to provide the time-of-the-day service. The oscillator generates a
periodic waveform at a uniform rate, while the counter records the number of elapsed
cycles. When the counter reaches a predetermined value, an interrupt is generated which,
in general, causes the software to increment an internsal variable accessed by local pro-
grams. Time is therefore divided into intervals, and for the Berkeley UNIX 4.2BSD

operating system running on VAX (*) machines this interval is 10 milliseconds.

The time-of-the-day service is important for a number of reasons:
o It provides the real time whenever required.
o It is the basis for measurements of performance and utilization of resources.
e It induces a total om’cringl on the events occurring in the system.
o It is helpful in the synchronization of various processes.

e [t produces the values of a strictly monotonsic function

With respect to an external ideal clock, the behavior of a physical clock might be
described in terms of the time offset, the frequency offset, and the frequency offset rate.
In the case of quartz oscillators, the frequency offset can be reduced to within 1 part in
10!! and the frequency offset rate is in the order of 1 part in 105/day.

The change in frequency offset is related to the change of the characteristics of the quartz

oscillator due to temperature gradient effects, mass changes for absorption and desorption

(“) VAX is a trademark of Digital Equipment Corporation.

Since the time is divided into 3 sequence of intervals, two different evenss may happen during the
same interval and therefore have the same timestamp. Thus, the total ordering defined above is in
reality a total quast ordering Kura7s].



of gas, imperfections in the crystal lattice, and similar effects [Elli73]. For example, in a
VAX processor, the frequency offset rate of the interval clock has a typical value of 1 part
in 104/day [DEC81]. (This value seems higher than the normal for standard quartzes, but
the manufacturer says conservatively that the accuracy may further change with tempera-

ture variations).

The frequency offset, which can reasonably be thought to have a pormal distribution
with mean zero, causes two initially synchronized clocks to drift apart and show a time
offset. The frequency offset rate, the derivative of the frequency offset function, can usu-

ally be considered zero for most standard quartzes during relatively short periods of time.

The desire for synchronized clocks in a distributed system arises from the same
requirements as those described above for an accurate clock on a single machine. In our
approach, we do not view the local time and the network time as two separate concepts,
but, by identifying them, we provide several autonomous machines with a more accurate

time function than those generated by their own clocks.

In the next sections we describe our algorithm and the protocol used to synchronize
the various clocks. The problems that led us to the design of a new system call are briefly
addressed. The results of a series of experiments that illustrate the effects of TEMPO on
the network are reported. A discussion of the advantages introduced by this new service

into the system is finally presented.

The Algorithm

It is possible for different machines in a loosely coupled network to compute the time
offsets of their clocks. There are various algorithms [Marz83] [ElliT3] for doing that. The
one we devised combines simplicity and accuracy. It works as follows.

Suppose process A and process B need to evaluate the clock skew between the two
different machines on which they are running. Process A (the master process) sends a

timestamped message 1o process B.



Process B (the slave process) timestamps the received message and computes:

d, = timestampg — timestampy (1)

When a process reads the time to timestamp a message, it introduces an error (see
Fig. 1) that, for simplicity of analysis, we assume to be uniformly distributed between 0

and 10 milliseconds if such is the width of the interval between two clock’s t,icks.2
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Fig.1 - Timing diagram

° Such an assumption is realistic but might be imprecise in that, due to the priority structure of the
kernel, some drivers could delay the execution of the routine that updates the clock, with the result

that ticks would no longer be equally spaced in time.



We can therefore write:
d, = timeg — em — timea + €ay (2)
that is:
d, = (timeg — timeq) — (em — eay) = Ty + Delta — Erry (3)

where T, is the transmission delay, 3 random variable whose distribution is unknc:wn,3
and Delta is the time offset we are trying to estimate. Err, may be assumed to have; a tri-
angular symmetric density function, and equals e; — ear

Process B repeats the same sequence of events and sends, embedded in the message,

its perception of the delay time d, to process A.

Process A computes:

dy = (timeay — timegn) — (eaz — em) = T2 = Delta — Errs (4)
and:
a! =—d—’—.3——§3 — Deita +-12 - T) _ (Em - Erra) 5)

The third term on the right-hand side is a random variable whose density has the
shape shown in Fig. 2; it is the convolution of the densities of Err; and Erry, since the two

random variables are independent.

-20 0 +20

Fig.2 - The probability density function of Errl - Err2

~he second term on the right-hand side is the difference of two independent random

® T, depends on several factors: the software overhead and :he buffer delay on the sending machine,
the network access time, the network transmission time, the software overnead ‘and the buffer delay
on the receiving machine. It may also happen that the execution of the process is not resumed im-
mediately after the system call that reads the time returns. The expected vaiue and the variance of
T, are strongly system dependent: even staying within the UNLX world, the different interrupt struc-
tures of the VAX 750s and 780s, the use of differeat network controller boards, or the utilization of a
network with one topology instead of another, may modify it.
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variables with the same unknown den:si‘cy:4 hence, its density may be assumed to be sym-

metric.

We can now exploit these properties and compute:

Sj(dn — dyy)

where d,; is computed like d, and dq like do.

Expression (6) can be written:®

ZMJ(TU ~ Ty) z‘(E"h' — Erry)

p 2
yxx} s=x] L d
Deita + < - ~ (7)

The second and the third term of (7) have mean p = 0; therefore, because of the
Strong Law of Large Numbers, for IV large, (8) converges to Delta.

This algorithm has been implemented and tested for N = 16, 32 and 64. The details
of the implementation will be described later, but here it is interesting to note that the
measurements presented in all of the three cases an evident ripple, that is, a spurious
oscillation around what could be supposed to be an accurate estimate of Delta. One rea-
son for the observed' behavior is that the value of expression (7) is semsitive to the variance
of the transmission delay, which happens to be very high.

Instead of further increasing XN, or eliminating those values which were found to be
excessively large while computing the summations in (7), a newer and simpler approach

was chosen.

Suppose that we compute separately:
dymin = Min dy;, dopea = min duy (8)

and then:

4 This assumption again might not be accurate if the network has different machines and communica-
tion controller boards. Furthermore, the pricrities of the two communicating processes, which are
recomputed by the kernel according to the amount of CPU time consumed by them, may be dil-
ferent, thereby a{Tecting their response times.

§ 1, is assumed that the variations of Deita due to the relative drift of the two clocks are negiigible
during the time necessary to complete the measurements.



_ dymin = G2min min (Th' — Erry) = min (T — Erras)

A" ———T——-' = Dclta + p3 (9)

In this way, we free A" from the problem of the high variance of the transmission
time. In fact, the two terms to be minimized in (9) are instances of the same random
variable, and the minima are two random variables with the same distibution. The vari-
ance of the minimum was much smaller than the one of the original function; hence, the
difference of the two minima was found to be negligible. The above statement is based on

the observation of the small variance of A",

Using the method summarized in {9), we have been able to get estimates of Delta 30
accurate that the sequence of data obtained varied in a strictly monotonic fashion and at
a constant rate.

D Mounet to Arpa
Master: Monet

! Arpa to Monet

12 3 4 5 6 1 & 9 10
Order number of the message

Fig.3 - Relative frequency of the selection of the i-th
message as the minimum-delay message.

The softwz measurements revealed a rate of variation of the time oifset equal to



the one we obtained, using a high precision frequency counter, from bardware measure-
ments of the clock frequencies of the machines involved in the experiment. The value of
N npecessary to obtain such an accuracy is surprisingly low: experiments show that, in
96% of the cases, the minimum is reached before the 7th exchanged message (see Fig. 3
and Fig. 4). These figures show the relative frequencies with which the ith message
(i=1,2,...) was found to produce the minimum delay. They have been obtained by taking

measurements over several days of activity.
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Fig.4 - Relative frequency of the selection of the i-th
message as the minimum-delay message

In most cases, the first message was chosen, no matter which of the machines was
acting as the master. The higher the order of a message. the fewer the times it was
chosen. It is particularly interesting to observe that the histograms of the messages from

Arpa (a VAX 780 to Monet {a VAX 750) are different from the ones of the messages {rom



Monet to Arpa. This fact can be related to the different behaviorS of the two machines

with respect to communication facilities (especially to their different interrupt structures).

The Underlying Communication Facility

At Berkeley, some of the machines are connected via 10 Mbit/s Ethernets, but the
global communication facility is a 3 Mbit/s Ethernet. The machines are VAX 780s, VAX
750s, and SUN workstations, all running Berkeley Unix 4.2BSD. The implementation

described here has been restricted so far only to the VAX's.

Name Type of VAX  Physical Memory Number of Disks Max Number of Users

Arpa 780 M 3 32
Calder 750 2M 1 18
Dali 750 4M 3 32
Ernie 780 &M 4 64
Kim 780 4M 3 32
Matisse 750 M 2 16
Monet 750 2M 3 16

Table 1 - The Machines of the experiments

The basic structure for communication between machines is the socket. Each socket
has a type that is chosen according to the communization properties visible to the user.
The two most important types of communications available are stream and datagram. A
streamn socket provides a service which is bidirectional and reliable. The flow of data is

sequenced and unduplicated
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A datagram socket supports a bidirectional flow of data which is not guaranteed to
be sequenced, reliable, or unduplicated [Leff83]. In the Ethernet, however, messages are
not duplicated or sent out of order. But, as soon as they pass through a gateway, even
though only to connect to another Ethernet local area network, the order and number of

messages at the destination may differ from those at the source.

The first experiments during the implementation phase of the project were per-
formed using stream sockets. The results were very encouraging, but the problems
caused by the delays introduced by the protocol when a message Was lost and therefore
retransmitted, were too cumbersome to handle in a simple way. We decided therefore to
use datagram sockets for the eventual implementation. Gateways were not to be crossed,
and we decided mot to deal with duplicated and out-of-order packets; since our software
atilizes a very simple non-acknowledging protocol, taking care of these problems, though
not difficult, would imply non-trivial software modifications. The advantages we
obtained, using the UDP protocol [ARPAS0], were a shorter transmission time with a
smaller variance because of the simpler software interface and of the non-retransmission of
the lost packets. In fact, our implementation of the algorithm described simply restarts

tke dialogue if a timeout occurs due to 2 lost packet.

The Protocol

Having described the basic algorithm and the communication structure on which we

rely, we shall now examine the protocol that processors utilize to synchronize their clocks.

In UNIX terminology, a daemon is an invisible program constantly running in the
background and providing some service. Slave timedaemons run on all processors except
on one of them, where the master timedaemon runs. The master starts the synchroniza-
tion mechanism, and coordinates the activities of all the other processes. The algorithm
described above is implemented by the routine measure, which returns the difference A"
between the clocks of the two machines. The basic protocol used by the master works as

follows:

1. The master selects, using the Inter-Process Communication mechanism described
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above, one of the machines.

9. It calls measure and stores in an array the difference between its own clock and the
clock of that machine.

3. After all the machines have been polled, it computes the network average delta as
the average of all the different deltas.

4. It asks all the slaves to correct their clocks by a quantity equal to the difference

between the network average delta and their individual deltas.

The relative frequencies of the corrections performed on four different machines of

the Berkeley Network over a period of several days are shown in Fig. 5 and Fig. 6.

Arpa
0.5
.
-20 ' O U 3 0
. Calder
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-0 -9 - =0 0 > 20

Fig.5 - Histograms of the adjustments made on Arpa and Calder
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The protocol does not correct the local time on a machine unless the difference
between this time and the network time is smaller than -5 or greater than § milliseconds.
The precision needed determines the polling rate of the master timedaemon: if for example
two computers have clocks drifting apart 10s per day, to keep them synchronized within a

range of 20ms we have to check them at least once every ~173 seconds.

The regularity of the adjustments in our experiments was remarkable: most of the
corrections were contained between § and 10 msec for the “slow’” machines (the clocks of

which tend to be left behind) and -10 and -5 msec for the “fast” ones (whose clocks tend

to run ahead).

Matisse
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Fig.6 - Histograms of the adjustments made on Matisse and Monet

When one of the slaves does not answer the requests of the master timedaemon, after

a short series of timeouts the master conciudes that the host on which the siave runs has
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crashed, or is anyhow non-operational. When the host is reconnected to the network and
the slave timedaemon is restarted, the master recogmizes it and restarts polling it again
with all the others. If the slaves do not receive any messages from the master within a
certain amount of time, they assume the master host to be out of service, and start an
election algorithm to choose another master. The algorithm we have chosen for this func-

tion is general and fault tolerant [Rica81] [LeLaT7].

A pew command, tempo, has been introduced to allow superusers to set the date on
all the machines controlled by timedaemons. In fact, TEMPO will override the time

changed on any single machine by the old date command.

Problems encountered and solutions devised

The following is a discussion of the problems we faced during the development of

TEMPO.

The algorithm described above is very semsitive to the instability of any one of the
machine clocks. One of our largest machines, for instance, had a clock which usually lost
about two minutes per day. The network time was then affected by the “sick’” machine,
which induced undesirable time modifications in all of the other clocks. The countermeas-
ure we adopted was to compute the network time as the average of the times of the larg-
est set of clocks that did not differ from each other more thazn a predefined quantity after
each set of measurements. This proved to be consistent and robust enough to take care of

the problem.

Another problem was originated by a flaw of Berkeley UNIX 4.2 BSD, that until
then had been harmless. The system's kernel contains a routine that is used to print vari-
ous messages on the console. Sometimes, due to the special real-time requirements of
some drivers in the UNIX kernel, when the print routine was called by one of those
drivers running at the highest priority, the interrupts generated by the clock were ignored
by the kernel for all the time necessary to print. The problem was particulariy acute for
one of our machines, whose console is a 300-bit/sec serial lineprinter. This virvually

stopped the clock: from the point of view of the user pothing was happening, siace any
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activities the user could see were suspended, but from the network’s point of view the
timedaemons experienced long delays. This problem was solved by using an independent
clock, also available on the VAX [DEC81], to check the elapsed time after each call of the
routine.

Another intriguing problem we had to face was that of moving the time backward.
In fact, since the network time is an average, some of the corrections to be made are
negative in value.

An alternative approach could have been to keep track of the differences between
the times, and provide a new system call that would correct the local time and return the
network time whenever required. But in this way two different timings would have
existed in the same system, and the users would have had the option {(and the responsibil-
ity) of selecting the one they needed. We felt that it would be better to avoid any ambi-
guity by maintaining a unique network time.

In the first versions of TEMPO, the setting of the time was accomplished by means
of the sysw;em calls gettimeofday and settimeofday. The sequence of operations was:

1. Get the date
9. Add or subtract the computed delta

3. Set the time with the new value.

Our intuition was that nobody could tell if we moved the time backwards only by a
small quantity. The idea was to keep the modifications smaller than the execution time of
any system calls. In this way, the time after the execution would have always been greater
than the time before. For example, the order of creation of two files would have still been
reflected by their creation times.

But what happened actually was that the computed delay was oscillating, and was
larger than expected. Furthermore, once in a while (and so infrequently that phenomena
were at first difficult to understand), the more loaded machines showed unexplainable
large delays, and their clocks seemed to miss ticks.

Bv further experimenting, we found an explanation for this strange behavior.
- [=2] (=]

The timedaemons are started with the highest priority allowed to any process. Due
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to the particular scheduling policy of UNIX, the process priorities are recomputed once a
second and changed according to the amount of CPU time obtained by the process. What
happened was simply that the daemons were occasionally interrupted by the scheduler
right between the systems calls settimeofday and gettimeofday: the subsequent correc-

tions were therefore inconsistent.

The problem due to the scheduler, and the problem of setting the time backward
were both solved by designing a new system call, adjtimc,6 that implements the whole
operation in an atomic fashion. Adjtime moves the time back and forward while always
maintaining the monotonicity of the time function. This is accomplished by using for a
suitable interval a smaller or larger increment to update the system time. So, the value of
the clock time is never decremented: its growth rate is only slowed down or accelerated

depending on the situation.

The new system call allows us, however, to add to the time any quantity in only one
step. We thought that this alternative choice could be useful in any cold start, when a

larger correction may be required.

It has to be pointed out that TEMPO provides a ‘‘better” time than the ones of the
single machines, since the inaccuracies of the respective clocks are partially corrected by

the averaging operations.

A question now arises on the accuracy of the synchronization accomplished by the
petwork time controller. It is in general very difficult to measure time discrepancies pre-
cisely; the difference in time between any two machines is a stochastic function depending
on the drift of the two clocks and the corrections made by the timedaemons. The follow-

ing set of experiments provided us with a rough estimate of the accuracy of TEMPO.

The time necessary for a short message 10 g0 from one machine to another in either
of the two directions was measured in a very large number of cases. during a whole day.

The densities of the relative frequencies obtained in two of the experiments performed are

shown in Fig. 7. The saw-tooth shape of these functions, which is irrelevant for the

® See appendix
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present discussion, can be explained by the statistical composition of the corrections per-
formed by the timedaemons. Every single measured value consists of the transmission
time, the current delta between the two machines, and the usual error generated in the
reading of the time. We were able to evaluate the range of this delta: the real difference

in time varied during the day between about -10 and +30 milliseconds.

It has to be noted however, that most of the day the time difference between the
machines was within a narrower range, and that only in rare occasions it reached the
extremes of the interval. In the light of these results, it can be concluded that the clocks

are kept within 40 milliseconds from each other.

0.2 From Monet to Arpa
0 15 38
From Arpa to Monet
0.2
=0 0 -

-

Fig.T - Distribution of the Measured Differences

of Time between Arpa and Monet

While ip a single system we have a granularity of 10 ms to decide whether two
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events are coincident or consecutive, in a distributed system this granularity has a value
four times as larger. It seems hard to keep the clocks synchronized with a better accuracy,

since the unavoidable errors range over a 40 msec interval (see Fig. 2).

The runtime requirements of the timedaemons are reasonably low. The slaves, for
example, consume 0.19% of the CPU time on a VAX 750, while a master running on 3a

VAX 780 utilizes 0.1 of the CPU time per controlled machine.

Conclusions

The unique timing on which a total ordering’ of events can be based is useful to give
efficient solutions to the classical problems that have been reproposed by the new distri-
buted architectures, like the mutual exclusion problem, the multiple producer-consumer

problem [Rica8l] [Rica79], and the scheduling of resource requests [Lamp78|.

TEMPO is sufficiently reliable and fault tolerant to allow us to consider the time it
keeps as a distributed system's time, common to all machines and close to the time of the

real world.

Ogne of the authors (Gusella) is working on an interprocess communication debugger,
and is planning to use the ordering induced by TEMPO in the implementation of that

tool.

The algorithm described above to evaluate the difference of the clocks of two
machines is general encugh to be implemented in other types of networks. The only condi-
tion to be fulfilled is that the distribution of transmission times can be considered the
same in both directions (master to slave and slave to master). Actually, it could also work
in a ring network, since the difference in the distributions of time delays due to the asym-
metry in the leagth of the wire is negligible with respect to the other components (see

footnote 3).

In the next future we plan to extend TEMPO also to the SUN workstations on the

" A total ordering can also be defined scmehow arbitrarily without referring to 3 unique tme
[La.mpTS], but it will not necessarily reflect the natural order of events, in the sense that an external
observer could not agres with the sequence of events as seen by the system.
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Berkely Network, in order to provide a more general service. It would be interesting to
observe the performance of the time controller when operating in a very large network.
The installation of TEMPO will not jeopardize the overall performance of the system,
since the number of messages to be exchanged increases only linearly with the addition of
new machines: the machines have, in fact, to communicate only with the master, and not

with one another.
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ADJTIME (2) UNIX Programmer's Manual ADJTIME (

NAME

"~

)

adjtime — correct the time to allow synchronization of the system clock

SYNOPSIS

#include <sys/time.h>

adjtime(delta, mode)
struct timeval *delta;
int mode;

DESCRIPTION

NOTES

Adjtime changes the system time, as returned by gcttimco/day(‘l), in the way specified by the
argument mode. If mode is T_ADJ then adjtime moves the time back or forward by a number of
milliseconds corresponding to the timeval delts while keeping the monotonicity of the function. If
mode is T_SET then delta milliseconds are added algebrically to the time.

This call can be used in timeservers that synchronize the clocks of computers in a network to
keep an accurate network time.

Ounly the super-user can call adjtime(2).

On a VAX the time is incremented by 10ms ticks. If T_ADJ is passed and delta is negative, the
clock is incremented with a smaller tick for the time necessary to correct the error. When delta is
positive a larger tick is used. This way, the clock is always a monotonic function. With respect
to this, adjtime with mode set to T_SET, should be used carefully and only at boot time before
any users can log on.

The T_SET mode has been introduced to make, at the process level, the operation of adding a
value to the time an atomic one.

RETURN VALUE

If the call succeeds, then O is returned. Otherwise, a value of -1 is returned and the global vari-
able errno is set to indicate the error.

ERRORS

The adjtime call will fail il:

[EINVAL| mode is different from T_ADJ or T_SET.

[EPERM| A user other than the super-user attempted to call it.
SEE ALSO

tempo(1), date(1), gettimeofday(2), settimeofday(2), ctime(3)
TEMPO, A Network Time Controller for a Distributed Berkeley UNIX System, R. Gusella, S. Zatti

3 November 1983 1
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NAME

tempo - print or set the network date

SYNOPSIS

tempo | -u | | yymmddhbmm [ 5] ]

DESCRIPTION

FILES

If no arguments are given, the current date and network time are printed. If a date is specified,
the current date is set on all the machines under the control of timedaemons. The -u flag is used
to display the date in GMT (universal) time. This flag may also be used to set GMT time. yyis
the last two digits of the year; the first mm is the month number; dd is the day number in the
month; Ak is the hour number (24 hour system); the second mm is the minute number; .32 is
optional and is the seconds. For example:

tempo 8401121921

sets the date to Jan. 12, 1984, 7.91 PM. The year, moaoth and day may be omitted, the current
values being the defaults. The system operates in GMT. Tempo takes care of the conversion to
and from local standard and daylight time.

Tempo makes date (1) obsolete.

/usr/adm/timedaemon.log records time settings on all the machines as performed by timedae-
mons

SEE ALSO

adjtime(2)
TEMPO: A Network Time Controller for a Distributed Berkeley UNLX System, R. Gusella, S. Zatti

DIAGNOSTICS

BUGS

‘Failed to set date: Not owner' if you try to change the network date but are not the super-user.

Tempo (1) communicates with a master timedaemon via a udp socket. There is therefore the pos-
sibility that a packet is lost and the correction not performed. Furthermore, due to the activity
of the timedaemons, the setting of the date may take till a couple of minutes from the moment
the command has been issued.





