An Analysis of Naming Conventions
for Distributed Computer Systerns

Douglas B. Terry

Computer Systems Research Group
Computer Science Division
University of California
Berkeley, CA 84720

ABSTRACT

Name servers that collectively manage a global name space facilitate
sharing of resources in a large internetwork by providing means of locat-
ing named objects. The efficiency with which the name space can be
managed is strongly influenced by the adopted naming convention.
Structured name spaces are shown to simplify name space management
from both an administrative and system viewpoint. Formulae have been
derived which allow one to quantitatively measure the eflect of the distri-
buted name server configuration on a given client's level of performance.
In general, the cost of a name server query can be reduced by distribut-
ing replicated copies of name server database entries in a way that ex-
ploits the locality of clients’ reference patterns.

1. Introduction

Names have been widely used in computer systems as a convenient way of
referring to shared resources [3,4,6,8]. A name can be simply defined as a
character string identifying some object. Names are preferred to lower level
identifiers such as memory pointers, disk block numbers, or network addresses
because they typically indicate something about the contents or function of

their referents and are easily transmitted between users.

To facilitate sharing, standard ways of naming objects, called naming con-
ventions, must be established. In many existing computer systems, separate
naming conventions are used for different types of objects. For example, file
names typically differ from user names. Due to the emergence of widely distri-

buted systems in which a large number of computers are interconnected, the

This research was sponsored by the Defense Advance Research Projects Agency (DOD) Arpa Order No.
4031 and monitored by the Naval Electronic System Command under Contract No. NO0039-C-0235.

need for uniform naming conventions to identify the many available resources is

becoming critical.

The set of names complying with a given naming convention is called the
name space. Name spaces are managed by name servers. For the purposes of
this paper, a name server is defined to be any processor which stores informa-
tion about named objects and provides facilities which enable users to access
that information. Name servers act as distributed binding agents that bind an
object’s name to some of its properties, including the object’s location. The
name servers that store the information about a particular object are called the

naming authorities or authoritative name servers for that object.

For environments consisting of a substantial number of interconnected net-
works with a possibly large number of hosts, the cost of communication between
clients and name servers is the major bottleneck in locating remote resources.
In such an environment, the performance of name server queries is dominated
by the number of name servers that must be accessed and the cost of accessing
those name servers. The group of name servers that collectively manage the
name space should be configured so as to minimize this cost for the average

client.

Once a naming convention has been adopted, the many factors affecting the
efficiency with which the name space can be managed and the cost of retrieving

name server information include:

o the clients’ patterns of reference to name server information,

« the choice of authoritative name servers for parts of the name space,
s the placement of name servers throughout the internet,

« the amount of replication of name server information,

« the number of name servers that are currently operational,

« the performance of each individual name server.

The last factor has been neglected in this paper since standard performance

evaluation and improvement techniques can be applied to enhance an individual

name server's level of performance. Also, additional name servers can be

employed if existing ones become overloaded.

The next section presents a model which incorporates the other factors so
that the cost of a name server lookup can be quantified for various name server
configurations. Several alternative schemes for naming objects or resources are
identified in sections 3 through 6. For each scheme, the associated name space
management strategies are analyzed. Section 7 provides an example of how the

derived cost formulas may be applied to an existing network configuration.

2. The Model

The name server database is distributed among N servers, NS,...NSy. At
any point in time, some fraction of these servers will be accessible; the others
may have crashed or become detached from the network. F represents the
current number of name servers whose data is inaccessible because of some
failure. Name server failures are assumed to be uniformly distributed. That is,
all name servers are presumed to have the same mean time to failure, and

hence, crash with equal frequency and probability.

The various name server clients are enumerated 1...U. The term '"client”
may refer to a specific program, host, network, or some combination thereof. In
general, clients are distinguished by their location in the internet relative to the

name servers and by the particular objects they reference.

A name server client need only know the location of a single name server,
presumably the closest one, to make use of the name service. Name server
queries are assumed to be iterative: if the primary name server, NS qin, 1S
unable to answer the query then it returns the location of a more knowledgeable
colleague. Several iterations may be necessary for some naming conventions

and management strategies.

The name server database is strictly partitioned into X fragments, which
often reflect partitions in the name space. In the degenerate case, each data-
base entry is a separate fragment. The database partitions, db 1...dbk,
correspond to indivisible units of storage. That is, either the complete database

fragment is stored at a given name server or none of it is.

Fach name server has authority over some subset of the database parti-
tions. Typically, no single name server stores the complete database. The set
S, contains those name servers that store partition db,. S, for k=1..K, is a

subset of {NS;...NSy}.

For each name server, d; denotes the cost of executing a query at NS;. This
cost, which could depend on such things as the overall size of the database
maintained by NS; and the kind of database facilities employed, is assumed to

be fixed over time.

The round trip transmission cost between client © and name server i is
given by cyi. Observe that Cy; strongly depends on the site at which the client is
executing. It varies according to the number of gateways traversed and the
speeds of the intermediate transmission lines. The number of bytes transferred
is assumed to have a negligible influence on the communication cost since name
server queries and responses are generally quite small. Variations due to net-

work congestion are also ignored.

For a given name server, NS;, G specifies the complete cost of accessing
that name server remotely from client «. This cost includes both the communi-

cation and processing costs. Hence, Cy; is the sum of d; and cy;.

Each client has a set of objects (or resources) that it regularly references.
Different clients generally use different sets of objects. Client u’s reference mix
is represented by 7Tyi...Tuk. That is, 7w is the percentage of name server

accesses performed by client u to the database partition dby.

-4 -

In summary, the distributed name server configuration is characterized as

follows:

NS,...NSy = set of name servers
1...U = name server clients
db,...dbx = name server database partitions

S, = set of authoritative name servers for db,

T = fraction of client u’s accesses to db,

€. = cost of communicating with NS; from client ©
d; = cost of executing a query at N5;

Cui =Cui + &4
F = number of failed name servers

The cost of retrieving the name server information about a set of named
resources varies per client according to the client’'s location relative to the vari-
ous name servers and the client’s reference mix. The expected value of this
cost for client u is denoted by E{(Ly,). In general,

E(L) = f Tue L

k=1

where L, represents the total cost of querying the information in database par-
tition db,, including the cost of locating the desired data. This cost may involve

accessing configuration data from one or more name Servers.

Although a client’s reference mix, which the system designer has no control
over, contributes significantly to the client’s expected name server lookup cost,
it plays no part in the cost of retrieving an individual object's name server
entry. Thus, the following sections ignore the clients’ access patterns in E{(Ly)
and concentrate on formulating Ly . The client subscript u is left out of the for-
mulas to increase their clarity; this can be safely done since the performance

observed by a particular client is independent of the locations of other clients.

8. Flat Name Space

The simplest naming convention that one can imagine is a flat name space
where names are character strings exhibiting no structure. For managing such

a name space, two obvious choices exist: store the complete name server

-5-

database at all sites or store each name server entry at some arbitrary site.

In the first case, S, = {NS;...NSy}. The primary name server, generally the
physically closest one, can always be queried since it contains the complete set
of information about all named objects in the environment. Thus, the retrieval
cost is simply

Le = Grain -
This approach has been used by the Arpanet, for example, in which the complete
host table mapping host names to host numbers is copied to every host. For
widely distributed environments containing a large number of named objects,
the effort needed to distribute the entire database and maintain consistency
between copies may be prohibitive. Even the cost of storing this huge database
may be excessive for many installations. The Arpanet maintainers have been
experiencing precisely these problems as the Arpanet has vastly expanded in

recent years.

If the naming information is stored at a single name server, S = §NS; 3,
then the storage and consistency problems with the previous approach are
avoided. However, since the name space offers no clues as to a database entry's
whereabouts, locating the desired data may necessitate querying each name
server in succession until the authoritative one is discovered. If the authorita-
tive name server for an object is chosen at random then half of the name
servers must be accessed on the average to retrieve the object’s information.

The retrieval cost becomes

Lk = i C; ,
=1
assuming that the name servers are queried in numerical order.

Whereas the first approach was costly in terms of storage, this second

approach is costly in terms of name server lookups. Neither of them is very

practical for large environments. The principle problem with a flat name space

is the difficulty in locating the storage site for the named information.

4. Physically Partitioned

By adding structure to an object's name that reflects the management
authority for the name, some of the difficulty in ascertaining the object’s
authoritative name server can be alleviated. Specifically, the naming convention
proper_name@name_server could be adopted. The name_server part of an
object’s name identifies the name server that is responsible for managing infor-
mation about the object. The proper_name unambiguously identifies the object
in the context of the naming authority. The complete name
proper_name®name_server is thus globally unambiguous as long as the name

servers are unambiguously named.

A two part naming convention of this sort partitions the name space in a
way that simplifies its management. Not only does the appendage of the naming
authority to an object’s name facilitate locating the data about the object, but it
also simplifies name assignment since the proper name need only be locally
unambiguous. That is, each name server has sufficient information to guarantee
the global unambiguity of a newly assigned object name. To eflectively manage
a name space following such a naming convention, each name server must know
the location of every other name server, as well as storing the naming informa-

tion for all objects under its authority.

A name space of this sort is said to be physically partitioned since a name
reveals the physical storage site of information about its referent. Also, a name
server is generally the naming authority for objects in its proximity, and thus
the name space reflects the physical distribution of objects in the internetwork.
A prime example is the naming convention often used by electronic mail applica-

tions: user@host. In this case, every host is the naming authority for all users

-7 -

who receive mail on that host.

With a physically partitioned name space, 2a one-to-one mapping exists
between database partitions and name servers. That is, K=N and S; = {NSgi.
Two accesses are required to obtain the information about a given object: one to
locate the naming authority and one to access the data. A special case arises if
the desired naming information is stored at the primary name server; in this
case, only a single access is required since the main name server can recognize
that it is the authority and return the data directly. The cost of a lookup is thus

Conain + Ci if k # main

L = {Cm if k =main .
However, if the total number of name servers is small, clients can easily cache
the network addresses of the various name servers, thereby reducing the cost to

L, =C .
The access to the local name server has been eliminated since the individual
hosts are knowlecigeable enough to query the correct storage site directly. The
resulting lookup algorithm is optimal given the assumptions that naming data is

stored exactly once.
5. Organizationally Partitioned

5.1. Overview

Even though a physically partitioned name space has been shown to per-
form very well in terms of lookup time, it is not the favored naming convention
of many systems for managerial reasons. Resource names are primarily
assigned by people, and people are generally under various administrative
authorities working on various projects. These different administrations may
share a name server but wish to maintain complete control over their resources

and the names of their resources. Hence, they often prefer a name space that is

organizationally partitioned. Names take the form proper_name@organization

in which the authority for assigning names is explicitly recognized.

With such a naming scheme, the database partitions correspond to organi-
zations rather than name servers; each name server can be the authority for
some subset of the organizations. Since the assignment of object names is
independent of the assignment of responsibility for maintaining information
about the objects, the name service can be easily reconfigured. That is, new
name servers can be added to the environment and acquire authority over part
of the existing name space; application programs which rely on the name ser-
vice are unaffected since the object names do not reflect the name server

configuration.

Suppose, for a moment, that each organization's data is managed by a sin-
gle name server as with a physically partitioned name space, S¢ = {NS;]. In
order to efficiently locate an object’s name server data, each name server
should know which server has responsibility for each organization. This way,
name server gueries can be processed in two steps as before. First, the primary
name server maps the organization name to the authoritative name server for
that organization and returns its network address. Then the remote name
server is contacted to retrieve the‘appropriate naming information. The lookup

cost is basically the same as for physically partitioned data,

Ly = Crain + G
except that two database retrievals are always required since a name server can
not determine whether or not it is the authority for the desired data without
consulting the local database. One round trip transmission cost can be saved,
however, if the primary name server retrieves and returns the name server
entry directly upon discovering that it is the storage site for the desired data.

Thus,

L = Crgin + dmain i Sk = §NSpmain$ -

5.2. Replicated Data

Perhaps the greatest advantage of an organizationally partitioned name
space is the ease with which replicated naming information can be accommo-
dated. In a distributed system, replication can enhance the availability of the
data by providing several independent sources for retrieval and can improve
performance by allowing the data to be stored closer to where it is most fre-
quently accessed. These benefits can be obtained by making the name server
database partially redundant, that is, by storing the database partitions as repli-
cated copies at many sites. The cardinality of set Si is the degree of replica-

tion.

To support replication, the lookup algorithm described previously for an
organizationally partitioned name space could be easily extended to recognize
several authoritative name servers for each organization rather than just a sin-
gle responsible one. Each name server could know the complete set of authori-
tative name servers for each organization, Si. The Grapevine system [1]
developed at Xerox Palo Alto Research Center, for example, is based on this
approach. The Grapevine name space is partitioned into registries which can be
arbitrarily dispersed among the various registration servers. Techniques are

employed to maintain consistency among the various copies.

Any available copy of an organization's name server data can be used to
answer queries. For performance reasons, accessing the closest authoritative
name server for the named object is generally desirable. In the Grapevine sys-
tem, each registration server maintains a complete list of the other servers
ordered by distance. This may not be feasible for a large environment with a

substantial number of name servers [5].

-10-

Assuming that the closest authoritative name server, NS min, € S, can be

determined with negligible cost, the name server lookup cost becomes

Crgin + Cmin, if min, # main
Le = \c o+ dpgm if min, =main .
Although this formula looks similar to the previous formulas, the cost should be
less with replicated data since the name server accessed by various clients,
NS ming» could differ from client to client, whereas before each client was forced
to access the same server. Nevertheless, without some knowledge of how the
authoritative name servers are selected and how many exist for a given data-
base partition, comparing the costs of the different name space management

techniques is very difficult.

One simple approach would be to distribute R copies (K<N) of the name
server data uniformly. In other words, R authoritative name servers are chosen
at random for each database partition. Without loss of generality, assume for
the moment that the name servers are ordered such that G < Cj for i <j and
NS; = NSpain- Under this assumption, the expected lookup cost can be com-

puted as follows,

N
Lunigorm = Cmain + Prob (main = ming) dmgin + 2, Prob(i =ming) §
i=2

i)
_ R ﬁ -1
= Grain + 37 Imain + ===G .

i=2 [I;?J]
This formula allows one to quantitatively determine the benefit of replication on
performance by increasing the value of R. Of course, the benefits that can be

achieved depend greatly on the physical configuration of the internet and the

placement of the name servers.

-11 -

5.3. Name Server Failures

With partially redundant name server data, the failure of a name server
should potentially degrade performance but should not render any information
unavailable provided the number of failures is less than the degree of replica-
tion. The effect of name server failures on performance can be gauged by incor-
porating such failures into the previous lookup cost formula. For F failed name

servers selected at random, F' < R, this formula remains

Lunigorm = Cmain + Prob (main = ming) dmgin + ﬁ Prob(i=ming) G .

But the probability of retrieving the desired resource information from name

server i becomes substantially more complex,
Prob (i = ming)
= RZ_ZI Prob (name server i stores the data
=0
) and name server i is not dead

and g closer name servers store the data

and all g closer name servers are dead)

= IS tL] i s 1] Prob(name server i is not dead)

x Prob(all g closer name servers are dead | name server i is not dead)

Y i ot
_2 [1;?]]

=1
qu_I Prob(j +1st is dead | j ore dead and name server i is not dead)
j=0

! [L?]]Xq—i—J]ﬁ F-3

-5 L5

-12-

If the number of name server failures exceeds the degree of replication
then it is no longer possible to assume that all data is still available. Hence,
determining the performance degradation is not feasible. Nevertheless, it is
instructive to look at the probability that a given piece of data is inaccessible,

that is, all responsible name servers for the information have crashed. This pro-

bability,
Bl p—1
P(data inaccessible) = [| =—
=g N -1

is valid for any values of F' and R, although it is always zero for F < R.

6. Hierarchical Names

The techniques previously described and analyzed for two part structured
names can be extended to hierarchical names consisting of more than two parts.
Hierarchical names, which have been used in file systems for many years, have
recently been adopted for naming network objects. System designers may
choose to either fix the number of levels or allow an arbitrary hierarchy. The
new DARPA Internet Domain Naming Convention [7] , for instance, uses an
unbounded tree structured name space for identifying network hosts and mail
recipients, while the Xerox clearinghouse [2] enforces a three-part naming
structure. In general, each layer represents either a physical or organizational

partitioning of the name space.

With hierarchical name space management, the complete name server
configuration data (S for all k) need not be stored at every name server. ltis
sufficient that each name server store only enough information to locate the
authoritative name servers for the top level of the hierarchy. The top level
name servers, in turn, should know the authoritative name servers for the name
space subtrees directly under their administrative control. The amount of

configuration data that must be maintained by name servers at the various lev-

-13-

els of the hierarchy is proportional to the degree of branching of the name
space tree. For this reason, hierarchical naming conventions with several levels

are often better suited for naming large numbers of objects.

The analysis of hierarchical naming schemes can be performed by recur-
sively applying the techniques for two part names. For example, to analyze the
clearinghouse system, where names are of the form
local_name.'domain:orgzznization. the lookup cost formulas for an organization-
ally partitioned name space, such as Grapevine from which the clearinghouse
evolved, can be applied in two steps. The two part name domain:organization
can be considered the convention for naming Grapevine registries. The algo-
rithm remains the same: lookup the authorities for the registry then contact the
closest authority to retrieve the desired information. However, the first step
now involves looking up the authorities for the organization and then contacting
the closest one to retrieve the authorities for the domain. The cost formula for

accessing the clearinghouse is thus

Ly = (Cmam + Cminw,) + Crmnk .
The analysis for hierarchies of more than three levels is a straightforward exten-

sion.

7. ASample Environment

In practice, the cost formulas derived for name server queries can be
applied to existing environments to analyze and subsequently improve the per-
formance of the system, or they can aid in making design decisions when
configuring a new system. For instance, a network administrator may wish to
assess the benefits of increased replication or the addition of a new name

server.

As an illustration, consider the network topology of Figure 1.' The circles

-14-

baud rates

Figure 1. A Sample Internet

represent 3 megabits/second Ethernets, while the lines are long distance links

with data rates of either 56 kilobits/second or 9.6 kilobits/second. The local

1 This is the configuration of Grapevine servers in everyday use at the Xerox Palo Alto Research
Center as of summer 1983 [5]. It is intended to serve as a sample widely distributed environment.

-15-

networks are numbered from 1 to 12. The rectangles depict the various name

servers, labeled from A to Q.

from to server

| network A §7 C D E ¥ G H 1
1 1 1 1 56 56 111 111 166 166
2 56 56 56 1 1 56 5 111 111
3 111 111 111 56 56 1 1 56 56
4 166 1686 166 111 11t 56 56 1 1
5 479 479 479 424 424 369 369 314 314
6 682 6882 682 627 827 682 882 737 737
7 682 682 682 627 627 682 882 737 737
8 682 682 682 627 627 682 882 737 737
9 369 369 369 314 314 369 369 424 424
10 682 682 682 627 627 682 682 737 737
11 682 682 682 827 627 682 82 737 737
12 424 424 424 369 389 314 314 369 369

from to server

network J K L M N 0 P Q |
1 168 479 682 882 369 682 682 424
2 111 424 827 627 314 627 627 369
3 56 369 682 682 369 682 682 314
4 1 314 737 737 424 737 737 369
5 314 1 1050 1050 737 1050 1050 682
8 737 1050 1 627 314 827 827 8627
7 737 1050 627 1 3i4 627 627 827
8 737 1050 627 827 314 627 627 827
9 424 737 314 314 1 314 314 314
10 737 1050 627 627 314 1 627 627
11 737 1050 827 627 314 627 1 B27
12 369 682 627 627 314 827 627 1

Table 1. Communication costs

Generally, the values for ¢; and d; would be obtained from measurement
studies. For sake of this example, fictitious, but reasonable, numbers have been
assigned for these quantities. Communication costs are normalized such that
communicating over a local Ethernet costs one time unit 7. Assuming that the
communication cost is proportional to the data transmission rate of the com-
munication medium then transmission over a 56K bps line costs approximately
547, and similarly, communication over a 9.6K bps line costs around 3127. The

host to host communication costs, then, are derived by adding the costs of the

-16 -

various communication links traversed. Table 1 enumerates the costs (in units
of T) of communicating between a process on each network with each name
server.

The database access cost, d;, is taken to be 87. This is in accordance with

experience indicating that for retrieval over a local network the cost of the data

query generally dominates the communication costs by about a factor of 4 to 8.

client’s replication factor K =

network 1 2 3 4 o) 6

1 297.35 145.99 84.83 56.72 41.53 32.15
2 261.76 124.96 74.40 53.69 43.39 36.94
3 271.47 125.76 74.24 53.63 43.38 36.94
4 300.59 142.34 82.85 55.96 41.34 32.12
5 576.76 398.65 323.48 281.71 251.52 226.25
6

7

8

9

645.18 548.70 488.14 43557 387.66 343.13
B45.18 548.70 488.14 43557 387.66 343.13
976.59 896.22 B849.47 808.41 769.71 732.08
369.00 307.04 278.71 256.05 235.77 216.55

10 645.18 548.70 488.14 435.57 387.66 343.13
11 645.18 548.70 488.14 43557 387.66 343.13
12 430.41 347.85 302.26 271.68 246.62 223.93
avg. 506.14 390.30 335.21 298.34 268.66 242.46
A% - -22.89 -14.11 -11.00 -9.95 -9.75

Table 2. Effects of replication on /;

Suppose that a two part organizationally partitioned name space is being
managed by the collection of name servers. Table 2 gives the effects of replica-
tion on the performance of name server retrievals. The number of copies of
each partition has been varied from 1 to 8. The expected cost of a name server

query is given for a client on each of the 12 networks.

On the average, having two copies of the data instead of one reduced the
expected lookup cost by over 22%. For networks 1-4, which are connected by
high speed lines, improvements of over 50% are achieved. Notice that clients on
network 8, which has no local name server and is separated from the rest of the

world by low speed lines, suffer the worst performance. Furthermore, replica-

-17 -

tion doesn’t help them as much as others. Networks 1 and 4, which have three
local name servers apiece, benefit the most from replication. In all cases,
adding an additional copy of the name server data has a substantial impact on
performance regardless of the replication factor. These performance increases
are due entirely to reducing the amount of communication between clients and

very remote name servers.

client’'s number of failures F =

_network 0 1 2 3 4

1 41.53 46.00 51.42 58.08 66.36
2 43.39 46.42 50.22 55.06 61.32
3 43.38 46.39 50.17 55.01 61.31
4 41.34 45.64 50.83 57.21 65.19
5 251.52 260.40 270.13 281.03 293.53
6

7

8

9

387.66 401.75 416.19 431.01 446.33
387.66 401.75 416.19 431.01 448.33
769.71 781.09 792.65 804.42 816.53
23577 241.73 247.87 254.24 260.92

10 387.66 401.75 416.19 431.01 446.33
11 387.66 401.75 416.19 431.01 446.33
12 246.62 253.99 261.77 270.09 279.14
avg. 268.66 277.39 286.65 296.80 307.47
A% -— 3.25 3.34 3.47 3.66

Table 3. Effects of failures on [, for ¥ =5

The effect of failures on the cost of retrieving name server information is
presented in Table 3. Again, the results are given for clients on each network
and averaged over all networks. These results indicate that name server failures
actually degrade performance by very little for a replication factor of 5. Even if
almost a fourth of the name servers are down, the expected lookup cost
increases by only 15% on the average, and around 50% for the worst case. The
availability of name server data, not performance, appears to be the primary

concern when considering name server failures.

-18-

B. Conclusions

Distributed name servers provide a valuable tool for managing and locating
objects in a large internetwork. Two important choices must be made in design-
ing a distributed naming service. First, uniform conventions for naming objects
or resources should be adopted. Second, techniques must be devised for
managing the resulting name space. These two choices have been explored
together in this paper since naming conventions have a substantial influence on

the management of resources complying with those conventions.

In selecting a naming convention, the set of objects can be either named
with a flat homogeneous name space or partitioned into disjoint classes. When
partitioning is done syntactically, which is generally the case, the name struc-
ture reflects physical or organizationa associations. Hierarchical naming con-
ventions that successively partition the name space at various levels are becom-
ing popular. Hierarchically structured names result in a tree structured name

space.

In order to answer a query, a name server must be able to locate, given only
the object’'s name, the site(s) that maintain data about the desired object. This
is the role of name space management. To achieve adequate performance, the
object’s name itself must convey sufficient information to allow the determina-
tion of a small subset of name servers to query. Name server configuration data
provides valuable assistance in locating the authoritative name server(s) for a
given named object. However, the amount of configuration data that must be

maintained can be substantial in the general case.

Techniques for clustering named objects into partitions enable the amount
of configuration data required in each name server to be reduced since it need
only be maintained for each cluster and not each individual object. These tech-

niques, in general, rely on particulars of the naming scheme. Syntactically par-

-19-

titioned name spaces provide natural object clusters, whereas flat name spaces
are difficult to manage efficiently. Hence, structured names simplify manage-

ment of the name space from both an administrative and system viewpoint.

Once a naming convention and associated name space management stra-
tegy have been selected, the observed performance of name server queries is
dictated by the placement of the name servers and the distribution of the name
server database. The lookup cost formulas derived throughout the paper allow
one to quantitatively measure the impact of the distributed name server
configuration on a given client’s level of performance. The name servers should
be configured so as to minimize the sum of the expected lookup costs for all
clients. This basically involves exploiting the locality of client reference pat-

terns.

In practice, a range of localities can be observed. In electronic mail appli-
cations, which have been the predominant clients of name servers, person-to-
person mail is often quite localized. That is, users frequently send mail to other
users in their same organization, group, or geographic area. These users are
typically in a common name space partition, and hence, managed by common
name servers. On the other hand, general interest distribution lists that include
a substantial fraction of the entire user community may exhibit no locality.
Such lists tend to ignore organizational and physical boundaries. Accesses to

these lists are more unformly distributed.

Physical access patterns are dependent on both the frequency of accesses
to the name server database entries (T for k=1...K) and the mapping of data
to storage sites (S, for k=1...K). In other words, the amount of physical locality
achievable in practice depends on the distribution of clients that are interested
in a particular name server entry. The storage sites for the copies of a particu-

lar object's data must be carefully selected to coincide with the regions of

interest. The selection of a fixed number of storage sites at random was
analyzed as a particularly naive configuration technique. For such a scheme,
the degree of replication of database entries was shown to considerably impact
the cost of accessing a given database entry. In cases where some reference
locality exists, the cost formulas based on randomly selected storage sites can

serve as a lower bound on performance.

' Finally, the concentration in this paper on the performance issues of distri-
buted name servers is not meant to imply that performance is the only criteria
to be considered in selecting a naming convention. Unfortunately, the perfor-
mance aspects are the most overlooked and least understood. Other considera-
tions have been briefly mentioned in places although they have not been ade-
quately addressed. In general, the choice of a naming convention involves
weighing the many tradeoffs between ease of name assignment, object mobility,
availability of naming information, individual autonomy, storage space require-

ments, and the cost of maintaining data consistency.

Acknowledgements

1 would like to thank my advisor, Professor Robert S. Fabry, for the support
he has provided throughout the course of this research. 1 am also grateful to
Professor Domenico Ferrari and my technical editor, Margaret Butler, for their
thoughtful comments on earlier drafts of this paper. Special thanks go to
Michael Schroeder of the Xerox Palo Alto Research Center for kindly allowing me

to reproduce the Grapevine configuration in Figure 1.

21

References

[1]

(2]

(3]

(4]

[5]

(6]

(7]

(8]

Birrell, A., Levin, R., Needham, R. M., and Schroeder, M. D..
Grapevine: An Exercise in Distributed Computing.
Communications of the ACM 25, 4 (April 1982), 260-274.

Oppen, D. C. and Dalal, Y. K..

The Clearinghouse: A Decentralized Agent for Locating Named Objects in a

Distributed Environment.

ACM Transactions on Office Information Systems 1, 3 (July 1983), 230-253.

Saltzer, J. H..
Naming and Binding of Objects.

In Operating Systems: An Advanced Course, edited by R. Bayer, Springer-

Verlag, 1978.

Saltzer, J. H..

On the Naming and Binding of Network Destinations.
Proceedings IFIP/TC6 International Symposium on Local Computer Net-
works, Florence, ltaly, April 19-21, 1982, pages 311-317.

Schroeder, M. D., Birrell, A. D., and Needham, R. M..
Experience with Grapevine: The Growth of a Distributed System.
ACHM Transactions on Computer Systems, to appear....

Shoch, J. F..

Internetwork Naming, Addressing, and Routing.
Proceedings 17th [EEE Computer Sociely International Conference (COMP-
CON), September 1978, pages 72-79.

Su, Z. and Postel, J..

The Domain Naming Convention for Internet User Applications.
Network Information Center, SRI International, RFC 819, August 1982.

Watson, R. W..

Identifiers (Naming) in Distributed Systems.
In Distributed Systems - Architecture and Implementation, edited by B. W.

Lampson, Springer-Verlag, 1981.

