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ABSTRACT

The properties of working set size strings. i.e., of the strings of
iniegers representing the scquences of vaiues taken by the work-
ing set sizes of programs, are investigated. Particular attention is
given to the conditions to be satisfied by a given string of integers,
by a pair of such strings, or by an n-tuple of strings for the
existence of ¢ page reference string whose working set size strings
coincide with the given ones for given values of the window size.
These conditions are useful in generating artificial reference
strings exhibiting a given memory demand dynamics.

1. Introduction

The working set policy for memory management in virtual-memory systems
was proposec by Denning in 1268 1] and has been extensiv=ly studied since then
(see for example [2]). Only recently, however, has a generative model of pro-
gram behavior based on the working set concept been introduced {3). This
model is intended to be the working-set-oriented counterpart of the well-known
LRU stack mocdel, that was inspired by the LRU replacement policy [4). The ori-
ginal proposal of the new model presented a deterministic approach, but a sto-
chastic version [5) was soon added to it. The new model is able to produce 2
reference string which followed a given memory demand pattern in virtual time;
this pattern is represenied by the dynamics of the size of the working set. The
stochastic version allows the model's user to describe this dynamic behavior by
assigning the values of a limited number of parameters rather than having to
specify the salient points of the working set size curve.

While investigating the viabiiity of the new model, it was soon discovered
that a reference string corresponding to a given working set size dynamics does
not always exist. This observation obviously raised the question of what condi-
tions must be satisfied by a given dynamics for the existence of a reference
string whose dynamics coincides with the given one. The study of this problem
inevitably led to the study of the properties of working set size strings, that are
the subject of this paper.

We shall begin by introducing some basic definitions.
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Definition 1. Given a set P, a reference string over P is a finite string
r=r,Ta. . Tn,With 7t € p fort=12.mn.

Definition 2. Given 2 reference string 7 of length n and a positive integer T
called the window size, the working set of r at i, with window size T and
1<t <n.istheset

wir,t, T)=tr; | to<j <t te= max(t -T+1,1).

The size of the working set at the time ¢ of a given reference string 7 with
window size T,

W(T.t, T)'-'; W(T-t- T)iv
is a positive inleger bounded by T and | P:
1<w(r,t. T) <min(T, |Pl). (t=1 2..m).

When it will be desirable to define the value of the working set size for
=0 or for t>n, we shall set, for all 7 and T, w{r,0,T)=0, and
wir.t, T)=wir.n T) for t >n.

Definition 3. To any reference string 7 of length n and window size T there
corresponds a string w = w), Wz celled the working set size (uss) string
of r for window size T, with 1wy =W (r. 1, T) (=1 2...n).

The string of werking set sizes does not fully represent the dynamic charac-
teristics of a reference string. Fer example, wp = Wiy does not always mean
that 7, € W(r. t — 1, T): the eguality hoids also when 7 £ W(r.t -1, T) and
ri_r £ Wir. t. T) . In other words, the size remains unchanged not only when
the next reference is to a page already in the working set, but also when one of
the members of W{r.t -1, T) dérops out and a new member joins the working
set at t . Since these two cases correspcnd to two very different dynamic
behaviors of the working set, it is useful to distinguish them by introducing the
notion of fiat fault.

Definition 4. Given a reference string 7 and a window size T. a flat fault is said
to occur at t if

re g Wir. t -1 T) and 1,7 £ wir.t. T).

Definition 5. Given 2 reference string 7 of lengthn and a window size T, the flat
fault (ff) string associated tor and T is the: Boolean string

_ 1 if 7 bas a flat fault at ¢
f(r. t.T)= \ 0 otherwise

for t =12..n.
When needed, we shall assume rir. t. T)=0 alsofor £ > 7.

Definition 6. A string of inlegers w and a Boolean string f are said to be com-
patibie if they have the same length n and, for all t (1<t <n) such that
fi=1,itis wy =Wy -
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To any given reference string r and window size 7 there corresponds a pair
(w, f) of compatible strings, the wss string and the fI string.

2. Single-window properties

In this section, an answer will be provided to the question of when is a given
string of positive integers the wss string of a real reference string for a given
window size.

Definition 7. A finite string w = w,, Wa....Un of positive integers is a Jeasible
working set size (fwss) string for window size T if there exists at lezst one refer-
ence string r of length n that has w as its working set size string for window size
T. Similarly, a pair (w, f) of compatible strings of length n is a feasible pair
for window size T if there exists at least one reference string r of length n that
has w as its working set size string and f as its flat fauit string for window s.ze

T.

Definition B. Given a string w = w,, Wa,..-Un of positive integers, the decre-
ment siring d =d;, da... ©  associated to w is the string of binary digits
defined as

d,=0

/1 if wy <wiy or f, =1
d; =X 0 otherwise (t =2 3..n) .

Note that, in Definition 7, a flat fault is treated as a decrement. Indeed, a

¢ fault may be seen as the superposition in time of a decrement and of an

increment in the working set size. The elgorithm on which the proof of part (2)
of Theorem 1 below is based looks at flzt faults from both viewpoints.

Under what conditions is a given string w of positive integers an fwss
string?

Theorem 1. A pair (w, f) of compatible strings of length n is a feasible pair
for window size T if and only if

(i) w,;= 1
() [wp —wy €1 forl=23.m;
(ii)w, <T fort=12..1n;

-1
(i) &: dy., <w, fort=12.n-TH+ 1.
i=1

Conditions (i) — (i) will be referred toin the sequel as the fwss conditions.

Proof. A full proof of this theorem can be found in [6]. Here, only a sketch of
the proof will be given.

(1) The fwss conditions are necessary. The necessity of conditions (i), (ii).
and (iii) stems from Definition 2. That of condition (iv) is proved by observing
that the maximum number of members of P that may drop out of the working
set between t +1 and f + T —1 is w; —1. Indeed, 7 does not drop out
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since 7, € W(r,t + T =1, T); elso, none of the members of F that join the
working set during the interval being considered may drop out before
t+ T +1.

(2) The fwss conditions are sufficient. This part of the proof is construc-
tive: a string generation algorithm is shown to be able to produce a reference
string with the given working set size dynamics and to run to completion if the
given w satisfies the fwss conditions. The algorithm maintains three disjoint and
exhaustive subsets of P: the candidate set C, the forbidden set F, and the exter-
nal set E. For all ¢, these sets satisfy the relationships

QUP}:W(r.t,T). E,JWr.t.T)=P,
GNP NE=¢.

Initially, at ¢ =0, sets C¢ and F; are empty, and Ep=F. At time
t (t =1, 2,..n), the following two cases may occur:

(8) w; >wi-, or fy =1;then, 7 €k
(b) w; <w;_,:then 7, € G,y

The three sets are updated, afier generating the next reference 7, attime
t, as follows:

(c) if wior=wpery and feor =0, then r, remains in G (if it was in C;-,) oris
moved from E,_, into C;, and is given a deadline equal to ¢ + T, ihis means
that it will have to be referenced again not later than time t + T,

(d) if wi,7 <Weer—y OF fisr =1, then 7 is moved from either E;_y or G,
into /;, and is given a ceadline ecuzl to ¢t + T, this means that it cannot be
referenced again unti! after t + 7, at which time it will automatically move
from F;,7-, into Ej.71.

Even though it is not necessary, assuming that the three sets (especially C)
are dealt with as FIFO queues simplifies the proofs.

The only problerns that could arise during the generation of the reference
string are the following:

(a) E,_,=¢: this cannot happen when case (a) occurs if fwss condition (1) is
satisfied;
(b) -, =¢: this cannot happen when case (b) occurs if fwss conditions
(i) and (iv) are satisfied;
(c) the deadline of an element of C, is t: this cannot happen if fwss conditions
(i1) and (iii) are satisfied.
(]

Note that a special case of Theorem 1 is the one in which f, =0 for all £.
Thus, the fwss-conditions are also the necessary and sufficient conditions for the
existence of a reference string having a given wss string and no fiat faults [3].

8. Two-window properties

In this section, the generation of an artificial reference string that follows
the memory demand patterns specified by its wss siring for two different window
sizes is discussed. This epproach to artificial string generation has been
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suggested by the need to improve the accuracy of the generated strings in non-
working-set (e.g., LRU) environments [7][8].

Definition 9. Given a feasible pair {(w?, f!) of strings of length n for window
size T', and a feasible pair (w2 f?) of strings of length n for window size T2,
(w', 7Y and (w? f?) are said to be consistent if there exists a reference
string r of length n such that

wir. t. TY=w! f(r.t, ™ = 1,
wir. t, TH=wl [f(.t, T9)=f2 fort=12..1n.

Theorem 2. Two pairs of strings (w', f1) and (w? f2). that are feasible for

window sizes T! and T?, respectively, with T2 — TV'= A > 0, are consistent if

and only if:

() wi=vud (t=1 2,..n):

(b) for any t such that w2>wl, or fE=1.itis w! >wl, or fi=1;

(c) for any t such that df=1.,it is dl, =1;

(d) for any t such that w2<w?, (with f#=0) and either w! >wl, or

(4 =1, there exists an index value, say t — K (with K integer and

0< K <A), such that dlyx=1 and dxss = 0. The correspondernce
between index values t — K and t is one-one; in other words, each t at

which the situation described in this condition occurs must have its
exclusive corresponding index value ¢ — K satisfying the condition.

Conditions {a) - (@) will be referred to in the sequel as the consistency con-
ditions.

Proof. (1) The conditions are necessary. Let there be a reference string 7 of
which w!, w? are the wss strings, and f1. s? are the fI strings for window
size T! and T2, respectively. :

(a) The necessity of this condition is a direct consequence of the definition of
working set (Definition 2): for all ¢, we have W2 > W . Note that W7 isa
short-hand symbol for W(r.t, T?).
(b) Since 7, £ W2, . we alsohave 7y £ w)_, .as W22 W} foralli.
(c) Since df=1, we have 7, _re £ W2, and, since W/, C WZ . it must be
T‘_rgﬁ W;l_A . Hence, d{i_b =1.

(d) Let r, be a reference to page P ¢ P. Since we have p; € WZ&; and
p; £ W, . there is at least one reference to p; between t — T°+1 and
t - T' 1. Let t-T!'-=K,with 0 < K < A, be the time prior to ¢ of the
most recent reference to p;. Then, p; € Wlx-, and p £ W, g . hence
d‘;_x= 1. Also, p; € WZges-y ond, since 7, =pi, P € W2 x.s : hence,
dx=0.

(2} The conditions are sufhicient. Let {(a) through (d) be satisfied. The algo-
rithm described in part (2) of the proof of Theorem 1 can be easily extended to
the case of two window sizes: the tree sets C, F. and E will have to be defined
and updated for each of the two values of T, and the next reference of the string
being generated will be a member of the intersection of the appropriate sets.
For instance, if both wZ>wd, and w'> wl,. r; will be chosen from
EE, NEL -



-6 -

Since condition (b) is satisfied, we cannot have w2>wl, (or ff=1)
and, at the same time, wy <w,, and f{ =0. The cases which may occur at
time ¢ can be grouped into the following three categories.

() wf>wd, (or fé=1) and w>wui, (or f¢d=1). In this case, we
must choose 7; € E&, N El-, . Since w® is to receive a new element of
P, it must be EZ, # ¢ . Because of condition (a), we have W} c W2, hence
E} 2 E? for alli. Thus, E', 2 B, . and EE, NEL #¢.

(i) wl<w?, and either w>wl, or [f¢=1. In this case,
r, € G&, N E&, . By condition (). there exists an integer K (0 < X < A)
such that dlg=1. let 7, _gp m be a reference to page pj. At
¢ — K — T, immedictely after being referenced, p; joins F! ang, due to
condition (d), C?. At time t — K, p; moves from F! to E!, but remains in
C2. At time t, p; is referenced again for the first time since ¢ - K-T
(this is how K is defined according to condition (d) ). and therefore can still
be found in G2, and Et, . Hence, G&y NE1#¢.

(i) wP<w?, eand w's wl,. In this case, we must choose
rneCli, NGY . If ws= wl, ,end 7,_p is areference to page p;. then
p; € Gy . Since it is also p; € CZ, . wehave CZ; N G-, #¢.1f on the
other hand, wg < w-, . it is possible that w,; 2w . and hence 7,_n,,
willbe in G, . G/ will be empty only when either w! <wil, or fi!=1
for i =t, t + 1....t + T' = 1. However, this is impossible since w' is an
fwss string, and satisfies fwss condition (). Note that, if p; € G . then,
by condition (c), p; € C&, . Kence, CE,NCl#¢-

Note that, unlike what happens with a single window size characterization,
the consistency conditions for the fiat fault free case may not be satisfied by the
two pairs (w!, f1) and (vw? f2) characterizing a real reference string if this
string has fat faults [9].

4. Multiple-window properties

Let us now consider m feasible pairs (wh, 1Y), W13, (w™, f™) of
strings of length n, whose window sizes are all different. Without loss of general-
ity, we can assume that T < ”<...<T™.

lemma 1. Given m feasible pairs (w', M, @i ry).. (™, f™) of strings of
length n. with T'<T%<..<T™,if (w'f') and (w?, f?) eare consistent,
(w?, 72 and (w°, f°) are consistent,... and (w™1, f™°1) and (W™, f™) are
consistent, then (w!, f!) and (w™, f™) are consistent.

Proof. (a) Since w'sw®, w®s< ws.,... and w™' < w, we have w!swh.
Hence, w!' and w™ satisfy consistency condition (a).

(b) By consistency condition (b), if either wi*>wp, or fI"= 1, then
either wr!>why! or f*~'=1. Also, if either wr!'>whi! or fP1=1,
then either wP2>wh2 or f"~2=1, and so on. Hence, w! and w™
satisfy consistency condition (b)-

(c) Let o, =T =T for i =1, 2..m = 1. By definition, #; > 0 for all €.
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If d™=1,then d%, , =1 Also, if d{'lz;n_l = 1. then d32 -a,,=1.and

so on, until we find d' mz—l = 1. Since "2 A, = T™ - T' . consistency condition
- -9 t=1
=1
(c) is satisfied by w™ and w'.

(d) By consistency condition (@), whenever w™= wi, and either
wil > whyt o or fr-t=1, there exists an index value t—K (with
0 < K < B, ) such that drnp =1 end dikes, , = 0. By consistency condi-
tion (c). since dny =1,itisalso dniis, . = 1- By consistency condition (b),
since either w™™! >uwhy! or fr-1=1, we have either w~2>wnki? or

r-2=1. Hence, condition {4) is satisfied by strings w™ and w™ 2. By re-
peatedly applying the same arguments to w™S,.. w? w!, we can prove that

w™ and w' satisfy consistency condition (&).
]

Note that the transitivity of pair consisiency is generally restricted to that
described in Lemma 1. For example, if (w® 7% and (w? f? are consistent,
and (wd, f%) and (w', f1) ere consistent, {(w? f%) end (w!, fY) are not
guaranteed to be consistent.

We now generalize Definition @ to the case of m window sizes.

Definition 10. Given pairs (wh Y., (W@ 73 ... (u™, ™) of strings, each of
length n, that are feasibie for window sizes T, 7%,..T™ . respectively, these
pairs are said to be consistent if there exisis a reierence string T such that, for
t=12.n.

w(r.t,T‘)=w1‘. f(r.t.T‘)-’—"fx’.
w('r. t, Tz) = ‘Uu';z. f(T. t, Tz) =f¢2 '

Under what conditions are m given feasible pairs all consistent? The
answer to this question is provided by the following theorem.

Theorem 3. Given m feasible pairs (wl, M. (w? 19 .. (W™, f™) of strings
of length n, with T'< <. <T,if (w' f1), and (wi*l, f1*1) are con-
sistent for i =1, 2..m = 1, then eall pairs are consistent.

Proof. The approach is the one followed in part (2) of the proof of Theorem 2.
Let all strings be pairwise consistent. The algorithm for string generation can
be easily extended to the case of m window sizes. For each window size there
will be three sets C. F, and E. that will be updated independently after the gen-
eration of each reference. The reference at time ¢t will be a member of the
intersection of the appropriate sets defined at ¢t — 1. Because of the consistency
conditions that are satisfied by all pairs of strings with adjacent apex values, at
time t we can have one of the following three cases.

(i) Either w} >w}, or [fi=1 for al i=12..m. In this case
m
r € N E{-, . Since wl > w, . we must have EM, # ¢ . Also, since by
i=1

consistency condition (2) Wi, c Wi} for J = 1,2..m-1, it is
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Ej_, 2 E{*] . Hence, {'?\ Ei,#¢.

i=l
(i) Either wf>wi, or fi=1 for i=}e.v, and wlswf_] for

v m
j=Ev+lv+2..m. In this case, 7 €|IN E}'_,J N L N CZ_,] By
i=1 y mu+l
Lemma 1, pairs (w™, f™) and (wv, fv) are consistent, and so are
(w™, f™) and (w¥7L fv7Y). (w™, f™) and (w2 ¥ . @™ M)
and (w!, f1). Al these pairs of pairs satisfy consistency condition (d),
according to which only an element of P can be referenced at t, namely,
the one that was last referenced at t — K — TV, with 0< K < T™ = T! (see
the proof of Theorem 2, part (2) (ii) ). Applying condition (d) to any pair of
string pairs composed of one pair with window size smalier than Tv*! and
one pair with window size larger than 7% will result in the same subset of
elements of P that can be referenced at t. This subset is given by

v . m .
NELIN] N G.,!, and is guaranteed by condition {d) not to be
t=1 jEv+l

empty.
. . m
(iii) w}=<wi, forall i¢=1 2..m . Inthis case, 7y € N G- - I w!<wl,.
i=)

and ;.7 is a reference Lo page p; ., then p; € ¢, . Because of the con-
sistency of (w! f!) end (uh, ") (=2 3...m) . condition (c) yields

mo
p; € Gy . Tous, N Ci_, # ¢. 1, on the other hand, w! <wl,. by

i=i
Theorem 1 there must be an integer !, with 0<l <T!, such that
wl = whia - Then, by consistency condition (c).

w"‘ﬂ”.h_,., 2 W erhomiog for h =2, 3,...m . This means that at least the
element. of P referencec at time ¢ + { — T! is a member of al: Ci_,'s.
mo
Thus, N G-1 #¢.
i=1
B

Note that Theorem 3 has proved that the consistency of m =1 ordered
pairs of (w, f) pairsis sufficient to guarantee that all pairs will be consistent
with each other. It is obvious, however, that this condition is also necessary.

5. Summary

Some of the properties of working set size strings useful in the generation
of artificial page reference strings exhibiting 2 given dynamics of memory
demand have been investigated. Necessary and sufficient conditions have been
found for the existence of a reference string having

(a) a given working set size string (or wss string and fI stringj for a given win-
dow size (Theorem 1);

(b) a given pair of working set size strings (or (w. f) pairs) for given window
sizes T' and T? (Theorem 2);

(c) e given m-tuple of working set size strings {or (w. f) pairs) for m given
window sizes T!, T%,...T™ (Theorem 3).

It is interesting to observe that no new conditions on w or f are to be
added when going from case (b) to case (c).
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The conditions are useful in those cases in which the dynamics of the refer-
ence string to be generated is not obtained from that of a real string but is
designed to have certain features which are deemed desirable or necessary in
experimenting with memory policies. The idea of using two or more window
sizes in characterizing the dynamics of a program was suggested by the poor
accuracy with which artificial strings generated on the basis of a single window
size represent the behavior of real strings in non-working-set environments. An
interesting theoretical question, for which we have no answer at this moment, is
the one regarding the maximurn number of window sizes necessary and
sufficient to characterize a given reference string fully; this is the minimum
value of m such that there is one and only one reference string (the given one)
having the corresponding multiple (w. f) characterization.
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