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ABSTRACT

The influence of VLI technology on the construction of distri-
buted computing systems composed of hundreds of computers is
investigated. After a review of Project X-tree, the concept of a
modular communications domain to carry the inter-processor
message traffic is introduced and analyzed. A separation of the
switching circuitry from the user processors permits communica-
tion and computation to take place concurrently. It also provides
the flexibility to match the network topology to a particular appli-
cation and facilitates the construction of heterogeneous networks.

A design is presented for a set of VLSI building blocks that
permit the construction of high-bandwidth networks of arbitrary
topology, providing the modularity needed for incremental expan-
sibility. The proposed VLSl switching components support
message-based, virtual-circuit communications over dedicated,
time-multiplexed links. The simplest representative is the Y-
component, a message switch with only three ports. Its usefulness
for the construction of a variety of networks is shown with the
analysis of simplified models. Some simulation results are
presented that corroborate these findings.
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1. INTRODUCTION

The ever-increasing component reliability resulting from the use of very
large scale integration (VLSI) will soon make systems with 108 transistors possi-
ble. While the research on RISCPatt82, 8¢quB2 explores the influence of VLSI on the
architecture of a single processor, this paper discusses ways in which VLSI
affects the construction of distributed computer systems.

The processing power of a general purpose computing system can be
increased in two ways. One approach, which has the advantage that old software
can be re-used, is to increase the speed of the processor by technological means
while maintaining its architecture. The huge investment represented by exist-
ing software fuels the eflort to make GaAs technology©n88t or Josephson junc-
tion processorsGheeB2 commercially viable.

A second approach to super-computers relies on a more general exploita-
tion of parallelism, for instance by using a large pool of relatively inexpensive
computers that operate in parallel on various subtasks. It is in this latter
approach that VLSI can have a truly dramatic impact. We will discuss the con-
straints imposed by this technology and make design recommendations for the
building blocks needed to construct such systems.

A key design parameter of multi-computer systems is processor granular-
ity. At one end of the spectrum, some people propose to place an entire mul-
tiprocessor system on a single chip. Examples are the special purpose systolic
array_processorsKmGao which are particularly suitable for high-throughput signal
processing applications, or the ‘tree-machine’ developed at CaltechBrow80 [n
both cases the unit to be replicated is small, and thus the granularity of the sys-
tem is rather fine. The other extreme, using very large granules, is exemplified
by such supercomputers as the S1 which employs a few very fast, pipelined pro-
cessors interconnected with a number of memory modules through a crossbar
switchWidd80 Commerecially available multiprocessor systems built by 1BM Ensl74a
or UNIVAC Ensl74b aiso belong to this category.

In our earlier work on X-tree Desp78, S€qu78 we have advocated an intermedi-
ate granule size equal to that of a single VLSI chip. For a general purpose sys-
tem, some minimum complexity is needed in each node to enable them to
cooperate productively. A ‘‘nano-processor,’ of which several dozens could fit on
a single chip, is too small a building block for a general purpose computer. On
the other hand, a very large granule size forces closely coupled components
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such as a processor and its associated memory to be implemented on separate
chips, thus increasing the performance penalties resulting from off-chip com-
munications. An intermediate granule size equivalent to a RISC-like processor
and its memory forms an entity with enough processing power for general pur-
pose computing, but is still small enough to be implemented on a single chip.

Advances in VLSI technology are making general purpose computing sys-
tems composed of thousands of processors economically feasible. The proces-
sors, however, comprise only a portion of the system. The communications sys-
tem that interconnects the processors is of equal importance. The performance
of many multiprocessor systems has been limited by insufficient inter-processor
input/output bandwidth. Furthermore, the communication system may dom-
inate the hardware cost. In Cm®*, for example, the k-maps responsible for set-
ting up the communications paths were considerably more expensive than the
processorsSvan?’a It is clearly desirable to also exploit VLSI technology to
reduce the cost of the switching hardware. This paper discusses issues in the
design of universal VLSI components to be used as the building blocks for
robust, high-bandwidth communications networks with enough flexibility to
serve a wide variety of multiprocessor configurations and applications.

2. REVIEW OF PROJECT X-TREE

Project X-tree explored how the rapidly increasing computing power of LSI
and VLS] processors can best be utilized for the construction of powerful general
purpose computer systemsDesp78. S¢qu78 The special constraints of VLSI chips
have a significant impact on the overall systems architecture. For the near
future, transistor count and allowable power dissipation must still be viewed as
limited resources for the implementation of single-chip computers?att8 Furth-
ermore the number of pins that provide access to such a chip and the total
bandwidth that can be provided through these pins is also severely limited. Sys-
tem partitioning thus becomes crucial. Self-contained action within each indivi-
dual chip must be emphasized.

Single-chip computers that combine processor and memory on the same
chip hLave existed for many years, however they typically lack the necessary
hardware modules for efficient inter-processor communication. Project X-tree
thus focussed on a study of the communications issues in multiprocessor sys-
tems. We started with the study of a somewhat artificial model that relied on
only a single VLSI component containing processor, memory and communication
circuitry as a building block to construct large computing systems (Fig. 1).

Many topologies for point-to-point networks were investigated for their
potential to provide high-bandwidth, low-latency communications between nodes
in systems containing thousands of processors. For large systems a single bus
or a ring network is clearly inadequate. The former becomes a bottleneck due
to the interference of the communications between separate pairs of nodes; in
the latter the average distance between pairs of nodes increases linearly with
the size of the system. Lattice or tree networks are much more attractive since
the average distance grows only as the root or the logarithm of the number of
nodes.
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Figure 1. A VLS! Building Block containing Processor, Memorty,
and Message Switching Circuitry.

Emphasis was placed on a modular, incrementally expandable approach, in
which the system could grow a few nodes at a time without the need for major
reconfiguration of the already existing part. Almost from the beginning, our
research concentrated on dedicated links rather than on a hierarchical system
of busses. A great deal of research has been done in the latter areaSwan77b
whereas the former area has been virtually neglected. Furthermore, the use of
dedicated links puts all of the switching circuitry inside a single node; system
configuration will thus have little effect on the electrical characteristics and the
timing of these very localized, integrated switches. This approach is particularly
suitable for the implementation of a multiprocessor system with single-chip VLSI
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Figure 2. Half-ring and Full-ring Binary Tree Topology.

Comparisons of various network topologiesPesPB? and results of static and
dynamic simulationSuhl78, Gold78 have led to the selection of tree-structured net-
work skeletons enhanced with horizontal links to form full-ring or half-ring
binary trees (Fig. 2). The additional horizontal links shorten the average path
length between pairs of nodes, distribute traffic more uniformly throughout the
network, and provide the redundant paths necessary for fault-tolerant commun-
ication systems.

In X-tree, communication between nodes was to take place on byte-wide,
half-duplex links. A TTL prototype of such a node was built, and the communica-
tion bandwidth of the parallel bidirectional link was investigated-2w7?® Several
important lessons were learned from project X-tree:
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(1) Too much time is wasted in the low-level handshaking cperation waiting for
a byte to be checked and acknowledged. A unidirectional link sending
larger contiguous blocks of data seems much more attractive.

(2) The restriction to a single type of building block is too artificial. The free-
dom to construct heterogeneous systems using special purpose processors
with different instruction sets is important.

(3) Packing a suitable amount of processor, memory, and communication cir-
cuitry into the same chip will be a challenge for the near future. An alter-
native approach is to split the processor from the message switching circui-
try and to define a suitable interface between the two.

(4) Considering only networks with the topology of a full-ring binary tree is too
restrictive; more freedom to choose the topology most suitable for a partic-
ular application must be provided.

With these insights, a more generalized concept of a multicomputer system
based on VLSI single-chip computers has emerged, which will be discussed in the
remainder of this paper. It is based on general purpose VLS] switching com-
ponents that permit the implementation of a large variety of network topologies.
The next two sections present the envisioned multiprocessor system in a top
down manner and derive the design constraints for the nodes of the network.

3. A MODULAR HIGH-BANDWIDTH COMMUNICATIONS DOMAIN

Key aspects and the main elements of a communications domain con-
structed from modular VLSI building blocks are introduced in this section. To
make the example of such a system more concrete, we use specific numbers for
some of the design parameters, even though no data exist to preve that the
selected values are optimal.

3.1. The Concept

We envision a collection of VLSI communications components that can be
combined into networks of high bandwidth and arbitrary topology. Any proces-
sor with the proper interface can be attached to this communication system.
Only a few types of VLSI building blocks are required, providing modularity and
incremental expansibility. The idea is to develop components that plug together
easily, and completely hide from the user the details of the informaticn transfer
between nodes. Just as suitably designed logic gates have freed the electronics
engineer from considering the analog behavior of the devices of which the gate
is constructed, these new communications modules should produce an abstrac-
tion above the bit level. They should have built-in facilities for low-level func-
tions such as handshaking, buffering, and flow control, so that the information
packet or the block of data to be transmitted is the lowest primitive the systems
builder needs to be concerned about. For the user of the final system the net-
work provides end-to-end cornmunication much like the telephone system.

Figure 3 gives a conceptual view of such a system, divided into a communi-

cations domain {C) using these VLS] communications components, and a proces-
sor domain (P) dedicated primarily to the user's computations.
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Figure 3. Separation of a Multiprocessor into a Communications Jomain (C)
and a Processor Domain (P).

3.2. Design Considerations

Required properties of the communications domain include unrestricted
network topology, modularity, incremental expansibility, decentralized control,
and the ability to recover from certain classes of failures. Some applications
envisioned for multiprocessors (e.g. circuit simulation and signal processing)
require more bandwidth than traditional local network hardware (e.g. rings or
ethernet-like bus structures) can providefui8 Because of such high-bandwidth
requirements, our research has focused on local networks using a large number
of dedicated links. The proposed communications domain is designed to support
high-bandwidth, low-latency communications among a large number, possibly
thousands, of processors.

The types of processors used in the processor domain may vary depending
on the application, but the interface to the communications system is standard-
ized. This separation of the communications domain and the computation
domain relieves the processors of much of the overhead associated with the for-
warding of messages destined for different nodes. It rmakes possible the
development of general purpose communications hardware that is suitable for a
wide range of a applications and also provides the flexibility to construct hetero-
geneous systems containing many different types of specialized processors.

One may note the similarity between the components described here and
an ARPANET IMPHear70 Indeed, many problems associated with loosely coupled
computer networks (e.g. routing, buffering, flow control) also appear in this con-
text. However, our design is not merely a scaled down version of the ARPANET.
The key differences arise from the aim at higher bandwidth and lower latency,
intrinsically lower error and failure rates within the communications hardware,
and the envisioned implementation in VLSL
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3.3. Message-Based Communication

The communications domain studied in this paper is a message based net-
work using a virtual circuit transport mechanism. Each processor has a fixed
number of input and output circuits for receiving and sending data respectively.
Sending a message is a three step process. First, a virtual circuit (i.e. a path of
time-multiplexed links) to the destination processor is established by sending a
message header with routing information through the network. Once a circuit is
set up, an arbitrary amount of data, which may consist of several logical mes-
sages, can be sent along this circuit. Data can follow the message header
immediately without an end-to-end handshake and need not be transmitted con-
tinuously for the circuit to remain intact. This approach reduces the routing
overhead on all packets except the message header. When the circuit is no
longer needed, it is torn down by sending a tagged message trailer.

The communications system provides only a data transport facility. Except
for the header and trailer information, all data passes uninterpreted through
intermediate nodes. Error checking and retransmission are left to an end-to-
end protocol so that forwarding of data packets can begin immediately if the
proper outgoing link is idle (virtual cut-throughKerm? ) and need not be delayed
until the entire packet has arrived in the buffer. VLSI components and local
area networks promise very low error ratesShoc80 making this approach possible.

3.4. Virtual Circuits

The communications domain can be viewed as a simple, connected graph.
Nodes and edges represent communications components and links, respectively.
A circuit from one processor to another corresponds to a path in this graph.
Two distinct paths (say from node A to B and from C to D in figure 4) may use a
common edge (from X to Y). Thus, the link associated with that edge must be
multiplexed between the two paths, and provisions must be made to ensure that
data from A is sent to B, and not to D.

Figure 4. Two Paths Multiplexed through the Same Link.

Each physical link is divided into some fixed number of unidirectional chan-
nels. Bach channel can carry data for one circuit (i.e. one path). Thus, a circuit
from one node to another consists of a sequence of channels on the links in the
path between the two nodes. The circuit from A to B in figure 4, for example,
might use channel #3 to get to X, then #5 to get to Y, and finally #0 to get to B.
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When node X sends data to node Y, the latter must determine which circuit
this data belongs to. Two commonly used techniques for providing this informa-
tion are, among others:

(1) Divide the link into a fixed number of time slots, and statically assign each
time slot to a channel (e.g. the first time slot might be assigned to channel
#0, the second to channel #1, etc.). The time slot on which the data arrives
identifies the channel that sent it.

(2) Precede the data with a tag that identifies the channel it is being sent on.
In this scheme, the available bandwidth on the link is allocated to the vari-
ous channels by some demand-driven scheduling algorithm.

In the first scheme, the link is effectively divided into a number of lower
bandwidth links, with the sumn of these bandwidths equal to that of the physical
link. If a channel does not send any data, its allocated bandwidth is wasted. In
addition, latency is increased, since each channel has to wait for its turn to send
a unit of data. In the second scheme, the entire bandwidth of the link can be
allocated to channels upon demand, i.e. when they have data to send. For these
reasons, demand-driven time-multiplexing appears superior.

The time-sharing of the physical links also increases hardware utilization.
Since not all channels will always have data to send, one would like to have
enough channels to keep the link utilized as effectively as possible. On the other
hand, the delay seen by each channel increases as more channels compete for
the use of the link. The number of channels on each link is thus chosen as a
compromise between a set large enough to permit frequently used virtual cir-
cuits to exist almost indefinitely but not so large that the latency due to the
time-multiplexing becomes excessive. Initial studies indicate that 18 channels
might be a reasonable compromise between these conflicting goals. More stu-
dies aimed at specific applications are in progress to verify this result.

In order to “link together’’ the subsequent channels corresponding to a cir-
cuit, each node maintains a set of translation tables. There is one translation
table for each input port of a node. Each entry of the translation table contains

“two flelds: an output port, and the number of a channel on that port. When data
arrives on an input channel, say channel #3, entry 3 of the translation table for
that port is read to yield the output port and the number of the channel the
data is to be forwarded on.

8.5. Routing Hardware

The translation tables logically link incoming and outgoing channels, and
thus establish the various virtual circuits through the node. Setting up these
circuits involves allocating channels and updating translation tables along each
path from source to destination. This task is performed by a routing controller
residing in each communications node.

Initially, all translation tables specify that data is to be sent to the local
routing controller. When a message header setting up a new circuit arrives at a
node, the routing controller analyzes the destination address in the header,
determines the proper output port with the use of some routing algorithm, allo-
cates a free output channel, and updates the translation table at the input port.

7
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Measurements on a TTL prototype of such a routing controllerfuji80 show that
this entire operation can be done in 4-5usec if a free channel is available on the
selected link. Subsequent data is then forwarded without intervention by the
routing controller. Similarly, when the circuit is torn down, the channel is
released, and the corresponding translation table entry is reset to point to the
routing controller.

4. KEY FUNCTIONS OF THE COMMUNICATIONS COMPONENTS

In this section three key functions of the nodes in such a communications
network will be discussed: routing, buffering, and flow control

4.1. Routing

In a multiprocessor network, some routing algorithm is necessary to build a
path between communicating nodes. A great deal of research has been done in
the area of routing in loosely coupled computer networks, and much of this work
is applicable here. In the context of the proposed communications domain we
will only consider totally distributed routing that does not rely on any central-
ized authority. For this discussion it is also appropriate to distinguish between
regular networks with a predefined topology such as arrays or binary trees, and
irregular networks of arbitrary connectivity.

In regular networks, routing can be performed in each node by a state
machine, which performs a fixed algorithm based on the difference between the
local address and the destination address. In square lattices, for instance, the
routing controller could forward the message header in a direction that would
reduce the difference of the x- and y- coordinates of the current and the desti-
nation nodes. Routing algorithms for binary half-ring or full-ring trees have
been discussed elsewhereSéqu78 Another interesting class of fault-tolerant net-
works with distributed routing algorithms has been presented recentlyPradé2

For a general purpose communications component, the routing algorithm
must not be frozen in hardware. A routing controller with a writable program
memory is more appropriate and guarantees that the same component can
serve many different network topologies. A routing algorithm suitable for the
particular network structure could be broadcast at system initialization.

For irregﬁlar networks, routing may be based on suitable look-up tables. In
a decentralized system each node i has entries of the form:

NN = R(DN),

implying that messages destined for node DN are forwarded by node i to neigh-
bor node NN. This look-up table, commonly called a rTouting table, can be
defined statically or it can be maintained dynamically using information
exchanged between neighboring nodes. The latter approach also allows the net-
work to automatically reconfigure itself should the topology change due to node
failure or network expansion. Many interesting techniques have been developed
for initializing, maintaining, and reducing the size of the routing tablesGerisl
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4.2. Buffering

Each message passed into the communications domain must be subdivided
by the sender into some number of fixed-length packets. These packets form
the unit of data transmitted across the links of the communications domain.
Due to conflicts that arise when several packets simultaneously require the use
of the same link, buffering is required in each node.

A scheme is necessary to allocate a node's buffers among the virtual cir-
cuits using the node. A straight-forward solution is to give each channel on each
link a separate buffer. This is inefficient, however, since much of the buffer
space will be unused most of the time. By allowing several channels to share the
same buffers, the fluctuations in the need for buffer space can be averaged over
a larger number of communications paths, thus achieving better utilization of
the precious resources on the chip. A mapping is then required linking each
channel to the buffers holding its packets so that the latter can be found when it
is time to forward them. Furthermore, when a new packet arrives, an empty
buffer must be found. From this perspective, buffer management is similar to
the management of a cache memory: a program (here: a channel) needs to fit
blocks from main memory (packets) into cache pages (buffers).

As in cache memory design, there are three well known schemes for per-
forming this mapping: direct mapping, set associative mapping, and fully associ-
ative mapping. Inturn, these three schemes offer an increasing degree of buffer
sharing, and thus improved memory utilization, but at the cost of increased
complexity of the control circuitry. They are distinguished by restrictions on
where a channel's packets can be placed. In the direct mapping scheme provid-
ing minimal sharing, each channel has a set of buffers dedicated to it, e.g. its
own FIFO queue. The set-associative scheme (moderate sharing) allows each
channel to use a larger set of buffers, but it is no longer given sole access to
them. It might be realized by letting al! channels of a single port share a pool of
buffers dedicated to this port. In the fully associative scheme (maximal shar-
ing), each node has a centralized pool of buffers which all channels share. Possi-
ble implementations of a set-associative and fully associative buffer manage-
ment schemes will be discussed in a later section. An implementation of ports
using the direct mapping scheme has been described previously.L"mJ""'9

4.3. Flow Control

Flow control refers to the mechanism which regulates the transmission of
data packets along the virtual circuits, and ensures that buffers do not overflow
in heavily utilized nodes. In particular, one must anticipate the case in which a
processor is sent more messages than it can immediately receive.

Flow control can be achieved by controlling buffer allocation within the
communications network. If a node is inundated with data, packets will “*back
up’ along the virtual circuits leading up to it, much like the way cars back up on
a congested freeway. By controlling the maximum number of buffers each chan-
nel can use, ‘‘buffer hogging” (i.e. one channel using more than it’s share of
buffers) is avoided. Buffer hogging could potentially impede other traffic using
the node, and lead to deadlock situations. The direct mapping scheme, and to a
lesser extent the set-associative scheme, automatically provide protection

9
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against buffer hogging, since they inherently restrict buffer sharing. All three
schemes however, need some mechanism to ensure that data is not lost if no
free buffers are available.

The simplest flow control scheme uses a send /acknowledge protocol to
transmit data over the link. If the receiver cannot allocate a buffer to the
incoming packet, it is discarded and a negative acknowledge is returned. The
sending node must later retransmit the packet over the link. Such a negative
acknowledgement entails wasted link bandwidth which grows in proportion to
the packet size. Furthermore, one would like to be able to send a second packet
on a channel without waiting for an acknowledgment of the first. Allowing multi-
ple unacknowledged packets to be pending for the same link, however, adds a
considerable amount of complexity to the portPouz?8

An alternative approach is to implement the buffer allocation policy for a
node in its neighboring nodes, i.e. by controlling the flow of information from the
sender end of each link. For example, each output port could maintain a table
remembering how many buffers in the neighboring node are allocated to each
channel of the link in between. With this information, the sender can decide
which channel to serve next, and packets can be forwarded without the possibil-
ity of overflowing the buffer space in the receiver. Maintaining this remote
status information requires some overhead. The fact that a buffer has been
freed up must be reported back to the transmitter. Still, for heavy network
traffic, this overhead will be less than the bandwidth lost due to the negative
acknowledgments in the ACK/NACK scheme.

5. IMPLEMENTATION OF COMMUNICATIONS COMPONENTS

This section discusses some key issues in the single-chip implementation of
a node of the comrnunications domain. After a discussion concerning the links
and the number of ports, we present two possible designs for a VLSI communica-
tions component: the first one with minimal hardware complexity, and a second
one demonstrating techniques for improving performance.

5.1. Constraints Resulting from Single-Chip Implementation

A generally usable VLSI communications component is a very attractive
building block since it can expect a large market. A single-chip implementation
also minimizes the propagation delay penalties associated with signal transmis-
sion through the chip periphery, but imposes certain constraints that have a
marked impact on the design of the overall communications system.

First of all, a VLSI node must be constructed within the resource limitations
of integrated circuits chips. For the near term this will mean a limited number
of pins (say 80) and transistors (say 100,000). The former implies restrictions
on the number of ports for each component, while the latter restricts the
amount of internal buffer space and the complexity of the routing and error
recovery functions that can be implemented. Furthermore, power dissipation of
the packages typically used is limited to a few watts and implies that the total
1/0 bandwidth of each chip is strictly bounded. This maximum bandwidth of
data transfer through the chip periphery must be shared among atl communica-
tions ports and among all wires within a link.

10
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5.2. Implementation Trade-offs for the Links

Because the major bandwidth limitation results from power considerations,
a parallel link will not necessarily provide higher bandwidth than a serial link.
The chip area and power budget allocated to the drivers of the individual strands
of a parallel link can just as well be combined into a single more powerful driver
for a serial link. A serial link has the advantage that the data rate will be limited
only by the dispersion on the serial line rather than by data skew and synchroni-
zation problems between parallel bits.

The bi-directional link required between neighboring nodes can be imple-
mented as two individual unidirectional lines, in place of the link with alternat-
ing direction of transmission that was used on the TTL prototype of the X-tree
nodelee?® The use of unidirectional lines avoids the long delays resulting from
the full turn-around and acknowledgement of each packet on the X-tree link.
Data can now be sent in a pipelined fashion limited only by the available
transmission bandwidth of each line.

However, the forward and return path on a link are now much less tightly
coupled, and typical ACK/NACK schemes for flow control are unsuitable. Much of
the advantage of the unidirectional link is lost if large packets are forwarded
without the guarantee that there is enough buffer space at the other end. Thus
forward-looking flow control, as discussed at the end of section 4.3, should be
used.

5.3. Optimum Number of Ports

As mentioned above, the maximumn transmission rate from each node is
limited to some fixed value, say B units of data per second, given by the allow-
able power dissipation in each node. It will be assumed that this total
bandwidth, B, is equally divided among the p ports of the node, 2. each port
can emit only B/p data units per second. A unit of data is defined as the
amount of data which a node must buffer (e.g. a byte in X-nodeFuii®0 ) before it
can begin forwarding that data to the next node. Ignoring for the moment queu-
ing delays and the “speed-of-light’’ latency associated with transmitting the first
bit of data across the link, the latency associated with forwarding one data unit
over a link is inversely proportional to the bandwidth of the link, B/ p, and thus
directly proportional to p. Data traveling A hops through an idie neiwork will
then arrive approximately H—;e-seconds after it is sent. In the construction of

a communications domain there is thus a trade-off between using nodes with
many low-bandwidth links and using nodes with fewer bul higher-bandwidth
ports. Networks constructed with the latter generally require more ““hops™ to
reach a particular destination node (Fig. 5).

An analysis of a simplified model of various network tcpclogies shows taat in
most cases, reducing the hop count by increasing the number of ports does not
adequately offset the lost bandwidth per portS¢qu8l Specifically, the networks in
figure 5 can be analyzed fairly easily for two special cases: 1) average latency of
a message header between any pair of nodes and 2) average bandwidth available
to an individual virtual circuit through the time-multiplexed links of a heavily
utilized network.

11
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Figure 5. Trade-offs in Network Construction using Nodes with
Many Slow Links (left) and with Fewer Faster Links (Tight).

Analysis of the first case showsSéqu83 that in networks with less than a few
hundred nodes, components with only three ports minimize average latency. In
larger networks of up to several tens of thousands of nodes, a building block with
four or five ports will give the best performance. This corroborates earlier
results reported by Despain?esp80 With respect to the average bandwidth
between any pair of nodes, the use of components with three or four ports gives
significantly better performance than a two-port component; however the per-
formance continues to improve slowly with the number of ports until one has
realized a fully interconnected networkS€qué3

These results were obtained under the assumption that each node commun-
icates an equa! amount of information with every other node. In practice, one
would try to map a problem onto a multiprocessor in such a way as to maximize
locality of communications. Thus trafiic between neighboring niodes {low hop
count) should be weighted more heavily. If this is taken into account, the
desirability of nodes with few, high-bandwidth links is increased. This result is
corroborated by the simulation studies presented in chapter 8. In additicn, we
will see in the next two sections that the hardware complexity of a node
increases more than linearly with the number of ports. This makes a strong
case for VLSI communications components with relatively few poris, say from 3
to 6.

5.4. ASimple Switch: the Y-Component

The simplest useful communications component, which we call the Y-
component’’, has only three ports, and thus requires only a limited amount of
buffer space and control logic. Due to the small number of ports, it is normally
not possible to attach a computaticn processor to each component, since the
resulting topology would then be constrained to a ring. If a ““node’’ with a pro-
cessor and more than two neighbors is desired, it must be constructed from
several Y-components. In general, a “‘node” with p ports (one of which leads to
a computation processor) can be constructed from p-2 Y-components (Fig. 8).
More hops are typically required to transmit a message through such a cluster
node of the network, but this is offset by the ability to use higher bandwidth
links, as discussed above. Actually this is a way to circumvent the chip 1/0
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bandwidth limitation, since it permits one to increase the overall power con-
sumption tolerable in a “‘node’’ of the network.

P

3
/N

Figure 6. Simple Node and Cluster Node. Composing a Node with 9 Links
from a Clusier of 7 Y-components.

The effectiveness of such a cluster node built from Y-components can again
be evaluated for two simple situations: 1) average latency of a message header
through a lightly utilized node and 2) average bandwidth available to an indivi-
dual virtual circuit through the node in a heavily utilized network. In both cases
we assume that a message is equally likely to arrive on any one of the p ports,
and is equally likely to exit on any of the other p-1 ports. Average latency and
throughput bandwidth through a switching node are listed in table 1 for the two
basic approaches introduced in figure 6.

|

Tabie 1.
Average Latency and Bandwidth through a Switching Node
Latency Bandwidin
# of branches # of levels . .
to neighbors in cluster Simple Quster Simple Cluster
2 1 3 3 1/3 1/3
4 2 i ) 7 1715 1711
8 3 9 11.6 1/63 1/38
16 4 17 16.6 17255 1/130
32 5 33 22 171023 1/453
64 6 65 27.6 174095 1/1593
128 7 129 33.3 | 1/16363  1/5671 |

When the number of branches emerging from a node has to be large, the
cluster approach is clearly advantageous. The latency increases only propor-
tional to the number of levels in the cluster, i.e. logarithmically with the number
of branches, whereas in the simple node the latency increases proportional to
the number of ports. In terms of average throughput bandwidth, the cluster
node always shows better performance; and the ratio between the cluster and
the simple node increases slowly with the number of branches.

13
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In many network topologies the performance of the cluster node can be
improved by using a routing algorithm that ensures that most of the traffic
through the “node’” will use the paths with fewest hops. By putting a higher
weighting factor on the shorter paths through the cluster, latency is reduced.
In a tree-structured cluster node the links near the root have the highest aver-
age utilization. By avoiding these more congested links as much as possible, the
average bandwidth through the cluster is also improved.

&@%@%%«r@
A A AL A
»%«r@%f
A A A A
y{@y{@y{@?}{@
D N

Figure 7. Implementation of a Square Array with Y-components.

The limited number of ports in the Y-component is not very restrictive in
the realization of networks with a higher degree of branching at each node. Con-
sider the realization of the square lattice shown in figure 7. Each node is com-
posed of three Y-components. The processor is attached to the node in the mid-
dle, and the other two Y-components form chains running in the x- and y- coor-
dinate directions, respectively. When routing messages to their destinaticn,
transfers between the x- and y- rails should be minimized since they require two
extra hops. This can be achieved by using a routing algorithm thet first routes
the message to the proper x-coordinate and only then adjusts the y-coordinate.
With this approach, there is a minimal penalty due to multiple hops within the
“nodes” of the square lattice, and the higher bandwidth of the links of the Y-
components can be taken full advantage of.

5.5. Design of a Y-Component

A block diagram for one design of a Y-component is shown in figure B. The
component consists of a routing controller, three input ports, three output
ports, and one bufler module associated with each input port. In order to sim-
plify the discussion which follows, it will be assumed tnat there are 18 input and
18 output channels and that each buffer module comprises 16 data buffers.

A set-associative buffer management scheme is used. Of the 18 buffers
assigned to each input port, each channel is statically assigned, say, 4 buffers by
means of some algorithm for mapping channel numbers to bufler addresses, e.g.
channel i might be able to address buffers i, i1 +1, i+2, and i+3, where all sums
are taken modulo 18. Thus, four channels share the use of each buffer.

14



X-TREE & Y - COMPONENTS

Figure B. Block Diagram of Y-component.

A remote buffer management scheme like that described in section 4.3 is
used for flow control. Each Y-component's buffers are managed by its neighbor-
ing nodes. When a component sends a packet, it not only specifies the number
of the channel the packet is being sent on, but also the bufler that the receiving
component is to use. After having forwarded the packet, the receiver will report
back to the sender that the buffer is again available.

When a packet arrives at an input port, it is placed in the buffer specified by
the sender inside the buffer module associated with this link. The other two out-
put ports actively search through this buffer module. They forward the packet
onto the link they control if it carries the proper output port tag. The buffer is
then marked empty so that the ncighbor which sent the packet can be notified.
Some additional control logic ensures that packets on each channel are for-
warded in the order in which they arrived.

The design of such a Y-component was carried out to the gate level to
explore some of the issues presented above and to obtain a realistic estimate of
its complexityWongdl It is estimated that such a component would require
roughly 100,000 transistors, of which approximately 40,000 are used in the data
buffers.

5.6. Increasing the Performance of the Communications Component

A design for a communications component yielding somewhat higher
bandwidth, lower latency, and more efficient buffer utilization than the switch
described above has also been studied. It has been structured in such a manner
that the number of 1/0 ports can be increased without adding unduly to it's
complexity. The most distinguishing feature of this design is a single pool of
buffers shared by all channels of the node {Fig. 9).

Since all packets traveling through a node must use this pool of buffers, it
must have enough bandwidth to avoid becoming a bottleneck. This is achieved
by interleaving the memory 18 ways, assuming packets consist of 18 bytes. Byte
i of each packet is always stored in memory module i (M4;). Each of the p
ports can simultaneously load a packet into a buffer, provided no two use the
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Figure 9.. Block Diagram of Higher Performance Component.

same memory module at the same time. In the worst case, p packets simul-
taneously arrive at a node. Since only one port can be granted access to MM,
additional registers are required to temporarily buffer the arriving data bytes
until they can be stored in MM, On the next clock cycle, when the second byte
of each packet arrives, one of these newly arriving bytes will be loaded into M¥,,
and one of the temporarily buffered bytes can now be written into MM, Simi-
larly, three accesses to the buffer pool will occur on the third clock, and so on.
Eventually, each port will be able to access a different memory module on each
clock cycle.

If the links can transmit one data unit (e.g. 1 byte) per clock cycle, then
the communications component must be able to transport p data units from the
input ports to the memory modules in each clock cycle. A high speed, time mul-
tiplexed bus performs this function. Since this bus remains entirely within the
chip, it can run approximately an order of magnitude faster than the 1/0 links,
which require off-chip communications®¢q478 A second high speed bus carries
bytes from the memory modules to the output ports.

Since buffers are dynamically assigned to channels upon demand, a
mechanism is required to keep track of which buffers are assigned to which
channels at any given time. This is accomplished by maintaining a linked list for
each output channel which lists the buffers waiting to be forwarded by that
channel. When a packet arrives, it is placed at the end of the linked list
corresponding to the channel the packet is to be forwarded on. It is removed
from the list after it has been sent to the next node. These mechanisms are
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implemented in hardware so that packet forwarding can proceed as quickly as
possible. The linked lists ensure that packets are forwarded in the same order
in which they arrive. Also, as with the previous design (Sect. 5.5), an output port
can begin forwarding a packet before all of it has arrived, improving the latency
associated with transmitting a packet significantly. It is assumed that all com-
munications links operate at the same speed.

As with the Y-component (Fig. 8), a remote buffer management scheme is
used for flow control. Here however, each output channel maintains a count of
the number of buffers it is using, rather than keeping track of the actual buffers
used. Sending a packet increments this counter. The counter is decremented
when a control byte is received indicating that a packet earlier sent by that
channel has now been forwarded. A channel is not allowed to send a packet if
doing so would cause its counter to exceed some previously set channel limit.
This scheme avoids transmitting buffer numbers over the iink, and thus reduces
the overhead associated with packet forwarding.

In addition to the counters for each channel described above, each output
port maintains a single counter indicating the total number of buflers it is using
in the remote node. This counter is not allowed to exceed a certain port limit
that represents the number of remote buffers aliocated to that port. As long as
the count is below the port limit, a buffer exists in the receiving node to receive
the next packet. By allowing the sum of the channel limits of a port to exceed
its port limit, the efficiency of buffer utilization can be improved; an underutil-
ized channel's buffers can be allocated to more highly utilized channels. In addi-
tion, a higher level protocol can change the quota of buffers allocated to each
port to accommodate heavy traffic loads on some ports at the expense of less
heavily utilized ports.

The performance improvement expected from this component over that of
the Y-component arises from the reduced overhead associated with transmitting
a packet across a link and the avoidance of polling translation tables to locate
packets to be forwarded. This design also achieves a more efficient utilization of
the buffer space due to the fully associative buffer management scheme. It
does, however, require significantly more control circuitry than the Y-
component. Common to both designs is the routing controller which is responsi-
ble for setting up paths through a node (i. e. updating translation tables and
allocating output channels) and for implementing any protocols above the link
level. One possible design of such a routing controller is described
elsewherefuji80

6. SIMULATION STUDIES

The study of the idealized network topologies that was used in the determi-
nation of the optimal number of portsS¢qué3 and in the analysis of the usefulness
of the Y-component made some strong simplifications; in particular, it assumed
a uniform traffic distribution between all pairs of nodes. To gain a more
thorough understanding of the network utilization and the interaction of
different messages, the execution of realistic applications on such a multipro-
cessor system must be studied. For this purpose a discrete-time, event-driven
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simulation program has been written%i82 in which the traffic in the communica-
tions domain is generated by real application programs executing some parallel
algorithm.

8.1. The Simulator

The simulation program consists of three main components: the application
pragram, the simulator base, and the swiich model (Fig. 10). The application
program is formulated as a number of tasks (or processes) which execute in
parallel and communicate by exchanging messages. The simulator base time-
multiplexes the execution of the individual tasks on the host computer, in this
case a VAX-11/780. It ensures that interactions among tasks (e.g. message
transmissions) are simulated in the proper time sequence by keeping track of
time for each task by virtue of a clock which advances as the task executes. The
software modeling the interconnection network is contained in a separate
module, the switch model, permitting convenient comparison of different switch-
ing components. Each switch model provides a fixed virtual circuit interface for
the tasks and simulates message passing between processors.

SWITCH MODEL

t
t
t
1
'
'
1
1
)
1

IS S —

| ask | | Task TASK
vl 2 | °°° | n
BASE
SIMULATOR | APPLICATION PROGRAM

Figure 10. Block Diagroam of Simulation Program.

A number of assumptions are made in the simulation experiments reported
in this paper. First, the time overhead for invoking intertask communications,
ie. starting the transmission of a message, only takes the time of a single sub-
routine call. Although unrealistic (at least in current technology), this allows
separation of the penalty due to operating system overhead from that inherent
in the communications switch. This paper focuses on the latter. Studies analyz-

ing the effect of operating system overhead are forthcomingfuji83
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The results presented here also assume that each task executes on a
separate processor, each with about the computing power of a VAX-11/780. The
switch models assume that messages are divided into fixed-length packets con-
sisting of a one-byte header (e.g. a channel number) and 16 data bytes. If the
output link selected by the routing algorithm is free, a node can begin forward-
ing a packet immediately after the first byte has arrived, and need not wait until
the entire packet has been received.

Shortest path routing is assumed in all networks. The routing tables and all
virtual circuits are set up before the simulation begins. As mentioned in section
3.5, the routing of a new message header can be performed fairly quickly; the
corresponding overhead thus becomes negligible for virtual circuits that stay in
place for a few thousand clock ticks. For the signal processing applications dis-
cussed in this section, all virtual circuits remain fixed throughout the entire
simulation.

6.2. Issues under Investigation
So far, the simulator has been used to study the following three issues:

(1) What is the performance of a multiprocessor built from se arate single-chi
P p P g P
processors and communications components relative to one in which the
communications circuitry is integrated directly into the processor chip.

(2) Given the use of single-chip VLSI communications components, what perfor-
mance is achieved when Y-components are used instead of components with
a larger number of ports?

(3) How much performance improvement is gained by building a multicast
mechanism into the communications components?

The first comparison is included to provide a benchmark for the multipro-
cessors built with separate communications components. The comparison is not
fair, since the integration of processor and switching hardware onto the same
chip requires a more advanced integration technology. But this is the model
typically used in most other studies of multiprocessor networksitt8l

The second trade-off concerns the use of simple switching components with
three ports to construct cluster nodes with the desired number of branches.
This approach is compared to the situation in which there are ‘*as many ports as
necessary’’ for the topology, i.e. 3 ports for rings, 8 for full-ring trees, and as
many as there are tasks for fully connected networks.

In many algorithms the same data is transmitted to several destinations. A
multicast mechanism that distributes multiple-destination packets efliciently is
expected to improve performance. Without a multicast mechanism, several
single-destination packets are generated at the source node, and each one is
routed separately through the network to its destination. Many of these packets
will follow each other for a certain distance through the network, leading to
inefficient use of the available bandwidth. The multicast mechanism combines
these sequences of identical packets into a single “multicast packet!" A new
copy is not generated until the paths of the single-destination packets incor-
porated into the multicast packet separate.
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Implementation of multicasting requires a more complicated header to
carry the list of destination nodes when the virtual circuit is set up. The routing
tables must permit muitiple entries per incoming channel, and the switching
circuitry needs some extra hardware to duplicate message packets. For some
applications, the resulting performance improvement is well worth the extra
hardware complexity.

6.3. An Application Program

To demonstrate the kind of results that can be obtained with this simulator
and to further document our previous claims concerning the optimum number
of ports for the switching components, we use a parallel signal processing pro-
gram that relies on a technique developed by BarnwellBarn?8, Barn78, Barné2 Thjs
particular application involves twelve separate processors that communicate as
indicated schematically in figure 11. An ‘‘input processor’ starts at time O to
distributes a total of 400 samples of the input signal waveform to the ten *‘com-
putation processors’” which execute the actual filtering algorithm. Each data
point received by one of these processors is combined with data generated by
other processors to form a new intermediate result. This value is then broad-
cast to 8 other processors who use it in their computations. If the computation
processors are numbered O through 9, processor i broadcasts to processors
i-1, i—-2, i=3, ... , i—6 (modulo 10). Finally, an “output processor’ collects the
results from the ten intermediate processors and reassembles them into the
output waveform also containing 400 samples. It is assumed that the input sam-
ples arrive fast enough compared to the rate at which data points can be pro-
cessed so that the execution time is not limited by the input data rate.

Figure 11. Data Paths in Barnwell's Filter Program.

This particular application is typical of many signal processing algorithms
in that the computation consist of a few floating point operations generating a
result which is then passed to other processors for further processing. An FFT
computation, for example, exhibits similar behavior. Barnwell’'s algorithm does,
however, exhibit a great amount of data sharing, and thus the benefits resulting
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from multicasting are greater than in many other applications. Also, the
number of tasks that are simultaneously executed is relatively small, making
this example less useful for evaluating large multiprocessor networks.
Nevertheless, it is a useful benchmark for exercising the simulator, and it pro-
vides one data point in the evaluation of distributed signal processing algo-
rithms.

8.4. Simulation Results

The above application was simulated for multiprocessors with the following
three network topologies:

(1) a 12-node fully connected structure,
(2) a full-ring binary tree with 4 levels,
(3) a bidirectional ring structure with 12 nodes.

In these structures, the number of ports per switching component ranges from
two to twelve. In some simulations a node with b branches was emulated with a
cluster of b —2 Y-components; in other cases the user processor and the switch-
ing circuitry were assumed to be on the same chip.

Figures 12-14 plot the speed-up of Barnwell's filtering algorithm relative to
the total execution time obtained on a uniprocessor as a function of the total
chip bandwidth. This chip bandwidth, B, ranging from O to 300MBaud/chip, is
divided equally among the chip’s communication links. Thus in the ring network
of Y-components, for example, B equal to 300Mbits/chip/sec corresponds to
100MBaud links. The speed-up obtainable on a multiprocessor with an infinite-
bandwidth, zero-delay interconnection system (i.e. a ‘‘perfect switch”) is also
included as a reference point to visualize the cost of communications.

For the fully connected configuration (Fig. 12), the multicast/non-multicast
curves are identical if no communications components are used, since each
node has a direct connection to every other node, and thus the separation of
individual message packets occurs at the source node. The curves demonstrate
that, under the assumption of a limited total chip bandwidth, the reduction in
hop count achieved by using nodes with more branches is not sufficient to com-
pensate for the lost port bandwidth. This is partially attributed to the use of
cut-through, i.e. packet forwarding within each node begins as soon as the first
byte of the packet arrives rather than after the entire packet has been received.
This immediate forwarding reduces the delay on messages proportional to the
number of hopsKerm™ For the chosen parameter values, the reduction in delay
due to cut-through can be up to an order of magnitude.

An important observation is that for the network topologies studied, an
implementation with Y-components yields better performance than other reali-
zations. This is true even for the fully interconnected case with nodes in which
the communications circuitry is included on the same chip as the processor, — 2
situation that requires only a single hop between any pair of nodes. The reason
lies in the higher-bandwidth links in the cluster nodes built from Y-components.
The total 1/0 chip bandwidth in such a cluster is much higher than the 1/0
bandwidth of a single-chip node, since 10 times as many chips are used. Thus,
the increased performance does not come for free.
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Figure 12. Performance of Fully Connected Topology.

Multicasting also leads to improved speed-up, which is most significant when
the performance is limited by the network bandwidth. If multicasting is not
used, the link from the processor to the fully connected communications
domain becomes a bottleneck when broadcasting data, since a queue appears
instantly in front of this link on each broadcast. This causes increased message
delays and longer execution times.

Regardless of the question of multicasting, the performance of the fully
connected network of switching components can be improved if the total chip
bandwidth is assigned differently to the individual ports. Half the total chip
bandwidth should be given to the link to the user processor since every message
going through the switching node must also go through this critical link. How-
ever, the discussion of such asymmetrical switching components is beyond the
scope of this paper.

The results of the study of the full-ring binary tree network are shown in
figure 13. The input task, the ten intermediate computation tasks, and the out-
put task have been assigned to the various nodes in top-down, left-to-right order
in the diagram of figure 2. Again, the network constructed from Y-components
using a multicast mechanism yields the best performance. Also, the integrated
nodes combining switching circuitry and processor on the same chip perform
better than the network of separate switching components since they exhibit
reduced hop count and increased port bandwidth. In the absence of multicast-
ing, the network of 6-port switching components also suffers from a bottleneck
on the link between a user processor and the communications domain.
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Figure 13. Performance of Full-ring Tree Topology.

Ring topologies are analyzed in figure 14. A separation of processor and
switching circuitry automatically results in a network of Y-components; thus
only four curves are shown. For ring networks, it would be particularly advanta-
geous to have the switching circuitry on the processor chip. In addition to
reducing the hop count, this would permit an increase in the port bandwidth by
up to 50%, -- if one assumes that the presence of a processor does not reduce
the power that can be allocated to the communications ports. In such a
configuration using 150MBaud links, the execution time is almost entirely lim-
ited by the actual computation rather than by communication.

When comparing the three implementations yielding the highest perfor-
mance for the three topologies, the differences are rather small. In all three
cases the best performance is obtained with components with only two or three
ports. The variations are due primarily to hop count differences among the
topologies.

Overall the ring achieves the highest performance, while the fully connected
and full-ring topologies yield similar, but somewhat lower speed-ups. The high
performance of the ring relative to the other two topologies must be considered
atypical. For this small multiprocessor system, it can be attributed to its use of
higher-bandwidth links. Also it is a topology which is well suited for broadcast
communications, and thus well matched to the needs of Barnwell's filter algo-
rithm. As the number of processors in the system increases, however, and for
applications which cannot make much use of multicasting, the performance of
ring networks is limited by the linear increase in average hop count and by
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Figure 14. Performance of Ring Topalogy.

congestions on links shared by many virtual circuits.

For all networks, performance degrades dramatically as message transmis-
sion delays increase. Although delay in these simulations result from reducing
the bandwidth of the communications links, it could just as easily arise from the
use of software rather than hardware to store and forward packets in the com-
munications domain, or frorm operating system overhead at the sending or
receiving orocessor. Other simulations, in particular the execution of a pipe-
lined 16-point FFT algorithm, show a distinct knee in the corresponding speed-
up curves. In the region below the knee, the network cannot provide the
throughput required by the intertask communications, and long queues develop.
Above the knee, the cost of communication is simply an additive factor
representing the sum total of the net electrical transmission delays. It is
clearly desirable to operate a multiprocessor system in this latter domain.

6.5. Future Work

The simulation results used as an example in this paper are for one specific
application on a relatively small number of processors. Simulation studies of
more complex applications, e.g. circuit simulation or speech recognition, are
currently in progress. The investigation needs to be broadened to include the
effect of the operating system overhead, for instance the effect of the extra pag-
ing traffic caused by the limited amount of memory available in each node.

Another area that warrants careful study is congestion control. The idea is
to dynamically redirect messages over less heavily utilized links to avoid the
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development of bottlenecks. Alternate paths for routing messages to destina-
tion nodes as well as means to monitor traffic and to detect congested links are
necessary. The potential improvement in performance, must be weighed against
the extra hardware or software complexity required by this mechanism, -- par-
ticularly in view of the constraints imposed by a single-chip VLSI implementa-
tion.

In loosely coupled networks, a great deal of attention is paid to the integrity
of the transmitted packets or messages. In closely coupled networks, extremely
low error rates can be expected, and the error recovery mechanism can thus be
left to the end-to-end communications protocol. This reduces the complexity of
the communications component significantly, and improves the effective
throughput in the error-free case. The delay associated with transmitting a
message is reduced significantly if forwarding can begin as soon as the data
arrives. Such a scheme makes recovery from transmission errors at the link
level almost impossible, since part of the erroneous packet has already been for-
warded to another node when the error is detected. Hardware support should
be employed in the computation processor to keep these end-to-end checks
from degrading performance.

An issue that has yet to be addressed concerns fault tclerance. If a com-
munications component fails, routing tables need to be updated, and broken
message paths need to be restored. The rerouting must be done in a manner
that ensures that no loops are introduced. Much of the work in rercuting stra-
tegies in computer networks is directly applicable hereMcQu74, Taji77, SegaBl (Qne
must also safeguard the network against stale messages addressed to non-
existent or unreachable nodes. These issues cannot be ignored, — not even in
first generation VLSI communications components.

7. CONCLUSIONS

VLSI technology can provide us with a novel set of building blocks for the
construction of high-performance point-to-point networks for closely coupled
multi-computer systems. For systems with thousands of processors, the
described approach based on dedicated links between individual switching nodes
is well matched to the evolving VLS] MOS technology.

“Plug-compatible” VLSI communications components with 3 to 6 ports
make particularly attractive building blocks. Their modularity permits the
incremental growth of a multicomputer system with a corresponding growth of
the total bandwidth of the communications domain. The overall performance of
the network depends critically on the total chip bandwidth of these components,
which is determined to a large degree by packaging technology. It is also
influenced by the buffering and forwarding policies employed, which depend
themselves on the amount of buffer space and the complexity of the control
logic in the switching components. Our simulation studies show the advantage of
providing a multicast mechanism for applications in which the same data must
be sent to many different processors.

For the near future, the limited number of devices that can be fabricated
economically on a single chip will encourage the development of separate
switching components. However, towards the end of this decade, the preferred
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building block may well consist of a powerful processor, a substantial amount of
on-chip memory, and all the switching circuitry that is needed so that these
components can be readily plugged together into a working multi-computer sys-
tern.
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