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ABSTRACT

In the study of generative models based on working set size characteri-
zations, working set size strings are used as inputs. The properties that
an integer string should possess in order to guarantee the termination of
reference string generation algorithms are discussed in this paper. A
hierarchical view with respect to one window and two window working set
size characterizations is presented. Working set size strings extracted
from real traces may contain flat-faults which can cause difficulties in a
class of reference string generation algorithms. The role and properties
of flat-faults in the working set size strings are presented along with
their limiting behavior under independent reference assumption. An
upper bound of the flat-fault rate is also obtained in this paper.

1. Introduction

In the study of program behavior, various analytic and generative models
have been proposed ?Spir'?'?a]. A class of generative models based on working
set size characterizations was recently investigated by Ferrari [FerrBia], Dutt
[DuttBla], and Lee [Lee82a]. This model uses wss (working set size) strings to
generate artificial page reference strings for program behavior studies.

There are basically two ways to obtain wss strings. One is to produce them
using a stochastic model [Fall8la] or some other description of a program’s
reference behavior. The other is to extract them from real program traces
[Dutt81a] [LeeB2a]. The first approach immediately raises the question of the
necessary and sufficient conditions for the existence of at least one reference
string corresponding to a set of integer strings. It is clear that, for a wss string
extracted from a real trace, the existence of a reference string is guaranteed.
The question is really relevant only for the artificially generated wss strings.
This problem is discussed in the following sections.

The string generation algorithms proposed in the generative models studied
so far are based on the flat-fault free assumption [Dutt8la] [LeeB2a]. In
essence, this class of reference string generation algorithms will not generate a
reference to a new page when the working set size remains unchanged. As a
result, the artificial reference strings generated are without flat-faults for the
given set of window sizes. A flat-fault occurs at time ¢ when a page fault at time
t is accompanied by the simultaneous dropping out of a page from the working
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set. The working set size is unchanged for this kind of page fault. In most pro-
grams, the working set size remains unchanged for a very large fraction of the
execution time; therefore, the reference string generation process will be
unnecessarily flexible and will become computationally unmanageable if we
intend to accommodate all possible flat-faults at various times when working set
size remains unchanged. To justify further the elimination of flat-faults, it is
shown in the later section that flat-faults occur rather infrequently with normal
values for the parameter of the working set policy. The wss strings extracted
from a real trace may contain flat-faults; therefore, their use in the reference
string generation algorithms with the flat-fault free assumption is examined in
the following sections.

2. Definitions

It is convenient to present here all the definitions needed later in this sec-
tion. Some of the basic definitions, such as those of reference string and work-
ing set, are included for completeness. Explicit references to the parameter T
in many of the following definitions can be omitted if no ambiguity arises.

Definition 2.1
A reference string R is a sequence of references to a page set
P =112, - - ,n}]. In essence, a reference string R, usually represented as
rray- -7, - - where €S, is a mapping from the set of positive integers

2
I=§2,---}toset P.

Definition 2.2
Given a reference string R =7,;7, ' 7, - - - and a window size 7€/, the
working set W(t,T) at time ¢ is the set of pages referenced in the interval
[maz(1,t-T+1),t]. Thatis, W(t,T)={r;|i€[maz(Lt —T+1),t 3. The working
set size w(¢,T) at time ¢ is the cardinality of #(¢,7), i.e., w(t,7)=|W(¢t.T)|.

Definition 2.3
The wss string S{T) of a reference string R is a sequence of positive
integer numbers w(t,T), i.e., S(T)=w(l,Tw(@7). - - w(t. 7). -
Definition 2.4
Given a reference string R =7,75- ' - 7, - - - and a window size T€/, a page

fault occurs at time ¢ if 7, £ W(t~1,T).

Definition 2.5

Given a reference string R =77z - - 7; - - - and a window size T€/, a flat-

fault occurs at time ¢ if w(t,7)=w(¢-1,7) and r, £ ¥ (¢ -1,7).

In essence, a flat-fault occurs when there is a page fault at time ¢ and there
is also a page that drops out of the working set. The followin definitions are
based on those given in [Ferr8la], and on some of the results in [Ferr82a].

Definition 2.8 ‘
Given an integer bound 7, a string S(T) =s;5z- - s; -+ of integers is
called a dpc g bounded positive continuous ) string if the following three
conditions hold:

ii) O<s;<T for 1<i

gl) Sl=1
iii) |s; =i -4 < 1 for 2<i



Definition 2.7
A bpc string S =s;- - s§;-- - with bound T is feasible if for any prefix of
length n of S there exists a reference string K =7, - - Tq such that, with

window size T, the wss string of R coincides with the prefix of S in question.

Definition 2.8
Given a bpc string S(T) =s,5z s - -, the decrement count d(r); at
time ¢ is the number of decrements in substring S¢S¢+1° ° - §;,r-+ 1h€
number of decrements in this substring is the number of times that
s;—1=s;,, where i€t £t +T-2].

Definition 2.9
A bpc string S(T;) is said to be greater than or equal to a bpc string S{Ts)
if 7,>T, and s, (7;)=s;(7;) for all t's. We indicate this by the notation
S(1;)=S(T,)-

Definition 2.10
A Bpc string S(T;) is said to be consistent with a bpc string S(T,) if
S(T,)=S(Ts). d;<s; for both strings and all ¢'s, and the following three pro-
perties hold :
Q). s¢(m)=s¢-1(T;)+1 implies s (75)=s;1(7s)+ 1 for all t’s
(i1). s(m =s¢_1(7;)—1 implies s¢ =T+, (Ts)=st—‘r‘+‘r,-l('rs)'1 forall t's
(iii). s¢(Ts)=St-1(Ts)~1 and Sgir—r (T1)=sy +r,—r,-1(T1) implies the existence
of a unique k&(t,t+T,—T,] such that s, (7s)=s5,-1(7s)+1 and s (7 Ysi_(Ty)
forall t’s.

Definition 2.11
Reference strings R, and R, are said to be wss —equivalent with respect to
T if both have the same wss string for the given window size 7.

It is clear that the relation of wss-equivalence with respect to 7 forms an
equivalence class.

3. Properties of Working Set Size Strings

In this paper, we use the terms single T and double T working set size
characterization to refer to wss characterizations of a given reference string
based on one and two window sizes, respectively. The results presented here are
divided into two categories accordingly. With a single 7 working set size charac-
terization, we call the single wss string S(T). With a double T working set size
characterization, we call the two wss strings S(7;) and S(T,). respectively,
where T;>7,.

3.1. Single T Working Set Size Characterizations

With a single T working set size characterization, we can partition the set of
reference strings into two disjoint sets R,(T) and R.(T). Ry(T) is the set of
strings that contain at least one flat-fault when processed with window size T.
R,,Z?‘? is the complementary set of R, (7). Two sets of wss strings are obtained
from sets Ry (T) and Ry (7) : WSS, (TS and WSS, (7). WSS,(T) is the set of wss
strings corresponding to the members of set R, (T).” WSS,(7) is similarly
defined. It is clear that there are usually more than one reference string having

the same wss string with a single T working set size characterization.

Furthermore, let us call the set of bpc strings with common bound T
BPC(T) and the set of bpc strings with common bound T which also satisfy the



constraint that d; < s, for all t's BPCD(T).

Before we present and prove two propositions, a theorem by Ferrari
[Ferr81ia] is stated here without proof as Proposition 3.1. The statement of the
original theorem is rephrased slightly in order to be consistent with the frame-
work adopted in this paper.

Proposition 3.1
There exists a reference string R€R,(7) that has the wss characterization
represented by S(7) if and only if S(T) is a bounded positive continuous
string with bound parameter T and d; <s; for all £’s.

Proposition 3.2
WSS, (T) is a proper subset of WSS, (7).

Proof : The proof is constructive. For any S(T)cWSS;, (T) there is at least
one reference string By € R,(T) that is characterized by this wss string
S{7). The flat-faults associa{ed with Ry will be eliminated one by one in a
series of successively constructed reference strings R;'s, with each &; so
constructed being wss-equivalent to F;_,. Based on reference string k;_;,
reference string R; is constructed as follows :

(i). Copy the reference string from F;_; to R; up to but not to include the
first flat-fault at ¢ in R;_,. Assume that the page referenced at time ¢ is z,
and the page referenced at { —-Tis y.

(ii). Copy the rest of the strings from R;_, to R; by interchanging the page
names of z and ¥ wherever they are referenced.

It is clear that reference string R; has one fewer flat-fault than that of
reference string R;-,. Let us verify that R; and R;-, are wss-equivalent.
From step (i), the working sets for both R; and R;_, for time k<t are
exactly the same. Thus, also working set sizes are the same. From step
(i), the working set sizes for both R; and R;_, for time k>t +7~1 are the
same because only page names z and y are interchanged and none of the
working sets covers any page referenced before time ¢£. For time k such
that t<k <t +T-1, the working sets W(k,T) of both reference strings would
be the same except possibly for pages z and y. Since page z will be in the
working set for R;_, in this range, we have two possible situations : y is not
in the working set or y is in the working set but referenced only after time
¢t because of the flat-fault assumption. In the former case, y is called z in
the corresponding working set of R;, and this will not affect the working set
size. In the latter case, the page names z and y are interchanged at the
same time, and hence the working sets are the same as well as the working
set sizes.

Thus, given a fixed number of flat-faults m, because of the transitivity pro-
perty of the wss-equivalence relation, there exists a flat-fault free reference
string R, €R,(T) with the same wss string S(T).

The properness of the inclusion relationship can be shown by the example
in Table 1. The reference string is constructed by repeating the sub-string
of length 10.



Table 1: S{T)EWSS,(T), S(T)£WSS; (1)
time 1 2 3 4 5 6 7 8 9 10
ReR(T) |a b ¢c ¢ c c b a a a
S(t=4) |1 2 3 3 2 1 2 3 3 2

The corresponding wss string is in the set WSS, (T) because there is no flat-
fault with a single T characterization. The only times at which a flat-fault
could occur are times 4 and 9, when the working set size remains
unchanged. However, there is only one possible reference that can be gen-
erated at each of these times , i.e., that to the page referenced at time 3
and 7, respectively. If this is not so, we cannot decrement the working set
size at later times as required by S(T). Thus, this wss string S(T) cannot
be a member of WSS, (7).

Q.E.D.

Proposition 3.3
The relationship among BPC(T), BPCIXT), and WSS, (T) is

BPC(T) > BPCIXT) = WSS, (T)
where the inclusion relationship is proper.
Proof : The inclusion relationship is implied by the definitions of the two

sets BPC(T) and BPCDXT). The properness of the inclusion relationship can
be shown by the example in Table 2.

Table 2 : An Example of Working Set Size String (T= 4)

time 1 2 3 4 5 <] 7
s, 1 2 2 2 1 2 T
d, 0 1 1 2 .

The string in the table is clearly a bpc string, but it is not in set BPCIX(T)
because at t =4, d; =s;.

The equality part can be shown as follows. If z€BPCIXT), there exists a
reference string R such that it has z as its wss string by Proposition 3.1. If
reference string R has no flat-fault with a single T characterization, then we
have z€WSS,(T). Otherwise, z€WSS,(7) and, by Proposition 3.2, we still
have zcWSS,(T). Thus, we have shown that BPCD(T)CWSS,(T). X
z€WSS, (7). there is a reference string in R, (T) such that it has z as its wss
string. This reference string has its wss string satisfying the definition of
BPCD{T) by the ”onl{ if'" part result of Proposition 3.1. Thus, we have shown

that BPCD{T)2WSS, (7). Combining the two, we have BPCD(T)=WSS, (T).
Q.E.D.

In summary, the necessary and sufficient conditions for an integer string to
be a feasible wss string are stated in Proposition 3.1, i.e., the integer string is a
bpc string with bound parameter T and d; <s; for all £'s. By Proposition 3.2,
the wss strings extracted from real program traces can be used as inputs to the
class of flat-fault free string generation algorithms regardless of whether these
wss strings contain flat-faults or not.

3.2. Double T Working Set Size Characterizations

It may be wondered whether a flat-fault at time ¢ processed with one work-
ing set window size implies a flat-fault at the same time when processed with a
different working set window size. The following proposition answers such



guestion.

Proposition 3.4
Given two window sizes T, and T,, where T,>T,, and a reference string 7,
there is no relationship between the presence of a flat-fault at time ¢ with
window size T, and the presence of a flat-fault at time ¢ with window size T,.

Proof : This assertion can be proved by considering the string in Table 3
with 7, =3 and T, =2. The flat-faults are indicated by asterisks in Table 3.

Table 3 : An Example of Flat-faults under double T Characterization
time 1 2 3 4 5 6
page a b c d d e

S{T,;=3) 1 2 3 3 2 2

flat-fault . . ) * . *

S{Ts=R) 1 2 2 2 1 2

flat-fault . . * * . X

In this example, we can identify all possible combinations. At time 3, the
T,-based characterization has a flat-fault, but not the 7;-based characteri-
zation. At time 4, both characterizations have flat-faults. At time 5, neither
characterization has a flat-fault. At time 6, the T,-based characterization
has a flat-fault, but not the 7,-based characterization.

Q.E.D.

Similar to the case of single T working set size characterization, with dou-
ble T characterizations we partition the set of reference strings into two disjoint
sets R, (T;.Ts) and Ry, (71, Ts). Run(71.7,) is the set of strings that contain no
flat-fault with either ("r; or T,) working set size characterization. Ry, (T;,Ts) is
the complementary set of R,n (7.7 ). Two sets of wss strings are obtained from
sets Rl.n T‘,Ts) and Rff(‘r;,’f‘,) : 'SBL(TI'TS) and 'SS!, (Tl,T,). 'Sm(‘r ,Ts) is
the set of wss string pairs corresponding to the members of set Rp, T, Ts)
WSS, (T;.7s) is similarly defined. It is clear that there is usually more than one
reference string having a given pair of wss strings with two given window sizes.

Furthermore, let us define BPCTT(T,.T,) as the set of all bpc string pairs
(S(1,),S(Tg)) such that S(7;)=5(7,)) and d;<s; for both strings and all ¢’s.
BPCTTC(T,,T,) is defined as the set of string pairs in BPCTT(T;,T,s) such that
S{T,) is consistent with S(7,).

Before we present and prove two propositions, a theorem by Ferrari
[FerrB82a] is stated here without proof as Proposition 3.5.

Proposition 3.5
There exists a reference string R€R,,(T;.Ts) that has the wss characteri-
zations represented by S(T;) and S(T,) if and only if S{T;) is consistent
with S{T;).

Unlike what happens with a single T characterization (see Proposition 3.2),
WSS, (T;,Ts) is not a proper subset of WSS, (T::Ts ). as we shall see in Proposi-
tion é.B. Therefore, that S(T,) is consistent with S(7,) is only sufficient for the
general class of string generation algorithms, ie., the class of algorithms that
may generate reference strings with flat-faults. Thus, wss string pairs
extracted from real program traces need to be checked against this sufficient
condition before they can be used as inputs to the class of flat-fault free string
generation algorithms.



Proposition 3.6
The intersection of WSS, (T;,Ts) and WSS,, (7, T,) is not empty, and neither
set contains the other.

Proof : The proof can be obtained by considering three examples of string
pairs. The first string pair (in Table 4) shows that the intersection is non-
empty, because reference strings R,€R.,(T,.T,) and Ro€R,,(7;.T,) both
have the same wss string pairs. Notice that a flat-fault, indicated by an
asterisk, occurs at time 6 for reference string K, with 7=4.

Table 4 : (S(7,).S(Ts)) € WSS, (7. 75 )"WSSy £ (T3, T5)

time 1 2 3 4 5 8 7
R, a b c c c b a
Ry a b C c c a b

S(1;=4) 1 2 3 3 2 2° 3
S(T,=3) 1 2 3 2 1 2 3

The second string pair (in Table 5) shows that there is no reference string in
R,y (T;.Ts) which can possess that wss string pair. The reference string is
the same as that used in Table 1, and consists of repetitions of the sub-
strings used in Table 1. The possibility of flat-faults at times 4 and 9 for win-
dow size T, is ruled out as we have argued in the proof of Proposition 3.2.
Possible flat-faults for window size T, at times 8 and 11 (not shown) need to
be examined, but cannot occur since the references at times 3, 4, 5, and 6
have to be the same, as implied by the T; characterization.

Table 5 : (S(T;),S(Ts)) WSSy, (7. T5), (S(1,).5(7)) £ WSSy, (7;.75)
time 1 2 3 4 5 B8 7 8 9 10
ReR(7,,7,) | a b c c¢c ¢ ¢ b a a a
S(T,=4) 1 2 3 3 2 1 2 3 3 2
S(7,=3) 1 2 3 =2 1 1 2 3 2 1

The third string pair (in Table 8) shows that there is no reference string in
R, (T;.Ts) which can possess that wss string pair. The non-existence of a
flat-fault free reference string can be demonstrated by an exhaustive
search of all possible strings that can be generated. The example shown
assumes that the page set contains four pages a, b, ¢, and d. Flat-faults
are indicated by asterisks.

Table 6 : (S(1;),S(T,))EWSS, (1,.T¢). (S(7,).S(T4)) £ WSS, (T;,T)
time 1 2 3 4 5 B8 7 8
RER{{(T]_.T,) a b a C C a d b
S{T;=8) 1 2 2 3 3 3 4 4
S (13=3) i1 2 2 3 2 2 3 g

The exhaustive search of all possible string generations is presented in
Table 7, where X's and their superscripts, ! for T; and s for T,, indicate
conflicts with the specification(s) of the corresponding wss string(s). The
last X, for instance, is due to the simultaneous need of pages a and b in
order to meet both wss string specifications.



Table 7 : All Possible String Generations

time | 1 2 3 4 5 6. 7 8

1 a b b X - - - -

1 a b a c a a X -
111 a b a ¢ ¢ a d Xx
v a b a ¢c a c d Xx3t

Q.E.D.
Proposition 3.7

The relationships among BPCTT(T;,Ts), BPCTTC(T;.Ts). WSS;,(7;,Ts), and
WSS, (T1.Ts) are

BPCTT(T;, T, ) OWSS,,, (T;.Ts ) UWSS, 4 (T}, T4 ) OWSS,, (T4, T }=BPCTTC(T;. T )

where the inclusion relationships are proper.

Proof : The first inclusion relationship can be easily verified. Every element
in the set WSS,,(T.T,)UWSS;,(7;,Ts) corresponds to some reference
string. The characterization with either 75 or T, must by Proposition 3.1 be
individually a bpc string with d; < s, for all ¢'s. Furthermore, S{7;)25(T,)
is implied by the inclusion property of the working set and by 7;>T,.
Therefore, the first inclusion relationship holds. The properness of the
inclusion relationship can be shown by the example in Table 8. The string
pair in the table can be verified easily to be in the set BPCTTC(T;.Ts). The
X in Table 8 indicates the abnormal termination of the string generation
process (i.e., no reference string can be generated with the given wss

string pair).

Table 8 : An Example of BPCTTC(T;.T,) String Pair
time 1 2 3 4 5 8
S(ri=4) | 1 1 1 2 2 3
S(T.=3) | 1 1 1 2 2 1
K a a a b b X

The second proper inclusion relationship is a direct consequence of Proposi-
tion 3.8 and the definition of set union. The equality part is nothing but the
restatement of Proposition 3.5 within our framework.

Q.E.D.

It is clear now that there must exist a set of properties less restrictive than
those used in Proposition 3.5 which the string pairs in the set BPCTT(T;.Ts) have
to satisfy in order to be members of the union of the sets WSS;, (1,,7T,) and
WSS, (7;.Ts). It can be shown that these necessary and sufficient conditions do
exist with the explicit introduction of flat-fault characterizations [Ferr82a], i.e.,
of two boolean-valued flat-fault strings indicating whether there is a flat-fault at
each time with respect to the given pair of working set window sizes. Although it
is difficult to implicitly incorporate the flat-fault characterizations into a set of
sufficient and necessary conditions which wss string pairs in set BPCTT(7,.T,)
must satisfy in order to be members of the union of the sets WSS;,(7;.7s) and
WSS, (T;.Ts). the existence of these conditions is assured by the hierarchical
structure among the related sets of string pairs as shown in Proposition 3.7.



4. Probability and Limiting Behavior of Flatfaults

Let us assume that page set P={1,2, - - - ,n} is referenced in string R where
R=r,7ry7rg -1, - . Four properties are presented here which are related
to the probability of a flat-fault and the limiting behavior of flat-faults. Each

reference in the string to the set S is statistically independent of the others
unless stated otherwise.

Proposition 4.1
If each page in the set P is referenced with equal probability, then the pro-
bability PQ'“T of a flat-fault at time t, where t>T, is given by
-1

(1-D)(1-571.

Proof : The probability that a flat-fault occurs at time t, where t>7T, is the
same as the probability that ==z, 7, _=y.,z#y.and z,y£ w(t-1,7-1).
This latter event has the following probability :

_ 2xC(n.2x{(n-2)T1 _n(n-1)(n-2)T"!
- nT+H - nT+l ’

that can be easily reduced to P, = (1—%1-)(1—;21—-)7‘1 .
QE.D.

The result of Proposition 4.1 can be generalized to the non-uniform case
without too much difficulty, as shown in Proposition 4.2.

Proposition 4.2
If page i in the set P is referenced with probability p;, then the probability
Piew oOf a flat-fault at time t, where ¢>T, is given by

i 2pip; (1-p—p5)™ .

t=1 j=i+l

Proof : The probability that a flat-fault occurs at time t, where £>7T, is the
same as the probability that ==z, 7, =y, z#y, andz,y£ w(t-1,7-1).
This latter event has the following probability :

Pogw = 2 2 pipji-l;(l—Pi_Pj) = 2 2 pp; (1-p;—p;)™!

(=1 j=1jm P i=1j=15m

=% 3 2mp(1-p-py)™!

i=1 =i+l

Q.E.D.
It is not difficult to verify that, when p;= 717 for all i, Psew =Funiys -

The impact of the uniform assumption on the probability of a flat-fault is an
interesting subject to investigate; the following proposition gives an asymptotic
result for this case.

Proposition 4.3
As T approaches infinity, Puniy < Pekow-

m+1
Proof : For simplicity, let m=T-1 and del{n,m)= 'nn_éT(P'm"f ~Prrew)- We
shall show that as m -, del(n,m)<0 is true. With some algebra, we can
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obtain the following :

del('n.,m)=n—1—§: i 2p;p;n(

i=1j=i+1

m

n"’"—(P-:‘*’Pj))
n—2

Without loss of generality, assume that, for some k, pb<7];—. Such k& must
exist unless we have the uninteresting case for which all p's are equal.

This case yields Pgegy =Py for all 7. All p,’s cannot be greater than 111—

otherwise their sum would be greater than 1. We shall prove the proposition
by considering the two following cases :

(1). There is an L #k for which p,<=. It is easy to see that, since p; +p;<;2L—

or ‘n.(Pk+p;)<2, the (E_—T_tn(z_—’!;_"-_e_l_)_)

This shows that del{n,m )<0 as m .
(2). All p;’s (with i#k) are greater than or equal to -,11— There must be at

term will approach infinity as m -e.

least one p; (I #k) that is strictly greater than 1 if we have more than one

such p;, each one of them must satisf ,—-1—< L ., otherwise the sum
ey YP— o< P

of all the p;'s would be greater than 1. This is equivalent to n(p;+p,)<2,
and we can repeat the above argument. A slightly more complicated case is

that when p,,(—l-. p,>717. and all other p;’s are equal to p— For simplicity,

let p, = -
can be expanded as follows :

and p; = 1:6 where 126>0. Thus, the expression of del(n,m)

1 £ 146 ;n—2=0 ™
= 1 —{{r =2V (m —2}) L -6 ¢ )
del(n.m) = n—1~((n-2f~(n-2)) 1 zg 10 (n=2-d,
21-6 , n—2+6 ™ 1_629
2:2‘1 n > n-2 "’ —2n( n?
- 4n -8B _ _ 1+6J _ 6 \m_ _ 1_61 0 \m_ 1“62\
T oon 2n-2) n 1T n-g 3n-2) n T A n ’

In this expansion, it is easy to see that the term (1+ n;ifm will approach

inflnity as m -»=. Therefore, del(n,m)<0 is true also in this case.
Q.E.D.

The last proposition establishes an upper bound for the limiting flat-fault
rate of a reference string in which we do mot assume that references are
independent.

Proposition 4.4
The limiting flat-fault rate has an upper bound ':1
T

for T2en -1 as{ -,

Proof : Every time ¢ a flat-fault occurs, the page referenced at time £ -7
drops out of the current working set. This particular page cannot be refer-
enced in the interval [t —T+1,t] of length T. Therefore, every page in the
set S can contribute to at most one flat-fault every 7+1 references. If we
let | R | be the length of the reference string and UB an upper bound of the
limiting flat-fault rate, then we have the following inequality :
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n |L2L] nlUﬁL

T+1 < UB < T+1
Rl |R|
As we let ¢t »= or equivalently |R|-=, UB = nl .
T+

Q.E.D.

When T=n-1, the upper bound is tight, as shown by the following string R,
where, except for the first few references, every reference generates a flat-fault

123 --n123 - -n123 - - nid3- -

This string R touches n pages which are referenced cyclically from 1 to n. With
window size T=n -1, there is a flat-fault for every t=n.

5. Conclusions

The working set size strings obtained with one and two working set window
sizes have been studied, with particular attention to the problem of flat-faults.
For a single T characterization, a simple set of necessary and sufficient condi-
tions has been given for an integer string to generate a reference string
[FerrBia]. Working set size strings derived from a real trace can be used to gen-
erate flat-fault free reference strings even though the original real trace may
contain flat-faults.

For a double T characterization, a set of necessary and sufficient conditions
has been derived for a pair of integer strings to correspond to a flat-fault free
reference string [FerrB82a]. This set of conditions is only sufficient for the gen-
eration of a general class of reference strings with or without flat-faults. It is by
no means necessary, as shown in Proposition 3.8. Therefore, a pair of working
set size strings derived from a real trace needs to be checked against this set of
conditions if it is to be used to generate a flat-fault free reference string. In
other words, this set of conditions can be used to check whether there is any
flat-fault in a given pair of wss strings extracted from a real trace. Although a
set of necessary and sufficient conditions has been shown to exist for the gen-
eral class of string generation algorithms, such conditions have not been formu-
lated yet. Note that, when wss characterizations are accompanied by flat-fault
characterizations, necessary and sufficient conditions have already been found
[FerrB82a]. 1t is for the case in which flat-fault characterizations are not given
that only sufficient conditions are known.

The probability of a flat-fault under the independent reference assumption
has been obtained. In particular, we have shown that, when the working set win-
dow size is relatively large in comparison with the cardinality of the page set,
this probability is bounded from below by the probability derived with the uni-
form page reference assumption. The probability for the latter case is easy to
calculate and very small in practice. Finally, an upper bound for the limiting
flat-fault rate has been derived.
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