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ABSTRACT

In this paper we develop a different approacn to implementing
hypothetical relations than those previously proposed. Our design,
wnich borrows ideas from tactics based on views and differential <files,
offers seyeral advantages over other schemes. An actual implementation

is described and performance statistics are presented.

1. INTRODUCTION

The motivation for, and applications of nypothetical relations
(HR's) were introduced in LSTONSO|. Tney can be usea to support "what
if" changes to a data base and offer a mechanism for debugging applica-
tions programs on live data without fear of corrupting the data base.
The suggested implementation in [STONSOJ involved a differential file
LSEVR76). 1In [sTON81], supporting HR's as views [STON75] of the form W
= (R UNION S) - T was suggested. In this case an implementation ornly
requires extending a relational DBMS and its associated view mechanism
with the UNION and - operators. Moreover, R can be a read-only relation

while S and T are append only. As a result, hypothetical relations may



offer cheap support IoT crasn recovery and loggizng. Unforwunately,
there are problems with treating HR's as views. We first examire taese
problems and show general solutioms in Secticn 2. Next we combine these
solutions in Section 3 into a new mechanism for supporting HR's. Our
proposal has severa. similarities but a different orientazion from ore
in [KATZ82J. We then describe our implementation in Section 4. Finally

we analyze the performance of this implementation in Section 5.

2. PROBLEMS AND SOLUTIONS

Proposals for bhypotanetical relations &s viaws contain various flaws
which must be removed before a realistic implementation can be

attempted.

_2_._1_. A Known Protlen

[STON81J points out that tne implementatioa of hypothetical rela-
tions as W = (R UNION 3) - T is flawed in the case where one wants to
re-append a tuple which has peen deleted, as shown Dby the example in
figure 1. Initially there is a tuple in relation R corresponding ©o
Eric. Following the algoritzm in [STON81J, the tuple can be deleted by
inserting it into relation T. Lastly a user re-appends Eric and an
appropriate tuple is inserted into S. Unfortunately, the resuliing
relation, ¥ does not contain the re-appended tuple, since (R UNION S) is

+he same as R, and R - T is empty.

2.2. A Solution

As nozed in [AgraBZ], this problem can be solved by adding a times=-

: ~

tamp <field to the relations S apd 7, and modifying e gemantics ol tne

" -
'

DIFFERENCE ogerator, - . There will be ro simestamps Zor tae reiation
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R; hence these tuples can be thought of as having a timestamp of zero.
The timestamp field is filled in with the current time (from a sys-
tem clock, or any other monotonicaly increasing source of timestawps)
whenever a tuple is appended to S or T. For any relations A and B with
timestamps as described, the DIFFERENCE, A - B is defined as all tuples

a in A for which there is no tuple b in B such that

(1) DATA(a) = DATA(D)
and

(2) TIMESTAMP(a) < TIMESTAMP(Db)

The definition of R UNION S is unchanged, except for the addition of a
timestamp field in the result which contains either the timestamp of a
tuple in S, or a zero timestamp for a tuple in R. If tuples with ident-
ical DATA appear in both R and S, the newer timestamp (from S) is chosen
for tne result tuple.

In the above example, the timestamp of Eric's tuple in T would De
newer than that of Eric's tuple in R (zero), but would be older than the

timestamp of Eric's tuple in S; hence, (R UNION S) - T would ©e
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equivalent to 3, and W would contain the re-appended tuple.

2.3+ A Yew Problem

The addition ¢f timestamps solves the problem of appending aeleted
tuples. However, this solution is not free irom problems. Consider tie
case of a second level hypothetical relation, W' = (W UNION S') - 7', as
shown in figure 2. Suppose Zric was given a 20 percent raise in W' at
timestamp 10 which caused the indicated entries in S' and T'. Since no
upd;tes have occurred in W, S and T are empty. Now suppose a user gives
Eric a 50 percent raise in W at timestamp 20, which results in tae
entries for S énd T shown in figure 3. According to the algoritom
above, W' would contain two tuples for Eric, ome with salary 15,000, anc
one with salary 12,000. The problem is that the tuple in T' ne longer
functions to exclude Eric from W UNICN S' and hence an unwanted Eric
tuple is present.

There are at least two choices for the proper semantics for W

under this update patterm:

i 12000, 104
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Figure 2, 3sric's 20% raise in A .
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Figure 3, Eric's 50% raise in W.
1) Eric's salary is set to the latest value, in this case the
15,000 from W.
2) Eric's salary is set to 12,000, corresponding to the original
update of ¥'.
We choose to follow tae latter choice, and specify the following seman-

tics:
Once a tuple has been changed at level N, changes at levels < N

cannot affect tuples at levels >= N.

2.4. A New Solution
These semantics can be guaranteed by the addition of a tuple iden-
tifier, and modification of the DIFFERENCE operator. A tuple identif-

jer, TNAME, must be given to each tuple in R. Each tuple inserted into W

(and thereby added to S) must also be given an identifier. Then, any

inserts to S or T, which are used to replace or delete a tuple in W,

must be marked with the identifier for the original tuple in R or 3

which they replace or delete. For any relations A and B with timestamps



and TNAMES as described, the DIFFERENCE, 4 - 3B is defined as all tne

tuples a in A for which there is no tuple b in 3 such that

(1) TNAME(a) = TNAME(D)
and

(2) TIMESTAMP(a) < TIMESTAMP(D)

To guarantee that our chosen update semantics hold, tuples in A - B
are given timestamps of zero. Hence, at a second level, each tuple in
S'.and m' 4ill nave a newer timestamp than its corresponding tuple in W.

In our sxample the identifier of all of the five Eric tuples from
figure 3 will be identical. Since the timestamp of the tuple in W is
treated as bsing older than that of the tuple ia T', only GEric’'s tuple

)

from S' will be contained in W'.

A similar method is proposed in [KATZ82}, to solve this problenm.

J. A MECHANISM

Given taiese modifications to S, T and the DIFFERENCE operator, an
R of the form W = (R UNION S) - T no longer has its original concepfual
simplicity. Moreover, support for HR's beccmes considerably more com-
plex <than simply implementing UNION and -~ as valid operators iz a DBMS.
Consequently, we have designed a mechanism based on differential file
tecnniques which builds on the above developmeats. The goal is to pro-
vide a single-pass algoritim with proper semantics that will support
arbitrary cascading of HR's. The next two sections desacribe cur data

structure and algorithm in detail.




3.1. The Differential Relation

Each hypothetical relation Q, built on top of a real or haypotheti-
cal relation B, has an associated differential file D, which contains
all columns from B plus plus five additional fields. For example, the
differential relation D for the base relation R from Section 2 is shown
in figure 4. "Name" and “"salary” are the attributes from R. The fields
"mindate" and “"maxdate” are both timestamps; “Minaate" is exactly the
timestamp as defined above, while "mexdate" is another timestamp to be
explained in section 4.2. The fields "jevel"” and "tuponum" are used to
identify the tuple which this tuple replaces or causes deletion of. Each
hypothetical relation is assigned a level number as indicated in figure
5. All real relations are at level zero, and an HR built from a real
relation is assigned a level of omne. Then an HR built on top of a level
one HR is given a Jevel of two. Here the column "level” identifies the
level number of a particular tuple, while the column "tupoum" is a
unique identifier at that level. Together "tupnum" and "level” comprise
the unique identifier, TNAME, of a tuple. Values for "tupnum” are Jjust
a sequentially allocated integers. The last field in D, "type," marks
what form of update the tuple represents; taus, it has three values,
APPEND, REPLACE, and DELETE.

The following examples will illustrate the use of these exira

name c12
salary i4
mindate i4
maxdate i4
tupnum i4
level i1
type i1
Figure 4.
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fields. A precise algorithm is presented in Sectica 3.2.

Suppose the relation R has the following data:

{name  |salary,
| i
i -
, fred ; 40CC tupnum of this tuple is O
isally | 6000, tupoum of this tuple is 1

Figure 6.
Initially W is identical to R, and D is empty.
Running the following QUEL command:
append to W (name = "nancy”, salary = 50CQ)
would cause a'single tuple to be inserted into D as follows:

'name |salary|mindate |maxdate jtupoum level |type

|

{

| |
inancy I 5000, 30| ead o} 1| APPEND |
{

} §

Figure 7.

The 30 stored in "mindate” is simply the current timestamp, and the

type" 1s clearly APPElND. Since there is no correspcnding tupie atv

o5

~ ES 1) " L

level O, which the tuple replaces, tiae fields "level” ana “tupnum  are



set to identify the tuple itself (i.e. "level" = 1, "tupnum" = 0)

Suppose we now change the salary of Sally as follows:

range of w is W
replace w (salary = 8000) where w.name = “sally”

After this update, D looks like:

aname |salary |mindate |maxdate |tupnum |{level jtype i

i i

jnancy | 5000, 301 | o} 1| APPEND |

isally | 8000| 40| * 1] O{REPLACE,

i

|mmm——————— e e — e —————————— -- - -
Figure 8.

“Mindate" is 40, the current timestamp. The tuple which we are replac-
ing in R has an identifier of (level = O, tupnum = 1) (see figure 6).

Suppose we delete the tuple just replaced:

dielete w where w.name = "sally"
The resulting form of D is:
lname  |salary|mindate |maxdate |tupnum llevel |type |
| I
== - B et g i
inancy | 5000 30, e o} 1} APPEND |
isally | 8000i 40, ) 1 O{ REPLACE|
| i : 50, bl 1 O|DELETE |
e e e :
Figure 9.

Since this operation is a delete and "name" and “salary" are no longer
important, they are set to null. “Tupnum" and "level"” are the same as
in in figure 8, since they refer to the same tuple.

Suppose we now replace the tuple appended above; eg:
replace w (name = "billy") where w.name = “nancy"

The resulting form of D is:



. . N i
name |salary,mindate jmaxdate |tupnum level jtype |

i
nancy | 500C, 20, *e | i 1| APPEND |
sally | 8000, 401 ) 1 C1REPLACE;

i | 0i 504 | 14 0| DELETE |
ipilly | 5000 601 | o} 1| REPLACE|
i i

Figure 10.
"Tupnum” and "level" identify the original "zancy" tuple (see figure 7

above). At this point, R is unchanged, and W looks like:

iname }salaryi

i -1

ifred | 4000j unchanged '
ibilly | BOOO§ billy replacing nancy

3.2. The Algorithm

There are %two parts to the algorithm <for supporting hypotbetical

relatiorns: accessing an HR, and upcdating an HR.

J3.2.1. Accessing Hypothetical Relations

The algorithm for deriving a level ¥ hypothetical relation w from a
base relation R ané a collection of differential relations D1, ..., DN
is a one pass algorithm which starts with the nighest level differential
relation and proceeds by examining each tuple, passing tarough each
lower level, and finally passing througn the level O Dbase relation.
Figure 11 shows this processing order more clearly. MaxLevel is the
level N of tae relation H.

An auxiliary data structure, which will be called "seen-ids,"” is

maintained during the execution of this algorithm. This data structure

nas ore associated update rcutiae, "see(level, tupnum) , and a Dpocilearn

retrieval function, “seen(level, <tupnum;”. Th rousine see{level,



FOR physlevel := MaxLevel DOWN IO O DO
BEGIN
WHILE (there are tuples at level physlevel) DO
BEGIN
tuple := get-next-tuple(physlevel);
examine-and-process-tuple(tuple, physlevel);
END
END.
FPigure 11.
tupnum) inserts a TNAME into the data structure if it has not been seen
before, while seen(level, tupnum) returns the value TRUE if {level, tup-
gum> is in seen-ids, FALSE otherwise.
The examine-and-process-tuple routine takes one or both of the fol-
lowing actions: it can "accept" the tuple for inclusion in H and 1t can

call the routine "see" to place the identifier in "seen-ids". The

choice of actions is dictated by Table 1.

‘ action action
!levelO|newest|seen |type iaccept)samelevel|see i
et |
1 |yes  jew—==- lyes  |=m=m=-- B ino |
2 iyes  j=m=--- |00 jm==——-- |yes  |-m-em=--- ino |
3 ino {no | mm———— |mm————— | no | mm————— ino |
4 |no lyes |yes |j=m==m-- ino S | no '
5 ino lyes  |no | DELETE |no | yes ino '
6 |no lyes  |mo |REPLACE|yes yes | no l
7 ino lyes {mo | APPEND yes  iyes ino 1
8 |no iyes  ino | DELETE |no i no iyes |
9 Eno iyes  imo | REPLACE|yes  ino lyes E
| |

Table 1, Processing criteria for HR's.

In applying table 1, to a particular tuple t, "levelQ" is a boolean con-
dition which is "yes" if physlevel from figure 11, is zero, "no" other-
wise. A tuple t at physlevel N is "newest” if (as in Section 2.4) there

is no tuple tb at level N such that
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(1) (t.level = tb.level and t.tupnum = %tb.tupnum)
and ’ '
(2) ta.mindate < tb.mindate.

A tuple t has been "seen" when the pair <t.level, t.tupnum> has already
been entered into "seen-ids". Fast tests for "newest” and "seen” are
presented in Sections 4.2 amd 4.3. The “type” of tuple t i3 <t.iype.
"Samelevel" is a boolean field to irndicate iI physlevel is the same as
t.level. The exam:ning and processing of a tuple is shown in figure 12.

To demonstrate this processing we will gemerate W from D and R in
figures 6 - 10. The starting configuration is shown in figure 13. Pro-
cessing starts with MaxLevel = 1 and payslevel = 1 in the differential
relation D; hence, for all of this level, levelO will te false. Tuple
(1) is not ‘“rpewest", since tuple (4) has the same identifier, and a
nigner mindate. Since levelQ is false, the tuple corresponds to line
(3) of table 1, anc the tuple is neitner "accepted” nor "seen.”

Tuple (2) is not "newest" either, because tuple (3) has the same
identifier, and a higher mindate, and so it also corresponds to line (3)
of table 1, and is neither "accepted” nor "seen.”

Tuple (3) is "newest," Dbecause the only other tuple at this
rhyslevel with the same identifier, tuple (2) has a smaller zindate. It
has not been “seen,"” since seen-ids is empty and type is DELETE. We now
determine “samelevel" by comparing the level field with physlevel. 3otz
are 1, so "samelevel” is true and line (5) is applied. Hence, the tuple
is neither "accepted” nor "seea”.

Tuple (4) is also "newest,” has not been "seen,” and type is

REPLACE. Comparing level and physlevel, we find “samelevel” is false,

since the level field is O, and pnyslevel is still 1. hence, (3) is the
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examine-and-process-tuple(t, physlevel)
BEGIN
levelO : BOOLEAN;
nevest : BOOLEAN;
seen : BOOLEAN;
type : ( APPEND, REPLACE, DELETE);
samelevel : BOOLEAN;

levelO := (physlevel = 0);

IF levelQ then

BEGIN
newest := NULL;
seen := seen(t.level, t.tupnum);
type := NULL;
samelevel := TRUE;

END ELSE

BEGIN
newest := is_pewest(t.mindate, t.level, t.tupnum);
seen := seen(t.level, t.tupnum);

type := t.type;

samelevel := (t.level = physlevel);
END;

IF table-accept(levelO, newest, seen, type) THEN
accept-tuple(t);

IF table-see(levelQ, newest, seen, type, samelevel) THEN
see(t.level, t.tupnum);
END;

Figure 12, processing a tuple.
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D
'name  |salary|mindate jmaxdate |tupaum  |level type |
i ]
| H
1 \nancy | 500C; 301 e | i 1| APPEND |
2 isally | 8000, 404 i 1, 0| REPLACE|
3, i 0} 50} b 1) O} DELZTE |
4 ibilly | 5000 60} ol o} 1| REPLACE|
{ |
R
iname  {salary,
| |
] ]
5 |fred | 4000 tupnum of this tuple is O
6 |sally | 6000} tupnum of this tuple is 1
{
1

seen-ids = {}
Tuples "accepted”

name \salary

| |
| !
| |
| |
| i
| |

Figure 13, Initial structures ror processing W.
correct line in table 1, and the tuple is both “seen” and “accepted”.

At this point, W and seen-ids lcok like:

name |salary|
|

|
|
|
{ i
loilly | 50C0)
I |
] H

seen-ids = {<0, 1>}

Physlevel now changes to O, "levelQO" becomes true, and we start 10
scan the tase relation. Only lines (1) and (2) of table 1 are relevant
differing in the value of "seen". To check whether a tuple has been
"seen,” at level O, we lock for the pair <level, location> in seen-ids.
For tuple (5) this pair is <0, O> (see figure 6) wanich is not in seen-
ids. Hence, line (2) of table ! is applied and we "accept” the tuple.
The pair <level, location> for tuple (6) is <0, 1>, which is in seen-

ids. The corresponding iirze is (1), 30 the tuple is not "accepted," and
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is not "seen." We have reached the end of our scan, and have generated

the relation W as follows.

|name {salary{
| |
e '
ibilly | 5000,
ifred | 4000,
|

!

3.2.2. Updating Hypothetical Relations

All updates to an HR of level N require appending tuples %o the
differential relation DN at level N. The contents.of the different
fields in the appended tuple are specified as follows:

(A) For APPENDS and REPLACES, The data columns of DN, are filled
with new data. For DELETES, the fields are NULL.

(B) Mindate, is assigned the current timestamp. (Maxdate is dis-
cussed in Section 4.2.)

(C) For APPENDS, tupnum and level are set to self-identify the

inserted tuple. For DELETEs and REPLACEs tupnum and level identify the
target tuple being deleted or replaced.

(D) Type is the type of the update, APPEND, DELETE or REPLACE.

4. IMPLEMENTATION

An implementation of HR's was done within the INGRES DBMS [ STON76].

In order to create an HR, the following addition to QUEL was made:
DEFINE HYPREL newrel ON baserel

Once an HR has been defined, it can be updated and accessed just like an
ordinary relation. Since, "baserel” can be either a regular relation,

or an HR, an unlimited number of levels is allowed.
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4.1. Modifications

Witnin <the INGRES access methods, a relation is accessed first vy a
call to "find" which sets the range for a scan of tuples, and then "get"

is called repeatedly to access each tuple in this range. It is within

get" that most of the HR algorithm is implemented. "Get" returms
tuples from each differential relation, and finally %he zuples from zthe
base relation. The routines which perform REPLACES, DELETES, and

APPENDs are also modified to initialize and append the appropriate

tuples to the differential relatiom.

i._2_. Newest

If tuples were appended to a differemtial relation at one eﬁd, and
the relation were scanred from the other direction, it would be possible
<o tell when a tuple was the "newest" for a particular identifier by the
. fact that it was the first one encountered. Unfortunately, INGRES
appends tuples and scans relations in the same direction. Iz order <o
ve able %o tell from a single pass whether a tuple is "rnewest”, an addi-
tional timestamp field "maxdate" was added. When a tuple is appended,
maxdate is set to infinity. When the tuple is REPLACED or DELETED at
the same level, maxdate is updated. Thus a tuple is the "pewest” if the

+time of tihe current scan is between mindate ard maxdate.

i._}_. Seen~ids

The data structure, seen-ids is stored in a series of main memory
bit-maps, one for each level. Thus %o see a tuple with tupaum { at
level L, bit Y in bitmap L is set. The boolean function “seea(L, Y)"

-est3 wne<tiher the correspondizg bit is set.



i.i. Ovtimization

If the base relation is organized as either a random hash structure
or an ISAM structure, then the differential relations can be given a
similar structure and a sequential scan of the differential relation
avoided. To accomplish this, a correspondence must be established
between the pages in a differential relation and those in the base rela-
tion. I a tuple would be placed on a certain page of the base rela-
tion, then the tuple in the hypothetical relation must be placed on the
corresponding page in the differential relation.

To access a tuple in such a structured HR, the scan within each
relation is restricted +to those pages corresponding to the key of the
query. For example, suppose the relation R(name, salary) is stored
nashed on name and the differential relation D is stored likewise.

Then, tne query

range of w is W
retrieve (w.all) where w.name = "billy"

only requires accessing the appropriate hash bucket in both R and D.
There is one complication with this performance enhancement, which

stems from the fact that a REPLACE command can change the hash key, and

hence the page location of a tuple in a structured relation. For exam-

ple, consider the following contents of R and D:

R D
| name | salary) | name | salaryiother|
hashbucket | - | e mce——————————— ;
1 | suzy | 3000} | | | |
2 itandy | 254 | | i i
i i
i |

Figure 14, R and D bhashed c¢n nane.

Then, suppose we do the following REPLACE:

- 17 -



range of w is W :
replace w (name = “"tandy") where #.name = "suzy

As a result, R and D would look like

R D

'name  |salary| 'name  |salary|type %)
nasnbucket |- ! |- {
1 lsuzy | 3000f i i is
2 | tandy | 25  jtandy i 3000 REPLACE; |

| i |

i i {

Figure 15, proovlematic hashed replace.
and the query:
retrieve (w.all) wnere w.name = “suzy"
would generate the result:

| name |salary|
) |

!
suzy i 3000
|

i

Despite the fact that we changed suzy's name, she appears ia the result
pecause +thne algorithm indicates searching hashbucket ! of D, where
there are no tuples, then searcning hashbucket 1 of R, where susy's
tuple appears. This tuple in hashbucket 1 of R is "accepted”, because
no tuples have been "seen.” Unfortunately, the algorithm never searches
nashbucicet O of D to discover the correct tuple.

This problem can be solved by the addition of a fourth type of dif-
ferential tuple, FORWARD. An additional FORWARD tuple is appended iz
hashed and ISAM differential relations whenever a REPLACE is done whicn
inserts a tuple in a different hashbucket (or ISAM data page) than thatl
of “he target tuple. Witk this corrscticn, D of figure 15 would lcok

lixe:
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'name |salary|mindate|maxdate |tupnum|level;type !
i

hashbucket |===—eecc—cccemcecccccccacncccrree————- —-——— ————
1 : : o} 100§1NFINITY{ 0} 0} FORWARD;
2 itandy | 3000} 100} INFINITY, 04 O}REPLACEi
| = e e ————aa o mSeeen eSS SeSSee— |

Figure 16.

The processing of the query would then start in hashbucket 1 of I 1in
figure 16, where a FORWARD tuple would be found, and the ordered pair
<0, 0> would be added to seen-ids. Next, hashbucket 1 of R would be
scaﬁned, but since <O, 0> is in seen-ids, Suzy's tuple, tuplé 0 of R,

would not be accepted.

4.5. Functionality

With this refinement all QUEL commands have been made operational
on HRs for any INGRES storage structure. Such HR's could be used as the
basis for a crash recovery scheme as suggested in [STON81J with minor
" modifications to the our algorithms. Moreover, “snap-shots" of the state
of an HR at any point in the pést can be generated by setting the scan
time to a time prior to the current time. Minor changes %o the QUL
syntax would allow a user to run retrieval commands against an HR as of
some previous point in time.

If at any time one wanted to make the changes in an HR permanent?,
he can use a series of QUEL statements to update the base relation using
the information in the differential relations. Alternately, a simple

utility could be constructed to perform the same function.

5. PERFORMANCE MEASUREMENT AND ANALYSIS

Our performance analysis is aimed at comparing the performance of

standard QUEL commands on real relations versus the same ores on HRs and
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cur tests were run on a single user YaX-11/780. The following four com-
nands are used to measure update performance for a real parts relation
parts500(poum, poame, pweignt, pcolor) of 5000 tuples stores as a ndeap.

Baseparts will serve both as a real relation and an HR.

range of b is baseparts
range of p is parts5000

(a) append to baseparts (p.all)
(b) delete b
(¢) replace b (weight = b.weight *+ 1600)

(d) replace b (pnum = b.poum * 1000)

Taple 2 indicates the results of ruzning commands a) - ¢) Zfirut for a
real baseparts relation of 5000 tuples stored as a heap and then for
vaseparts as an HR. In the latter case it comsists of an enpty dif-
ferential relation, D and a 5000 tuple real relation, R suored as a
heap. Command d) was not run in this situation because it snould pro-
duce comparable results %o command ¢) for unstructured relations.
Notice that real and hypothetical relations perform comparably.

To test retrieval performance we ran query (e) for four different

compositions of baseparis, including

range of o is baseparts
(e) retrieve (m = nax(b.veight))

a 10 tuple real relatiorn, 4 10COC wuple real relaticn, 2a 10 tupie #R and

a 10000 tuple HR. The hypothetical celations hacd sizes of differenzial
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query operation relation-type cputime elapsed
(a) append regular 24.47 secs 32 secs
(a) append hypothetical 26.57 secs 36 secs
(b) delete regular 24.38 secs 26 secs
(b) delete hypothetical 19.78 secs 25 secs
(e) replace regular 26.03 secs 28 secs
(e) replace hypothetical 25.03 secs 35 secs
Table 2, updates on 5000 tuples unstructured.
query operation relation-type cputime elapsed
(a) append regular 74.68 secs 268 secs
(a) append hypothetical 64 .82 secs 226 secs
(b) delete regular 20.15 secs 31 secs
(b) delete hypothetical 21.32 secs 37 secs
(e) replace regular 42.32 secs 47 secs
(e) replace nypothetical  40.97 secs 59 secs
(d) replace regular 91.33 secs 345 secs
(d) replace hypothetical 89.63 secs 422 secs

Table 3, updates on 5000 tuples, hashed on salary.

relations, D, varying from O to 200% of the size of the R.

5 show the results of these tests.

Tables 4 and

relation
type

regular

hypothetical
hypothetical
hypothetical

size of D cputime
- Q.16 secs
0% 0.20 secs
50% 0.26 secs
100% 0.26 secs

elapsed

time

o eh wh eah

sec
sec
sec
secC

Table 4, Query (e) run with 10 tuple base.
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relation size of D coutime elagsed

type time

regular - 11.88 secs 13 secs
hypothetical 0% 13.86 secs 15 secs
hypothetical 10% 14.40 secs 15 secs
hypothetical 25% 15.22 secs 16 secs
hypothetical 50% 16.73 secs 18 secs
nypothetical 100% 18.60 secs 21 secs
hypothetical 200% 21.58 secs 30 secs

mable 5, Query (e) run with 10000 tuple base.

Query (e) was also run against a second level HR based on a first
ljevel HR with 50% of its tuples replaced. The results of this test are
in table 6.

lLastly, we ran query (f) against a baseparts relation &Lashed on

coum.

range of p is parts5000
range of h is RELATION

(f) retrieve (p.weight, h.weight) where p.pnum = h.pnum

In this case table 7 compares performance where RELATION is either a

5000 tuple real relation hashed on ponum, or a 5C00 tuple HR hashed on

hypothetical gize of D cputime elapsed
relation level tinme

1 50 16.73 secs 18 secs
2 0% 17.35 secs 18 secs
2 10% 17.73 secs 19 secs
2 25% 18.52 secs 1§ secs
2 50% 18.78 secs 21 secs
2 100% 20.75 secs 24 secs

mable 6, Query (e) 10CO0 tuples, 2 levels.
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poum, with 50% of its tuples replaced. Parts5000 1is &an unstructured

Query (f)

relation type cputime elapsed
hashparts regular 131 secs 5.85 minutes
hhashparts hypothetical 185 secs 9.88 minutes

Table 7, hashed access resulis.

5000 tuple relation.

Two comments are appropriate about the numbers in Table 7. Firsy,
notice that INGRES is I/0 bound in both tests and elapsed time substan-
tially exceeds CPU time. The reasons include the particular query pro-
cessing tactic chosen for this query and the fact that a substantial
amount of data is printed on the output device. The second point 1is
" that joins on hypothetical relations are less than a factor of two
slower than those on real relations.

Thus we can see that the performance of INGRES using hypothetical
relations in many types of query is never worse than a factor of its
level number and usually much better. We assume that for more complex

queries involving an HR, the same general result would hold.

6. CONCLUSIONS

We have described a mechanism for supporting HR's which is shown
to overcome the problems of previous proposals. We have described an
implementation of HR's and provided performance data to show that per-
formance of HR's is in general no worse thaz a factor of one per level

of HR. Moreover, in most cases, performance is considerably better than
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B. Statement of Work

8.1. Operating Systems, Distributed Computing, and Programming Sys-

tems

We will implement the interprocess communication and large file
access enhancements to UNIX and make them available as part of the
Berkeley Software Distributions. We will have a substantially complete
experimental version of the system with the large file access enhance-
ments documented in a technical report by March 1982. We will have a
substantially complete experimental version of the system with the
interprocess control enhancements documented in a technical report
by June 1982. We will have a complete system including the large file
access and interprocess control enhancements ready for distribution

by September 1982.

We will implement a UNIX-based distributed computing environment in
the context of a network of personal workstations and larger comput-
ers not necessarily under a common administration. We will create
experimental versions of various components of such an environment
and document them with technical reports throughout the contract
period. We will have an experimental version of the distributed system
documented in a technical report by March 1983. We will have an ini-
tial version of a distributed system ready for distribution by Sep-

tember 1983.

We will construct a table driven code generator which takes input from
the first pass of the Portable C Compiler, the Fortran 77 compiler and
the Berkeley Pascal compiler. A technical report describing the iimple-
mentation and comparing its output to that of the existing compilers
will be provided by September 1982. We will explore techniques for
improving the generated code, implement those which appear best,
and examine their impact in another technical report by September

1983.



8.2.

8.3.
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We will explore basic issues related to distributed computing
throughout the contract period and document our research resuits in

technical reports.

Information Management in Design and Decision Support Systems

We will investigate how to extend the class of data representations
which can be processed by a relational database system. We will
extend INGRES to allow multiple representations of data items using
the techniques of descriptor based access methods and will document
the result in a technical report by September 1982. We will introduce
the notion of bins into INGRES to provide efficient processing of spatial
data: the bins will be implemented using a generalization of secondary
indices and will be documented by a technical report by March 1983.
We will investigate using a relational database system as an Al pro-
gramming tool by experimentally rewriting some existing Al programs
to use a version of INGRES which has been enhanced to allow storing
information which would have been stored using Lisp: the experiment

will be described in a technical report by Septermnber 1983.

We will explore the use of forms as an efficient interface for developing
various applications of database systems. The specification of a form
application development systemn will be provided as a technical report
by June 1982. A prototype system will be developed and documented
in a technical report by December 1982. During the remainder of the
contract period we will build a variety of applications using the proto-

type system in order to evaluate its interface.

Interfaces and Graphics

We will explore connection-based style of design including how to
represent and manipulate connections graphically, how to hide the
details of complex connections using the concept of bundles, and how
to deal with geometrical constraints. We will measure relevant aspects
of existing designs and design tools to provide a context for this
research. These measurements will be documented in a technical

report by June 1982. We will develop a simple connection-based design



-34 -

system and describeitina technical report by June 1983.

We will study and build a prototype mathematical software environ-
ment based on workstations which communicate with remote comput-
ers. The workstations will be graphics based and will provide the user
with an integrated interface. The large computer will provide a large
scale algebraic/numerical computation environment for eflective
problem solving. The user interface to be provided by the workstation
will be designed and spelled out in a technical report by September
1982. A working user interface to Macsyma provided via a workstation
will be documented in a technical report by March 1983 and a system
with interactive and graphical enhancements will be documented in a

technical report by September 1983.

We will conduct both theoretical and experimental research into the
applicability of Beta-splines for curve and surface representation 1n
computer graphics systems which allow the representation and
modification of geometrical shapes. A basic experimental graphics
facility for use from within the UNIX environment will be constructed
and documented in a technical report by September 1982. A technical
report evaluating subdivision techniques for Beta-splines will be pro-

vided by September 1983.








