VLSI Implementation of Digital Fourier Transforms
Final Repoit
A. Despain
C. Sequin
C. Thompson

E Wold
D. Lioupis

November 1, 1882
U. S. Army Research Office
Grant number: DAAG29-78-G-0167

Institution: University of California

Approved for public release; distribution unlimited.

The view, opinions, and/or findings contained in this report are those of the
authors and should not be construed as an official Department of the Army posi-
tion, policy, or decisinn, unless so designated by other documentation.

Table of Contents

1. OVERVIEW 1
2. INTRODUCTION 2
2 1. Fast Fourier Transform background 3
2.2. DFT Architectures 3
3. MODULAR CONSTRUCTION OF DFT PROCESSORS S
3.1. Background 5
3.2. The Radix-2 Cooley-Tukey Algorithm 5
3.2.1. Pipeline Structure 5
3.2.2. Notation 6
3.2.3. Derivation of Parallel-Pipeline Structures 8
3.2 4. Partitions of Derived Structures 11
3.2.5. Examples of Parallel-Pipeline Structures 11
3.2.6. Benchmarks of the Derived Structures 14
3.3. The Radixr Cooley-Tukey Algorithm 15
3.3.1. Pipeline Structure 15
3.3.2. Notation 16
3.3.3. Benchmark of the Radixr Structures 16
3.4. The Use of the Winograd Algorithm in Pipeline Processors 17
3.4.1. Background 17
3.4.2. Module Implementations 17

3.4.2.1. Base 2" Modules 17

3.4.2.2. Base 3 Module 17
3.4.2.3. Base 5 Module 19
3.4.2.4. Base 7 Module 22
3.4.2.5. Base 11 Module 23
3.4.2.6. Base 13 Module 23
3.4.2.7. Base 17 Hodule 24
3.4.2.8. Higher Bases 24
3.4.2.9. Proposed FFT Cascade 24
3.4.2.10. Module Memory Costs 26
4. IMPLEM.ENTATION TECHNOLOGY 31
4.1. Review of the Charge-Transter Principle 31
4.2. Implementation Trade-offs 34
4.3. A Technology for VLSi FFT Processors 35
5. DESCRIPTION OF INTEGRATED CIRCUITS 37
5.1. 16-Point DFT Processor 37
5.2. System-wide Considerations 37
5.2.1. Bit Skewing 37
5.2.2. Multiplexing of the Real and Imaginary Parts 38
5.3. Roet 3 Circuit 39

5.4. Barrel Shifter 41
5.5 —ﬁ—rot.at.or 42
16

5.5.1. Theory of operation 42
5.6. CORDIC Rotator Chip 44
5.6.1. Theory of Operation 44

5.6.2. Detailed Description of Data Path and Control 46

5.6.3. Perforrzace Estimation 49
5.8.4. Testing 51

5.7. Butterfiy Circuits 51
5.7.1. Introduction 51
5.7.2. Preliminary Butterfly Processor 51
5.7.3. Compatible Butterfly Processor 52
5.7.4. Chip Description 55
5.7.5. Performance Estimation 56
5.7.6. Testing 55

6. THEORETICAL WORK 57

6.1. Minimum latency Transforms 57
6.1.1. Justification 57
6.1.2. What is the f:bsolute Minimum? 57
6.1.3. VLSI Fan-in and Fan-out Considerations 57
6.1.4. Fast Carry Lookahead 58
6.1.5. Other Special Adder Circuits 65
6.1.6. Parallel Versus Cascade Structures 68

6.2. A Broad Survey of Fourier Transform Circuits 68
6.2.1. Building blocks 70
6.2.2. The Direct Fourier Transform on One Multiply-Add Cell 71
6.2.3. The Direct Fourier Transform on N Cells 2
6.2.4. The Direct Fourier Transform on N? Cells 72
6.2.5. The Fast Fourier Transform on One Processor 74
6.2.6. The Cascade Implementation of the Fast Fourier Transform 75
8.2.7. The FFT Network 76

8.2.8. The Perfect-Shuffle Implementation of the FFT 78

6.2.9. The CCC Network 80

6.2.10. The Mesh Implementation 81
7. CONCLUSIONS 83
8. REFERENCES B84

Figure 1:
Figure 2:
Figure 3:
Figure 4:
Figure 5:
Figure &:
Figure 7:
Figure 8:
Figure S:

Figure 10:
Figure 11:
Figure 12:
Figure 13:
Figure 14:
Figure 15:
Figure 16:
Figure 17:
Figure 18:
Figure 18:
Figure 20:
Figure 21:
Figure 22:
Figure 2G:
Figure 24:
Figure 25:
Figure 26:
Figure 27:
Figure 28:
Figure 29:
Figure 20:
Figure 31:
Figure 32:
Figure 33:
Figure 34:
Figure 35:
Figure 36:
Figure 37:

Figure 38:

Figure 3¢:

Figure 40:
Figure 41:
Figure 42:

iist of Figures

Despain Cascade

Example 1 (£=3, {=3)
Commutator for Example 1
Decime'or for Example 1

Example 2 (k=3, [=2)

Cost in number of chips

Signal Flow Graph of Base 3 DFT
Overall Ease 3 Circuit

First Ealf of Base 3 Butterfly

Last Falf of Base 3 Zutierfiy

Base 3 Specialized Multiplier Circuit
Divide by 2 Circuit

Root 3 Circuit

Base 5 Signa! Flow Craph

New Base 5 Signal Flow Graph

Base 5 DFT Module

First Ealf of Base 5 Butterfly

Last Falf of Base 5 Butterfiy

Ealf butterfly

Base 7 Dr'T Module

First Ealf Base 7 Butterfly

Last Falf Base 7 Eutterfly

Reorder Network for Base 7 Module
Exchange Circuit Mocule "L
Reorder Network for Base 13 Module
Base 18 Reorder Network

Base 17 Reorder Network

FFT Cascace for N = 17,821,440
P-channel BED

3-phase n-channei CCT

16 point DFT processor

Block Diagram of Root 3 Circuit
16 bit Root & Circuait
Fabricated Root 3 Chip
Schematic of Barrel Shifter
Fabricated Barrel Shifter Chip

Block Dizgram of -I%Circult

CIFPLOT of = Chip
Block Diagram of CORDIC rotator

Fioor Plan of CORDIC rotator
Stage 5 of the CORDIC Rotator

Power Dissipation among Various Technologies

Figure 43:
Figure 44:
Figure 45:
Figure 46:
Figure 47.
Figure 48:
Figure 49:
Figure 50:
Figure 51:
Figure 52:
Figure 53:
Figure 54:
Figure 55:
Figure 56:
Figure 57:
Figure 58:
Figure 59:
Figure 60:
Figure 61:
Figure 62:
Figure 83:
Figure 84:
Figure 65:
Figure 66:

ilgure 67:
Figure 68:
Figure 62:
Figure 70:
Figure 71:
Figure 72:
Figure 73:
Figure 74:
Figure 75:
Figure 76:

Adder Module

Inversion of a;

Adder and ROB Control Signals

CIFPLOT of CORDIC Rotator Chip

16 Bit Butterfly Processor

Fabricated 4 Bit Butterfiy Chip

Floorplan of Butterfly Module

Schematic of Butterfly Module
Programmable Delay Circuit

Fan-in Comparison

Desired Transformation

Definition of P&(r.) Circuits

Eigh Fan-in Circuits

Recursive Construction of Figh Fan-in Circuits
Ripple Carry Circuit

Development of Carry Cperator

Eigh Fan-in Ncdes

Definition of @i(n) Circuils

General Construction of @(Nm)

General Construction of @ (Ny)

Construction of T7{Np)

Construction of R circuits

Example for Fan-in 3

Fast Adder Circuit

Four to Two Reduction Adcer

The naive or "direct” Fourier transform algorithm
Staggered 1/0 pattern for the NZ2-cell DFT design
The FFT by "decimation in time"”

The FFT by "deciraaticn in fregquency”

The Cascade arrangement for 8-element F¥Ts
The FFT network for N=5

The perfect shufiie interconnections for N=8
The CCC network for V=5

The Mesh of N processors

Table 1:
Table 2:
Table 3:
Table 4:
Tabie 5:
Tabie 6:
Table 7:

Module Memory Costs

Viodule "Adds" (Ceniral Multiply not includea)

Choosing Shift Register Length

Chooszing rotation angle

Circuit Size as a Function of Fan-in and Circuit Delay

Cost Comparison of Adder Circuits

Area-time performance of the I'ourier transform-solving circuits

VLSI Implementation of Digital Fourier Transforms

1. OVERVIEW

In the late 1970's a modular, high-throughput architecture for large scale
Fourier Transform processors was developed in [1,2]. This architecture uses
only a few basic modules in a highly pipelined arrangement and some serial
memory for temporary storage of operands. This streamlined architecture
seemed predestined for implementation with "Charge Transfer Devices"”, which
have proven themselves in many high-speed signal processing applications and
for serial memory [3]. Thus we proposed to investigate the use of charge-
coupled devices (CCDs) in the implementation of pipelined FFT processors. For
various reasons which are explained below, the use of CCD's was dropped at an
early stage and the decision was made to design these same modules with stan-
dard silicon-gate NMOS technology.

A collection of the basic modules used in these FFT architectures have been
designed and implemented; some are currently in fabrication. These modules
are:

1. a specialized —]%-vector rotator which uses the rational approximation algo-
rithm developed by Despain in [2],
2. amodule to perform a multiplication by V3, also developed in [2],

3. a general CORDIC rotator, capable of rotating a complex vector by any
angle with 16-bit precision,

4,5. two modules capable of performing the "butterfly” operation of the Fast
Fourier Transform (FFT),

6. a barrel shifter which was designed for use in an iterative CORDIC module.

We also expanded the scope of our research to study the more general
problemn of efliciently computing the Discrete Fourier Transform with proper
attention to the constraints of VLSI. Many of the results are applicable to most
VLSI technologies (N- or P-channel MOS, bulk CMOS, SOS CMOS, I°L). New tech-
niques were developed for the construction of large scale FFT processors which
are geared toward the use of VLSIL. These techniques employ the traditional
Cooley-Tukey version of the FFT [4] as well as the prime-factor algorithm of
Good [5] and elements of the Winograd Fourier Transform [6].

At a lower level, we developed new results on minimum latency adders
which would be useful in the design of Fourier Transform processors using the
CORDIC or rational approximation rotation algorithms. On the theoretical side,
studies of the computational complexity of various Fourier Transform algo-
rithms were made using a VLS] mode! developed by Thompson [7].

In this report we will first review the class of highly pipelined architectures
for FFT processors which are considered for implementation with VLSI (sect 2 &
3). We then review the charge-transfer techniques and the more classical MOS
technologies and discuss the trade-offs for the implementation of the envisioned
FFT processor architectures (sect. 4). In section 5 we present a detailed
description of the hardware modules that were designed and implemented in

-2-

NMOS technology and make some performance predictions for a complete sys-
tem. In section 6 we present new theoretical results concerning minirmum
latency adders which could be used in FFT processors where minimum latency
was a design goal. Also there are results from the application of complexity
theory which produce some absolute bounds of area and time for implementa-
tions of FFT processors in VLS.

2. INTRODUCTION

2.1. Fast Fourier Transform background
The Discrete Fourier Transform (DFT), widely used in many areas of signal
processing, can be expressed as

-1 —;2mpk_
A =)$: B,e N r=01,..N-1 (1)
E=C

This computation is generally used to transform the representation of a set of
data samples from the time or space demain into the frequency domain. The
Cooley-Tukey FFT [4] is a factorization of this equation which reduces the
number of multiplications invoivez from O{N?j to O(NlogeN) assumning that the
radix-2 algorithm is used. This method of computing (1) consists of "butterfly”
operations of the form

C = A+B (2)
D =A-B

and multiplications by various roots of unity. The Cooley-Tukey algorithm has a
great deal of regularity which can be exploited in a VLS] implementation.

Other techniques developed by Good [5] and Winograd [6] can be utilized to
reduce the number of multiplications required to compute (1) to O(N) for cer-
tain values of N, although these techniques in general require an increase in the
complexity of the interconnections involved. The reduction in multiplications is
achieved by expressing smail transforms as convolutions, utilizing fast algo-
rithms to perform these convolutions, and by building up large transforms out of
these smaller, relatively prime modules.

While most of the Discrete Fourier Transform algorithms which have been
developed have been for existing general-purpose machines, tremendous speed-
ups are possible through the development of algorithms and hardware simul-
taneously. Despain [1] pointed out that the complex multiplications in (1) are
actually vector rotations and can thus be computed using an arithmetic tech-
nique known as the CORDIC aigorithm, originally developed by Volder [8].
Depending on the factors of N, the transforrn size, computational savings can
also be realized through the use of rational approximations for rotations as
described in [2].

2.2. DFT Architectures

Only a few basic functions are needed to implement a wide set of Cooley-
Tukey type FFT algorithms of a given transform length and transform radix.
These are:

1. A butterfly module which performs the operation in (2) above.
5 A CORDIC rotator module which performs the calculation of Bei®in (1).
3. Shift register memories for interme diate storage of data.

The pipeline structure shown in figure 1 is derived in [1], and consists only
of the three modules listed above. Basically, the operation of the processor is as
follows. The first butterfly (BF) module allows the input a; to pass unchanged
into the shift register of length 2n-1 yntil it is full. At that point, the incoming
data and the data in the shift register are combined in 2 2-point DFT:

b = a.,-_+a.‘_*%;_

b i= o,....-fzi—l (3)

EE e N
‘#z i+z

N/2 [; N/4 1
BF BF BF
. ‘ w
(g MGy W (g SN
CORDIC CORDIC

Figure 1: Despain Cascade

The b; are sent to the CORDIC rotator module which applies the proper rotations
(twiddle factors) while the b,+N are sent back into the shift register. When all
v
2

—g—Z-point DFT's have been computed, the b“’ﬂ_ are allowed fo pass out of the
2

shift register into the CORDIC rotator. The operation of the next butterfly
module is similar, except that each input datum is combined with one %,-away.

The entire computation is completed after n = log,N stages, where one stage
consists of the butterfly module, CORDIC rotator, and shift register.

In [2], Despain points out that, for certain values of N, the rotations
involved can be realized with less hardware than that which is required for a full
CORDIC rotator. For example, the rotations involved in the computation of the

FFT for N =16 can be performed with a set of g—— -g— and Iﬂg—rotators. Rotations
by these angles are accomplished through the use of rational approximations
which can be chosen for ease of hardware implementation. An example will be

given in the discussion of the 1—ﬂ6--chip below.

-5-

3. MODULAR CONSTRUCTION OF DFT PROCESSORS

3.1. Background

VLSI implementations of DFT processors can be communication-limited due
to the fact that the number of pins per chip is fixed at about 100 to 200, while
the number of transistors per chip is very large, about 10° in 1982, and is rising
rapidly. This leads to a fundamental bandwidth limitation which necessitates
the development of algorithms and computational structures which minimize
the amount of communication between chips.

The pipeline structure of Despain, as discussed above, lends itself to a VLSI
implementation due to the ease of constructing dynamic registers necessary for
pipeline computations [9]. However, for many applicaticns, the speed of the
computation needs to be higher than that which is attainable by the use of a sin-
gle pipeline, and parallel structures are required. The construction of combined
parallel and pipeline processors for computing the DFT is the subject of the fol-
lowing, although many of the results are more generally applicable to any VL3I
implementation of a DFT processor which takes advantage of the inherent paral-
lelism. These structures are designed to minimize the amount of communica-
tion necessary to compute the DFT and to make the communication hardware as
simple as possible. :

3.2. The Radix-2 Cooley-Tukey Algorithm

3.2.1. Pipeline Structure
In this section, we define N = 2" to be the transform size.

Referring again to the structure in figure 1, an obvious partitioning would
be to include as many stages as possible on each chip, since this structure poses
no communication problems. If the number of stages per chip is denoted by [,
we can see that the number of chips necessary to perform the computation is
given by

[]
n
Assuming that it takes T; seconds to transmit one datum through the pins of

each chip and that data can be input and output simultaneously, we can process
F, transforms per second where F; is given by

1
= . 3
Fi= 5 (3)
The latency of this structure (time between the input of the first data sample
and the output of the first result) is given by

I, = (n —1) Ty+nTg+N (4)

where Ty is the time required for a CORDIC rotation and Tp is the time required
for the add operation. For large transforms, the N term will dominate. Despain
notes that this structure is also capable of handling 2’ independent channels of
length N2~ without modifying the configuration, although the results are avail-
able after n—j stages. Since the structures we will derive will be proven to be
functionally identical to the structure above, they will share this feature.

It should be noted that the above structure is ineflicient in the sense that it
does not utilize the butterfly module while passing data into or out of the shift
register. The structure presented by Gold and Bially [10] avoids this and
achieves twice the transform rate, but requires twice the bandwidth. Although

-8-

the Gold and Bially structure will not be discussed specifically in the following,
the results will be applicable to it.

3.2.2. Notation

Parker [11] has recently introduced a set of algebraic tools which can be
used to describe processor networks in terms of their patterns of connection.
Although his notation is too limited to be used directly to handle parallel-

operators to the incoming data stream, which transform the data from one
dimension to two dimensions and which perform the butterfly operations. If the
index of a datum is defined as its coordinates [z.y] in the data stream, where
the original one-dimensional data stream (one row and N columns) is led by a
datum with index [0,0] and ending with a datum with index [N-1,0], we can
define thé operators as follows. The first operator breaks up each data stream
into several streams, and defines the operation of the shift register in each
stage:

Hiolzyl = [z, - "ZTenTe-;)y Yz - " Ze—j41]] (5)

G.lk)[x-y] =[[z, - CTe-jer¥y o UiZeo; 2)y “Yje1]]

where [z,y] = [[z, - - z,1[y, - - - v,]] when x and y are described in binary
notation. This is well defined as long as j<k=<wu. Note that 2/ is the number of
rows each original row is broken into, and that the operator processes the input
data in chunks of 2¢ columns. As an examp.e of the operation of u, consider the

case n=3, N=8. The input data can be viewed as a one-dimensional array com-
ing in from the left as

[drdgdsd, dad, d, dg].

Applying the operator H(1.3) converts this stream to a two dimensional array of
size 2!x2n-!

[2rdedsd,dse; 2,] M0 'lb, be bs b,

It is easily seen that the two rows of this new array are the two streams which
are fed simultaneously into the first butterfly unit of the Despain cascade.
Applying the operator M{12) has a different effect

bs by b, bl
b, bs by by

Since 2¥=22z=4, the input data is broken into 2 sets of 4 celumns before it is
transformed.

The butterfly operator, B, which cannot be defined in terms of the indexes
of the data, but which takes the rows of the two-dimensional data and combines
them in pairs, performing a 2-point DFT on each column in the pair, and places
the sum output in the row with the smaller y index and the difference output in
the row with the larger ¥ index. For simplicity, we will include the twiddle multi-
Ply in this operation. As an example, a structure to perform a 2" -point
transform can now be notated as

KO B Uit n)Buzh) - - - Hin) Bt ny ()

where one should remember that the output is in bit-reversed order. We have
kept to Parker's convention and written the order of operation from left to
right, i.e. Trlﬁg[.-z,y]=(1?20rr1)([z,y])=172(171[x.y]). This is done so that the strings

v #'1.2
(4, 2625 25d5d,d,dy] HUD

-7 -

of operators will match the structures exactly when they are diagrammed.
Using this notation, we can define a decimation operator ¢ which converts
one row to many by breaking each row into columns.
suylzyl=lzu @ llww YT z,]) (7

In this case, each row is broken into 2% rows and the operator is well defined if
k<wu. Using the same example as before, the operation of d(;) is

8oy e e bz bol
[dydgdsdsdsdzdido] b, bs by by

The operation of d(z) is shown by

b, bo

5o 25 1
[d7dsd5d4dsd2d1do] f) be bl
b7 b3

We will scon see a need for an operator which transposes the two dimen-
sional data in subblocks of 2% rows by 27 columns.
T(k.j)[z'y] = [[-’L‘u o ZTijale yl]'[yu o Y1 X '3-'1]] (8)
As an example, take n=4 where the input stream has already been operated on
by 5(2).
b, bg bs bol [bg bg b, b¢l
big biz bs by

big bs b5 bij([

by bic b bz| = [pbu bic ba b2

bis by b7 b3 bis bis by be
With these definitions, we may note some simple identities:

K YHG 1-k) = Mie+i 1) j+k=l (9)
Wit i-puGy = BGhen Jri=l (10)
pioon = pori I ksl (11)
Oy T ki-k) = M-k) k<l (12)
Proof of (9): ’
#(k.z)#u.z—k)[z'y] = p“(j.l—k)[[xu S P T2 F 31]»[% Y zl-mﬂ
= [[zy - T T sz e T BTk

© e T qeegynl]
= #(ka,j,z)[zvy]-
Proofs for the other identities are as straightforward.

The usefulness of these operators and their realization in hardware is the
next topic.

-8-

3.2.3. Derivation of Parallel-Pipeline Structures

We make the first attempt at parallelizing Despain’s structure by applying
the Gold and Bially procedure [10].

Theorem 1:
“anyBuihny M n)B @) = Sy m—) BU(k) Bn—ten—k)B Bk nk) (13)
T n-e)o) Bk pEF BLaleuioe n)-

The &) merely breaks the data into 2% rows of length 2" %, each of which is
transformed. The rows and columns are transposed by the T n-k) Operator,
and the rows of the transposed matrix are then transformed. 'fhe final uil g n)
rearranges the data back to one dimension.

Proof of Theorem 1: The identity in (12) implies that 8¢y (ke n—k)Mm—k n) IS
an identity transformation. Therefore, we can rewrite the left hand side of (13)
as

pmB it Bk) Bk 80 Tt n -6)n—k.n) (14)
li'(n—kﬂ.n)B/J'(;tl—kH.n)' e (n.n)B#(_nl.n)'
Note the identity
His B UGS) = Sty n-0)BlG) JEn—R <N (15)

Using this to propagate the &) to the left, we can rewrite (14) as

S e i1n—*)BUGn-k) (n-k.n—k)B#(_nl-k,n—k)T(k.n—k)#Gl—k.n) (18)

F'(n-lcﬂ,n)B#(-nl—lc +1n) " #(n.n)B#(;zl.n)-

Using the identity in (11), we have

brkrn-k)B U k) Hin-kn-k)BUG -k n) Ten k) (17)

sy Bre-nBrak-2) - BranBRE),

Again using (11), we see that

Hi1k-j) = KGkG+1e) JH1<k (18)
which allows us to rewrite (17) as

S)1n—k)BUIn-k) Hin—ic n—k) Bk n-)T k.0 —k) (19)

B BuG ke Buzl) - ek B iin)-

One final use of {11) gives us the expression

S ytirn-k)B LT k) Hin—k nok) BRG -k n—6) Tk k) (20)

e Buiil o K pyBHE R Rk R)

which completes the proof. Note that this theorem, although a good first step
toward the parallelization of (8), does not give us a very good structure, since
the transposition operation in the middle would require a buffer of size N to
implement directly.

The next step is to break down T;) to some operators which are easier to
realize in hardware. Let us define the following row interchange operator:

Rulzyl=[z.ly - ve W:®yss1) 1] (21)

where "@" means boolean "exclusive or". This operator leaves the first 2¥ rows
of the data unchanged, and interchanges the next 2F rows in pairs. As an exam-

ple.

b, bl bs b,
bs b1] Ry by bo
be bz ind b7 bs

b, b3 bg b2
We also define a commutator operator:
ez y] =200 Yerser WesyB2e) Yers-1 - Y1l (22)

ez y] = ewolzyl =0y - Yoo e®2e) Yo y1]l.
As examples,

biz bg by bl big ba bs by
big bg b5 bii g, biz bg by b,
bis big be bz| = (015 by by by
bis b1y b, b3 bis b1 bs bs

and
biz be by bol [bis bio b4 b0l
bis by b5 By,
b bio bg bzl = b1z bs bg Do
bis by by bg) bis bg b7 b3
Since this operator is just a permutation within each column of the data, it can

be implemented with a commutator (switch or multiplexer}. In fact, it should be
noted that g).... ¢k -1) requires the use of 2'*1-pole switches.

Now we are in a position to prove the following lemma.

Lemma 1:
T = BaoRumie Ko Ruliese @) (23)
By Rty - B ey R e)ke's)
Proof: Proof is by induction on k. Fork =1, it is easily verified that
Ty = /-"(1.X)R(j)#(-i?l)‘P'\l)ﬂ(l,I)R(j)#(_l?l)' (24)
Assume that the lemma holds for k. Note that
Hea e+)R e + DA{TE +1)P e+ DR(LE + D G+ DR (LE+Y) T ix)lzy] (25)

= ¢(k+x)ﬂ(x.k+1)R(k+1)/-L(1.k+1)T(k.k)[[zu T T2 (zk+1@yk+l) Tt 21]-'!./]

= #(uw1)R(k+x)#(1.k+x)T(k.k)[{-“’-u o Tz (Tee1BYe +1) Te. I,)
(Yo * " YesoTer1¥e " ¥1]]
= Teryl[zTu - TevalerZe " 20y - YeseZenye - ¥1l)
=[lzy - Testeer Vil YereTear 21l
= Tanes)z Y]
Using the identities
BB @GP n = fopGoRmuge) Jsklzk—j+1 (26)
15 YR)G ek Rt k) = ho R emiiong mReuGe) 1#7. (27)

we see that the left hand side of (25) is the same as the right hand side of (23)
which completes the proof.

-10-

We now look at the structure of Theorem 1 for three cases.
Case 1:n—k = k. For this case, the right hand side of (13) reduces to
Slerririe) Bty - e) BUGEE) Tk i) (28)
) Bale) e) BAE) LER)-
Substituting in for T) from Lemma 1 and using the identities
Ke) Bkl o) BlGly 125

VB il R 7ly = - _ 29
HmBrG o nRemen =1 Lo peus,) 1=; (29)
and
KR)G kG o) BTy = 1y R BuGl) (30)
leads to the expression '
e (1.6) BR)iy 1k k) BR e ik)P+ #01) (31)

B ReB L) e i) B o) BUGE e hi'n)
for the casen = 2k.

We now have a structure which is easily realizable, since /.LU",)B}?(k)quk) can
be performed by a set of butterfly modules, half of which reverse the order in
which they output the butterfly results. The u(jk)}?(k)B/xG}” are also imple-
mented by a column of butterfly modules, although half of these reverse the
order in which they accept their inputs. As we have noted previously, the
®) ' #() can be implemented vith a 2*-pole commutator. An examnple of this
structure will be demonstrated below.

Case 2 n—k > k. For this case, we note that the transposition operator
Ten-k) in (13) is difficult to implement since it changes the number of data
streams (rows) from 2% up to 2"~*. However, it is easy to show that

Thn-k) = T p)h(e aeMn-kn) k<n—k. (32)
Substituting this into (13), expanding Ty ,, by Lemma 1 and propagating the u's
gives us the structure
a(k).u'(l.n-k)B/“(_l.ln—k) e ‘#(n—zk,n—k)B#(_nl—z;:,n—k)#(n-zk+1.n—k)BR(k)ﬂ~(7;l—at+1.n—k) (33)

© Hn-k -0 BR)G e n)Py P R) BT
B k)R) B Gk i 2
which is as easy to implement as (31).

Case 3: n—k < k. In this case, the appiication of the transposition operator
Tk n-k) in (13) results in fewer data streams (rows) . Consider the portion of
(13) which comes after this operator. Since it is of the same form as the left
ha?d side of (13), we can apply Theorera 1 again and rewrite the right hand side
of (13) as

80)(1n -6 B n k) * - " Bin—k.n-k)BLE -k -6) Tk n-k) (34)
[6 2k -yt n—) B UG i) - - H(n—k 5 k) B tfn—k 1 k)
T(al:—n.n—k)#{l.Zk—n)B#(.l.IZk-n) C o Mz —n.ze—n)Bﬂ(E}:-n.Zb—n)

Min—k k)] 2 n)
where the effect of Theorem 1 has been bracketed for clarity. The combination
of operators T(xn-r)0(2x-n) leaves the number of rows constant and can be
implemented with the help of the following lemma.

-11-

Lemma 2:)
T 50— = BONRway) - B NRRMGHPG L= Pk-) (35)
BanRwudy) - s pRekGn k7

The proof of this is similar to that of Lemma 1 and is omitted. If we use this

lemma and the identities (29) and (30) to expand (34), we arrive at

8y n-k)BR(n-k)1 n k)~ * Min=k.n~E)BR (n-k){n -k n—k)P(n -k 2k -n) (38)
Bk - n—k) R i) B k) T M=k k)R (n-k)B Lk n-k)
T 2k -n n-k)H(1.2k-n)B L2k -n) K2k -n 2k -n)B 2k —n .2k -n)
Kni—k n)i =k n)-

The first half of this structure is now easily realizable, and the T -p n k) Will be
expanded in one of the three ways we have just looked at. If necessary, case 3
should be applied recursively to the structure until the last T operator can be
expanded as in case 1 or 2.

3.2.4. Partitions of Derived Structures

Clearly, one should again try to partition the structure into chips by includ-
ing on each chip as many stages of each pipeline as possible. We will again
denote the number of butterfly units per chip by !, and assume that it is con-
stant, although the following is easily extended to those cases where it is not.
From the results of the previous section, one can see that communication
between the pipelines is required no later than after the first n -k stages, which
implies that lsn—k. If l|{n—k and l|<n>,_ (where <>, denotes the residue
mod m and | is read "divides'), the structures of the previous section can be
used directly. However, if these requirements are not met, one can use the
identities

Ky)R)G erw) (37)
= QMG R Gl L#k-j+1
and
K YR OB)9 (k) (38)
= Qra-opiaRosGe T

to move the ¢'s through the structure so that there is always a multiple of {
stages between them. An example of the this will be shown below.

These identities may also be used tc derive structures when ! is not a con-
stant, as long as nol violates the inequality Isn-k.

3.2.5. Examples of Parallel-Pipeline Structures

For the following examples, we choose n=6 (N=64), and derive structures
for various numbers of data sireams (2*) and number of butterfly modules per
chip (1).

Ezample 1: k=3, 1=3. This corresponds directly to case 1 and is notated by

S BR@uGS) - - Kas)BR@MEnPE 1) (39)

raaR @Bl - mssR@BuiisGE)

where the commutator consists of one 8-pole switch. This example is
diagrammed in figure 2, where the reversal of the butterfly inputs or outputs is
shown by an "R" placed at the input or output of the butterfly module,

-12-

Note: shift register memories in first row are representative
of entire column.

a8 N85
BF BF BF BF BF BF
BF BF BF BF BF BF
R R
BF BF BF BF BF BF
R R
BF BF BF BF BF BF
R R R R
INPUT =2 . Ly QUTPUT
BF BF BF BF BF BF
R R
BF BF BF BF BF BF
R R R R
BF BF BF BF BF BF
R R R R
BF BF BF BF BF BF
R R R R R R
-l
Say L7982 (3,6
Figure 2: Example 1 (k=3, 1 =3)
gwitch
rate: 4 samples 2 samples 1 sample
/__\ e
S
S
s
S s
S I,

I L

Figure 3: Commutator for Example 1

-13-

respectively. The commutator required is shown in figure 3, where all the inter-
nal switches start in the position shown, then switch at the rates shown in the

figure.

Note: "R signifies high speed register

C — |
E L
= —{R E —>
ferial — — R E=> paraliel
ata L :LR ;@ data
=7 R
R >
high
speed
clock

ofe
o |

cyclically sends
outputs high

Figure 4: Decimator for Example 1

The design for the decimator shown in figure 4 assumes that the data arrives in
a single stream (from an A/D, for example), and requires the use of a few fast
registers. The ,u(‘a_ls) at the output would in general not be implemented, since its
implementation would require logic which was 2% times as fast as the logic in the
FFT processor.

Ezample 2: k =3, I=2. Here, we modify (39) using the identity in (37) to

O @m(1.3)BR @l 2.3)BR 313l ¢ @)% 2) (40)

Ks3)BR @m0 3R @B i e

K28R (3)B uizlnmia.z) R) B @l uas) .
where we now have two commutators, the first consisting of 2 4-pole switches
and the second consisting of 1 g-pole switch. This configuration is diagrammed
in figure 5. In this case, the first commutator consists of the first two sections
and the second commutator consists of the third section of the commutator
shown in the last example. Note that we could just as easily have moved P2 to
the right and combined it with #(1) With no change in the operation of the other
parts of the circuit.

Ezample 3: k=4, I=2. The first transposition operator can be expanded as

in case 3, and the resulting transposition cperator can be expanded as n case 1.
The resulting structure is

Sayk(1.2)BR 1 2k (2.2)BR (QME P 2.2)9(1.2)
K12y R @) BR o)z 2)R @) BR 222 2 1)
H(1.2)R2) B uiloz 2Rz B MM ok zls)-

(41)

-14 -

Note: shift register memories in first row are representative

of entire column.

[(Z)] EE] 2
BF BF BF BF BF BF
BF BF BF BF BF BF
R R
BF BF = BF BF BF BF
BF 1 BF BF BF BF BF
R R R
—-’ p—)
INPUT .
o Y p - or - -~ OUTPUT
R R
BF BF BF BF BF BF
R RR R
BF BF BF BF BF BF
R R R
BF BF BF BF BF BF
R R RR R
é» : %ot Py Pt

Figure 5: Example 2 (k=3, 1=2)

3.2.86. Benchmarks of the Derived Stiructures

1f N=2" is the transform size, 2% the number of data streams, and ! the

number of butterfly modules per chip, the numbe

the radix-2 F¥T is

]
n
H?
and we can process
zk
T4 N

C=

ﬁ} =

transforms per second. It should be noted again that this s
pipeline it was derived from, can process 2/ intermixed channe

r of chips required to compute

(42)

(43)

tructure, like the
Is of length N279.

For a desired transform rete, the number of chips required can be com-
puted by eliminating k from the above equations and noting that k must be an

integer. Thus,

z;_\ zilcgzi" TdN}'

C =

Since l<n —k, we can derive a lower bound for C given by

n k
D ——
c > 2

2 _—E_l—__F‘ Ty N.
loge BT,

(44)

(45)

-15-

This is of interest, since it states that the dependence of the lower bound of C on
F, is worse than linear. Thus, although the speedup is optimal in the sense that,
to raise F; by a factor of 2%, one multiplies the number of butterfly modules by
the same factor, the speedup is not optimal if one counts chips. Figure 6 has a
graph of C versus Fy Ty N for the case N=1024, where it is also assumed that ! is
limited to <4 due to area limitations on each chip.

[4
8392
2048
182¢ - 'y

812

129

32
16

K-straight line for reference

2 4 16 32 [1] 128 286 s12
¢ optinal speedup ~—— =) f,T‘N

Figure 8: Cost in number of chips

Since k<n -1, the highest transform rate possible is given by

_ 1
at a cost of
c=24n (47)

2
chips. The latency is given by

T, = (n=1)Ty+nTa+ 5 (48)

For large transforms, the latency is reduced by 2 over the original pipeline
structure.

3.3. The Radix-r Cooley-Tukey Algorithm

3.3.1. Pipeline Structure

The pipeline structure of Despain extends easily to arbitrary radix by
including in each stage a computational unit capable of performing an r-point
DFT and a CORDIC rotator module. An example of a radix-4 FFT processor of this
form can be found above and in [1]. If each chip contains I of these stages, and
if the transform size is now given by N=r", the number of chips needed to per-
form the FFT is given by

- 18-

and the transform rate is again

_ 1
Fo= 7w

(50)

3.3.2. Notation

The notation for the radix-2 case can be extended in a straightforward
manner to cover the radix-r case. The index of the data is now expressed in
terms of its base-r representation as [z,y]=[[z, - -z,)[w, - v:]]l. The
definitions of ;) and d() remain unchanged, but the definitions of Ry) and
®(k.;) Mmust be generalized to

Riylzyl=[z.lve - v2 <1 +¥esr>r 1] (51)
R(;)[z.y] = [z.[yy Y2 <Y1—Yer1>r 1]

and
¢(k.j)[z'yl = [3'[% Yk ejer <Tk Ye+j2r Ye+j-1 y:]] (82)

Ple.0)=Plk)
Note that the ¢ operator can still be implemented as a commutator. In this
more general case, Despain's structure is notaied in the same way as for radix-
2, with the B operator now interpreted as a radix-r DFT. Theorem 1 still holds,
and Lemmas 1 are easily generalized as follows.

Lemma 1:
Teex) = o) RE RAE) Hen)RE LEDPE) P0) (63)
KR @) uilk) -t)R) Rie)-
Lemma 2:
T S-) = LOHRE LAY B NREHGNPGE-5) " PlLE=j) (54)

HonRE sty kG nREKGS kT

The structures for the different cases are identical to the structures derived
before, except that the Ry operators will be propagated to the left and the R
operators will be propagated to the right. For example, the n -k = k case would
generalize to

Sy BRE UG+ Mk k) BR) ME) Fk) - #1) (55)

BaeyREBai) k)R B b n).

This is again easily realizable, although the data at the input and output to the
radix-r DFT modules will need to be rearranged in a more complicated pattern

(although there will still be no buffering required.) Structures for the other
cases are generalized similarly.

38.3.3. Benchmark of the Radix-r Structures

If the number of data streams is given by 7%, and if ! is the number of com-
putational units per chip, the number of chips is given by

(o]
C= I?—l o (586)
and the transform rate by

F=T (57)
T TyN’

-17 -

Following the same argument as before, we can arrive at a lower bound for C for
a given Fy.

C= r F, TyN. (58)
1 PR AN
The highest possible transform rate is given by
_ 1

Fy(maz) = T (59)

at a cost of
_ Nn

C=— (60)
chips. The latency becomes

T, = (n-1)7w+n73+;’§- (61)

where Ty is now the time it takes to do a radix-r DFT and Ty is the time required
for a CORDIC rotation.

3.4. The Use of the Winograd Algorithm in Pipeline Processors

3.4.1. Background

Certain DFT sizes are easier to implement than others. Although in the
past, powers of 2 have been a common choice due to the Cooley-Tukey algorithm
[4]), there is often a large advantage to employing other sizes as will be seen
below. In fact, it is possible to reduce the number of multiplies to O(N) for cer-
tain values of N. The algorithms which achieve this are based on the reduction
of DFTs to convolutions by Rader [12], the Good prime factor algorithm [5], and
the combining of multipliers due to Winograd [8].

We have already seen that the important idea in all the FFT algorithms is to
factor the DFT and thereby reduce the number of operations over its direct cal-
culation. This corresponds to a factorization of N. the transform size. Since we
are interested mainly in pipeline organizations of FFT processors, each of the
factors of N will correspond to a pipeline module.

3.4.2. Module Implementations

3.4.2.1. Base 2" Modules

We have already discussed these modules in detail and there is quite a bit in
the open literature about them. The pipeline processors of Despain as described
in [1] and [2] would be of the most interest here.

3.4.2.2. Base 3 Modules
The derivation of the base 3 module begins with the DFT for N=3:

4 =SB Wt r=012 (1)
k=0
where
_ 1 =3
W= -é—i' CHE

- 18-

Bi+B;
a‘+BQ

a,

o)
ap = a,—2B5;.

Equation (1) can now be factored into

AQ = Qg
A=A 3z, a;V-3
1 = 40 2 t 2
A3 - Al—azv =3.
The signal flow graph of this transform is shown in figure 7.
By 7 Ao
& 3/2
By /' X L—T Ay
2 372 2 5
B, —>— —>— A,

Figure 7: Signal Flow Graph of Base 3 DFT

It can now be observed that this calculation requires 7 real additions, one multi-
plication by V3, and several shift operations.

The term V3 can be approximated by a ratio of simple integers as in [2].
The result is that only about 4 complex additions per data point are required for
the base 3 transform.

If the algorithm of figure 7 is to be realized in pipeline form, considerable
data reordering is required. Thus, we will use a slight modification of the signal
flow graph. This is illustrated in the circuit diagrams below. Figure 8 shows the
overall base 3 circuit. Figures 9 and 10 show the add/subtract portions of the
base 3 circuit, while the multiplication module could be implemented as either a
full multiplier circuit or as a rational approximation as shown in figures 11, 12,
and 13. If the base 3 module is not the last module in a cascade, shift registers
would be necessary to multiplex the date as was done for the base 2" modules
previously derived.

From these figures it can be seen that, while the number of arithmetic
operations is small, the complexity of rearranging the data is large. In particu-
lar it would be costly to employ a base 3 module at the front of a large FI'T pipe-
line due to the large shift register memory which would be required relative to
the base 2® modules.

A similar analysis of other prime factors such as 5, 7, and 11 indicate that
the complexity of rearranging the data grows very quickly with the value of the
prime. Because it is severe for the case N=3, by the time the case N=5is con-
sidered, the complexity negates many of the advantages of the prime factor
technique, especially for the pipeline processcrs considered here. The problem
is not so great for specialized, single random access Memory processors.

-19-

DATA DATA
IN ouT
jg index
clock clock —
—> reset gIOR{VCT[f'?I?'L resetl 3>
& corTy out carry in g
a: Circuit Diagram
Pase 3 [P
FFT
Module K>

b: Macro Symbol

Figure 8: Overall Base 3 Circuit

DATA
DATA ouT
IN
|
ADD/PASS
Figure 9: First Half of Base 3 Butterfly
DATA DATA
IN SE SR oUT
!
e o e = —— -
1
ADD/PASS

Figure 10: Last Half of Base 3 Butterfly

3.4.2.3. Base 5 Module

There are several approaches to deriving a base 5 algorithm suitable for
pipeline cascade processors. If the algorithms outlined by Winograd [8] and
developed in detail by Kolba and Parks [13] are to be employed, then the flow

-20-
a: Block Diagram

O

b: Macro Diagram

Figure 11: Base 3 Specialized Multiplier Circuit

_[:lM

U t—>
X

51

a: Circuit Diagram

2O%

b: Macro Symbol

Figure 12: Divide by 2 Circuit

graph of figure 14 results. Although this form of the algorithm could be
employed with the use of input and output buffers and buflers for temporary
storage, it is better to derive an algorithm that is inherently in the pipeline

form.
This algorithm will be derived to meet the following constraints:

a: Circuit Diagram

b: Macro Symbol

Figure 13: Root 3 Circuit

By Ag
By A,
B, A,
B Ag
B, A,

Figure 14: Base 5 Signal Flow Graph

1. pipeline organization
2. Winograd form (central multipliers)
3. minimized muiltiplies
4. minimized memory requirements.
The first step is due to Rader [12]. As an example, we will look at N=5. We
can write the DFT in matrix form as
1 1 1 1]

‘1’] 1 W OWE WS w 'ﬁ‘;‘

ol =1 w2 Wt W Wi|B,

s| |1 w3 W Wt w2||Bs

4, 1 W4 WS WZ wt 4

-22.

-
where W = e 7% The difficult part of this calculation is
[a,l] [Wl w2 w3 W‘l [BI]

g _ W2 WA WS Bz (1)
as WS Wl w4 WZ Es
a, we W3 W% W'{|B.

since

Ag = BQ+BI+32+33+B4

and
A, = Bota,
Az = Bo+a2
As = Botag
A4 = Botas.

Since 5 is prime, we are guaranteed [14] that we can find a primitive root, g,
such that g¥mod5 for k = 0,1,2.... forms the set $1,2,3,4) which is the set of all
the positive integers less than 5. This primitive root defines a permutation of
the set §1,2,3,4] by applying the function g¥mod5 to the pumbers {0,1,2,3} which
gives us {1,2,4,3]. If we apply this permutation to the computation in (1), switch-
ing the last two rows and columns of the matrix, we end up with

Ia.J [Wl w2 w4 WsHBl]

ao| _ w2 wt w2 w\Pe (9)

4 - owe WG Wl wz 54.
X W3 Wl W2 W4 Ba

This can be recognized as the cyclic correlation of # and B where
W - [Wl w2 w4 WS]T
g=(B" B B* B%.

1t is well known that convolutions and correlations can be performed with the
DFT in the following manner [15]

& = DFT-(DFT(#)xDFT(B)) (10)

where X is a component by component multiply. It can be shown [6,16] that the
DFT of #, which can be precalculated, is always pure real or pure imaginary, so
that the multiplications which need to be performed involve at worst one real
and one complex value. The calculation of the DFT of B and the inverse DFT in
(10) can be performed by the 4 point DFT algorithm which has already been
defined. A signal flow graph of the entire N=5 algorithm is shown in figure 15.
This algorithms shows a great deal more regularity than that of Kolba and Parks
which we saw previously, and is thus much more suitable for a pipeline organiza-
tion. A circuit which performs this algorithm is shown in figures 16, 17, 18, and

19. The multiplier ¥gis most easily realized as a full multiplier circuit.

3.4.2.4. Base 7 Module

The derivation of the base 5 algorithm above can be used as a prototype for
the base 7 algorithm. The primitive root 3 defines the permutation {1,3,2,6,4,5]
which is used to reorder the inputs and outputs. Figures 20, 21, 22, 23, and 24
show the form of the circuit. First the input data is reordered according to the
sequence given above. Then a base 6 DFT is applied. This is just a base 3 fol-

lowed by a base 2 transform, since 3 and 2 are relatively prime. Next a

-23-

Y Y
/\Ji \ A
Y o ¢ 2 N A
N ~/ v
\/: Z g: -1,176-j1.902 A
A\ N/ v
i 1.178-j1.902 A

Figure 15: New Base 5 Signal Flow Graph

DATA DATA
IN our

CONTROL >
@_—

—>
<——

a: Circuit Diagram

—')rBase5 —

FFT
& Module P

b: Macro Symbol

Figure 16: Base 5 DFT Module

multiplication by the DFT of the W is performed and then each of the above
operations is undone in reverse order as in the base 3 and base 5 algorithms.

3.4.2.5. Base 11 Module
Since 11=2x5+1, 11 is not an attractive base, as each of the base 5 DFTs
would require a multiplier for a total of three multipliers.

3.4.2.6. Base 13 Module

Because 13=3x4+1, and since we have good algorithms for 3 and 4, this is
an attractive base. The procedure to derive this algorithm is the same as for
the base 5 and base 7 cases. The primitive root in this case is 2 which defines
the permutation i1.2.4.8.3,6,12.11.9.5.10.7}. The only new circuit which is
needed is the reorder network shown in figure 25.

-24 -

a: Block Diagram

b: Macro Symbol

Figure 17: First Hal of Base 5 Butterfly

a: Block Diagram

b: Macro Symbol

Figure 18: Last Half of Base 5 Butterfly

3.4.2.7. Base 17 Module

Since we have a good base 16 algorithm, base 17 is attractive as well. The
primitive rooi 3 defines the permutation 21.3.9.10.13,5,15,11,16.14,8.7.4,12.2.6;.
Again only 2 new reordering circuit is needed as in figures 26 and 27.

3.4.2.8. Higher Bases

Above 17, the Rader/Winograd form of DFT algorithms becomes more
difficult.

8.4.2.9. Proposed FFT Cascade

We have now developed a number of modules which can be employed to
form a full FFT Cascade. The central multiplications of the base 5, 7. 13, and 17
modules can be combined into a single central multiplication. The various
transform sizes which can be obtained with the restriction that only one multi-
plier be used is quite large.

Choose any combination of the g; such that each g; is used only once and

-25-

—
SHIFT

xf ek
=1 X —_9

*é"’t__

a: Circuit Diagram

b: Macro Symbol

Figure 19: Half butterfly

DATA
IN

CONTROL

14
Ty

a: Circuit Diagram

Fase 7 a

FFT
Module [P

b: Macro Symbol

Figure 20: Base 7 DFT Module

N = 01‘173& e
and where
g, =(22 3,4, 5, 7, 13, 16, 17).

The maximum size will be limited to

DATA
ouT

-26 -

a: Block Diagram

b: Macro Symbol

Figure 21: First Half Base 7 Butterfly

b: Macro Symbol

Figure 22: Last Half Base 7 Butterfly
N =]Ja; = 17,821,440
i

This should be large enough-for most purposes. Figure 28 shows an FFT cascade
of this size and smaller cascades can easily be derived from this figure. Some
attractive values are

N = 48, 256, 768, 2304, 4352, 130586, 39168.

Note that multiple, multiplexed channels of shorter transform length can be
obtained by tapping the cascade structure as shown.

8.4.2.10. Module Memory Costs

Each module has two different components to its cost. The first is the
memmory cost which is a function of the position of the module in the pipeline.
Define a factor ! that represents the product of all the bases of the modules that
follow. The factor ! then represents the number of samples to be stored in the
shortest memory (shift register). For the base 2" modules, 2/ memory words
will be required since a single sample has both a real and imaginary part. By
adding up the memory segments from the previous figures, the relative costs of

-

-27-

N

— CONTROL

a: Circuit Diagram

> <>
b: Macro Symbol

Figure 23: Reorder Network for Base 7 Module

DATA
M SHIFT | M

IN U REGISTER — U t—> .051574

X LENGTH = 1 X
. .

| |

e e e e e e, e, _,—m— - - —-— |

t
PASS/EXCHANGE

a: Circuit Diagram

-—)J E, —>

b: Macro Symbol
Figure 24: Exchange Circuit Module "E”

memory for each type module can be determined. The results are given in table
1.

-28-

1

CONTROL

!

a: Circuit Diagram

b: Macro Symbol

Figure 25: Reorder Network for Base 13 Module

— £ —¥ 5 >

1 1

—>
<« CONTROL

>
@—-

a: CQircuit Diagram

<> <>

b: Macro Symbol

Figure 26: Base 16 Reorder Network

-29-

—_— Eg 3 £ o £ 3 £ —
>
< CONTROL K—
a: Circuit Diagram
b: Macro Symbol
Figure 27: Base 17 Reorder Network
i: Nrzi16 N/48 N/240 Nz1680 N/21,480 N/371,280

DATA
IN

COMPLEX
MULTIPLY

Ns371,280

Nz21.480

Nr1680 N/240 16 4 -4 1

CHANNELS: 48 16 4 2

Figure 28: FFT Cascade for N = 17,821,440

Y

-30-

Table 1: Module Memory Costs

Size ' Weighting Factor (w) | Cost (wi) |

2 | 1.0 I 2.0

3 | 2.0 .80

5 2.5 | 125

7 2.33 16.33
13 2.77 38.0 |
17 | 3.75 83.75 |

The second major cost factor is fixed for each type of module. This cost is
determined by the number of adders and 2-input multiplexers, grouped under
the term "Adds". Table 2 summarizes this cost for each moduie tyce.

Table 2: Module "Adds" (Central Multiply not included) “

Size | Number of "Adds" |
2 4 :
3 12 ?
4 10 j
5 20 l
7 40
13 | 64

17 | 68 !

-31-

4. IMPLEMENTATION TECHNOLOGY

Due to the pipeline organization of the FFT processor, it was originally
thought that charge transfer technologies such as "Bucket Brigade"” or "Charge
Coupled Devices” would be the proper approach to take. We will first give a brief
review of the principle of operation of charge transfer devices and of the basic
implementation of such circuitry. Subsequently, we will discuss the difficulties
in technology and layout that arise in the implementation of practical systems.
Finally, we present the reasons why the charge-transfer approach was aban-
doned and standard silicon-gate n-channel MOS technology was favored for the
implementation of the prototype building blocks.

4.1. Review of the Charge-Transfer Principle

"Charge Transfer Device” (CTD) [3] is a generic term which has come to be
applied to a famnily of functional solid-state elecironic devices which includes
Bucket Brigade Devices (BBD) and Charge-Coupled Devices (CCD). Under the
application of a proper sequence of clock pulses, these devices move quantities
of electrical charge in a controlled manrer across a semiconductor substrate.
Using this basic mechanism, they can perform an amazingly wide range of elec-
tronic functions including image sensing, data storage, logic operations, and sig-
nal processing. Because of the shift-register nature of these devices, they are 2
natural match to serial memory or to pipelined signal processing systems.

There are two basic approaches to forming charge-transfer devices. In
bucket brigade structures information is represented by majority carriers, e.g.
the holes in the p -type diffused regions constituting the source or drain areas
of a p-channel MOS transistor (Fig 29). Electrically a bucket brigade device can
be understood as a dynamically operated chain of pass transistors. Under the
influence of two clocks half the pass transistors are strongly turned off at any
one time, while the others provide potential barriers that permit to skim of the
signal charge from the background of majority carriers contained in the source
electrodes. Capacitive coupling of the clocks to the diffused electrodes between
the pass gates will properly bias these areas to make them act as sources Or
drains respectively.

In the charge coupled devices, a more sophisticated electrode structure is
employed to create moving potential wells, Lhat travel along the surface of the
silicon crystal. Information is contained as a packet of minority carriers in
these moving potential wells. Practically all the charge contained in one poten-
tial well location gets transfered to the subsequent position. Because the signal
charge does not have to be skimmed off a majority carrier background, it is
easier to obtain good "transfer efficiency".

The crucial performance parameter in both kind of devices is ‘transfer
inefficiency’, a fractional number that indicates what part of the signal charge
fails to get transferred properly and gets mixed into the subsequent signal
packet. Bucket brigade devices have typical transfer inefficiencies of 107° to
10~* per stage while CCDs achieve on the order of 107° per transfer. Overall
transfer inefficiency of a charge transfer structure between input and output or
between subsequent signal regenerators should not exceed 50% for digital appl-
cations. This determines the maximum number of stages that can be safely put
into a single charge transfer section. Analog bucket brigade shift registers with
several hundred stages can be built with acceptable signal degradation. On the
other hand, CCD delay lines with up to 10,000 electrodes can be built with good
performance.

While BBD's are normally implemented with only two clock phases, CCDs
have been built with from 1 to 4 sets of clocked electrodes. Devices with 3 or 4

-32-

PI BUSBAR _ \

':, P { Pe2 P1 P2
Si0; \\ \ \ \
: e 1 i 1 =
p* I 3 77 B @

n=-Si

i o
- 1 P |
t=t, %\ ! 7 //1\‘ v 0!
Lh 2777 /A///a T 0T

(o)

) %7223 %zin 27D R

T 07 T
{b)

N

W

AN LD
7,70) KT

t=ty

P

P2 | !

TIME

{d)

Figure 29 (a): Schematic rendering of a p-channel BBD with the associated
potential diagram shown in the cross section of the silicon substrate. (b,c):
Potential diagrams shown for various biasing conditions illustrating the
transfer of charge. (d): The corresponding time slots marked in the di-
agram of the clock waveforms.

electrodes per stage can use simple unstructured electrodes, while the 1 or 2-
phase devices need to have some structure built into each electrode in order to
uniquely define the direction of charge transfer. The typical means to define
this directionality is to use a step in the thickness of the insulating oxide layer
under the gate electrode or a shallow implant at the surface of the substrate to
produce a suitable asymmetry in the interface potential underneath each elec-
trode. In both cases the signal charge will then accumulate in the part of the
electrode where it has the lower potential energy and will be prevented from
moving backwards by the barrier part of the potential profile. For this to work,
the amount of signal charge must be restricted to be completely contained
behind the barrier. For the same clock voltages and identical areas of the

-33-

P P2 P3 Pt P2

L=ty
\
X S a S oy
t=tp
{b)
\\ ST
FRSRIAIBNITR DNy
SRR
tatg
(c)
tzty
(d)
b talats
v
P! I NI
!
P2 v
(RN
P NN
(e) TIME

Figure 30 (a): Schematic rendering of a 3-phase n-channel CCD with the
charge carrying potential wells shown in the cross section of the silicon sub-
strate. (b,c,d): Potential wells shown at subsequent time intervals illustrat-
ing the transfer of charge. (e): The corresponding time slots marked in the
diagram of the waveforms.

storage electrodes, the charge handling of devices with directional electrodes is
thus smaller than that of devices with simple, uniform electrodes.

Bucket brigade devices have implanted or diffused source drain electrodes
and asymmetrically arranged metal or silicon electrodes that serve simultane-
ously as transistor gates and as capacitors that properly bias the source and
drain electrodes. These devices can be built with a single technological gate
level. The area underneath the gap between the gate electrodes is bridged by
the strongly doped source/drain areas (figure 29). Charge coupled devices on
the other hand move minority carriers through lightly doped substrate regions
close to the surface. The potential of all these areas must be carefully

-34 -

controlled. Inter-electrode gaps lead to unpredictable signal handling and poor
reliability. Thus the whole active channel area must be covered with clock elec-
trodes. This normally implies the use of at least two conductive levels capable of
providing good MOS gates or the use of special technological tricks such as
selectively doped sheets of high-resistivity polysilicon. The normal CCD struc-
ture thus typically consists of two or more levels of partially overlapping gate
electrodes (figure 30).

Because of the difficulty of routing different sets of clocks to all paths of a
large charge transfer system, efforts have been made to build CCDs with only a
single clocked electrode which covers the whole channel. It may at first seem
surprising, but such structures are indeed possible, and experimental devices
have been built in- several laboratories. However, these structure typically
require a more complicated, very tightly controlled fabrication process, and
provide only very small signal handling capability measured as a fraction of the
applied clock amplitudes. We are not aware of any practical systems that have
been built with such uni-phase CCDs.

4.2. Implementation Trade-offs

There are a few fundamental trade-offs in the construction of charge
transfer devices. As mentioned above, sizgnal handling can be traded off versus
the number of clock phases. Uni-phase devices can carry very little charge per
volt of the applied clock signals. Two-phase devices have reasonable signal han-
dling capabilities. From three phases on up the signal handling is very good, but
the problem of routing all these clock phases to the proper points gets worse
with increasing number of clocks. The figure of merit: (maximum signal charge)
/ (number of clock phases) reaches an optimum at four phases.

Similarly there is a trade-off in the number of clock phases that need to be
routed to the charge transfer channel versus the sophistication of the imple-
mentation technology. All practical charge coupled systems need at least two
levels of gate electrodes. This is true even for the uni-phase device because of
the input/output structures. In addition, the two-phase devices need at least
one to two implants in the area of the transfer channel to provide the necessary
directionality for the electrodes. Uni-phase devices need at least three to four
implants (or corresponding oxide-patterning steps to provide stepped elec-
trodes). The dosage of these implants have to be very carefully controlled to
guarantee proper operation of the device.

Bucket brigade devices can be constructed with both sets of electrodes
belonging for the two clock phases in a single level of metal or poly-crystalline
silicon. They can thus be constructed with standard n-channel or p-channel MOS
technology. However, serial registers with good transfer efliciency are normally
much larger than a corresponding CCD implementation.

In all these devices there is only a single plane in which the signal charge
can move around. The transfer of these charge packets can occur only close to
the silicon crystal surface. Crossing of two signal paths is thus only possible at
the expense of considerable extra circuitry. Either the charge packets belong-
ing to the two separate channels are time-muitiplexed through the crossing
point, which requires extra clocks and control gates; or at least one of the signal
streams must be taken out of the charge domain and converted with a sense
amplifier to a corresponding voltage. This voltage or current signal can then be
transmitted in a wire across the charge transfer channel containing the other
signal path. The voltage or current signal can then drive an injector circuit that
recreates a new charge packet of corresponding size and injects this into
another charge transfer channel. In both cases the extra amount of silicon area

.-

-35-

and power required make such signal path crossings quite unattractive.

It has often been pointed out that VLSI chips will become ever more "wire
limited”. The active devices themselves get smaller and faster because of the
scaling laws that apply to practically all MOS technologies. However, as the cir-
cuits scale down, all wiring will increase in resistance and will contribute in an
ever increasing proportion to the overall delay in the system. In addition, unless
the structure of the overail system layout is planned very carefully, the wiring of
the system will use an ever larger fraction of the chip area. Thus one must give
preference to those algorithms that use as few long distance interconnections
and global signals as possible. This makes the one- and two-phase clock systems
much more attractive.

Another serious limitation to the overall system complexity allowable on a
" single chip is power dissipation. At lower pulse frequencies the NMOS and PMOS
circuits arezdominated by static power dissipation. Equivalent circuits could be
built with 1L, CMOS or CTD technologies that consume 2 to 4 orders of magni-
tude less power. At frequencies above 10 MEz these differences are reduced to
one or two orders of magnitude as shownin figure 31 [17].

Fower

00>

Ome

lmw =

Opw -

10,000 ‘ Clock ﬁ;‘w

oo worsy may 200003 wOuny

IXPLEMENTATIOR OP A 16-BIT ADDER

Traniogy |G et [PoR
¢ed 6.9 L0162 62
OB "3 2.9 "
NMO6 7.7? - Al 1.02
€cHOb %.5 .582 L2
It .Q 019 89

Figure 31: Power Dissipation among Various Technologies

4.3. A Technology for YLSI FFT Processors

Early on in the program we studied the trade-offs between the various
implementation technologies that could be used for the construction of the
basic building blocks of a fast pipelined FFT VLSI processor. Dobrowolski [18]

-136 -

compared different implementations of the important butterfly module in vari-
ous MOS technologies. The technologies considered. NMOS, PMOCS, CMOS, I7L,
and CCD, were compared in terms of active area and layout complexity as well
as power dissipation and speed (through simulation). The key result was that
the charge transfer approach did not look attractive at all for the implementa-
tion of the core logic modules in an FFT processor in which the data is
represented in a parallel digital format. The signal flow graph of the FFT
butterfly module or the CORDIC rotator module contains far too many topologi-
cally unavoidable signal path crossings. This would require that the signal
representation constantly must switch from the charge domain to a
voltage/current representation. It is then much more appropriate to imple-
ment the logic blocks using restoring logic with small charge steering networks
of pass transistors interspersed, both of which can be fabricated using standard
MOS technology.

Even for the implementation of serial memory charge transfer devices do
not look very attractive anymore. For small blocks of memory the possible sav-
ings in azrea and power dissipation compared to almost any dynamic or static
memory block are negligible since the overhead of the relatively complicated
peripheral control circuitry dominates. In this case then one would prefer to
use a type of memory that can be readily fabricated with the same technology
as is used for the logic modules for easy integration of the whole system. If the
memory block has to be fairly large, then power dissipation becomes a crucial
issue. A purely serial memory would be unacceptable since the power would be
proportional to the number of bits moved, rather than the number of bits
stored. Since in a purely serial memecry all bits move in every clock cycle, the
power consumption can become prohibitive.

Most tricks that have permitted the charge coupled memories to reach
rather high bit densities have now be=n adopted by the designers of the large
dynamic RAMs as well, so that the density zdvantage of CCDs nio longer outweighs
the more difficult fabrication process.

Based on this comparative analysis we have decided to concentrate on the
readily available NMOS technology for the implementation of the prototypes of
the logic modules needed in a VLS] FFT processor.

-37-

5. DESCRIPTION OF INTEGRATED CIRCUITS

5.1. 16-Point DFT Processor

In [2], Despain describes a pipeline processor for computing a 16-point
DFT. This processor, shown in figure 32, consists of four basic modules, one
which computes the butterfly operation of the FFT, and three which perform
various vector rotations.

— = = e

Figure 32: 18 point DFT processor

The 7/ 18 and 7/ 8 rotators work by rational approximation as described in [2].
Of these two, only one, the n/ 16, was actuzally implemented, although a more
general vector rotator which is capable of rotaling a vector by any angle was
also designed, and could take the place of the collection of m/n modules in a
processor design. The more general vector rotator couid also be used to build
processors for computing transforms of much larger size as described earlier in
this paper. The n/ 2 rotation, since trivial, was included on the butterfly module
chip.

5.2. System-wide Considerations

5.2.1. Bit Skewing

All data words (18 bit integers) in the processor are skewed bitwise so that
the least significant bit of the word arrives at the chip one clock cycle before the
next least significant bit and so on. This allows the carry from the addition of
one pair of bits to propagate while the next most significant pair cf bits is arriv-
ing. Thus, the irregularity of fuli carry-lockahead adders is avoided, and a chain
cf simple, one-bit carry-save adders can be used. The effect of this is to
increase the throughput of the pipeline processor, since one can make the clock
cycle equal to the time necessary to perform a one bit addition instead of a 16
bit addition. However, latency is increased for several reasons. First, there is
the obvious first-order effect due to the fact that 16 clock cycles are required to
input or output one datum. Clearly, this would be negligible in any signal-
processing application. The more serious effect is due to the fact that shift and
add operations, which comprise the whole of the CORDIC algorithm, introduce a
latency equal in size to the magnitude of the shift. For example, if bit 3 of a
data word is to be added to bit 7 of the same data word, bit 3 must be storedin a
register until bit 7 arrives four clock cycles later. In an n-bit CORDIC vector
rotator, the latency due to this effect would be

Shift latency = Sk = Z2EL.
k=1
where n is the number of bits of accuracy of the CORDIC operation. The regis-
ters which are necessary for this intermediate storage also increase the area of
the chip by a significant amount. In fact, in the 18-bit CORDIC rotator, these
registers accounted for 80% of the active area of the datapath.

BF BF BF BF
Q@O L

CLK @1 S S1Z 3 N 14 & 316 17 SI8 Ci2 vDD

— X/ . \ Y A/' 5../_
@2 . . ‘ ' T

Dl o co | DO!
SR| |SK| |SR [JACCER[SR 1w« sk | sk |]5R | |SR [JADOER
N =y = . fleerigg—

3 Di2 D02

o ‘ —— - - ___I- 1____-._-1.‘.... - e ___—r [—

t<-'(> D13 l_' = = D03

— —— ’—-
Q -] 1 T .. - f——-ie fpoo o] | S——)
< Di4 I-1 1 — m 0os O
5 M= e = e e e
o = I l? . Dos =
o < = — —1! — [o
ol &] L,L B 006
= —_— C—- B lom oy g -
a ﬁ ! L1 D07 <«
o 2 =t = = :
N~ & | 8 A
O <{ _J— 1 — _r Ll——d

CEL 0 sg S _

2 552 503 oo a 5T <06 <07 S08 (02

CASCADE DATA OQUT

Figure 33: Block Diagram of Root 3 Circuit

If the high latency or the increased area of the bit-skewing technique where
a problem, a2 tradeoff can be made by skewing the data words in blocks of m
bits, where m<n. This relieves beoth prcblems at the expense of reducing
throughput, since now the basic clock cycle must be on the order of the time
necessary to perform anm bit addition, unless the adder itself is pipelined.

5.2.2. Multiplexing of the Real ané Imaginary Parts

It was also decided at an early stage to multiplex the real and imaginary
parts of the comgplex data vectors through the same pins. Although this reduces
the throughput, it would have been impossible to have built the butterfly chip
any other way, since the number of pins this chip uses is right at our current
limit of 84. Also, it reduced the complexity of the crossover problem a great

deal, especially in the CORDIC chip and the %rg-rotator. which otherwise would
have had to have global chip communications at every stage of the algorithm.
Rotation by er— used at the front end of the butterfly chip, became trivial, since

it merely entailed the use of a buffer to reorder the real and imaginary parts of
the data, whereas global communications would have been required if the data
paths for the two parts had been separate.

-39-
> . - -
MPC79 EBI/Z EXANMPLE CIKCUIT
6 BIT CONSTANT MULTIPLIER seL: =
| ‘EZ2 T (1-1.<E-E
K <00 00000 ——-] 1:153 (i
§— _snaueboene 1 |
QS NETIDOT oy 28
S T B B
pic® T ZE £33
- T = = i 0| S '
J i/ VR Vil oI s S—
B35 gy L3l —
FE—=5L z L&, — - =
L BiE 15 - Lo — —
_Té'r—; 3‘[/‘6 e~ NT D'é,‘: —— —
l %ﬁ"—__[{o:z Nvgavmor\fnmg‘z,l::‘-" -
=k §88ggesge T T
) ' U N0 =0T s
1 R ' [—‘,——:—_
L
I =1 A o
! o oINS)
- S -Te 2% |
S L L -
S LeT3E e 7 -
) ‘ | E:C ;; MFC 7S A
[S P
lLE €. EmZ -
i r4
| T — 7 N—
g 3 I
‘L_EI ! _41 I
CRNED—um< o ' '
it
! 1 1 i t
=il e tolo s i '
, " nmlnln SN |
L Lacr zz !
1 £
¥ MPCT2 i ‘
138 - é
* =L o
5% BM2 <! 1 —_—
) - LR '
—2] o
3 '€ o i
&2} [y
L i s P g
P——N

C | -

Figure 34: 18 bit Root 3 Circuit

5.3. Root 3 Circuit .

In the prime factor algorithm of Good [5] large transforms are built up
from smaller, relatively prime factors. The advantage of the technique is that
no twiddle factors are necessary as in the Cooley-Tukey algorithm, although the
complexity of data rearrangement is much higher. In [2] Despain suggested an
algorithm for performing the base-3 DFT which could be used in conjunction with
a radix-2 FFT processor handle transform sizes of the form 3x2" without the
need for twiddle factors. One of the basic computations of the base-3 DFT is a
multiplication by 3, which can be performed by the use of a rational approxi-
mation. If one is willing to accept an arbitrary gain factor in the result of the
DFT, one can then multiply the entire DFT equation by the denominator of the

- 40 -

IYTIY (ENVIVIITT | PPPETTTT

"y
3

!
i

YYYYRAYYY ITITIINETY TYRTRNTRY

Figure 35: Fabricated Root 3 Chip

rational approximation, thus limiting the necessary computations to constant
real multiplies. For sixteen-bit accuracy, a gocd approximation is given by ?53 :

The use of this approximation also minimizes the number of shifts and adds
necessary to perform the operation, since a multiplication by

265 = (25+1)2%+1
requires 2 shifts and 2 adds and a multiplication by
153 = (2%+1)23+(R4+1)

also requires 2 shifts and 2 adds. In addition, it is easy to build hardware capa-
ble of performing both multiplications.

Figure 33 is a detailed block diagram of the chip as it was actually imple-
mented. The blocks marked SR shift a datum right one bit, while the blocks
marked ADDER are one bit adders. Due to area limitations, the chips was real-
ized as a bit-slice, requiring three chips for the full 16-bits of precision as shown
in figure 34. The input data are applied on pins DI1-DI8 and the ouiput data are
received on pins D01-DOB. The outputs S01-S08 and C01-CO2 would be con-
nected directly from the first (second) chip in the cascade to the inputs SI11-SI8
and Cl1-CI2 on the second (third) chip. When the input SEL is high, the chip mul-
tiplies by 265, and when SEL is low, the chip multiplies the input data by 153.
Unfortunately, since the chip was designed before the bit-skewed data format

41 -

A7l 1 Ae
[4 [
eHe
c ‘c_
cge
cHe

A;)[Li Z;] 2| {71 [40

o
,E
A4

“
basi
3

fl.l ,
P b
s AN
1 ¢
— B
N N 4 ' ;
[B by B e
N L o i H
TR 1 : T
35 R R o
1. >N Y 1 C‘ C: C‘
l‘. St T . | -
" cH<HeHd
.. \ '| \
| f%; . T
cHeRHech <
—T 7§ g 3
T ; VAV
e el cHcHeH<HCCHS
' SR
!" i . g
i '
. : cHelHeBeHC B "
L =1 H H A N
‘t‘,,'l|l5:l||l ! N
o iy v
A :
y e
3 0
: o Fial (Fi| |F] {Fe] |Fe
RS) i

Figure 36: Schematic of Barrel Shifter

was decided upon, it is incompatible with

The fabricated chip, shown in figure 3
tiona!l up to 6 MEz, wkich was the limit of

the later chips which used that format.

5, was tested and found to be opera-
our test equipment at the time. The

power consumption was measured to be 32 ma quiescent and 60 ma at € MHz.

5.4. Barrel Shifter

The use of the CORDIC algorithm for vector rotation in the computation of

the DFT has already been discussed. E

inary study of a programmable barrel shifter capable of le
size was done and an B-bit version was designed and fabrica

ardware capable of performing this algo-

shift network. A prelim-

this circuit is shown in figure 36. The chip has 8 data inputs,

which specify the number of bits by which the data word

ft shifts of arbitrary
ted. A schematic of

3 control inputs

is to be shifted, and 15

data outputs. The input data enter the chip on the lines marked AC-A7 in figure
1a and pass into the array of "C" cells seen on the right side. Each of these cells

is capable of sending a datum straight throu

ing on the state of the S0-S2 control signals.
e 37) was tested and found to be opera-

The finished chip (shown in figur
tional at clock rates up to 10.4 MEz.

gh or shifting it to the left depend-

Figure 37: Fabricated Barrel Shifter Chip

+ or - pi/18
18 - .
// 2 Delay * 11 Delay

DATA add add/ add/
IN 2’2 sub .10 sub

2 +

+ ROB -

—> ROB

Figure 38: Block Diagram of -i%—Circuit

In the final version of the CORPIC rotator which is discussed below, the
shifts were hardwired rather than handled by programmable shifters at each
stage. However, a need for a programmable shifter would arise in a lower per-
formance iterative CORDIC unit which used the same hardware to process all the
stages of the CORDIC algorithm.

5.5. I _ rotator

16

5.5.1. Theory of opcration
In [2] Despain discusses the use of rational approximations for rotations.

In particular, algorithms for -1%— and %— rotations are developed which are

optimumn in the sense that they reduce the number of additions necessary to
achieve the accuracy desired. The algorithm which was implemented was for a

premd) el Lo Sral Sl

O e 153 = gliés

L=
ik
|
i
|

B NECS BN P PR EROR Sl g

i
N
i

|

\

‘ - . ’ q; - g g)
. e Ak
. -., il 1B 3 .
I‘[" I . 5) . - D X . __
! — T
= |
:g . — = i
i s
' r—‘—*_“
5 [y
bet

Figure 39: CIFPLOT of Efr—s-—Chip

Tﬂé-rotation and can be written as

r,=(27%+1)r
i, = (87%+1)ig
Ty = T F27%4,
ip = 1,£27%7,
followed by
T3 = 122270,
ig = 172710,
where 7y and ig are the real and imaginary parts, respectively, of the vector to

be rotated. This algorithm is similar to the full CORDIC algorithm in that it con-
sists only of shifts and adds.

Figure 38 and figure 38 show a block diagram and CIFPLOT of the completed
circuit. The layout and function of the chip is very similar to that of the CORDIC
rotator., and thus will not be explained in great detail. In fact, the major
difference is that this algorithm consists of only three stages, whereas the full
CORDIC algorithm requires sixteen for the same accuracy. This forced a
different aspect ratio on the basic cells to avoid a tall and narrow chip.

— control ———
REALIN REALOUT
&1 15
delay delay
-1 A% -15
2 +/_ 2 +/_
add/ add/
sub sub ""7"—)
18
+ * DATA
oLT
stage 1 stage 15

Figure 40: Block Diagram of CORDIC rotator

5.6. CORDIC Rotator Chip

5.6.1. Theory of Operation

The chip was specified to work with 18 bit two's complement data words
which set the number of iterations to 17. Since, in a Fourier Transform proces-
sor, the rotation angles are known, we have assumed that the a, have been pre-
viously computed and are delivered to the CORDIC rotator chip by the control
circuitry (probably a ROM). Given a complex input vector ro+igf, the algorithmr
can now be expressed as

-45-

control, rotation angle pads
power and

clock
pads 2 L

clock
alignment (-_S pads

r control J

data data
input output
pads z- > : g. pads
) datapath
power and
clock clock

Figure 41: Floor Plan of CORDIC rotator

IF a,=0 THEX DO

Ty« —ig
1) < Tg
ELSE IF ao=1 DO
T+ g
1, ¢ ~To
FOR k+«1,16 DO
IF @, =0 THEN DO
Teer « Tp+ig27F " (3)

iy« BT
ELSE IF q, =1 THEN DO
Teer « Te—i 27

By ¢ G270

where the g, are externally supplied control signals which determine the order
of addition and subtraction at each stage. The £=0 stage is a i-g—rotation which
is necessary if one wishes to rotate by angles from +m to ~7.

Since the chip was specified to work in a pipeline DFT processor, it was
implemented as a pipeline, with each iteration being handled by a separate

- 46 -

piece of hardware. This allows the multiplicalions by 2% to be performed by
hardwired shifts between each iteration stage. Also, due to the bit skewing
throughout the DFT processor, we have not used full carry-lookahead adders,
but have utilized one bit carry-save adders which allow the carries to propagate
before they are needed. The operation of a set of these carry-save adders will be
explained in detail below. This turned out to have an advantage in that the regu-
larity of the entire chip was greatly increased, reducing the design time consid-
erably.

Looking at the block diagram in figure 40 and the floor plan in figure 41, one
can see that the data comes in on the left and flows through the 17 iterations of
the CORDIC algorithm. The two-phase clocks used by the chip are assumed to be
generated and driven by circuitry off chip (since they run through the entire
DFT processor). On the chip, the clocks run vertically across the entire circuit
in metal along with power and ground. At the top of the block diagram are the
g, control signals. As one can see from the algorithm, the a, determine whether
the shifted half of the vector is added to or subtracted from the other half at
each stage. Since, for any given input vector, ali 17 of the a, are input at the
same time, each a, must be delayed so that it will reach the stage it is to con-
trol at the same time as the data. These delays are accomplished by entering
each g, into simple shift registers (pass transistors and inverters) of the proper
length. The reordering buffers and the reordering buffer control are discussed
below.

5.6.2. Detailed Description of Data Path and Control

We will now look closely at the computation of one iteration of the algorithm
(stage 5) as shown in figure 42. The notation 4, (b) signifies an adder/subtractor
in stage k which handles bit b of the data word. This module is shown in detail
in figure 43. Note that b takes values from -4 to 15, since we keep 4 guard bits
in the partial results as recommended by Walther [19]. The input to the adder
marked + will be added to or subtracted from the input marked + depending on
the value of the control input p,(b), where k and & again denote the stage and
bit, respectively. Since we are working in two's complement, subtraction is per-
formed by complementing the + input and holding the carry-in, c. (&), high.
This is realized by connecting cs(—4) to ps(—4). since a high value on p,(6)
signifies subtraction. Note that the signal ps(~4) is merely the ay of the algo-
rithm which has been delayed as mentioned in the previous section. In addition
to the sum output which appears on the right, each adder also produces two
control signals which are passed on to the next adder in the chain. One of these
is the p,(b) input delayed by one clock cycle, and the other is the carry-out
resulting from the addition. We will alsc use the notation 7,(&) and 4,(b) to
denote bit & of the real and imaginary parts of the data, respectively, at stage
k.

The operation of this stage is as follows. During phi2, A4(—4) produces the
output r5(—4), which is entered into the shift register 505(—4) during phil. At
the next phi2, the same adder will produce i5(—4), which will go into the same
shift register. By the algorithm in (3), we can derive the following:

ro(—4) = r5(—4)£i5(0) (4)
ig(—4) = is(~4)F75(0)

which correspond to a shift of 27* and an add/subtract operation. Since the bits
of the data flowing through the chip are skewed so that the higher order bits
trail the lower order bits, the outputs r5(0) and i5(0) from A,(0) will be com-
puted 4 clock cycles after the outputs of A,(—4) in (4). Thus, the outputs of

- 47 -
from reordering buffer control P4() r£|fron(x-:)k delay
R 0 + —
A o(-4) T A ()
3 4
5D 4(-4) + ¢ (-3)
= :EEE”
4 g — p,(-3)
A g(-3) Al
5D ‘(-3) +
‘ 1 1
A (-2 e * I
. A (-2) .
3 5D (-2) + 3
|
) - A (- ——
3 5D (1) + JV
R 4(0) i1
A o(0) © A0 I
3 5D ,(0) + ©
STAGE ‘ 1
3 R (1) + ous'x??)i{ns
A (1) T A (1) L TO
L 5D 4(1) + SI’A:E
Pl O —
T ——— ST
R (11) .
A (11) T A L(Q1 | I
3 " 5D 4(11) + ‘(R
[s,02 ¥ L]
A 4(12) — | | A, (12) __
5D 4(12) +
— [s 4(13) i(' " | .
A 4(13) — | | A Q13 o
sD 4'(13) +
s € 7 L
A S(14) = | A (19 S
)] 4r(14) +
[5,09 t — !
A ,(15) © A L(18 S
3 5D 4(15) + ‘(1)

Figure 42: Stage 5 of the CORDIC Rotator

A,{—4) need to be delayed for at least 4 clock cycles to allow the outputs of Aq0)
to catch up. However, note that the outputs of A4(0) are not in the correct
order for (4) to be computed. This necessitates the use of a reordering bufier
(denoted by Rs(—4)), which inputs r,(0) on phil, stores it in a shift register,
allows i,(0) to pass undelayed on the next phil, then allows 7,(0) to be input to
As{—7) during the following phil. The control of the reordering bufler will be dis-
cussed later. Note that the added delay in this module requires that the outputs

P x("f————'% l po- - © - out

s"h‘—i—w

A s —{o z,r

cl(é:: {r

Figure 43: Adder Module

of A,{—4) be delayed by 5 clock cycles altogether before being entered at the
next phil into As(—4). An identical sequence of events occurs for the two data
inputs to As(=3), except that the entire sequence occurs one clock cycle later.
In addition. As(—4) holds onto its carry-out until phil, when it is passed to 45(—3)
along with the delayed ps(—4) control signal. At the bottom of the figure, the
modules labeled S, (b) perform the sign-extension necessary for two's comple-
ment arithmetic by delaying (by shift register) the output of R5(11) by one clock
cycle each. Since the output of this reordering buffer is the sign bit of the previ-
ous stage's output, this is the correct operation.

In general, stage k in the iteration consists of a shift by 2%+l 20—k +1
reordering buffers, a set of delays of length k, k—1 sign-extension delays, and a
set of 20 adder/subtractor modules.

The control circuitry for the chip consists of the delays for the a,
(described earlier) and the control circuit for the reordering buffers. The chip
requires that the user supply a high level to the input REALIN whenever the least
significant bit of the input data is from the real part of an input vector, and a
low level whenever it is from the imaginary part of an input vector. This signal
has two functions. First, it inverts the a; input whenever an imaginary number
is being input, thus deriving the two p (b) signals necessary for the addition and
subtraction in each iteration of the algorithm. The circuit which performs this
inversion is shown in figure 44.

REAL m .—T , lé'
r‘;—-}—o:»—‘ lﬂ—-z»——ﬂ—-or— o =P P

b

a’l .

Figure 44: Inversion of a;

Second, it is entered into a shift register fromn which the control signals to the
reordering buffers are tapped as shown in figure 45. When the appropriate stage
of the shift register contains a high level, the signal 7, is produced which causes
the reordering buffer to store its present input as the real part of the data vec-
tor. When this level is passed to the next stage of the shift register, producing
the signal im, the data at the input of the reordering buffer must be the ima-

ginary part of the data vector, and is thus allowed through without delay.

——aREAL aut

Yi o Yt
%,
) -L ——ﬂ-— ——
]V\ W mtmr——— St —— Ouf
ke
JESNS. |
¢
)
%,
f“ ¢L o ﬂ'

Figure 45: ROB and ROB Control Signals

Similarly, the signal 7, causes the previously stored real part to be sent to the
adder as explained above. When the REALIN signal has propagated the length of
the shift register, it is brought off the chip as REALOUT to signal the fact that
the least significant bit of the output data is real. This allows the chips in the
DFT processor, which all use the same data format, to be cascaded with no extra

circuitry.
A CIFPLOT of the finished chip is shown in figure 46.

5.8.3. Performance Estimation

Since the chip is designed as a pipeline, the performance is limited by the
longest delay between any two dynamic registers. The longest delay in the chip
occurs in the adder module, which contains the only substantial combinatorial
logic on the chip. A SPICE run on this circuit reported a worst case delay from
input to carry-out of approximately 40ns. The only significant wiring which
might affect the circuit’s performance exists between the output of the a;
delays and the adders, but this was hand estimated to be less than 40ns, and so
would not reduce the clock rate further. Thus, the overall maximum clock rate

should be expected to be 10 to 12 MHZ.

ir:-_-r;u_---m-w- po—
| = ,
|
|

. !
°
1
|
I
t
'
|

-50-

3
'!
c ¥ 4
RN + s ;
= 3
> H
b5 Fch
> =
-+
ot
! 3 t 1
= =]

Figure 46: CIFPLOT of CORDIC Rotator Chip

-51-

5.6.4. Testing

Due to area limitations, there are no registers between the stages of the
pipe and thus it is impossible to look at intermediate results of the CORDIC cal-
culation on a fabricated chip. However, it would be possible to add a register at
the output of each adder module and string these together if one is willing to
give up area to do it. One could turn off phi2 at the output of the adder and
enable a pass transistor which would allow the sum output to be chained to the
next adder using a shift register stage. Clearly, this would require at least two
pass transistors and two inverters for each signal one wished to chain together
in this way, along with at least one more control line running down the adder
chain. Since this would easily take the chip past 10mm in length, it was not
implemented.

5.7. Butterfly Circuits

5.7.1. Introduction

The butterfly computation takes two complex inputs 4, and B, and com-
putes the outputs £, and D, according to the rule

Ce = A +B, (1)
D, = A -5,
where 4., B, G, and [J, are complex.

A preliminary study of various techaologies for implementing the butterfly
chip was undertaken early on in the research. A 4-bit-slice NMOS chip was built
at that time to test the speed of the adder that had been designed while verify-
ing simulation results. This chip did not use the multiplexed real and imaginary
format and is thus incompatible with the CORDIC rotator without the use of
extensive support circuitry. However, another NMOS chip was later designed
which did use this format and could be used in conjunction with the CORDIC
rotator to build FFT processors of arbitrary size.

Following the structure of the DFT processor in [2], both chips were
designed to operate in the following way. First, the input data (4 in (1)) is
passed into a shift register until it is full. At this point, the chip is switched into
add mode and the data stored in the shift register is combined with the incom-
ing data (B) to form the sumn and differences according to (1). The sum output
(G) is sent immediately through the output pins to the next stage of the proces-
sor, while the difference outputs (J,) are stored in the vacant stages of the shift
register. When the (. have all been passed out, the shift register is then emp-
tied through the output pins by switching the chip back to pass mode.

5.7.2. Preliminary Butterfly Processor

The preliminary butterfly chip consisted of a set of four 1-bit
adder/subtractor units which could be used to build up arbitrarily large
butterfly processors. A block diagram of a 18-bit butterfly processor built from
these modules is seen in figure 47 along with a single module whose inputs and
outputs are shown. A and B are the data inputs, C and D are the data outputs,
Ci, Co, Bi, Bo the carry and borrow inputs and outputs from the other chips in
the cascade, and Mi and Mo the mode input and output which determine whether
the circuit is in pass or add mode as described above. The circuit itself was
implemented with a NOR PLA, since it is a regular structure which is can be
made fairly compact and fast.

-52-

X %
AS j;‘f,”.
oD b ! _r
]
&, e« - &y - &y ’
l 3‘ p '\ b ‘\ b _lm A8
" el N N N t :
$ e S S T S S o
a'/-o I B‘J: &J‘ &J';
|2 g |2 b noAY
AS :
2o L 2 ; 3 N w
&l’ A &/. o &/. B &I,' -]
[k b b . "“
F . 2T}
P 7 ; < | ¢
N B &y &, au,
[-‘ E j b b o A'B’
&, b, % . <r2:18y
A B
A2
d‘-h =3 éa
4 Co
Moo Yt L. Mo
¢x-h A"&
PV
A B

Figure 47: 18 Bit Butterfly Processor

The resulting 1-bit module, which can be seen replicated four times in the
finished chip (figure 48) measured 420 by 657 w with A = 2.5u. A ring oscillator
circuit was set up to measure the PLA delay, yielding a result of 120ns. Note
that this is quite a bit slower than the circuit which was later devised for the
CORPIC rotator. Power consumption was measured to be 15 mw per PLA with
Vdd = 5v.

5.7.3. Compatible Butterfly Processor

For convenience, it was decided to include a /2 rotator at the fron* end of
this chip which is realized by a circuit which performs

Fe (Bk) = tIm(Bk) (2)
Im(B,) = ¥Re(B,) .

Also, enough shift register memory was included on chip so that a 16-point DFT
processor could be built without the need for any external memory. This
memory can be bypassed for larger transforms.

R _ -
. o Lo r PP ~
-t e A o - e ") o L g ta 3
N ﬂ\'.\\ “'}-‘: B P Lo ’ - *‘}‘; ,4,‘1 “‘
x.-, o " o)
Wy iy ¢
s d
i
. >
’ﬁf B T gt AN it 1Aty X £
t
t -, . " ;
55 ' : d:iif Y
i bk
. L)
l‘ l-. o~
e e
x N =5,
¢ Ry Ry . - 3] X

Figure 48: Fabricated 4 Bit Butterfly Chip
Referring to the floorplan in figure 49

buffer
input
pads \
& control
buffer
pads output
pads
$\>
internal
shift
register
rotation Y
.:E};s control
add/sub
&
data <
= datﬂ
input \\) output
pads j rotator pads

Figure 49: Floorplan of Butterfly Module
and the schematic in figure 50, the chip is utilized as follows.

@

-54 -

Yoty Exerded
z
7ié
/é 7
Tein A D .
~%) Moy Shods Lag|
. % of g la
4 2,4,2 16 Dl
P“I/Hf <,
/;; (23 -k 7—6“1
o
— o
Rea L1 L ¥} R“/ﬂlf
wi
“ m:}za_)
[Lo Vm
| +
IR Ads €, .
Pdim o0 i N 7 Bous
‘ —
Y N
Figure 50: Schematic of Butterfly Module
An internal or external shift register is chosen through the use of the input

"extrdel”. When "extrdel” is high then the internal shift register is disabled
and an external register can be connected to the pins Tout and Tin.

If the internal shift register is chosen, the length must be set through the

use of inputs del0 through del4. Table 3 shows the settings required for the
length of shift register desired.

Table 3: Choosing Shift Register Length |
T:2rdc! | Del0 | Dell | Del2 | Del3 | Del4 DELAY
1 T x | x | x | x X external delay
0 | 1 1 1 1 1 2D
0 . 0 0 1 1 1 4D
0 0 0 0 0 1 8D
0 0 0 o | O 0 16 D

The input "pass/add" is set high (pass).

The A, are entered sequentially, real part first, then imaginary part. The
input "realin” must be high when entering the least significant bit of the
real part and low when entering the least significant bit of the imaginary

part.

-55-

5. When the shift register is full, the input "pass/add" is set low and the B, are
entered in the same way as the 4 except that one must also set the inputs
"w0" and "wl" to determine the rotation angle desired. These inputs must
be stable during the input of least significant bits of both the real and ima-
ginary parts of B,. The relationship of these inputs to the rotation angle is
shown in table 4.

rTable 4: Choosing rotation angle

wl | wO" I angle
0 0 i 0
0 1 i /2
1 0 i
1 1 -n/2 |

The input "realin” must still be sequenced correctly.

6. After all the B, have been entered, the "pass/add” input is set high and the
D, are output. The output "realout”, when high, signals the real part of an
output datum. The next set of 4, can be entered simultaneously with this,
and steps 5-6 can be repeated indefinitely.

The 1/ 2 rotator is impiemented as recommended by Despain in [2]. If the
B, are to be rotated by xn/2 (determined by "w0"), the real and imaginary
parts are interchanged in the reordering buffer (ROB), as is required by (2). The
change of sign in (2) is accomplished by merely inverting the plus or minus con-
trol signal to the adder/subtractors. If the B, are to rotated by =, the plus or
minus control signals are inverted without interchanging the real and imaginary
parts. If the B, are to rotated by an angle of 0, nothing is done.

5.7.4. Chip Description

The size of the chip is 3.03x2.70 mm square which was determined by the
large number of pads necessary for 1/0.

The adder/subtractor circuit uses a MUX to generate the sum and carry
outputs, which makes its operation relatively slow. The circuit configuration of
the programmable delay is shownin figure 51.

Evecded Del b2 bes beie

4 OF— S0

Figure 51: Programmable Delay Circuit

Superbuffers are used in between the delay stages so that with any number of
delays programmed the feedback loop is driven quickly.

- 56 -

The modules have been topologically arranged to minimize wiring but there
are long metal wires that connect the outputs to the pads. However, this should
not impose a severe penalty on the speed of operation since we have used
superbufler drivers.

5.7.5. Performance Estimation

The speed of the butterfly module depends on the speed of the adder since
it is in the critical path. The adder, which is a conventional Mead and Conway [9]
design, was SPICE simulated and the carry out and sum propagation delay was
100ns. Since there is only one add taking place in phase 1 of the cycle this
phase can be the same as this delay. So, assuming a 50ns nonoverlap, the cycle
of the clock can be 300ns. Therefore the data rate through the butterfly module
is 3.3MHz. In the programmable delay module and the feedback loop to the
input of the adder superbufiers are used to avoid long delays.

5.7.6. Testing

There is no means on chip to test intermediate internal state, although
some sections of the circuit can be operated fairly independently from the rest.
For example, one could select the external shift register and thus have access to
the inputs and outputs of both of the add/subtract chains, although the data
would pass through some other gates anc the n/2 rotator. The internal shift
register can only be loaded and flushed through the adder/subtractors.

-57-

8. THEORETICAL WORK
6.1. Minimum Latency Transforms

6.1.1. Justification

In traditional signal processing, throughput has been the only important
measure of performance. However, in many applications, latency is a very
important issue. 1t is important to see that the pipeline processors which we
have been discussing are geared only toward high throughput, and that, in fact,
pipelining any computation will increase the throughput at the expense of
increased latency. One example of possible importance to the Army is the real
time side-lobe cancellation of jamming signals fed into arrays in which beam-
forming is accomplished via the FFT. Low latency is achievable both through the
use of structures which have this quality innately, and through the development
of fast circuits which allow all DFT structures to run more quickly.

Since both the butterfly and CORDIC modules make extensive use of adders,
the latency of these adders is an important part of the entire systermn latency.
The speed of the adders is governed by the propagation of the carry bit during
the addition. Either many pipeline stages must be inserted into the adder cir-
cuit or fast carry circuits must be devised. The insertion of pipeline stages will
provide high bandwidth computation be at the cost of increased latency in pro-
viding the result. Thus a compromise is generally made. Some pipelining and
some carry propagation within a pipeline stage are employed. As a result, it is
important to use fast carry-lookaheac circuits to keep the bandwidth as high as
possible. The basic design problem of fast carry look-ahead circuits is to realize
a fast circuit with a minimum of gates. Further, the speed and the cost of the
circuits depend on the fan-in and fan-out capabilities of the gates used to imple-
ment the circuit. The basic speed of a gate depends on these same factors in a
negative and non-linear way as well. Thus an optimum design must consider not
only the number of gate delays but the interaction of the design with the gate
delay time itself.

6.1.2. What is the Absolute Minimum?

Clearly, it would seem that minimum latency would be achieved through the
use of the original DFT equation, where all N2 products are computed sirmultane-
ously, and these products are summed in groups of N to form the cutputs. The
difficulty is that this would require an adder fan-in of N to compute the sum in
one add time which is generally not practical nor available in cormmunication
bound VLSI designs. The common method which overcomes this difficulty is the
use of fan-in trees which add f numbers at 2 time and come to the solution of
the larger problem after logeV add times. Similarly, one does not have multi-
pliers which can fan-out to N adders simultaneously, so that one is forced to util-
ize a tree of multiplexers or redundant multipliers to communicate the pro-
ducts to their destinations. The result of both of these observations is that one
may as well use FFT-like structures of the Cooley-Tukey or Good type merely due
to the limited fan-in and fan-out one has available.

8.1.3. VLSI Fan-in and Fan-out Considerations

Consider the circuits in figure 52. If one finds that the circuit one desires
can be simplified by the use of higher fan-in gates, one would like the gate on the
right half of the figure to have a2 delay no greater than the delay of the circuit on
the left. In fact, for most logic families, this is true, even for fan-in as large as
12-15. Of course, the use of these gates in 2 circuit may cause second order

-58 -

00 D

Figure 52: Fan-in Comparison

effects such as increased wire lengths to come into play, reducing the speedup
for very large fan-in. Also, some circuits cannot make effective use of large fan-
in gates. However, we will see that adders can reap great rewards through the
use of gates of fan-in greater than 2.

6.1.4. Fast Carry Lookahead

Ladner and Fischer [20] developed a method of reducing the computation
time of linear and many nonlinear recurrences from O(N) time to O(logaN)
time by transforming the recurrences to binary trees. We will apply these tech-
niques to fast carry lookahead circuits and extend them to higher fan-in and
fan-out [21, 22].

On the left side of figure 53 is a recurrence which has been expressed in
terms of a binary operation denoted by "O".

8 b5 x4 ‘3 xz/xl xﬁ/ﬁ 4/3 2
4 i)
/ # /<>

x 1

/
/

Figure 53: Desired Transformation

The idea is to transform this to the tree on the right side of the figure which
clearly does the computation more quickly. This transformation reguires the
operation to satisfy an associativity property, but does not require linearity, for
example. Figure 54 shows circuits for various numbers of inputs where the nota-
tion Pi(n) is a circuit of n inputs with fan in j. The subscript k& allows us to
index circuits of different cost/performance, so that k=0 implies the highest
performance structure, k=1 the next lower performance structure, and so on.
Note that the figure also shows how these circuits can be built up recursively
from circuits of smaller size.

For the general fan-in case, the circuits of figure 55 result. Again, it is seen
in figure 56 that the circuits can be built up in a recursive fashion.

Let us now proceed to develop circuits for carry-lookahead. The operation
of a full adder circuit for the ith bit can be expressed

Si = A®BOG

ij.‘,
| 11

Pg \n/72D) Pj [(n+ 1y/2))

A

F1) Pe) %) 0 a3
\ {)/1 éﬂ _ _é/‘ _é/\
. lrz_gmn)/zh
=g P
Vi s ¢

Figure 54: Definition of PZ(n) Circuits
C. = (AB)+(&+B)Cin

where @ means "exclusive or”. The recurrence is clearly seen in the expression
for C; and is generally accepted to be the hard part of the calculation. Since it
is relatively easy to form the S; once we have calculated the &, we will concen-
trate on speeding up the carry generation part of the circuit. Figure 57 shows
the well known "ripple carry"” circuit. Here, the circled part of the circuit is not
in the proper form to immediately apply the preceding ideas, since it does not

- 860 -

921) PZZ) PZS) P:gl:)
1§ - | | |
len /3}) PZ[(nﬂ)/aj) P? {(n+2)/3])
]]
- Jdd - ¢
. .
P(SS) P64)
3
PSn)

Figure 55: High Fan-in Circuits

satisfy an associativity property. However, it is easy to formulate the circuit so
that it does show an associativity which we can exploit. The new operator is
shown in figure 58, along with its usein a circuit of size 3.

b ¢
3 Y2 T2

Figure 58: Development of Carry Operator

Figure 59 shows the construction of this node for higher fan-in. Although
the operator is now in the proper form to use the Pi(n) circuits directly, an
additional speedup can be realized by noting that this operator is "asymmetri-
cal” in the sense that the delay from gz to go is two units while the delay from g,
to go is one unit. Therefore, our constructions should be modified to take this
into account. A diagram of several of these modified circuits, denoted by @(n)
is shown in figure B0. It is easily seen that, for example, the longest path
through the circuit Q&(3) is 3 units using the carry operator above, while the

-81-

TR | T |
j :
B({n/i]) P(L(mei2)/1]) l;'(umj-n/jb

—

17 11

i

.
_1
2

)
A

pj’
AtRY

P
k

o~
)
~

Figure 56: Recursive Construction of High Fan-in Circuits

straightforward use of the P&(3) circuit would have resulted in a path with a 4
unit delay.

For the general fan-in case, figure 61 shows the construction of the highest
performance Q4 (N) circuits. Lower performance circuits can be realized as in
figures 62, 63, and 64. An example for fan-in 3 is shown in figure 65.

The total delay of our carry lookahead circuit is thus

_] _ 0 if m=0,1
delay = T(m”-"k) = | m +k otherwise

and the size of the highest performance (k =0) circuit (number of bits wide) is
size = N(m,j) = N(m-15)+(F-1)N(m-2.,j Y N(0j)=N(j)=1

Table 5 shows the various sizes which are available for a given fan-in and gelay.

-82-

3 B 2 B A B
[) -+ ® +
Y, s Y2 x, ¥ x
Ca -3 * + d + d o
5, c, s, c, s,
Figure 57: Ripple Carry Circuit
Yy x S P g P Yy x 8 P g PEgP
o) (o) (o
+
[
j=3 j>3
Figure 59: High Fan-in Nodes .
Table 5: Circuit Size as a Function of Fan-in and Circuit Delay 5
Delay || . Fan-in (j) _ |
2 3 | 4 5 8 | | | 1
1 1 I |
2 2 l |
3 3 | ! I
4 5 | | |
5 B | ! i !
) 13| 43| 97] 181 | 301 | | | |
7 21 | 85| 217 | 441 | | | ;
8 34 | 171 | 508 g ; |
) 55 | 341 l f |
10 89 l | |
11 [144 | ; !
12 || 233 i | |
13 | 377 l l |

-83-

Qél) Q2 LI

@ @ %

2
@

Figure 60: Definition of @i(n) Circuits

NIl'l-]. Ntn.z Nm_z
1= 11 T T
i i 1
%(&-l‘) e %’1 (Nm-z) %.1'2 (N,ﬁ-z,‘

ey, N =
) 10| fq

Delay<T,-1 Delay<T,, Delay<T, -1

R
j i
Gy QN)
Delay<=1

No output has delay >T=! _~]q\l“,

Delay<=l+k

LI |

o

Figure 81: General Construction of @4 (Np)

-64-
j j- 2 1
TR L I L (- ¥ = KN
TIN,..) TIN..,) TN, ,) TIN..,)
| |
1 1
i
Qk-Z(N--‘)
l
RI(N..,) RI(N..) RIN,.,) RIN, 1)
| | | I !
Figure 62: General Construction of @{(Ny,)
0,’ O".. & . »y
T,) T,) TN, iy
[N -
Ti(N,)
] J -1
e r ~ ——
*éﬁ/ v *é ‘vl TN,
4o Nt S ‘1 Ly L —
@ i Q@ R ~Q

Figure 63: Construction of T/ (N,,)

The cost of the high performance circuits is given by the construction of Q4
which yields

cost = S§{m) = S§(m ~1)+(j -2)S{(m -2)+S{(m -2)+(j + 1) (N -1+ (G ~2) Npp _2)

Si(m) = Up+ W,;,+Sz_2(m)_[{)"’1 ZSTZ is even

sty = LU
Uf = Ufs; = j+1 gates
Vi = Vj.1 = S$(F) gates
Uh = U+ =1 Ub—2
Vi = Vi +(G-1) Vo2
where U}, is the cost of the T4 and V3, is the cost of the Rj,.

-65-

l R0][R0 R’ (Na-2) R’ (Na 7)) B
) —~ - A

Rj(N..) REERA
R'G) = Q)0
construction of R (NI) construction of R’(j)
R'(Ng.\) R (N;-) - R Ny-) R'(N,-2)
[- 7
S j i1
i 11 1 N
R (N‘) for l<m
construction of R (N}) + 4
R’(Nw,_) construction of R’(j+ 1)
| |
r-
I
I e
W—/

RN _-1)
(one node saved if m is even)
construction of R (N__;1)

Figure 64: Construction of R circuits

3
$Q°(5) L Q:(u)

5E

I |
delay: 4 8 8 4 4 4 4 4 2 2 0O

Figure 85: Examnple for Fan-in 3

- 866 -

If the circuit is the top level circuit, rather than one down inside the recursion,
one saves Np—1 gates due to the unused "p" outputs. Also, Si(m) can be
reduced due to the fact that the most significant bits in our present circuit have
delay equal to m, which is faster than the other bits. Thus, it is advisable to use
special circuitry here which is slower and cheaper. Table 6 shows a comparison
between these adders for a given circuit size and published results by Ladner
and Fischer [20] and Kuck [23], with a ripple carry circuit’s cost included for
comparison. Observe that these new circuits are not only faster, but in some
cases cheaper than the others.

Table 8: Cost Comparison of Adder Circuits
Delay | Size |! Kuck | L.F. | Despain | ripple

5 8 il i | . 38

6 8 | 29 | 29 | 29

16 B || \ 16

7 16 || | 75

8 16 || 78 |

9 16 82 |

32 | 16 ! ; 1 | 32 |

8 | 32 |l | | 230 |

10 32 | | 191 | 170 |
™12 | 32 || 210 | 158 | 155 | B
[64 | 32 | l 1 | 64 |

Figure 66 shows a fast adder circuit which would utilize the carry lookahead
circuits just developed.

A B
Fu b

Pre-condition circuit

N=M-1 celis

A N=N-1

Fast carry generator

size=N=M-1

Sum circuit

P

Figure 68: Fast Adder Circuit

-

-867 -

6.1.5. Other Special Adder Circuits

Although several of the above mentioned circuits lay out regularly in VLS], a
complaint one might have with all of them is that wire lengths needed to inter-
connect the gates tend to increase without bound. One way this can be handled
is by skewing in time bits of the data in blocks and performing lookahead along
the blocks. Alternatively, one can use a redundant representation of the data as
a sum word and a carry word. When an addition is performed, four words
instead of two are presented to the adder circuit, but now only a four to two
reduction, instead of a full addition is performed. A circuit to perform this
reduction is shown in figure 67.

one digit
/\
1 T T 1] Reg A
| | i 1 Reg B
| i I 1 1 Reg C
1 L1 i Ml p Reg D
full adders

___i’—-’ JJ.__._.J _—JJ___-J T
T v A ' I v Reg y
A | | 1 1 Reg A
1 | 1 I 1 Reg B
1] 1 | 1 Reg C
1 | 1 1 1 | Reg D
- 7x2 PLA 722 PLA 7x2 PLA Tx2 PLA
I 1 I | I | | | 1 Reg x
T ¥ | I | 4 | 4 I Reg ¥

Figure 67: Four to Two Reduction Adder

It is easy to see that the wire lengths as well as the total add delay are constants
and do not depend on the word size. The circuit is of course more expensive
than a carry lookahead circuit due to the fact that 2 adders per bit are required
and much area will be taken up by wiring due to the redundant representation.

- 88 -

However, the circuit clearly has the lowest latency of any we have seen so far
and lends itself quite well to pipelined processors where many adds on the same
data are performed as in a CORDIC rotator. It is also shown that the two adders
which are required could be collapsed into a single 7x2 PLA.

8.1.6. Parallel Versus Cascade Structures

The latency of an FFT processor can be considered to have two parts. First,
there will be a certain latency due to the delays of the gates and the adder cir-
cuits which we have already addressed. Secondly, there will be an additional
latency which is a function of the degree of parallelism in the processor. In the
Despain Cascade, for example, there is a fundamental lower bound on the
latency proportional to the size of the transform which is due to the fact that
one must wait for all the outputs to stream out of the processor serially.
Clearly, this difficultiy can be side-stepped through the use of hybrid paraliel-
pipeline structures such as those which were presented previously. Ilf cost were
no object, one could achieve latencies which were dominated by the delay
through the log, stages of radix-r DFT modules and CORDIC rotators. However,
in most cases, the cost is multiplied by the same factor as the speedup, and, in
the VLSI case, the cost can go up even faster than this as we have seen before.

6.2. A Broad Survey of Fourier Transform Circuits

In an attempt to broaden our study of Fourier Transform circuitry, we
briefly characterized as many different designs as possible. Our results are
summarized in Table 7. Each line in the table corresponds to one of the circuits
described later in this section. All the performance figures are reported in
asymptotic form, in the sense described below.

A design is said to occupy area N if there exists some constant ¢ for which
the circuit (built according to that design) solving an N-element Fourier
transform occupies no more than c¢N square wire-widths of VLSI area. If the
constant ¢ happened to be 10000, this means that a 100-element Fourier
transform could be solved on a chip that was v10000* 100 = 1000 wire-widths on
a side.

Similarly, a design with area performance N? defines a family of circuits
with the property that a circuit solving an N-element transform occupies no
more than cN? square wire-widths. In this case, doubling the size of the
transform results in a circuit with approximately four times the area. The word
“approximately"” is crucial here, since equality may only be observed in the limit
of infinitely large N. For small values of N, asymptotic performance figures can
be misleading: an area performance of N? is assigned to a circuit occupying
c,N? + cyN area, even if ¢, is much smaller than c». Nonetheless, the asymp-
totic area performance of a design is usually a good indication of relative circuit
size.

The "Time" figure for a design is also defined in asymptotic terms. A time
performance of N is assigned to a design if its N-element circuit can solve one
Fourier transform every cN clock cycles. The length of a clock cycle is indepen-
dent of the value of N. This rules out the use of gates whose fanout grows with
transform length, unless the output of the gate is fed into an amplifier whose
design (and delay) varies with N. Similar considerations lead to a rather res-
trictive set of rules for designing designs. A complete list and explanation of
these rules is contained in [24].

A "Delay” column is included for each design, for it may define pipelined cir-
cuits. If so, the "Delay” figure is larger than the "Time” figure. The former

-89 -

refers to the latency of the circuit, the latter refers to the number of clock
cycles that separate successive transformations.

The column marked Area*Time? indicates whether or not the design is an
optimal one. The last four have the best possible Area*Time® figures Any
modification leading to a smaller area figure must increase the time figure, for
no circuit can have an Area*Time? performance better than N2og?N [24].

Design | Area Time Area*Time? | Delay
1-cell DFT | Nlog N Nilog N | N®log®N N?log N |
N-cell DFT Nlog N | Nlog N | NSlogiN NZlog N |
N?-cell DFT N3og N log N N2log3N N3og N
1-proc FFT Nlog N | Nlog?N | Nlog®N N log2N
Cascade N log N Nlog N | NSiog3N N log®N
FFT Network N? log N N3log®N log®N
Perfect Shuffle | N3/log®N | log®N N2log®N log®N
ccce N2/10g?N | log®N N%og3N log®N
Mesh N log®N vN NZog®N VN

Table 7: Area-time performance of the Fourier transform-solving circuits.

When delay figures are taken into consideration, only the last three designs
are seen to be optimal. The Perfect Shuflle, the CCC and the Mesh are the only
designs that achieve the limiting Area*Delay® product of ((NZlog?N). These
designs keep all their multiply-add cells and wires busy solving Fourier
transforms using the efficient FIT algorithm. All the others, save one, use too
few processors T or an ineflicient algorithm. The FFT network is an interesting
exception to this observation. Its delay inefficiency seems to be a result of its
slow bit-serial multipliers. If fast parallel multipiiers were employed, the delay
in each stage of the FFT network might be as low as O(loglog N). This would not
increase its total area significantly, since its area is still dominated by its
“butterfly’” wiring. The improved FFT network could thus have a area*time? pro-
duct of as little as O(N?log?Nloglog?®N).

As indicated above, asymptotic figures can hide significant differences
among supposedly optimal designs due to constant factors'. The area and time
estimates employed in this study are nct sensitive to the relative complexity of
the various control circuits required in different designs. For example, the N?-
cell DFT, the Cascade, the FFT Network and the Perfect Shuffle are especially
attractive designs because they have no complicated routing steps. They are
thus given a more detailed examination below.

As indicated in Table 7, the NZ2-celi DFT is nearly optimal in its area*time®
performance. However, it is by far the largest design since it uses more than N?
multiply-add cells. (The others use O(N log N) or fewer cells.) Using current
technology. one might place 10 multiply-add cells on a chip [7]. This means
that one hundred thousand chips would be needed for a thousand-element FFT!
Thus the N2-cell DFT design cannot be considered feasible until technology
improves to the point that 100 or 1000 cells can be formed on a single wafer.
Even then, the interconnections between chips will pose some difficuities, for

T The word "processor” refers to & stored-program computer. There may of course be many
such processors in a single Fourier transform cirewit. This usage of “processor” should not be con-
fused with the "FFT processor” in the title of this report. An FFT processor is & complete Fourier
transform circuit. In an attempt to avoid further confusion between "processors” and "FFT proces-
sors”, this section always refers to the laiter as "Fourier transform circuits”.

-70 -

there are 40 cells on the "edge” of a 100-cell chip.

The N-cell DFT is an attractive design at present, despite its non-optimal
area*time? performance. It uses only 2N cells in a linear array, so that a
thousand-element Fourier transform can be implemented with only 10° chips of
10 multiply-add cells each. This design is of course much slower than the Né-cell
DFT, since it produces only one element of a transform at a time rather than an
entire transform.)

The FFT Network is also fairly attractive at present, for its (N/2)*(log N)
cells can be formed on about the same number of chips as the N-cell DFT, yet
its performance is equal to the N2-cell DFT. The drawback of the FFT Network is
that the wiring on and between the chips is very area-consuming. It also has very
long intercell wires, whereas the DFT designs use only nearest-neighbor connec-
tions.

The constant factors involved in the Perfect Shuflle design are very similar
to those in the FFT Network discussed above. The Perfect Shuffle uses a factor of
log N fewer cells than the FFT Neiwork, so it is a bit smaller and slower. How-
ever, it suffers from the same problem of long inter-chip wires and poor partitio-
nability.

The Cascade is another non-optimal design, like the N-cell DFT, that
deserves consideration because of its good "constant factors.” It uses only log N
multiply-add cells and N words of shift-register memory. These are arranged in
a simple linear fashion. The Caseade achieves the same performance as the N-
cell DFT, producing one element of a Fourier transform during each multiply-
add time. It is superior to the N-cell DFT in that it uses many fewer multiply-
add cells.

6.2.1. Building blocks

All of the Fourier transform circuits described in the next nine subsections
are built from a few basic building blocks: shift registers, multiply-add cells,
random-access memories, and processors. These are described below.

A k-bit shift register can be built from a string of k logic ncdes in O(k)
area. Each of the logic nodes stores one bit. Shift registers are used to store the
values of variables and constants; these values may be accessed in bit-serial
fashion, one bit per time unit.

Multiply-add cells are used to perform the arithmetic operations in a
Fourier transform. Each cell has three bit-serial inputs «*, zp and z,;. It pro-
duces two bit-serial outputs

yo=zo+ «*z, and Yy =z0— ¥z (1)
The inputs and the outputs are all log M! = @(log N} bit integers.

It is fairly easy to see that a simple (if slow) multiply-add cell can be built
from O(log N) logic gates [7]. The multiplication is performed by Oflog N)
steps of addition in a carry-save adder. The subsequent addition and subtrac-
tion can also be done in O(log N) time. Thus a complete rmultiply-add computa-
tion can be done in O(log N) time and O(log N) area.

The aspect ratios of the multiply-add cell and shift register may be adjusted
at will. They should be designed as a rectangle of O(1) width that can be folded
into any rectangular shape.

An S-bit random-access memory with a cycle time of O(log S) can be built
in 0(S) area, using the techniques of Mead and Rem [25]. (Their area and time
analyses are essentially consistent with the model used here; see [7] for a com-
parative study of the two models.) The cycle time claimed above is the best

-71-

possible, given the logarithmic delay Assumption 3c, since most of the storage
locations are at least V3 wire-widths from the output port of the memory. To
achieve this optimal cycle time, the number of levels in Mead and Rem's
hierarchical memory must grow proportionally with log S.

Processors are used to generate control signals, whenever these become
complex. Each processor is a simple von Neumann computer equipped with an
O(log N)-bit wide ALU, O(log N) registers, and a control store with O(log N)
instructions. The cycle time of a PE is O(log N) time units. This is enough time
to fetch and execute a register-to-register move, a conditional branch, an "add'",
or even a "multiply" instruction. It is also enough time to allow the processor’s
operands to come from an N-bit random-access memory.

At least O(log?N) units of area are required to implement a processor,
since it has O(log N) words = O(log?N) bits of storage. A straightforward, if
tedious, argument can be made to show that O(log?N) area is actually sufficient
to build a processor [7]. Neither the ALU, the data paths, nor the instruction
decoding circuitry will occupy more room (asymptotically) than the control
store.

6.2.2. The Direct Fourier Transform on One Multiply-Add Cell

The naive or "direct” algorithm for computing the Fourier transform is to
compute all terms in the matrix-vector product of Assumption 5d. Following
this scheme, a total of N2 multiplications are required when an N-element input
vector £ is multiplied by an N-by-N matrix of constants 4, to yield an N-
element output vector . Three degrees of parallelism immediately suggest
themselves: the product may be calculated on one multiply-add cell, on N
multiply-add cells, or on N? mulitiply-add cells. Bach possibility is discussed
separately in the discussion that follows.

A single multiply-add cell will take O(N?log N) time to perform all the cal-
culations required in the direct Fourier transform algorithm. (Recall that a
multiply-add calculation takes O(log N) time.) To this must be added the over-
head of calculating the constants in the matrix A, since a prohibitively large
amount of area would be required to store these explicitly. Fortunately, this cal-
culation is quite simple. The constant required during the ij-th multiply-add
step (see statement 4 of Figure 68) can generally be obtained by multiplying ot
by the constant used in the previous multiply-add step, wtli-1), A single proces-
sor is capable of performing this calculation, supplying the necessary constants
to the multiply-add cell as rapidly as they are needed. The time performance of
the uniprocessor DFT design is thus O(N*%log N).

1. FORi « 0TON-1DO

2. y; « 0;

3 FORj « 0OTON-1DO
4. Yy + Y +oVzj

5. OD:

6. OD.

Figure 68: The naive or "direct” Fourier transform algorithm.

The area required by the single multiply-add cell design is O(log N) for the
multiply-add cell, O(log®N) for the processor supplying the constants, and
O(N log N) for the random-access memory containing the input and output
registers. This last contribution ciearly dominates the others, giving the unipro-
cessor DFT design a total area of O(N log N). Its combined area*time? perfor-
mance is thus a dismal O(N®log3N). It has far too little parallelism for its area.

-72-

The designs in the next two subsections empioy progressively more parallelism
to achieve better performance figures.

B8.2.3. The Direct Fourier Transform on N Cells

Kung and Leiserson [25] were apparently the first to suggest that the
Fourier transform could be computed by the “direct” algorithm on 2N -1
multiply-add cells connected in a linear array. These cells operate with a 507%
duty cycle: the even-numbered cells and the cdd-numbered cells alternately
perform the computational step described below. An obvious optimization [25)
results in a circuit using only N multiply-add cells to accumulate the terms in
the DFT.

The entire DFT calculation is complete in 4¥ =3 computational steps. During
each step in which it is active, each even- {cr odd-) numbered cell computes
Y « y + az using the value y provided by its right-hand neighbor (the leftmost
cell always uses y=0). The ¥y values eventually emerging from the leftmost cell
are the outputs 9 in natural order. The inputs 2 to the circuit enter through the
leftmost cell and are passed, unchanged, down the line of cells. Due to the 507
duty cycle of the cells, one ¢ value is produced (and one z value is consumed)
every other computational step.

The only complicated part of the circuit has to do with computing the con-
stant values a. A complete description ef this computation is rather lengthy
f25]; only a sketch is attempted here. Suffice it to say that each a value is
obtained by a single multiplication from the e value previously used by the cell
next closest to the center of the line. The only exception to this rule is that the
constant-generating circuitry for the centermost cell must perform four multi-
plications to obtain the next a value. (Perhaps a fast multiplier might be pro-
vided for the centermost cell, to keep it from slowing down the whole array.) In
any event, the constant-generating circuitry for each cell performs a fixed
sequence of register-register operations, all off which can be completed in
O(log N) time and O(log N) area.

The time performance of the N-cell DFT design is O(N log N), since each of
the 4N -3 computational steps can be completed in O(log N) time. The total
area of the N cells and their constant-generating circuitry is O(N log N).

Note that the total area of the N-ceil DFT design is asymptotically identical
to that of the 1-cell design. This is a reflection of the fact that a register takes
the same amount of room (to within a constant factor) as a multiply-add cell.
However, one can confidently expect that an actual implementation of the 1-cell
design will he significantly smaller than an N-cell design due to this “constant
factor difference.”

The area*time? performance of the N-cell DFT design is O(N®log®N). Thisis
far from optimal, but it is a great improvement on the 1-cell design. The next
subsection describes an N®-cell design that has a nearly optimal area*time? per-
formance figure.

6.2.4. The Direct Fourier Transform on N2 Cells

One way of boosting the efficiency of the N-cell DFT design is to pipeline its
computation. Instead of circulating intermediate values among one row of 2NV -1
cells for 4N -3 steps, one can "unroll” the computation onto 4 V-3 rows of 2N -1
cells. Now each problem instance spends just one computational step on each
row of cells before moving on to the next row. (Note that there are actually
about BN? cells in the “"N2%-cell” design.)

-73-

All 1/0 occurs through the leftmost cell in the odd-numbered rows, in the
staggered order shown in Figure 69. This figure shows only the 1/0 for a single
problem instance; inputs for successive problem instances may follow immedi-
ately behind the analogous inputs for the previous problem, after a delay of one
computational step.

Y3¢

Yo =

L
U
Y, L
A~

Figure 69: Staggered 1/0 pattern for the N?-cell DFT design.

More precisely, the first input for each problem instance enters the left-
most cell of the first row. The second input enters the leftmost cell of the third
row, two computational steps later (remember that each computational step, as
defined in the previous subsection, involves only “even” or "odd" cells). The N-th
input enters the leftmost cell of the (2N —1)-th row, 2N -2 computational steps
after the first input entered the circuit. At the end of this step, the first output
is available from this same cell. The seconc output comes from the lefimost cell
of the (2N +1)-th row, after two more steps...and finally the N-th output emerges
from the leftmost cell of the (4N =3)-th row, (4N -3) computational steps after
the first input was injected into the circuit.

As noted above, the k-th input for another problem instance can follow
immediately behind the k-th input for the previous problem, delayed by only
one computational step. The circuit thus operates in pipelined time
T = O(log N). The total area of the N?-cell designis 4 = O(N%log N), since each
cell occupies O(log N) area. The combined area*time? performance of the
design is only a factor of O(log N) from the optimal figure of Q(N%0g?N). Thus it
is pointless to look for a smaller circuit with a similar pipelined time perfor-
mance. However, it is possible to make great improvements on this circuit’s
solution delay, as shown by the (N log N)-cell FFT design presented in a later
subsection.

It is fairly easy to describe a few "constant factor” improvements to the
NZ-cell DFT design. First of all, at least half of the cells on each row are idle, due

- 74 -

to the 50% duty cycle inherent in the Kung-Leiserson approach. Secondly, the
computations done in the shaded portion of Figure 2 are irrelevant (the result-
ing ¢ values do not affect the circuit's outputs). Each of these considerations
halves the number of required multiply-add cells, leaving fewer than 2N? cells in
an optimized design. Finally, the constant-generating circuitry described for
the N-cell design need not be carried over to the N?%-cell design, for each cell
uses the same a value every time it does a computational step. In other words,
the constant matrix 4 can be "hard-wired" into the registers of the multiply-add
cells. to circulate the constant matrix £ among the multiply-add cells.

68.2.5. The Fast Fourier Transform on One Processor

Up to now, all the circuits have computed the Fourier transform by the
naive or direct algorithm. Great increases in efficiency are observed in conven-
tional uniprocessors using the fast Fourier transform algorithm; it would be
remarkable indeed if we could not take advantage of our knowledge of the FFT in
the design of Fourier transform circuits.

There are a number of versions of the FFT in the literature, differing chiefly
in the order in which they use inputs, outputs, and constants. Figure 70 shows a
"decimation in time" algorithm, taken from Figure 5 of [28]. Figure 71 shows a
"decimation in frequency" algorithm, adapted from Figure 10 of [26]. In both
cases, the N problem inputs are stored in z;, the N problem outpuis are y;, and
w is a principal N-th root of unity.

1. FORb « (log N) — 1 TO 0 BY —1 DO
2. p«2 gqe«N/p: /* notethat N =pg %/,
3. 2z « oP; /* z is a principal g-th root of unity */;
4, FORi « 0OTON-1DO
5. j «imod q; k + reverse(i);
8. IF (k mod p) = (k mod 2p) TEEN
- 7. Ty, Zpapd> « <Tp + 21 Zp,p. T — 27 T4 >
8. FIL
9. OD;
10. OD;
11. FORi « 0TON-1DO /* unscramble outputs *»/;
12. Yreverse (i) < Tit
13. OD.

Figure 70: The FFT by "decimation in time.” Note: reverse (i) interprets i as
an unsigned (log N)-bit binary integer then outputs that integer with its
bits reversed, i.e., with its most-significant bit in the least-significant posi-
tion.

Either Figure 70 or 71 may be used as an algorithm for a uniprocessor that
runs in O(N log N) computational steps. The total area of such a design is
O(N log N), due mostly to input and output storage. (Recall that a single pro-
cessor fits in O(log?N) area.) Total time for an N-element FFT is O(N log°N),
since each computational step takes O(log N) time units. This is, as expected, a
vast improverment over the uniprocessor DFT circuit. However, it is far from
being area*time? optimal, for its processor/memory ratio is too high. Adding
more processors, as in the following design, increases the performance of an FFT
circuit. :

-75 -

1. FORb « (log N) -1 TO0OBY -1DO

2. P« qge«N/p:

3. z « /% /* z is a principal 2p-th root of unity */;
4, FORi1 « 0TO ¥—1 DO

8. J « 1 mod p;

6. IF (4 mod 2p) = j TEEN

7. <ZTiy Tiwp> &« Ty + Tygp, 2izy — 202050
8. FI;

9. OoD:

10. OD;

11. FORi « 0TON=-1DO /* unscramble outputs */;
12. Yreverse (i) « Ty:

13. OD.

Figure 71: The FFT by "decimation in frequency."

6.2.6. The Cascade Implementation of the Fast Fourier Transtorm

The Cascade arrangement of log N multiply-add cells [2] was discussed at
great length earlier in this report in Section 2.2. At the risk of seeming repeti-
tious, we will describe it again using the theoretical notation of this section.

In a Cascade, one of the outputs of each multiply-add cell is connected to
the input of a shift register of an appropriate length. See Figure 72. The shift
register’'s output is connected to one of the multiply-add cell’s inputs, forming a
feedback loop. The remaining inputs and outputs of the multiply-add cells are
used to connect them into a linear array. Problem inputs (values of 2) are fed
into the leftmost cell; problem outputs (values of 7) emerge from the rightmost
cell. The decimation in frequency algorithm of Figure 71 is employed, to keep
the cells’ computations as simple as possible.

T &

Figure 72: The Cascade arrangement of 3 multiply-add cells, for computing
8-element FFTs. The multiply-add cells are square; the rectangular boxes
each represent one word of shift register storage.

Each cell handles the computations associated with a single value of the
loop index & in Figure 71. The leftmost cell performs the loop for b =log N - 1;
the rightmost cell performs the loop computations for b = 0. The pairing of z
values indicated in statement 7 of Figure 71 is accomplished by the 2°-word shift
register associated with cell &.

The attentive reader will note that statement 7 is not exactly the same as
the multiply-add step defined in Equation (1). Statement 7 involves one con-
stant value 27, two variable values z; and z,,,. two additions, but two (instead of
one) multiplications. Thus its computation will take about twice as much time
or area as a "standard"” multiply-add step.

-76 -

The conditional test of statement 6 is implemented by having each cell
monitor the b-th bit of the count i of input elements that it has already pro-
cessed. The condition of statement 6 is satisfied whenever that bit is 0. In this
case, a cell performs the computation indicated in statement 7. It sends the
new value for z; to the right, and retains the new value for z;,p inits shift regis-
ter. Whenever the b-th bit of i is 1, no multiply-add computations are per-
formed. However, some data movement is necessary: the data appearing on the
cell's lower input line should be copied into its shift register. Also, the values
emerging from its shift register should be sent on to the next cell on its right.

One of the advantages of using the decimation in frequency algorithm on
the Cascade is the ease of computing the constants for its multiply-add steps.
Only a few registers and a single multiplier are required to generate the con-
stants required by each cell. Referring again to the program of Figure 71, the
constant z7 required in statement 7 may be obtained by multiplying the previ-
ously generated constant zi~1 by z. If this multiplication is performed whether
or not statement 7 is executed, no conditional transfers are necessary in the
constant-generating circuitry.y

As noted above, the constant-generating circuitry for each cell consists of a
rmultiplier and a few registers. It is thus comparable in area and tire complex-
ity to the multiply-add cell itself. Thus the total area of the Cascade design is
obtained by multiplying the number of cells, log N, by the area per cell
O(log N). To this must be added the area of the shift registers. Unfortunately,
there is a total of N—1 words of storage in these registers, so the entire design
occupies O(N log N) area. Thus the Cascade, like the one-processor design, is
almost all memory. An entire problem instance must be stored in the circuit
while the Fourier transform is in progress.

The time performance of the Cascade is sermewhat improved over the one-
processor design. Input values enter the leftrmost processor at the rate of one
per multiply-add step. An entire problem instance is thus loaded in O(N log N)
time units. It is easy to see that the Cascade can start processing a new prob-
lem instance as soon as the previous one has been completely loaded, so its
"pipelined time" performance is T = O(N log N).

One awkward feature of the Cascade is that it produces its output values in
bit-reversed order. Formally, their order is derived from the natural left-to-
right indexing (0 to N—1) by reversing the bits in each index value, so that the
least significant bit is interpreted as the most significant bit. The last few lines
of Figure 71 perform this bit-reversal, but they cannot be performed on the cir-
cuit described thus far. If natura! ordering is desired, a processor should be
attached to the output end of the Cascade. If this processor has N words of RAM
storage, a simple algorithm will allow it to recrder the outputs of the Cascade as
rapidly as they are produced.

8.2.7. The FFT Network

One of the most obvious ways of implementing the FFT in hardware is to
provide one multiply-add cell for each execution of statement 7 in the algorithm
of Figure 70. (The algorithm of Figure 71 might also be used, but, as noted in the
previous subsection, its multiply-add computation is a little more complex.)
Each cell is provided with a register holding its particular value of zJ. Since

1 Note that 2' = 27 whenever the b-th bit o 1 is O, since 2 is a 2p-th root of umity. Of
course, exact equality obtains only when exact arithmetic is employed. This is easy to arrange in a
number-theoretic trensform. When round-off errors caanot be avoided, for example in a complex-
valued transform, it is probably best to use a conditionel transier to reset Z 3 0 1 whenever j = 0.

-77-

statement 7 is executed N/2log N times, a total of N/2log N multiply-add
cells are required for this "full parallelization” of the FFT.

One possible layout for the cells in an FFT network is to have log N rows of
N/2 cells each, as shown in Figure 73. Each row of cells in the FFT network
corresponds to an entire iteration of the "FOR & " loop of the algorithm of Figure
70. The interconnections between the rows are defined by the way that the
array 2 is accessed. The reader is invited to check that each multiply-add cell in
Figure 73 corresponds to an execution of statement 7 in Figure 70 for the case
N=8.

Note that the inputs to the FFT network are in "bit-shuffled” order and its
outputs are in "bit-reversed” order. This seems to minimize the amount of area
required for interconnecting the rows. Additional wiring may of course be added
to place inpuis and outputs in their natural, left-to-right order.

The interconnections of Figure 73 may be obtained from the following gen-
eral scheme. Number the cells naturally: from 0 to N/2-1, from left to right.
Then cell 7 in the first row is connected to two cells in the second row: cell i and
cell (i + N/4)mod N/2. Cell i in the second row is connected to cells 4 and
k/(Ns4) + ((i + N/ 8) mod N/4) in the third row. Cell{ in the kth row {where
k=1,2..log N — 1) is connected to two cells in the (k +1)-th row: cell i and cell
B/ (N/25) + ((i + N/2*) mod N/2¥). Another way of describing this
"butterfly” interconnection pattern is to say that a cell on the kth row connects
to the two cells on the next row whose indices differ at most in their £th most
significant bit. (The interconnections between rows in an FI'T network can also
be laid out in the “perfect shuflie” pattern described in the next subsection.
However, this seems to lead to a larger layout, if only by a constant factor.)

A careful study of Figure 73 and the preceding paragraph should convince
the reader that N/2 horizontal tracks are necessary and suflicient for laying
out the interconnections between the first two rows. Essentially, each cell in the
first row has one "long" output wire that must cross the vertical midline of the
diagram. This connection must be assigned a unique horizontal track to cross
the midline. Once this is done, the rest of the wiring for that row is trivial, espe-
cially if the cells are "staggered” slightly as in Figure 73.

The connections between the second and third rows occupy only N/ 4 hor-
izontal tracks. No wires cross the vertical midline of the diagram, but each of
the N/ 4 cells on either side of the midline have a fairly long connection that
takes up to half of a horizontal track.

In general, the connections emerging from the kth row (k=0,1,..10g N - 1)
occupy N/ 2¥*! tracks. Straight vertical wires are used to connect cell 1 in the
kth row with cell i in the (k+1)th row. The horizontal tracks are divided into ek
equally-sized pieces, then individually assigned to the "long"” connection from
each cell.

Following the scheme outlined above, a total of N—1 horizontal tracks are
required to lay out the inter-row connections. An additional N horizontal tracks
could be added above and below the FFT network to bring its inputs and outputs
into natural order.

The number of vertical tracks in an FFT network depends strongly upon the
width of the multiply-add cells. If these are set on end, so that each is 0(1) units
tall and O(log N) units wide, then the entire network will fit into a rectangular
region that is O(N) units wide and O(N) units tall. The height of the log N rows
of multiply-add cells is asymptotically negligible.

The pipelined time performance of the FFT network is clearly O(log N)
since a new problem instance can enter the network as soon as the previous one

-78-

Xo X I Xs. szs x:x

C il

XoX,| [XsXa| [XaXs| [X7X

' ! '
YoYa Y2¥ Yi¥s VYa¥z

Figure 73: The FFT network for N=8.

has left the first row of multiply-add cells. The delay imposed by each row's
multiply-add computation and long-wire drivers is O(log N), and there are
O(log N) rows, so the total delay of the network is O(log?N).

Note that this layout of the FFT network must be optimal, for the circuit
has an optimai area*time? performance of O(N?log?N). Any asymptotic improve-
ment in the layout area would amount to a disproof of Vuillemin's optimality
result [27].

6.2.8. The Perfect-Shuffle Implementation of the FFT

Over a decade ago, Stone [28] noted that the "perfect shuflle” interconnec-
tion pattern of N/ 2 multiply-add cells is perfectly suited for an FFT computa-
tion by decimation in time. Figure 74 shows the perfect shuffle network for the
8-element FFT, and figure 70 shows the appropriate version of the FFT algorithrn.

-79 -

X [X

I:'XO,X, o ’lxz k— 4,X5F _"Xs»x7;|

Figure 74: The perfect shuffle interconnections for N=8.

Each multiply-add cell in a perfect shufille network is associated with two
input values, z, and z.,,. Here, k is an even number in the range 0 <k < N-1.
A connection is provided from one of the outputs of the cell containing z, to one
of the inputs of the cell containing z; if and only if j = 2k mod N-1. Note that
this mapping of output indices ontc input indices is one-to-one, and that it
corresponds to an "end-around left shift” of the (lcg N)-bit binary representa-
tion of k.

The computation of the FFT on the perfect shuflle network can now be
described. First, the input values z, are loaded into their respective multiply-
add cells. Then a multiply-add step is performed: each cell ships its original z;
values out over its output lines, and computes new z, values according to Equa-
tion (1). It is not very obvious, but nonetheless it is true, that this corresponds
to an entire iteration of the "FOR &" loop of Figure 70. For example, the left-
most cell of Figure 73 computes new values for z, and z,, having received the
original value of the former from its own output line and the original value of the
latter from the third cell. This is the computation required by step 7 of Figure
70, when N=8, b=2, p=4, g =2, 1=0, 7=0, and k =0.

The FFT computation proceeds in this fashion for log N parallel multiply-
add steps. In each step, the cell containing the (updated) version of z, ships this
value to the cell formerly containing the (updated) version of Zg; meq ¥n-1- Each
cell then performs a multiply-add computation, updating the two data values
currently in its possession.

At the end of log N parallel multiply-add steps, each cell contains the final
versions of its original dala values. Unforiurately, the FFT computation of Figure
70 is not complete. The outputs ¢ are all available among the final 2 values, but
they appear in "bit-reversed” order. Additional circuitry is required to bring
them into natural order, following steps 11-13 of Figure 70. The techniques of
[29] could be employed in the design of recrdering circuitry that would operate
in O(log?N) time, without affecting the area performance of the perfect shufile
network.

The log N parallel multiply-add steps require a total of O(log?N) time. The
data movement involved in each multiply-add step does not require any addi-
tional time, at least in an asymptotic sense. As will be seen below, the "shuflle”
connections between cells are implemented as single wires carrying bit-serial
data. Each wire is less than O(N) units long, and each word has O(log N) bits, so
that the data transmission time per step is the same as the multiplication time,
O(log N) time units.

The total area of the perfect shuffle implementation is a bit harder to esti-
mate. There are N/ 2 multiply-add cells, each occupying O(log N) are. However,
the best embedding known for the shuffle interconnections takes up
O(N?/10g?N) area [30]. It is easy to see that no better embedding is possible,

- 80 -

since otherwise the perfect shuffle circuit would have an impossibly good
area*lime? performance. :

6.2.9. The CCC Network

The cube-connected-cycles (CCC) interconnection for N cells is capable of
performing an N-element FFT in O(log N) multiply-add steps [31]. Using the
multiply-add cell of the previous constructions, the complete FFT takes
O(log®N) time.

The CCC network is very closely related to the FFT network. In fact, a CCC
network is just an FFT network with "end-around" connections between the first
and last rows. For this reason, CCC networks do not exist for all N, only for those
N of the form (K/2)*(log K) for some integer K. Figure 75 illustrates the CCC
network for N=8. It is derived from the 4-element FFT network with "split cells":
each cell handles one element of the input vector 2, instead of two as in the FFT
network of Figure 73. (The reader is invited to redraw Figure 75, combining the
cells linked by horizontal data paths. The resulting graph should be isomorphic
to a "butterfly” whose outputs have been fed back into its inputs.)

Figure 75: The CCC network for N=8.

The CCC network is somewhat smaller than the FFT network, since it uses
only N cells to solve an N-element problem instead of the FFT network's
(N/2)*(log N) cells. Furthermore, the CCC's interconnections can be embed-
ded in only O{N?/l0g®N) area [31]. This is an optimal embedding, for the com-
bined area*time®? performance is within a2 constant factor of the limit,
Q(NZ%log?N).

It is rather difficult to describe the data routing pattern during the compu-
tation of a Fourier transform on a CCC, although the basic approach is similar to
that taken on the perfect shuffie network. Each of the log N muitiply-add steps
is preceded and followed by a routing step. These routing steps take O(log N)
time each, for they move O(1) words over each intercellular connection. Thus
the total time spent in routing data does not dominate the time spent on
multiply-add computations.

-81-

8.2.10. The Mesh Implementation

A square Mesh of N processors is shown in Figure 76. It consists of approxi-
mately VN rows of VN processors each, fitted with word-parallel interconnec-
tions. It is thus essentially the ILLIAC IV architecture, with the difference that
each processor in the Mesh is capable of running its own program. (A closer
approximation to the ILLIAC IV would have N multiply-add cells, each deriving
control signals from a central processor.) '

Figure 76: The Mesh of N processors, formed of 1€ ¥/ rows and 20 N2
columns.

The total area of the Mesh is O(N log?N), since there are N processors each
of O(log®N) area. The processors should each be laid out with a square aspect
ratio, so that the O(log N) wires in each word-parallel data path do not add to
the asymptotic area of the layout. Note that it takes O{loglog N) time to send a

word of data from one processor to its neighbor, since the interprocessor wires
are O{log N) in length.

Stevens [32] appears to have been the first to point out that the Mesh can
perform an N-element FFT in log N steps of computation. Each "step” consists
of an entire iteration of the FOR b loop of Figure 70. Each processor in the Mesh
performs the loop computation for one value of the index variable k. The total
amount of data movement during the FFT can be minimized by making an
appropriate assignment of index values k to individual Mesh processors. It turns
out that a fairly good choice is obtained from the natural row-major ordering (0
to N-1) of the Mesh. Processor k is then the "home" of the variable z,.

(Another, more intuitive way of visualizing the computation of the FFT on
the Mesh is to view the latter as a time-multiplexed version of the FF¥T network.
During each step, N/ 2 of the Mesh's processors take on the role of the N/2
cells in one row of the FFT network. The wires connecting the rows of the FFT
network are simulated by data movement among the processors of the Mesh.)

An iteration of the FOR b loop of Figure 70 can now be described. Each
mesh processor examnines the b-th bit of reverse (k) to decide if it will perform
the computation of statement 7. (For example when b=0, n2=1 so that only the
even-numbered processors will perform statement 7.) Next, each processor that
will not perform statement 7 sends its current value of z, to processor k+2°.
(For example, when b =0, each odd-numbered processor sends its z value to the
processor on its left.) Statement 7 is then executed, and finally the updated z;
values are returned to their "home' processors.

-82-

When b = log N — 1, the data movement required before statement 7 can be
visualized by "sliding” all the z; values in the bottom half of the Mesh up to the
top half of the Mesh. In this way, processor 0 receives the current value of zy,2,
processor 1 receives the value of zy,2:1. etc. This particular data movement will
be called a "distance-N/2 route.” In general, a distance-2° route must be per-
formed both before and after each execution of statement 7.

The time required 1})\?' a distance-2° route depends, of course, on the value of
b. When b = 0 or 20 72 all data movement is between nearest neighbors
(horizontal or vertical) in the Mesh. As mentioned above, this takes only
O(loglog N) time.

When b = 218 N)73 or log N = 1, it would seem that O(VN loglog N) time is
required for a distance-2® route. Each data element must ripple through about
VN /2 processors. However, this result may be improved by using the "high-
power'' inputs on the long-wire drivers on the interprocessor data paths (see
Assumption 1d). Once the bits in a data element have been amplified enough to
be sent to a neighboring processcr, only one more stage of amplification is
necessary to send these bits on to the next processcr. Since the amplifier stages
in a long-wire driver are individually clocked, all data elements in a routing
operation may "slide” toward their destination simultaneously, moving by one
processor-processor distance every time unit. The total time taken by a
distance-2° routing is thus easily seen to be (2° mod Kiog N)/) + O(loglog N).

The total time taken by all routings in a complete FFT computation is
bounded by O(¥N). Essentially, this is the sum of a geometric series whose larg-
est term is the time taken by the longest routing operation, O(VN). The time
performance of the Mesh design is thus O(VN). At least asymptiotically, the
O(log?N) time required for the multiply-add computations is insignificant com-
pared to the time required for the routing operations.

Three aspects of the Mesh implementation deserve further attention. First
of all, the individual processors are expected to come up with their own 2z’
values, as they execute statement 7 of Figure 70. This is not difficult to arrange:
each processor has 0(log®N) bits of program storage, so it can easily perform a
table look-up to obtain the required constants. One constant is needed for each
processor, for each value of b.

Secondly, the algorithm described computes the ¢ values in bit-reversed
order (relative to the natural row-major ordering of the Mesh). If the outputs are
desired in natural order, another O{VN) routing operations are required [29].
and the individual processors’ programs become a bit more complicated.

One final note: the Mesh implementation, as described, is area*time?®

optimal. A slightly less eflicient, but possibly more practical design has been
suggested. Instead of using word-parallel buses between N processors in a
mesh, one might provide bit-serial buses between N cells in a mesh. Now the
best possible time performance is constrained by the bit-serial buses to be no
better than O(VN log N). Similarly, the area could be reduced to as little as
O(N log N). However, it will be a bit tricky to attain these performance figures.
There is not enough area to store each cell's zJ values locally, so these values
must be computed "on the fly” in (hopefully) only few extra multiplications. This
seems to be impossible to accompiish directiy. One solution to this difliculty is
to have the cells exchange z/ values as well as z, values. The bit-serial approach
is thus inherently slower both in routing time and in the number of necessary
multiplications. On the other hand, the word-parallel approach has wider buses
and perhaps larger look-up tables, so that it takes up somewhat more area.

-83-

7. CONCLUSIONS

We have investigated the problem of implementing Discrete Fourier
Transform processors in VLS! on many different levels. The original idea of using
Charge Transfer Devices to implement the building blocks of these processors
was discarded when it became clear that other technologies such as CMOS and
NMOS had advantages in terms of power dissipation, speed, compactness, and
complexity of handling the necessary crossovers. -

On an organizational level, the pipeline structure of Despain was shown to
map very well into a VLSI structure where it is desired to build as few different
chip types as possible while allowing the construction of processors which are
capable of computing transforms of arbilrary size. An extension of this struc-
ture to allow higher throughput, lower latency processors to be buiit also has
the same desirable features due to the iucredible flexibility which is inherent in
the DFT computation. This extension allows one to trade off speed and cost in
any way desired, especially for large transform sizes where the communication
requirements do not force one to use less than the maximum number of transis-
tors available on a chip.

The higher radix structures which were derived are to be preferred in gen-
eral since they require less full CORDIC rotators. This reduces latency and
hardware costs, especially where the operations needed to realize the higher
radix butterfly are simple and can utilize partial multiplier circuits.

Several chips which could be used to build processors in this style were
designed. The butterfly and CORDIC chips could be used to put together arbi-

trarily large radix 2 or radix 4 (due to the built-in g—rotator of the butterfly)

transforms. The bit-skewed format turned out to have unfortunate properties
for the CORDIC-style circuits, but worked weill for the butterfly modules. The
real and imaginary multiplexing was necessary at the time due to pin limita-

tions, but also avoided crossovers internal to the chips. The %—rotator was to

be used along with a g—rotator in the construction of a 16-point DFT processor,

but improvements in circuit density allowed us to build the more general
CORDIC circuit which could replace them both. Also, various experimental chips
such as the root-3 partial multiplier and the 4 bit-slice butterfly which were
fabricated early on verified the ease of rnapping the algorithms into silicon. The
barrel shifter module was successful and could be used in a less expensive, lower
performance, iterative CORDIC design.

Regular, pipeline organizations which drew on the work of Winograd to
reduce multiplies in DFT computations were developed. These structures are
quite compact, but would require the development of many different chip types
if very large VLSI processors were to be built.

The problem of latency, already addressed from an organizational
viewpoint, has also been attacked by the development of new carry lookahead
circuits which are faster and cheaper than any others which have been seen in
the published literature. The new circuits also allow one to realize the inherent
speed advantages that exist in high fan-in over low fan-in gates.

Finally, new work in complexity theory using a model which takes into
account the special characteristics of VLS] has allowed a comparison of different
styles of DFT processor design free from the details of a specific implementa-
tion.

-84 -

References

1

2.

10.

11.

12.

13.

14,

15.

16.

17.

18.

19,

20.

21.

A. M. Despain , “Fourier Transform Computers Using CORDIC Iterations,"
IEEE Trans. Comput. C-23 pp. 993-1001 (Oct. 1974).

A. M. Despain , “Very Fast Fourier Transform Algorithms for Hardware
Implementation,” JEEE Trans. Comput. C28 pp. 333-341 (May 1979). -

C. H. Séquin and M. F. Tompsett, Charge Transfer Devices, Academic Press
Inc. (1975).

J. W. Cooley and J. W. Tukey , ‘*‘An Algorithm for the Machine Calculation of
Complex Fourier Series," Math. Comput. 19 pp. 297-301 (Apr. 1965).

J. J. Good , “The Interaction Algorithm and Practical Fourier Analysis,” J.
Royal Statist. Soc. B-20 pp. 361-372 (1558).

S. Winograd, ‘‘On Computing the Discrete Fourier Transform,” FProc. Nat.
Acad. Sci. U.S. 73 pp. 1005-1006 (Apr. 1976).

C. Thompson, A Complezity Theory for VLSI, Ph.D. Thesis August 1980..

J. E. Volder, **The CORDIC Trigonometric Computing Technique,’ /RE Trans.
Electron. Comput. EC-B pp. 330-334 (Sept. 1959).

C. A. Mead and L. A Conway, /ntroduction. to VLS] Systems, Addison Wesley
(1980).

B. Gold and T. Bially, *‘Parallelism in Fast Fourier Transform Hardware,”
IEEFE Trans. Audio Electroacoust. AUG-2i pp. 5-16 (Feb. 1973).

D. S. Parker, 'Notes on Shufile/Exchange-Type Switching Networks,"” IEEE
Trans. Comput. C-29 pp. 213-222 (Mar. 1980).

C. M. Rader, ‘‘Discrete Fourier Transforms When the Number of Data Sam-
ples is Prime," Proc. JEEE 56(8) pp. pp. 1107-1108 (June 1968).

D. P. Kolba and T. W. Parks, "*A Prime Factor FFT Algorithm Using High-
Speed Convolution,” JEEE Trans. Acoust. Speech. Sig. Proc. ASSP-25 pp.
281-294 (Aug. 1977).

J. H. McClellan and C. M. Rader, Number Theory in Digital Signal Process-
ing, Prentice-Hall, Englewood Clifs (1979).

T. G. Stockham, *“High Speed Convoiution and Correlation,” pp. 229-233 in
Spring Joint Comput Conf., AFIPS Conf. Proc., Spartan, Washington, D.C.
(19886).

S. Winograd, *'On Computing the Discrete Fourier Transform,” Math. Com-
put. 32(141) pp. 175-199 (Jan. 1978).

R. A. Allen, R. J. Eandy, and J. E. Sandor, 'Charge Coupled Devices in Digital
LS, JEDM 1976, Tech. Digest, (19786).

P. M. Dobrowolski, “Evaluation of Approaches to LSI Implementation of the

Butterfly Unit for a Modular, Pipelined Fast Fourier Transform Processor,”
Masters Report, U.C. Berkeley, (June 1979).

J.S. Walther, *'A Unified Algorithm for Elementary Functions,”” AF/PS Proc.
1971 Spring Joint Comput. Conf. 38 pp. 379-385. AFIPS Press, (1971).
Ladner and Fischer, ‘‘Parallel Prefix Computation,” JACH 27(4) pp. 831-838
(Oct. 1980).

A. M. Despain, “*General Fan-in Prefix Calculations,” UCB-ERL Report, (Oct.
1981).

22.

23.

24.
25.

26.

27.

28.

29.

31.

32.

-85 -

F. Fich, “"The Parallel Prefix Problem and Applications to Fast Adders,”
UCB-ERL Report, {Dec. 1981).

D. J. Kuck, The Structure of Computers and Computations, John Wiley and
Sons (1978). :

C. Thompson, Fourier Transforms in VLS. .

J. Savage, *Area-Time Tradeofls for Matrix Multiplication and Related Prob-
lemns in VLSI Models,” in TR-CS-50. , Dept. of Computer Science, Brown
University (August 1979).

W. Cochran , J. Cooley, and et al., “What is the Fast Fourier Transform?,”
IEEE Trans. on Audio and Electro. AU-15(2) pp. 45-55 (June 1967).

J. Vuillemnin, “‘A Combinatorial Limit to the Computing Power of VLSI Cir-
cuits,” pp. 294-300 in Proc. 21st Symp. on the Foundations of Computer
Science, IEEE Computer Society {October 1880).

E. Stone, “‘Parallel Processing with the Perfect Shuffle,”” JEEE Trans. Com-
put. C-20(2) pp. 153-161 (February 1971).

C. Thompson, ‘‘Generalized Connection Networks for Parallel Processor
Intercommunication,” JEEE Trans. Comput. €-27(12)pp. 1119-1125
(December 1978.).

F.T. Leighton, Layouts for the Shuffle-Ezchange Graphs and Lower Bound
Techniques for VLSI, Ph.D. Dissertation August 1981.

F. Preparata and J. Vuillemin, “The Cube-Connected Cycles: A Versatile
Network for Parallel Computation,” pp. 140-147 in Proc. 20th Annucl Symp.
on Foundations of Computer Science, IEEE Computer Society (October
1979).

J. Stevens, “‘A Fast Fourier Transform Subroutine for llliac IV,” in Technical
Report, , Center for Advanced Computation, lllinois (1971).

