4.2BSD Networking Implementation Notes

Revised July, 1983

Samuel J. Leffler, William N. Joy, Robert S. Fabry

Computer Systems Research Group
Computer Science Division
Department of Electrical Engineering and Computer Science
University of California, Berkeley
Berkeley, CA 94720

(415) 642-7780

ABSTRACT

This report describes the internal structure of the networking facilities
developed for the 4.2BSD version of the UNIX® operating system for the
VAXt. These facilities are based on several central abstractions which struc-
ture the external (user) view of network communication as well as the internal
(system) implementation.

The report documents the internal structure of the networking system.
The **4.2BSD System Manual’’ provides a description of the user interface to
the networking facilities.

* UNIX is a trademark of Bel! Laboratories.
¢ DEC, VAX, DECnet, and UNIBUS are trademarks of Digital Equipment Corporation.

Networking Implementation

TABLE OF CONTENTS

1. Introduction

2. Overview

3. Goals

4. Internal address representation
S. Memory management

6. Internal layering
.1. Socket layer

.1.1. Socket state

.1.2. Socket data queues
1.3. Socket connection queueing
2. Protocol layer(s)

.3. Network-interface layer
.3.1. UNIBUS interfaces

7. Socket/protocol interface

8. Protocol/protocol interface
pr_output

pr_input

pr_ctlinput
pr_ctloutput

e o

9. Protocol/network-interface interface
1. Packet transmission
.2. Packet reception

10. Gateways and routing issues
. Routing tables

Routing table interface

User level routing policies

Input processing

11. Raw sockets
. Output processing

1.
).
3.
1. Control blocks
2.
3.
2.

12. Buffering and congestion control

.1. Memory management

2. Protocol buffering policies
.3. Queue limiting

4. Packet forwarding

13. Out of band data
14. Trailer protocols
Acknowledgements

References

CSRG TR/6

Contents

Leffler, et. al.

Networking Implementation -1- Introduction

1. Introduction
This report describes the internal structure of facilities added to the 4.2BSD version of the

UNIX operating system for the VAX. The system facilities provide a uniform user interface 10
networking within UNIX. In addition, the implementation introduces a structure for network
communications which may be used by system implementors in adding new networking facili-
ties. The internal structure is not visible to the user, rather it is intended to aid implementors
of communication protocols and network services by providing a framework which promotes

code sharing and minimizes implementation effort.

The reader is expected to be familiar with the C programming language and system inter-
face, as described in the 4.2BSD System Manual [Joy82al. Basic understanding of network com-
munication concepts is assumed; where required any additional ideas are introduced.

The remainder of this document provides a description of the system internals, avoiding,
when possible, those portions which are utilized only by the interprocess communication facili-
ties.

CSRG TR/6 Leffler, et. al.

Networking Implementation -2- Overview

2. Overview

If we consider the International Standards Organization’s (ISO) Open System Interconnec-
tion (OSI) model of network communication [ISO81] [Zimmermann80], the networking facili-
ties described here correspond to a portion of the session layer (layer 3) and all of the transport
and network layers (layers 2 and 1, respectively).

The network layer provides possibly imperfect data transport services with minimal
addressing structure. Addressing at this level is normaily host to host, with implicit or explicit
routing optionally supported by the communicating agents.

At the transport layer the notions of reliable transfer, data sequencing, flow control, and
service addressing are normally included. Reliability is usually managed by explicit ack-
nowledgement of data delivered. Failure to acknowledge a transfer resuits in retransmission of
the data. Sequencing may be handled by tagging each message handed to the network layer by
a sequence number and maintaining state at the endpoints of communication to utilize received
sequence numbers in reordering data which arrives out of order.

The session layer facilities may provide forms of addressing which are mapped into for-
mats required by the transport layer, service authentication and client authentication, etc. Vari-
ous systems also provide services such as data encryption and address and protocol translation.

The following sections begin by describing some of the common data structures and utility
routines, then examine the internal layering. The contents of each layer and its interface are
considered. Certain of the interfaces are protocol implementation specific. For these cases
exampies have been drawn from the Internet {Cerf78] protocol family. Later sections cover
routing issues, the design of the raw socket interface and other miscellaneous topics.

Networking Implementation -3- Goals

3. Goals

The networking system was designed with the goal of supporting multiple protocol families
and addressing styles. This required information to be “hidden” in common data structures
which could be manipulated by all the pieces of the system, but which required interpretation
only by the protocois which ‘‘controlled” it. The system described here attempts to minimize
the use of shared data structures to those kept by a suite of protocols (a protocol family), and
those used for rendezvous between “synchronous’’ and “‘asynchronous’’ portions of the system
(e.g. queues of data packets are filled at interrupt time and emptied based on user requests).

A major goal of the system was to provide a framework within which new protocols and
hardware could be easily be supported. To this end, a great deai of effort has been extended to
create utility routines which hide many of the more complex and/or hardware dependent chores

of networking. Later sections describe the utility routines and the underlying data structures
they manipulate.

CSRG TR/6 Lefller, et. al.

Networking Impiementation - 4. Address representation

4. Internal address representation

Common to all portions of the system are two data structures. These structures are used
to represent addresses and various data objects. Addresses, internally are described by the
sockaddr structure,

struct sockaddr {
short sa_family, /* data format identifier */
} char sa_data[14]; /* address */
All addresses belong to one or more address families which define their format and interpreta-
tion. The sa_family field indicates which address family the address belongs to, the sa_data field
contains the actual data value. The size of the data field, 14 bytes, was selected based on a
study of current address formats®.

* Later versions of the system support variable length addresses.

Lefller, et. al.

Networking Implementation -5. Memory management

s. Memory management

A single mechanism is used for data storage: memory puffers, or mbufs. An mbuf is a
structure of the form:

struct mbuf |

struct mbuf *m_next, /* next buffer in chain */

u_long m_ofT; /* offset of data */

short m_len; /* amount of data in this mbuf */
short m_type; /* mbuf type (accounting) */
u_char m_dat[MLEN]; /* data storage */

struct mbuf *m_act, /* link in higher-level mbuf list */

k
The m_next field is used to chain mbufs together on linked lists, while the m_act field allows
lists of mbufs to be accumulated. By convention, the mbufs common to a single object (for
example, a packet) are chained together with the m_next field, while groups of objects are
linked via the m_act field (possibly when in a queue).

Each mbuf has a small data area for storing information, m_dat. The m_len field indicates
the amount of data, while the m_off field is an offset to the beginning of the data from the base
of the mbuf. Thus, for example, the macro mtod, which converts a pointer to an mbuf to a
pointer to the data stored in the mbuf, has the form

#define mtod(x,t) () ((int) (x) + x)->m_off))

(note the ¢ parameter, a C type cast, is used to cast the resultant pointer for proper assign-
ment).

In addition to storing data directly in the mbuf’s data area, data of page size may be also
be stored in a separate area of memory. The mbuf utility routines maintain a pool of pages for
this purpose and manipulate a private page map for such pages. The virtual addresses of these
data pages precede those of mbufs, so when pages of data are separated from an mbuf, the
mbuf data offset is a negative value. An array of reference counts on pages is also maintained
so that copies of pages may be made without core to core copying (copies are created simply by
duplicating the relevant page table entries in the data page map and incrementing the associated
reference counts for the pages). Separate data pages are currently used only when copying data
from a user process into the kernel, and when bringing data in at the hardware level. Routines
which manipulate mbufs are not normally aware if data is stored directly in the mbuf data array,
or if it is kept in separate pages. :

The following utility routines are available for manipulating mbuf chains:

m = m_copy(m0, off, len);

The m_copy routine create a copy of all, or part, of a list of the mbufs in m0. Len bytes of

data, starting off bytes from the front of the chain, are copied. Where possible, reference

counts on pages are used instead of core to core copies. The original mbuf chain must
have at least off + len bytes of data. If len is specified as M_COPYALL, all the data
present, offset as before, is copied.

m_cat(m, n);

The mbuf chain, n, is appended to the end of m. Where possible, compaction is per-

formed.
m_adj(m, diff),

The mbuf chain, m is adjusted in size by diff bytes. If diff is non-negative, diff bytes are

shaved off the front of the mbuf chain. If diff is negative, the alteration is performed

from back to front. No space is reclaimed in this operation, alterations are accomplished
by changing the m_len and m_off fields of mbufs.

m = m_pullup(mo0, size); .
After a successful call to m_pullup, the mbuf at the head of the returned list, m, is

CSRG TR/6 Leffler, et. al.

Networking Impiementation -6- Memory management

guaranteed to have at least size bytes of data in contiguous memory (allowing access via a
pointer, obtained using the mtod macro). If the original data was less than size bytes long,
len was greater than the size of an mbuf data area (112 bytes), or required resources were
unavailable, m is 0 and the original mbuf chain is deallocated.

This routine is particularly useful when verifying packet header lengths on reception. For
example, if a packet is received and only 8 of the necessary 16 bytes required for a valid
packet header are present at the head of the list of mbufs representing the packet, the
remaining 8 bytes may be ‘‘pulled up” with a single m_pulflup call. If the call fails the
invalid packet will have been discarded.

By insuring mbufs always reside on 128 byte boundaries it is possible to always locate the
mbuf associated with a data area by masking off the low bits of the virtual address. This allows
modules to store data structures in mbufs and pass them around without concern for locating
the original mbuf when it comes time to free the structure. The drom macro is used to convert
a pointer into an mbuf’s data area to a pointer to the mbuf,

#define dtom(x) ((struct mbuf *)((int)x & -(MSIZE-1)))

Mbufs are used for dynamically allocated data structures such as sockets, as well as
memory allocated for packets. Statistics are maintained on mbuf usage and can be viewed by
users using the netstar(1) program.

CSRG TR/6 Lefler, et. al.

Networking Implementation -7- Internal layering

6. Internal layering

The internal structure of the network system is divided into three layers. These layers
correspond to the services provided by the socket abstraction, those provided by the communi-
cation protocols, and those provided by the hardware interfaces. The communication protocols
are normally layered into two or more individual cooperating layers, though they are collectively

viewed in the system as one layer providing services supportive of the appropriate socket
abstraction.

The following sections describe the properties of each layer in the system and the inter-
faces each must conform to.

6.1. Socket layer

The socket layer deals with the interprocess communications facilities provided by the sys-
tem. A socket is a bidirectional endpoint of communication which is ‘“typed’’ by the semantics
of communication it supports. The system calls described in the 4.2BSD System Manual are
used to manipulate sockets.

A socket consists of the following data structure:
struct socket {

short so_type; /* generic type */

short so_options; /® from socket call */

short so_linger; /* time to linger while closing */
short so_state, /* internal state flags */

caddr_t so_pcb; /* protocol control block */

struct protosw *so_proto; /* protocol handle */

struct socket *so_head; /° back pointer to accept socket ¢/
struct socket *so_q0; /* queue of partial connections */
short so_qOlen; /* partials on so_q0 */

struct socket *so_q; /* queue of incoming connections */
short so_glen, /* number of connections on so_q */
short so_qlimit; /* max number queued connections */
struct sockbuf so_snd; /* send queue */

struct sockbuf so_rcv; /* receive queue */

short so_timeo, /* connection timeout */

u_short so_error; /* error affecting connection */
short so_oobmark; /* chars to oob mark */

short SO_P&rp; /* perp for signals */

IR

Each socket contains two data queues, so_rcv and so_snd, and a pointer 10 routines which
provide supporting services. The type of the socket, so_iype is defined at socket creation time
and used in selecting those services which are appropriate to support it. The supporting proto-
col is selected at socket creation time and recorded in the socket data structure for later use.
Protocols are defined by a table of procedures, the profosw structure, which will be described in
detail later. A pointer to a protocol specific data structure, the **protocol control block™ is also
present in the socket structure. Protocols control this data structure and it normally includes a
back pointer to the parent socket structure(s) to allow easy lookup when returning information
to a user (for example, placing an error number in the so_error field). The other entries in the
socket structure are used in queueing connection requests, validating user requests, storing
socket characteristics (e.g. options supplied at the time a socket is created), and maintaining a
socket’s state.

Processes ‘‘rendezvous at a socket” in many instances. For instance, when a process
wishes to extract data from a socket’s receive queue and it is empty, of lacks sufficient data to
satisfy the request, the process blocks, supplying the address of the receive queue as an ‘‘wait
channel’ to be used in notification. When data arrives for the process and is placed in the

CSRG TR/6 Leffler, et. al.

Networking Impiementation -8- Internal layering

socket’s queue, the blocked process is identified by the fact it is waiting ‘‘on the queue’’.

6.1.1. Socket state
A socket’s state is defined from the following:

#define SS_NOFDREF 0x001 /* no file table ref any more */
#define SS_ISCONNECTED 0x002 /* socket connected to a peer */
#define SS_ISCONNECTING 0x004 /* in process of connecting to peer */
#define SS_ISDISCONNECTING 0x008 /* in process of disconnecting °/
#define SS_CANTSENDMORE 0x010 /* can’t send more data to peer */
#define SS_CANTRCVMORE 0x020 /* can’t receive more data from peer */
#define SS_CONNAWAITING 0x040 /* connections awaiting acceptance */

#define SS_RCVATMARK 0x080 /* at mark on input */
#define SS_PRIV 0x100 /* privileged */
#define SS_NBIO ' 0x200 /* non-blocking ops */
#define SS_ASYNC 0x400 /* async i/o notify */

The state of a socket is manipulated both by the protocols and the user (through system
calls). When a socket is created the state is defined based on the type of input/output the user
wishes to perform. ‘‘Non-blocking™ 1/0 implies a process should never be blocked to await
resources. Instead, any call which would biock returns prematurely with the error EWOULD-
BLOCK (the service request may be partially fulfilled, e.g. a request for more data than is
present).

If a process requested ‘“asynchronous’’ notification of events related to the socket the
SIGIO signal is posted to the process. An event is a change in the socket’s state, examples of
such occurances are: space becoming available in the send queue, new data available in the
receive queue, connection establishment or disestablishment, etc.

A socket may be marked ‘‘priviledged’ if it was created by the super-user. Only
priviledged sockets may send broadcast packets, or bind addresses in priviledged portions of an
address space. ‘

6.1.2. Socket data queues

A socket’s data queue contains a pointer to the data stored in the queue and other entries
related to the management of the data. The following structure defines a data queue:

struct sockbuf {

short sb_cc, /* actual chars in buffer */

short sb_hiwat; /* max actual char count */
short sb_mbcnt; /* chars of mbufs used */

short sb_mbmax; /* max chars of mbufs to use */
short sb_lowat, /* low water mark °/

short sb_timeo; /* timeout */

struct mbuf "sb_mb; /* the mbuf chain */

struct proc °sb_sel, /* process selecting read/write */
short sb_flags: /* flags, see below */

|5

Data is stored in a queue as a chain of mbufs. The actual count of characters as well as
high and low water marks are used by the protocols in controlling the flow of data. The socket
routines cooperate in implementing the flow control policy by blocking a process when it
requests to send data and the high water mark has been reached, or when it requests to receive
data and less than the low water mark is present (assuming non-blocking 1/0 has not been
specified). :

CSRG TR/6 Leffler, et. al.

Networking Implementation -9- Internal layering

When a socket is created, the supporting protocol “‘reserves’’ space for the send and
receive queues of the socket. The actual storage associated with a socket queue may fluctuate
during a socket’s lifetime, but is assumed this reservation will always allow a protocol to acquire
enough memory to satisfy the high water marks.

The timeout and select values are manipulated by the socket routines in implementing
various portions of the interprocess communications facilities and will not be described here.

A socket queue has a number of flags used in synchronizing access to the data and in
acquiring resources;

##define SB_LOCK 0x01 /* lock on data queue (so_rcv only) */
#define SB_WANT 0x02 /* someone is waiting to lock */
#define SB_WAIT 0x04 /° someone is waiting for data/space */
#define SB_SEL 0x08 /* buffer is selected */

#define SB_COLL 0x10 /* collision selecting */

The last two flags are manipulated by the system in implementing the seiect mechanism.

6.1.3. Socket connection queueing

In dealing with connection oriented sockets (e.g. SOCK_STREAM) the two sides are con-
sidered distinct. One side is termed active, and generates connection requests. The other side
is called passive and accepts connection requests.

From the passive side, a socket is created with the option SO_ACCEPTCONN specified,
creating two queues of sockets: so_q0 for connections in progress and so_g for connections
already made and awaiting user acceptance. As a protocol is preparing incoming connections, it
creates a socket structure queued on so_q0 by calling the routine sonewconn(). When the con-
nection is established, the socket structure is then transfered to so_g, making it available for an
accept.

If an SO_ACCEPTCONN socket is closed with sockets on either so_qg0 or so_g, these
sockets are dropped.

6.2. Protocol layer(s)

Protocols are described by a set of entry points and certain socket visible characteristics,
some of which are used in deciding which socket type(s) they may support.

An entry in the *‘protocol switch” table exists for each protocol module configured into
the system. It has the following form:

CSRG TR/6 Leffler, et. al.

Networking Implementation -10 - Internal layering

struct protosw {

short pr_type; /* socket type used for */
short pr_family; /* protocol family */
short pr_protocol, /* protocol number */
short pr_{flags; /* socket visible attributes */
/* protocol-protocol hooks */
int (*pr_input) O; /* input to protocol (from below) */
int (*pr_output) O); /* output to protocol (from above) */
int (*pr_ctlinput)); /* control input (from below) */
int (*pr_ctloutput)); /* control output (from above) */
/* user-protocol hook */
int (*pr_usrreq) (); /® user request */
/* utility hooks */
int (*pr_init) (); /* initialization routine */
int (*pr_fasttimo) (); /* fast timeout (200ms) */
int (*pr_siowtimo) (); /* slow timeout (500ms) */
int (*pr_drain) (); /* flush any excess space possible */

Lo

A protocol is called through the pr_init entry before any other. Thereafter it is called
every 200 milliseconds through the pr_fasitimo entry and every 500 milliseconds through the
pr_slowtimo for timer based actions. The system will call the pr_drain entry if it is low on space
and this shouid throw away any non-critical data.

Protocols pass data between themseives as chains of mbufs using the pr_imput and
pr_output routines. Pr_input passes data up (towards the user) and pr_owrput passes it down
(towards the network); control information passes up and down on pr_ctlinput and pr_ctloutput.
The protocol is responsible for the space occupied by any the arguments to these entries and
must dispose of it.

The pr_userreq routine interfaces protocols to the socket code and is described below.

The pr_flags field is constructed from the following values: .
#define PR_ATOMIC 0x01 /* exchange atomic messages only */
#define PR_ADDR 0x02 /* addresses given with messages °/

#define PR_CONNREQUIRED 0x04 /° connection required by protocol */
#define PR_WANTRCVD 0x08 /* want PRU_RCVD calls */
#define PR_RIGHTS 0x10 /* passes capabilities */

Protocols which are connection-based specify the PR_CONNREQUIRED flag so that the socket
routines will never attempt to send data before a connection has been established. If the
PR_WANTRCVD flag is set, the socket routines will notfiy the protocol when the user has
removed data from the socket’s receive queue. This allows the protocol to implement ack-
nowledgement on user receipt, and also update windowing information based on the amount of
space available in the receive queue. The PR_ADDR field indicates any data piaced in the
socket’s receive queue will be preceded by the address of the sender. The PR_ATOMIC flag
specifies each user request to send data must be performed in a single protocol send request. it is
the protocol’s responsibility to maintain record boundaries on data to be sent. The
PR_RIGHTS flag indicates the protocol supports the passing of capabilities; this is currently
used only the protocols in the UNIX protocol family.

When a socket is created, the socket routines scan the protocol table looking for an
appropriate protocol to support the type of socket being created. The pr_rype field contains one
of the possible socket types (e.g. SOCK_STREAM), while the pr_family field indicates which
protocol family the protocol belongs to. The pr, - protocol field contains the protocol number of
the protocol, normaily a well known value.

CSRG TR/6 Leffler, et. al.

Networking Implementation -11- Internal layering

6.3. Network-interface layer

Each network-interface configured into a system defines a path through which packets
may be sent and received. Normally a hardware device is associated with this interface, though
there is no requirement for this (for example, all systems have a software *‘loopback’’ interface
used for debugging and performance analysis). In addition to manipulating the hardware dev-
ice, an interface module is responsible for encapsulation and deencapsulation of any low level
header information required to deliver a message to it’s destination. The selection of which
interface to use in delivering packets is a routing decision carried out at a higher level than the
network-interface layer. Each interface normally identifies itself at boot time to the routing
module so that it may be selected for packet delivery.

An interface is defined by the following structure,
struct ifnet {

char *if_name; /* name, e.g. ‘‘en” or “lo”" */
short if_unit, /* sub-unit for lower level driver */
short if_mtu, /* maximum transmission unit */
int if_net; /* network number of interface */
short if_flags, /* up/down, broadcast, etc. */
short if_timer, /* time ’til if_watchdog called */
int if_host{2]; /* local net host number */
struct sockaddr if_addr; /* address of interface */
union {

struct sockaddr ifu_broadaddr;

struct sockaddr ifu_dstaddr;
}if_ifu;
struct ifqueue if_snd; /* output queue */
int (if_init) O; /* init routine */
int (*if_output) (); /* output routine */
int (*if_ioct)) O /* ioctl routine */
int (*if_rese) O; /* bus reset routine */
int (*if_watchdog) (); /* timer routine */
int if_ipackets; /* packets received on interface */
int if_ierrors; /* input errors on interface */
int if_opackets; /* packets sent on interface */
int if_oerrors; /* output errors on interface */
int if_collisions; /* collisions on csma interfaces */
struct ifnet *if_next;

IR

Each interface has a send queue and routines used for initialization, if_init, and output,
if_output. 1f the interface resides on a system bus, the routine if_reset will be called after a bus
reset has been performed. An interface may also specify a timer routine, if watchdog, which
should be called every if_timer seconds (if non-zero).

The state of an interface and certain characteristics are stored in the jf_flags field. The fol-
lowing values are possible:

#define IFF_UP 0x1 /* interface is up */

#define IFF_BROADCAST 0x2 /* broadcast address valid */
#define IFF_DEBUG Ox4 /* turn on debugging */
#define IFF_ROUTE 0x8 /* routing entry installed */

##define IFF:POINTOPOINT 0x10 /* interface is point-to-point link */
#define IFF_NOTRAILERS 0x20 /* avoid use of trailers */
#define IFF_RUNNING 0x40 /* resources allocated */

If the interface is connected to a network which supports transmission of broadcast packets, the

CSRG TR/6 Leffler, et. al.

Networking Implementation -12- Internal layering

IFF_BROADCAST flag will be set and the |f broadaddr field will contain the address to be used
in sending or accepting a broadcast packet. If the interface is associated with a.point to point
hardware link (for example, a DEC DMR-11), the IFF_POINTOPOINT flag will be set and
{f_dstaddr will contain the address of the host on the other side of the connection. These
addresses and the local address of the interface, (£ addr, are used in filtering incoming packets.
The interface sets IFF_RUNNING after it has allocated system resources and posted an initial
read on the device it manages. This state bit is used to avoid multiple allocation requests when
an interface’s address is changed. The IFF_NOTRAILERS f{lag indicates the interface should
refrain from using a trailer encapsulation on outgoing packets; rrailer protocols are described in
section 14.

The information stored in an jfrer structure for point to point communication devices is
not currently used by the system internally. Rather, it is used by the user level routing process
in determining host network connections and in initially devising routes (refer to chapter 10 for
more information). :

Various statistics are also stored in the interface structure. These may be viewed by users
using the nerszar(1) program.

The interface address and flags may be set with the SIOCSIFADDR and SIOCSIFFLAGS
ioctls. SIOCSIFADDR is used to initially define each interface’s address; SIOGSIFFLAGS can
be used to mark an interface down and perform site-specific configuration.

6.3.1. UNIBUS interfaces

All hardware related interfaces currently reside on the UNIBUS. Consequently a common
set of utility routines for dealing with the UNIBUS has been developed. Each UNIBUS inter-
face utilizes a structure of the following form:

struct ifuba |

short ifu_uban; /* uba number */
short ifu_hien; /* local net header length */
struct uba_regs *ifu_uba; /* uba regs, in vm */
struct ifrw {
caddr_t ifrw_addr; /* virt addr of header */
int ifrw_bdp; /° unibus bdp */
int ifrw_info; /* value from ubaalloc */
int ifrw_proto; /* map register prototype */
struct pte *ifrw_mr;/* base of map registers */
} ifu_r, ifu_w;
struct pte ifu_wmap(IF_MAXNUBAMRI:/* base pages for output */
short ifu_xswapd; /* mask of clusters swapped */
short ifu_flags; /* used during uballoc’s */
struct mbuf *ifu_xtofree; /* pages being dma’'d out */

k

The if uba structure describes UNIBUS resources held by an interface. IF_NUBAMR
map registers are held for datagram data, starting at ff_mr. UNIBUS map register ifr_mr{—1]
maps the local network header ending on a page boundary. UNIBUS data paths are reserved
for read and for write, given by i#_bdp. The prototype of the map registers for read and for
write is saved in (fr_proto.

When write transfers are not full pages on page boundaries the data is just copied into the
pages mapped on the UNIBUS and the transfer is started. If a write transfer is of a (1024 byte)
page size and on a page boundary, UNIBUS page table entries are swapped to reference the
pages, and then the initial pages are remapped from ifi_wmap when the transfer compietes.

When read transfers give whole pages of data to be input, page frames are allocated from
a network page list and traded with the pages already containing the data, mapping the allocated

CSRG TR/6 Leffler, et. al.

Networking Implementation -13- Internal layering

pages to replace the input pages for the next UNIBUS data input.

The following utility routines are available for use in writing network interface drivers, all

use the fuba structure described above.
if_ubainit(ifu, uban, hien, nmr),

if_ubainit allocates resources on UNIBUS adaptor uban and stores the resultant informa-
tion in the ifuba structure pointed to by ifu. It is calied only at boot time or after a
UNIBUS reset. Two data paths (buffered or unbuffered, depending on the {fu_flags field)
are allocated, one for reading and one for writing. The nmr parameter indicates the
number of UNIBUS mapping registers required to map a maximal sized packet onto the
UNIBUS, while hlen specifies the size of a local network header, if any, which should be
mapped separately from the data (see the description of trailer protocols in chapter 14).
Sufficient UNIBUS mapping registers and pages of memory are allocated to initialize the
input data path for an initial read. For the output data path, mapping registers and pages
of memory are also allocated and mapped onto the UNIBUS. The pages associated with
the output data path are held in reserve in the event a write requires copying non-page-
aligned data (see {f_ wubaput below). If if ubainit is called with resources already allocated,
they will be used instead of allocating new ones (this normally occurs after a UNIBUS

reset). A 1 is returned when allocation and initialization is successful, 0 otherwise.

if_rubaget(ifu, totlen, off0);

if_rubaget pulls read data off an interface. (fotlen specifies the length of data to be
obtained, not counting the local network header. If off0 is non-zero, it indicates a byte
offset to a trailing local network header which should be copied into a separate mbuf and
prepended to the front of the resultant mbuf chain. When page sized units of data are
present and are page-aligned, the previously mapped data pages are remapped into the
mbufs and swapped with fresh pages; thus avoiding any copying. A 0 return value indi-
cates a failure to allocate resources.

if_wubaput(ifu, m);

{f_wubaput maps 2 chain of mbufs onto a network interface in preparation for output. The
chain includes any local network header, which is copied so that it resides in the mapped
and aligned 1/0 space. Any other mbufs which contained non page sized data portions are
also copied to the 1/0 space. Pages mapped from a previous output operation (no longer

needed) are unmapped and returned to the network page pool.

CSRG TR/6 Leffler, et. al.

Networking Implementation -'14 - Socket/protocol interface

7. Socket/protocol interface

The interface between the socket routines and the communication protocols is through
the pr_usrreq routine defined in the protocol switch table. The following requests to a protocol
module are possibie:

#define PRU_ATTACH 0 /* attach protocol */

#define PRU_DETACH 1 /* detach protocol */

#define PRU_BIND 2 /* bind socket to address */

#define PRU_LISTEN 3 /* listen for connection */

#define PRU_CONNECT 4 /* establish connection to peer */
#define PRU_ACCEPT 5 /* accept connection from peer */
#define PRU_DISCONNECT 6 /* disconnect from peer */

#define PRU_SHUTDOWN 7 /* won’t send any more data */
#define PRU_RCVD 8 /* have taken data; more room now °/
#define PRU_SEND 9 /* send this data */

#define PRU_ABORT 10 /* abort (fast DISCONNECT, DETATCH) */
#define PRU_CONTROL 11 /* control operations on protocol */
#define PRU_SENSE 12 /* return status into m */

#define PRU_RCVOOB 13 /* retrieve out of band data */
#define PRU_SENDOOB 14 /* send out of band data */

#define PRU_SOCKADDR 15 /* fetch socket's address */
#define PRU_PEERADDR 16 /* fetch peer’s address */
#define PRU_CONNECT2 17 /* connect two sockets */
/* begin for protocols internai use */

#define PRU_FASTTIMO 18 /* 200ms timeout */
#define PRU_SLOWTIMO 19 /* 500ms timeout */
#define PRU_PROTORCV 20 /* receive from below */
#define PRU_PROTOSEND 21 /® send to below */

A call on the user request routine is of the form,

error = (*protosw{].pr_usrreq) (up, req, m, addr, rights);
int error:; struct socket *up; int regq; struct mbuf *m, *rights; caddr_t addr;

The mbuf chain, m, and the address are optional parameters. The rights parameter is an
optional pointer to an mbuf chain containing user specified capabilities (see the sendmsg and
recvmsg system calls). The protocol is responsible for disposal of both mbuf chains. A non-
zero return value gives a UNIX error number which should be passed to higher level software.
The following paragraphs describe each of the requests possible.

PRU_ATTACH
When a protocol is bound to a socket (with the socreate system cail) the protocol module
is called with this request. It is the responsibility of the protocol module to allocate any
resources necessary. The ‘‘attach’ request will always precede any of the other requests.
and should not occur more than once.

PRU_DETACH
This is the antithesis of the attach request, and is used at the time a socket is deleted.

The protocol module may deallocate any resources assigned to the socket.

PRU_BIND
When a socket is initially created it has no address bound to it. This request indicates an
address should be bound to an existing socket. The protocol module must verify the
requested address is valid and available for use.

PRU_LISTEN
The ‘*‘listen’ request indicates the user wishes to listen for incoming connection requests
on the associated socket. The protocol module should perform any state changes needed
to carry out this request (if possible). A ‘‘listen’’ request always precedes a request 10

Leffler, et. al.

Networking Implementation -15- Socket/protocol interface

accept a connection.

PRU_CONNECT _

The ‘‘connect’ request indicates the user wants to a establish an association. The addr
parameter supplied describes the peer to be connected to. The effect of a connect request
may vary depending on the protocol. Virtual circuit protocols, such as TCP [Postel80b],
use this request to initiate establishment of a TCP connection. Datagram protocols, such
as UDP [Postel79], simply record the peer’s address in a private data structure and use it
to tag all outgoing packets. There are no restrictions on how many times a connect
request may be used after an attach. If a protocol supports the notion of multi-casting, it is
possible to use multiple connects to establish a multi-cast group. Alternatively, an associ-
ation may be broken by a PRU_DISCONNECT request, and a new association created
with a subsequent connect request; all without destroying and creating a new socket.

PRU_ACCEPT
Following & successful PRU_LISTEN request and the arrival of one or more connections,
this request is made to indicate the user has accepted the first connection on the queue of
pending connections. The protocol module should fill in the supplied address buffer with
the address of the connected party.

PRU_DISCONNECT
Eliminate an association created with a PRU_CONNECT request.

PRU_SHUTDOWN
This call is used to indicate no more data will be sent and/or received (the addr parameter
indicates the direction of the shutdown, as encoded in the soshutdown system call). The
protocol may, at its discretion, deallocate any data structures related to the shutdown.

PRU_RCVD

This request is made only if the protocol entry in the protocol switch table includes the
PR_WANTRCVD flag. When a user removes data from the receive queue this request
will be sent to the protocol module. It may be used to trigger acknowledgements, refresh
windowing information, initiate data transfer, etc.

PRU_SEND

Each user request to send data is translated into one or more PRU_SEND requests (a pro-
tocol may indicate a single user send request must be translated into a single PRU_SEND
request by specifying the PR_ATOMIC flag in its protocol description). The data to be
sent is presented to the protocol as a list of mbufs and an address is, optionally, supplied
in the addr parameter. The protocol is responsible for preserving the data in the socket’s
send queue if it is not able to send it immediately, or if it may need it at some later time
(e.g. for retransmission). '

PRU_ABORT
This request indicates an abnormal termination of service. The protocol should delete any
existing association(s).

PRU_CONTROL

The ‘‘control’® request is generated when a user performs a UNIX Joct/ system call on a
socket (and the ioctl is not intercepted by the socket routines). It allows protocol-specific
operations to be provided outside the scope of the common socket interface. The addr
parameter contains a pointer to a static kernel data area where relevant information may
be obtained or returned. The m parameter contains the actual ioct/ request code (note the
non-standard calling convention).

PRU_SENSE

The “‘sense’ request is generated when the user makes an fstar system call on a socket: it
requests status of the associated socket. There currently is no common format for the
status returned. Information which might be returned includes per-connection statistics,
protocol state, resources currently in use by the connection, the optimal transfer size for
the connection (based on windowing information and maximum packet size). The addr

CSRG TR/6 Leflier, et. al.

Networking Implementation - 16 - Socket/protocol interface

parameter contains a pointer t0 a static kernel data area where the status buffer should be
placed.

PRU_RCVOOB
Any ‘“‘out-of-band’’ data presently available is to be returned. An mbuf is passed in to
the protocol module and the protocol should either place data in the mbuf or attach new
mbufs to the one supplied if there is insufficient space in the single mbuf.

PRU_SENDOOB
Like PRU_SEND, but for out-of-band data.

PRU_SOCKADDR
The local address of the socket is returned, if any is currently bound to the it. The
address format (protocol specific) is returned in the addr parameter.

PRU_PEERADDR
. “The address of the peer to which the socket is connected is returned. The socket must be
in a SS_ISCONNECTED state for this request to be made to the protocol. The address
format (protocol specific) is returned in the addr parameter.

PRU_CONNECT2
The protocol module is supplied two sockets and requested to establish a connection
between the two without binding any addresses, if possible. This call is used in impie-
menting the system call.

The following requests are used internaily by the protocol modules and are never gen-
erated by the socket routines. In certain instances, they are handed to the pr_usrreq routine
solely for convenience in tracing a protocol’s operation (e.g. PRU_SLOWTIMO).
PRU_FASTTIMO

*TA *“‘fast timeout’’ has occured. This request is made when a timeout occurs in the
protocol’s pr_fastimo routine. The addr parameter indicates which timer expired.
PRU_SLOWTIMO

A “‘slow timeout” has occured. This request is made when a timeout occurs in the

protocol’s pr_slowtimo routine. The addr parameter indicates which timer expired.
PRU_PROTORCV

This request is used in the protocol-protocol interface, not by the routines. It requests

reception of data destined for the protocol and not the user. No protocols currently use

this facility.
PRU_PROTOSEND

This request allows a protocol to send data destined for another protocol module, not a

user. The details of how data is marked ‘‘addressed to protocol’’ instead of ‘‘addressed to

user” are left to the protocol modules. No protocois currently use this facility.

CSRG