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Abstract

In a J class classification problem with data of the form (inx)n=11,** , N
where ji E {1, * * , J} and Xn= (Xln, * *, xM), linear discriminant analysis pro-
duces discriminant functions linear in xl, * * , XM. We study a procedure which
constructs discriminant functions of the form Eom(xm), where the Om are non-

m
parametric functions derived from an iterative smoothing technique. Judging
from a variety of data sets, the method offers promise of being a significant
improvement on linear discrimination.

*Work supported by Office of Naval Research under ;:ntract N00014-84-K-0273.
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1. INTRODUCTION

In a classification problem, the data are of the form (j,,xn), n 1, , N
where ji is the class label of the nth case, ji E (1, - * * , J} and xn is the vector of
measured variables on the case. Given a measurement space X such that X. E X,
n=1,* , N, what is desired is a "good" classifier, i.e. a function on
X- (1, , J} that in some sense minimizes the misclassification rate.

In classical linear discrimination the assumption is made that the cases are
independently sampled from (Y,XI, ,XM) = (Y,X) where Y E {1, , J} and
the distribution of X given Y j is N(gj,F). Assuming that the
P(Y = j) = 1/J, then the classification rule for this problem having minimum
misclassification probability is: assign x to class j if

(x- )tr( - = Min(C - r (X-lpi).

In practice, r is estimated by the pooled with-in class sample covariance
matrix rp, pj by the sample mean over the jth class data, (aj, and the classifier
used has the form: assign x to that KLss which minimizes (x -)t -L

1

Transforming the space by putting X' = rp 2, the rule is: assign x' to class j if
j minimizes Ix' - jj/j12, where 11 den--.es ordinaiy distance in Euclidean M-
space, E(M).

Assume, w.l.o.g., that E2j = 0, and take al, , aj-l to be orthonormal

vectors in E(M) spanning the linear space generated by {js',.., j} Then the
minimum distance rule above is seen to be equivalent to classifying X' as that j

J-1
which minimizes E [(a'x') - (,i')J2. Defining a J - 1 dimensional rector func-

tion y(x) by

y(X) = ((a1,X'), * ,(al- ,x!)),
then y is a linear map from E(M) to the -:lass space" E(J-1) and the classification
rule is given by: classify x as that j which minimizes Ily(x) - y(A )ll2.

The al, * j*, selected can be specified as sequentially "most spreading out
the classes". That is a, is taken as the unit vector which maximizes the variance
of the J numbers (a,,'j'). Then a2 is taken as that unit vector perpendicular to
a1 which maximizes the variance of the numbers (a,2ij), j 1, * * , J, etc. For
this set of a,, j-1, the J - 1 linear functions (a',X') are called the canonical
coordinates.
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The essentials of this procedure (for us) are that there is a map y(x) from the
measurement space X into class space E(3-1) such that if yj, j = 1, *, J is the
"center" of class j, then the classification rule is: put x into that class for which
IIy(X) - yjI2 is a minimum.
A serious difficulty in discriminant analysis is that the maps y(x) are res-

trained to be linear. Thus, they cannot wrap around appropriately to separate
the classes in situations where the data distribution does not fit the classical
assumptions.

This restriction can be lifted by including, along with the variables
xl, * * , Xm various functions of them, i.e. use the 2M variables
XI, XM,X2, * , x . However, this still imposes a specific functional form on
y(x), i.e. quadratic in x.

This paper gives a method for finding "good" transformations of the non-
linear additive form

M
l()= S (kIm(xm).

The Oklm are not restricted to be of any fixed functional form, but are produced
by iterative smoothings in repeatedly applications of the ACE algorithm (Brei-
man and Friedman, 1985). The measurement variables xl, - - , Xfm may be any
mixture of numerical and categoricals. In particular, then, this gives a natural
method of constructing a classifier when all measured variables are categorical.

The organization of this paper is as follows: in the next section (section 2) we
compare the nonlinear method and linear and qu:; liratic discrimination. This
comparison is based both on the structure of the methods and on the results of
testing them on over 30 data sets, real and simulated with usually 10 repetitions
of each simulated data set. In Section 3, the details of three of these examples
are given, and discussed.

Next, the construction of the nonlinear method is taken up. Since ACE is a
predictive regression algorithm, we first need to put classical discriminant
analysis into a linear regression context. This is done using "optimal scaling".
That is, classical discriminant analysis is shown to be equivalent, in an appropri-
ate sense, to getting best least squares predictors be.d on xl, , xM of certain
real-valued functions 0(j), defined on the class labels j.

This translation is carried out in Section 4 and puts linear discriminant
analysis into a regression context. In particular, we show that there are J - 1
scalings, or real valued functions 01(j), j E {1, - * * , J}, 1 = 1, * * , J - 1 such that
if (bl,X) is the best least squares linear predictor of O1, and if we define

J-l
D2(X,j) = XI,[01(j) - (b 2

1=1
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where e12 iS the mean squared error in predicting AI from (hl,x) then the rule:
classify x into that class for which- D2(X,j) is a minimnum is equivalent (modulo
constants) to the linear discriminant rule.

Thus, this context suggests that the mapping into class space be defined by
yl(X) = (hj,x)/ej and the class centers by ylj 61(j)/el. This mapping is not
equivalent to that given by the canonical coordinates, but classification is again
based on the minimum of the distances IIy(X) - y_jl.

In Section 5, we lay the foundations for replacing the linear predictors (1,)
M

by predictors of the form E q1.(xm) produced by the ACE algorithm, thus get-
m=1

ting nonlinear nmappings y(x) of the measurement space into E3-1). In Section 6
an efficient form of the algorithm is constructed for estimating y(x) and the
centers yi from the data.

Section 7 gives brief remarks concerning other related issue.



2. COMPARISON OF METHODS

The linear discriminant procedure produces piece-wise linear classification
boundaries with coefficients computed from the data by a formula based on seem-
ingly restrictive distributional assumptions. However, just as linear regression,
within limits it is fairly robust. As long as the class distributions are similarly
oriented and roughly oval shaped, or are well separated, then accurate results can
be expected. Because of this limited robustness and lack of a viable alternative,
linear discriminant analysis is usually the only classification procedure given in
statistical packages. However, it is notoriously susceptible to damage from
markedly non-normal class distributions, such as long tails or other non-oval
characteristics.

The nonlinear method is a direct generalization offering a much richer class of
models. The boundaries can be more complex. For instance, in the two class
problem the boundary will be of the form

F2Om(Xm) = C,
m

for the Om arbitrary smooth functions estimated from the data.
The transformations y(x) are estimated from the data in a way that does not

invoke normal assumptions. Therefore, we have found that it tracks complex
class distributions surprizingly well. As a generalization of linear discrimination,
it should uniformly outperform the linear method. In many (over 30) examples
we have run of simulated and real data, this has held true (modulo minor random
fluctuations).

That is, in every single example run, the nonlinear method produced either a
test set misclassificationf rate (simulated data) or a bootstrapped rate (real data)
less than or close to that given by linear discriminant analysis. In simulated data
drawn from normal distributions with equal covariance matrices -here linear
discriminant classification is optimal, the nonlinear method nearly reproduced the
optimal linear boundaries, and gave an almost identical misclassification rate. In
data sets where linear discrimination does poorly, the linear method usually pro-
duces much better separation.

One current alternative to linear discrimination is quadratic discrimination.
This produces piece-wise quadratic boundaries with coefficients computed on the
basis of some what less restrictive distributional assumptions, but requiring the
estimation of many more parameters. This latter requirement gives quadratic
discrimination considerable variance in high dimensional multi-class data (see



example 3 and the following remarks in the next section). Therefore, quadratic
discrimination is generally useful only if the data are low dimensional or if the
sample size is large. Nevertheless, in all of our simulated or real data sets, we
have compared the nonlinear procedure to both the "near and quadratic discrim-
inant methods. Except for very specialized examples, the nonlinear method per-
forms as well or better than the quadratic. The quadratic method can also be
damaged by non-oval class distributions which are accurately tracked by the non-
linear method. This is illustrated in the first two examples given below.



3. EXAMPLES
To illustrate the above discussion, we have chosen 3 examples. The first two

are simulated 2-class problems. The third is an actual 5 class data set. We could
give many more but the others would only similarly reinforce the above remarks.

The data in the first two examples is 2-dimensional, so that plots of the data
and the classification boundaries can be easily examined. Of course, any data
analyst, looking at the plots of the raw data, could accurately guess at the
optimal class separation boundaries. But that is not the point of the exercise.
Example 1. The two class, two dimensional data (x1,x2) are generated as fol-
lows: The underlying distributions for both classes are uniform on adjacent half-
annull. More precisely, if (r,O) are polar coordinates, then the class 1 distribution
is uniform on 3 < r < 4, 0 < 6 < ir, while the class 2 distribution is uniform on
4 < r < 5, 0 < 0 < r. A run consists of drawing 100 samples from each distri-
bution and applying nonlinear, linear and quadratic discrimination. The
misclassification rates are estimated both by resubstitution and a set of 2000 test
cases (1000 from each class). The results, averaged over 10 repetitions, were

Method Classification Rates
Resubstitution Test Set

Nonlinear .04 ± .01 .04 i .01
Linear .41 ± .03 .43 ± .01
Quadratic .27 ± .03 .30 ± .04

(the ± numbers are standard deviations over the 10 runs).

This problem has an obvious optimal separation boundary i.e. r = 4. The
boundaries given by the 3 methods for one typical run are shown in figure 1.

Example 2. In this example, there are long tailed distributions which inter-
penetrate one another. To get class 1, one hundred samples are taken from
(X1,X2) where

XI e°Zl Z1 E N(0,1), o2 = 1.4.

X2 N(0,1)

and XI, X2 are independent. The data are then rotated by 300. The clhss 2 data
are 100 samples from

X = 2ec2/2 - e°ZI', Zil E N(Oll)



- 2 -

X2' e N(0,1)

with X1I, X2' independent. These samples are then also rotated 30°. The
optimal boundaries are the three vertical lines x = 0, x = e2/2, x - 2e/2
rotated 300. Both (X1,X2) and (X1',X2') have the same means and covariance
matrices, so that the classes cannot be well separated by either linear or qua-
dratic discrimination. Nonlinear discrimination was used on this data, and the
experiment repeated 10 times, each time using 2000 cases in the test set.

The results, averaged over 10 runs were

Method Classification Rules
Resubstitution Test Set

Nonlinear .17 : .01 .18 ± .01
Linear .48 i .02 .53 + .03
Quadratic .48 + .03 .51 j .02

Figure 2 shows the classification boundaries given by the nonlinear procedure on
a typical run.

Example 3. These data are taken from the Andrews and Herzberg (1980) data
collection and was contributed by V. E. Kane (1976). It consists of 12 measure-
ments on each of 127 groundwater samples. The samples are divided into 5
classes depending on the presence or absence of anomalous amounts of uranium
and Jher elements. The misclassification rates were

Method Classification Rates
resubstitution bootstrap (20)

.Ionlinear discriminant .04 .13
linear discriminant .14 .20
quadratic discriminant .87 .88

Figures 3 and 4 show plots of the first WL'-ree linear discriminant coordinates and
Figures 5 and 6 show plots of the first three nonlinear discriminant coordinates.
The improved separation of classes achieved by the nonlinear technique is
apparent.

The results in this example has surprised a number of colleagues. With 5
classes and 12 variables, 127 cases seems like a very meager sample size for the
amount of nonparametric data fitting carried out by the nonlinear procedure. As
the bootstrapping shows, there has been over fitting of the data. Yet the
bootstrapped error rates also show that the nonlinear method gives significant
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improvement over the other discriminant methods. This example also illustrates
why quadratic discrimination is usually not appropriate in high dimensional prob-
lems unless the sample size is large. Here, 450 parameters (5 covariance matrices
and 5 means vectors) had to be estimated from 127 cases. The resulting error
rate speaks for itself.

In all the repetitions of simulated examples we have run, the variability of the
misclassification rates given by the nonlinear method was very comparable to the
variability of the linear or quadratic methods. Where there are only a few vari-
ables compared to the sample size (as in the first two examples) the resubstitu-
tion error rate is close to the test set error rate. But, if the number of variables
is 'large' compared to the sample size (as in the last example) the resubstitution
estimate can be quite biased, and we recommend cross-validation or bootstrap
estimates. This is not peculiar to the nonlinear procedure. Discriminant analysis
also shares this problem.

The nonlinear method is moderately computer intensive. Each of the first 2
examples took about 7 CPU seconds per run on a computer intermediate in
power between a VAX 750 and 780. The 5th example took 8 minutes. These
were run using the method as an 'S' procedure.

As a crude approximation, the CPU time required goes up as the product of
the sample size, the number of variables, and the number of classes minus one.



4. A REGRESSION FRAMEWORK FOR CLASSICAL
LINEAR DISCRIMINANT ANALYSIS VIA OPTIMAL SCALING.
It is common knowledge that in the 2-class problem, the Fisher discriminant

function could be computed by converting the problem into an ordinary least
squares regression problem (see Hand, 1981).

Since ACE was conceived of as a regression tool, the question arose of how to
handle the general J-class problem in a regression framework. A natural resolu-
tion is through the concept of optimal scaling of the classes.

Assume the data is of the form {(iWn,n)}, n = 1, , N where
in E (1, * *, J}, andxn 'is an M-dimensional measurement vector (xin, * X,Mn)t
of ordered variables. We use the notation:
N= number of cases in class j

p(j) = Nj/N
r = sample covariance matrix of all data.

rFp pooled within class sample covariance matrix
=-the M-vector of sample means of the class j measurement vectors.

Assume also, to simplify matters, that

IL S E'p(j) 0.
j -

Now, a scaling {O(j)}, j 1, , J is a mapping of the class labels into real
numbers. We wili "rnsider only scalings such that

8O(j)p(j) = 0, EO2(j)p(j) = 1. (1)
j i

For any fixed scaling 0, consider the regression problem of minimizing

MRSS(O,h) = N (O(j) - (bx ))2 (2)

over the regression coefficients b = (b1, ... , bm). This is an ordinary least
squares problem, and the solution is

b(O) = EO(i)p(i)'- iLj. (3)

The optimal scaling problem is now to minimize MRSS(O,h(a)) over all scal-
ings 0 satisfying (1). Substituting (3) into (2), we get

MRSS(,kb(0)) = 1 - <(tP'iiL)0(i)0(j)p(i)p(j). (4)
i,J lhu

Thus, the optimal scaling problem leads to the eigenvalue problem
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XO(j) = E( - tr-'L )0(i)p(i). (5)

This has J solutions which we order by X1 . X2 > ... > Xj 0. Note that
the matrix M defined by

M(j,i) r
is of rank J - 1 generally, since EM(j,i)p(i) = 0, all j. The eigenfunction
corresponding to Xj - 0 is Oj(j) = 1. One can convert (5) into the form

XI0(j)V-ji .= 8'/iM(j,i)gAl(i) . (6)

Then since M(j,i)vp(j)p(i) is symmetric nonnegative definite, the
I(i)= 01(j)vp-j) can be taken as orthonormal, leading to

201(j)01'(j)p(j) = 5(1,1')
E:01(j)p(J) = 0, 1 < J. (7)

Therefore, each 01(j), 1 1, , J - 1 is a scaling. Furthermore, from (4) we
have that

MRSS(0171(01)) 1 - X1, 1 = 1, , J - 1. (8)

Denote this mean residual sum of squares by e12. The scalings 01, , jI can
be interpreted as follows: define e2(0) MRSS(0,b(O)), then 01 is the scaling
minimizing e2(0), 02 is the minimizer of e2(0) among all scalings orthogonal to 01
in the sense that E02(j)01(j)p(j) = 0. Then 03 is the minimizing scaling orthogo-

nal to both 01 and 02, etc.

The J - 1 scalings 01, , Oj-l assign a point Q(j) = (01(i), , Jl(j)) in
J - 1 dimensional space to each class. For each measurement vector x a natural
distance from x to 2(j) is

J-1
D2(X,j) = E [(01(j) - 1tx)2/e121, (9)

where b =b(01). Thus, D2(X,j) is the sum of the squared distance between 01(j)
and the best OLS predictor of 01, divided by MRSS(0j,k(01)).

The crux of the matter is the following theorem:

Theorem A.

D2( ,j)=(x -L)trF(siL) + - t

The proof of this theorem is straightforward, but lengthy, and is given in Brei-
man and Ihaka [19841.
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The relevance of this theorem to discriminant analysis is that, defining,

F (x) = - iLj)t1 -l(x - -Lj) - 2log 7r(j)
where ir(j) are the prior class j probabilities, the linear diVcriminant classification
rule is: assign class j to x- if

Fj(X)= minF;(X)

Therefore, the classification rule: assign _X to class j if

D2(Xj)- .L. - 2log7r(j) = min(D2(,i() - 2log r(i)), (11)

is the same as the rule produced by linear discriminant analysis.
But the framework is considerably different--focusing on finding scalings @(j)

and predictors (b,x) to minimize the sum-of-squares PO(0(Wn) - (b,xn))2. It is this
n

shift of framework that allows tihe nonlinear generalization given in the following
sections.

In keeping with this revised context, we redefine the mappings into class space
to be

yl(x)=(bj,x)/ej
and take the group centers to be

Y=j 01(j)/el.
Then the rule given in (11) becomes based on Ily(x) - yj1I2 instead of D2(j,X).

It is shown in Breiman and Ihaka [1984] that yl(x) = (al,x)/X11/2 where (g4,X)
are the usual canonical coordinates and that ylj = yj(ii)/Xi. Thus the class
centers are not the mappings of the into class space, nor is y(x) a constant
multiple of the linear discriminant mapping into class space.

To guide the stepwise selection of variables, it seems natural at any stage to
enter that variable which most reduces the value of

J(E(016n) - (b,,)2

As shown in Breiman and Ihaka [19841, this expression equals

'p-jtr -lp(j),
wvhich can be quickly computed. In fact, using branch and bound techniques, it
is possible to construct an efficient best subsets algorithm based on this criterion.



5. NONLINEAR DISCRIMINANT ANALYSIS
Now that discriminant analysis has been put into a regression framework, the

ACE methodology (Breiman and Friedman, 1985) can be used to give a nonlinear
generalization. If we ask: given variables Y, XI, , XM ha'ving an arbitrary
joint distribution, YE (1, * , J}, what are the functions @(Y), {0m(Xm)} such
that all means are zero, E02(Y) = 1 and the expected squared error

e2(@ ¢) = E[@(Y) - EOm(Xm)i2
m

is minimized, then it is known from the above paper that minimizing 6*, {¢q*}
exist, and that the ACE algorithm converges (under weak conditions) to a minim-
izing set of functions. Furthermore, it is known that 0*(j) is the solution of an
integral equation

XO*(Y) = PYPXO*(Y) (12)
where Px( ) is the projection onto the subspace of all L2 functions of the form
M
E0m(Xm) and Py is the projection onto all L2 functions of the form 6(Y) (more
simply Py( - E(- Y)).

In fact 0*(Y) is the solution of (12) corresponding to the second highest eigen-
value. The highest eigenvalue is X = 1 corresponding to 0 1. If the J - 1 solu-
tions to (12) other than this constant solution are numbered in order of decreas-
ing eigenvalues, i.e.

X101(Y) PyPxo1(Y) (13)
with X1 > X2 > * > Xj-I and Xj is set equal to one, then

M
e=2 min E[01(Y) - E0m(Xm)12 1 X1 (14)

and since PyPx is self-adjoint and nonnegative definite,

E61(Y)01,(Y) =

The 01 can be interpreted in a way exactly analogous to the linear case.
Define a scaling 0(Y) to be any real-valued function defined on (1, * , J} satis-
fying E@(Y) = 0, E02(Y) - 1, and also define e2(0) = mine2(0,). Then 01 is the

scaling minimizing e2(0), 02 iS the minimizer of e2(0) among all scalings orthogonal
to O1 in the sense E01(Y)02(Y) - 0 and so on.

For each 1, let {(1m} be the minimizing functions in (14). Then the analogy
pointed out in the paragraph above suggests the classification rule: let



J-1 M
D2(.Xj) = E (01(j) - m(Xm))2/e,2

then assign j to x, if (11) holds. Furthermore, taking
M

Yi(X) = Eim(xm)/e,

to define the mapping into class space and Yl= 01(j)/e, as defining the class
centers, then the classification rule is transformed into minimum Euclidean dis-
tance in class space.

Since estimates for O1, PkIm} can be gotten via the ACE algorithm operating
on data, we get a nonlinear method for the construction of classifiers.



6. IMPLEMENTING ACE DISCRIMINANT ANALYSIS.

To implement our procedure we start with (13) and write it as

X191(j) = EH(j,j')Ol(j')p(j').
We know that H(j,j') is self-adjoint with respect to p(j). It is quickly seen that
this implies that H(j,j') - H(j',j). Furthermore, it is nonnegative definite.

Define p1(j) = Oj(j)v'p{T). Then

X101(j) = Vp(j)p(j')H(j,j')Oj(j'). (15)

The matrix

Q(j,j') =/p(j )p(j')H(j,j')
is nonnegative definite and symmetric, and the X1(j) are a set of J orthonormal
functions.

If we knew Q(j,j'), then (15) could be solved for all q1(j) and consequently for
all 01(j) at one stroke. So the problem becomes the estimation of Q(j,j'). Recall
that

EH(j,j')O(j')p(j') -PyPxO.

Take functions fl(j), I- 1, , J to be an orthonormal basis in the sense
that

(fl,fli) = Ef1(j)f1'(j)P(j) = e

A convenient set of such functions is fj(j) -1, and for I < J,

rO, j<I

ap1, j>=

where

1+1r p(l) ]1/2

l(E P(i)) * (FP(i))
t . 1/2

1+1

p(l)
-

2p(j)]



Starting with each fl(j), 1 < J, as the dependent variable, run the ACE inner
loop until convergence, getting an estimate of PJf1. Then smooth PXf1 on j, get-
ting functions g1(j), which are estimates of PyPxfl. Define 'j(j) =1, and set

= EH(j,j1)fl(jl)p:,)*11i

or

V'Pjg1(j) EQ(j,j')f(ji')V'*W).

Put

C(j6,1) f6(j')VIjTi
G(j,l) =vjJjgj(j)

so (16) can be written as

G QC

and solving

Q GC-1.

But

EC(j,l)C(j,1') =

so that CtC - I, C' - Cc, and Q= GCt. More explicitly

Q(j,j') V/p(j)p(j')E9I6(j)f1(j').
Due to data randomness, the estimated Q may not be exactly symmetric, so we
use as our estimate the symmetrized version of Q, and stretch notation by also
denoting it as Q.

Now that we have the estimate Q, estimates of 01(j) are gotten by solving the
eigenvalue equation

X101(j) EQ(j,j')0(j') (17)
and setting e1(j) =

The next step is: for fixed 1, 1 1, * J- 1, run the ACE inner loop until
convergence using the 6i(jn) as the values of the dependent variable. This results
in estimates 1* , Om of those functions 1*, * , that minimize

M

EJ01(Y)- E Xim(Xm)J2. The mean squared error eI2 computed at convergence of

the loop is 1 - X1.
Our estimated distance function is



J-1 M
D2(j,j) =- E p1,(J) - E2 qX m(xm)j2/e2,

the mapping into class space is
M

YA(-) = Elm(xm)/e,
and the class centers are at

Y=j 1(j)/el.



7. OTHER ISSUES
Suppose that unequal prior class probabilities {ir(j)} are specified. Then in

the linear discrimiinant model, suppose we again use the optimal scaling and
linear regression approach, but with a new twist. Make the proportion of class j
cases in the data set equal to ir(j) by giving the weighting r(j)/p(j) to each class j
case. Then p(j) becomes replaced by r(j) in all Section 2 equations and the
regressions become replaced by weighted regressions. For the distance function
D2(X,j) given by this procedure, Theorem A becomes

D'(x,j) = (x -Lt)tl ( -.7)+± )

where rp is a weighted pooled within class covariance estimate. The linear
discriminant rule is based on

(x-j rp(x- ^ )- 2log r(j).
Assuming that the two estimates rP, rp are nearly equal, then the difference in
the -two rules is in the different values of the additive constants. These constants,
as functions of r(j), behave similarly, increasing monotonically as ir(j) decreases.

This indicates that unless the class priors are quite unequal, the rule based on
minimizing D2(x,j), adjusted for priors as above, will be almost the same as the
linear discriminant rule. We have carried this same adjulstment over to the non-
linear rule. Our conclusion, based on 2 and 3 class simulated examples, is that it
works very well over a large range of unequal prior class probabilities.

In high dimensional problems, a stepwise variable selection is useful in arriv-
ing at a small set of informative variables. Originally, we ran the procedure in a
stepwise addition of variables mode. This worked well, but was extremely com-
puter intensive. We are currently developing a much faster stepwise deletion
method.

Another outstanding question in the context of nonlinear discriminant
analysis is how to get estimates of the class probabilities p(jlx), j = 1,... , J. In
the linear discriminant model, estimates are easily derived using the normal den-
sity assumption. However, in the nonlinear case, assumptions of any parametric
type are contrary to its spirit and utility.

Kernel density estimation could be used on the original data -1, .....*N to
get estimates of the class j densities fj(_X) and then p(jlx) estimated as

ir(j )f (x)
ir( i)fiOX)



However, the measurement space X may be high dimensional, containing vari-
ables on a variety of scales. In such a situation, choice of metric becomes some-
what arbitrary and kernel methods do not generally provide accurate estimates.

The most sensible procedure seems to us to be kernel density estimation using
the points yl, * X YN in the class space. This space is generally of lower dimen-
sion than x and the scaling by the transformations makes the Euclidean metric
natural and appropriate. However, we have not tested this approac!l and there-
fore cannot comment on its accuracy.

As a final note, we recognize that this nonlinear method will need much more
testing until its performance characteristics are well understood. With this in
mind, we encourage requests to the first author for FORTRAN listings, or for
order forms for tapes.
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Figure 1
Boundaries for Example 1

~0

44

0~~~~~~

|quadratic

O I~~ ~~I .___ I__ _ __ _

-10D

*

* c

a

A inear

inear

5 10

0

-10 0



Figure 2
NJonlinear Boundaries in Example 2
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Groundwater data plot:
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Figure 3

1St and 2nd linear discriminant coordinates.
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Groundwater data plot:

Figure 4

1St and 3rd linear discriminant coordinates.
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Groundwater data plot:
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Figure 5

1st and 2nd nonlinear coordinates.

3

3 44
3 E 133

4

4
44

44
4
4

222'
22 2 5 f2

522 5 lo?

222 2
22 2

11

1

t

5 1ST

3

5

0

-.5

-10 I I I

- 10 -5 0



Groundwater data plot:
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APPENDIX

Using the notation of Section 1,

Theorem.

(I) 2 t-1(x- )+ l
t (e (j)-b( o) = (x-p (x.) 1 tj§lX - 1 r

Proof. For r the covariance matrix of the x1,. ..,xM9 we have that

b = I O( mn)
n

= I' (~O(j)p(j)wj)
j -

= (e(j)p(j)r~Lj

Now

N (e( n)-b .x) = N I e(j bj Pb) *OxI(k ( n - N n N n--nn

= 1 - I e(j)p(j)b(.Z)-

=1 tp p(j)e(i)e(j) r,

which is equation (4). With

M(i,j) = 1tr 1

we know that

X,e,(j) = I M(j,i)eM(i)p(i)

or letting
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fQ(i) = e,(j)v'PTT
X z (j) = I A(j,i)<pPI(i)

i

where

H(j ,i ) = ,p(i)p(j) M(j,i)

Then the {'p } are orthonormal leading to

I e (j)e,(i)P(i) = 6(Q,Q')
j

(Al)

The eigenvector corresponding to X = 0 is 0(j) _ 1 and for 9 > 0

by (Al), I e9(j)p(j) = 0. Now
j

H(i ,j) = I

M(i ,j) = I
Q

Put

=t 1/

and note that, using * to denote inner product,

- (e Oj)-b(k)xx)' = 1 - XQ > 0so tha >nO.n W

so that w > 0. Write

w£e0(j) - 2 w,e0(j)b(£) *x

9,<j kz<J

w (b ox)

so

xek(i).PZU)

xkeko )e.,(i)

wg (e,,(j)-b(9-).x) 2 =
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Since

r = rp + tp(j)

than for any vector u, putting v = r-1u

u = rv = r v + I p(j)_j(,
so that

rpv = u - I P(j)Pj(Pj9v)
j

and

V = rp1u - I C(j)p(j)
J

where

c(j) = (Ri v) -

Let u = pig then (A3) becomes

-_1j -1 = _1)r-lriL = r - I p(j) (lLj,r ~lki p P- j 3 . H .~-

and

t -1 t -14.r iL = r
-

(A5)- I p(j )M(i ,j
1

j
t -1Denote R(k,i*) = 4rp 4. Then (A5) becomes

M(k,i) = R(k,i) - I p(j)M(i,j)R(j,k) -

j

R(k,i) = I a ,e (k)e,,(i) and substitute into (A6)
Pi,IP.I'

(A3)

(A4)

(A6)

If we let
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it becomes clear that ax is diagonal and

R(k,i) = I aceO(k)O (iM)

Then substituting this into (A5) gives

SQ = a2 -
P,

or at =X /1 - so

Wz= 1/1 - z= 1 + ac .

Now

2
E weG,(j)

Q.<J

2wteO(i) - 1

= 1(l+Q)e2(ji) - 1

= I e02(j) + i a 62(j) - 1
9. Q

But recall that

2 = t-l
2.

te(j = E - 3

and writing

I e 9(i)92(j) = p(i)p(j) h ip2.(i)p2(j)
2 2

gives,

I e2 (j) = l/p(j)

Then
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2 tj1 + 1wte 9,(J) = pir Pi (i)
Q< J

Now for the second term in (A2). Defining b(j) = 0, then the second

term is

s = I w e (j)b(P) * x = I wpe (j)(I e,(i)p(i)xtr-i P)i kt i t -i ) -~~~~~~
But by (A4)

r Li = rpl;- I P(j')M(i,j')rpl 1 9

iI
pL

so

w e (j)e (i)p(i)xtCj-1s. = I3
i,Q

- 1 weOmje)O (i)p(i)p(j' )M(i ,j '
Q,si ,j I'

k
)xrp 1j

In the second term in (A7) denote the durmmy variable j' by i and

conversely, getting the expression

I wQ je e ' )p(i )pj' )M(i ,j ' tlr
Q,i ,j PI Ji

But since I M(i,j')ek(j' )p(j') = Xke,(ji), the second term becomes
i I

=

i1 ,Q.
xtVrplke9(i)e (j)p(i ) (W9(1l)I

tp Li91 9

so
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But

Z e,(i)e (j) = (p(i)p(j))-26(i j)

so

sj= xtr j-1

The third term in (A2) is I wj(bg.x)2. Let S be the J - 1

dimensional space spanned by (Pa,. ,j) and let x = xl + x2 where

X2 is perpendicular to S. Then since

Q'X POy )et(i )xtr- P-j
i

it follows that by x = ~.x1. Write as f j so

k9, *x= pmie9.(i)fjl jr p
i,j

= f. M(j l,i)e MiPMi
3 1~~~~~~~9

Q f e9(j)

and

ww,(bg.x)2 = f.f e
Q~~~~~~wI,.J1 -

Now

2 2XQwt =9/-,1 9 == -9X

Therefore
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w,(bP x)2 = ff cazeZ(i)6() - f xf- I e(i)e (j)
i,j i,'j

= Z f.f.R(i,j) - fff.M(i0,j)
,'J i,J
*. 13 t*1

= ff1f41ir _ f f.t rlAj* * p I' ** 3-1-
1,3 1,3

t -l t -l
-L P -

x

-r
x

Putting all this together

ww,(e,(j)-b(P')*X)2 = (x-j )tr-l(xij) + 1 xtr-1 - 1
-3 p - 3 p(j)

which completes the proof of the theorem.

We now show that the i* x are multiples of the classical canonical

coordinates. The crimcords have the form a * x where the a are

solutions of the matrix equation

Ba = yrPa

with B = r - r and the a normalized so that atra = 1.
p

Write (A7) as Ba = y(r-B)a or (l+y)Ba = yra or as

ra
= 1+

Ba

=(+)I p(j)pj(a,pj)y

Hence,

a = p(j)(a,Yj)r 1Sj (A8)
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and

(a,pI.) = (I ) I p(j)(a,p t -1

Yjjli -

This is of the form

(1h,)v(O) = I M(i,j)v(j)p(j)I+y~~~
where v(i) = (a,pi). The solutions are

1+7= X9

Therefore, = C eP. M, and substituting into (A8) gives

7<k4 = CZ I P(j)ek(j)r-
i

so

a * x I p(j)e(ji)xtVrl

~k

and hence

a = d b(9)

To evaluate d9 , use the condition tra = 1 or equivalently, from

aQBa = yt,

Hence

d2 = yz/b(k)Bb(k)

eg i ) , and

(A7)

vt(i) =

yp = x /I - x
v t t 0
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Now

b(Q)Bb(Q)

and (_j,b(Q))

= I p(j)(b V )2
=

= X e9(j ) so

b(Q)Bb(Q) = 2 E PO)e2(j) = x2
J

This gives

d2=

or

1 =

dt = [X 9(1 -x k)J - '


