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Abstract

In regression analysis the response variable Y and the predictor

variables X1,...,Xp are often replaced by functions e(Y) and

fl(X )90009fp(Xp). We discuss a procedure for estimating those functions

O* and 4l,. . that minimize
p

P 2E{[e(Y) - I ¢.(X.)] }
e2 j=1J J

VarLe (Y)j

given only a sample {(yk,xkl,...,xkp) 1 <k <N} and making minimal

assumptions concerning the data distribution or the form of the solution

functions. For the bivariate case, p =1, 0* and f* satisfy

p= p(0*,4*) = max p[e(Y),m(X)] where p is the product moment corre-
0e,

lation coefficient and p* is the maximal correlation between X and

Y. Our procedure thus also provides a method for estimating the maximal

correlation between two variables.

Work supported by Office of Naval Research under contracts N00014-82-K-0054
and N00014-81-K-0340.
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1. Introduction

Nonlinear transformation of variables is a commonly used practice

in regression problems. Two common goals are stabilization of error

variance and symmetrization/normalization of error distribution. A more

comprehensive goal, and the one we adopt, is to find those transformations

that produce the best fitting additive model. Knowledge of such trans-

formations aid in the interpretation and understanding of the relation-

ship between the response and predictors.

Let Y,X1...,Xp be random variables with Y the response and

X1,...,Xp the predictors. Let e(Y),f1(x1),...,fp(Xp) be arbitrary measurable

mean-zero functions of the corresponding random variables. The fraction

of variance not explained (e2) by a regression of e(Y) on I1.(Xi)
i=l

iS

(1.1) e2(e s¢1s * * s¢ =

P 2E{[E(Y) - qj (xi)] }.i=l

Ee2Y

Then define optimal transformations as functions e*, ,. ..,*p that

minimize (1.1): i.e.

e2(e*4 ,* . . ,*) = min e2(e,41 ,.. . ,p4)
e 9fi '9 . . .0 9s

We show in Section 5 that optimal transformations exist and satisfy

a complex system of integral equations. The heart of our approach is

that there is a simple iterative algorithm using only bivariate condi-

tional expectations which converges to an optimal solution. When the

conditional expectations are estimated from a finite,data set, then use

of the algorithm results in estimates of the optimal transformations.

(1.2)
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This method has some powerful characteristics. It can be applied

in situations where the response and/or the predictors involve arbitrary

mixtures of continuous ordered variables and categorical variables

(ordered or unordered). The functions Ofl,. ..,qp are real valued.

If the original variable is categorical, the application of a or

assigns a real valued score to each of its categorical values.

The procedure is nonparametric. The optimal transformation estimates

are based solely on the data sample {(yk9xkl,...,xkp) 1 < k< N} with

minimal assumptions concerning the data distribution and the form of the

optimal transformations. In particular, we do not require the transformation

functions to be from a particular parameterized family or even monotone.

(We illustrate below situations where the optimal transformations are not,

monotone.)

It is applicable to at least three situations

random designs in regression
autoregressive schemes in stationary ergodic times series
controlled designs in regression

In the first of these, we assume the data (yk,xk), k=l,... ,N are

independent samples from the distribution of Y, X1,...,Xp. In the

second, a stationary mean-zero ergodic time series X1,X2,... is assumed,

the optimal transformations are defined to be the functions that minimize

p
E{[e(Xp+1)- I fj(x.)12}

ffi~ ~ ~ = J J

- e Ee2(Xp+1)

and the data consists of N + p consecutive observations x1,...,XN+p*

This is put in a standard data form by defining

Yk xk+p9 xk = (xk+p l,...,xk), k=l,...,N

In the controlled design situation, a distribution P(dyjx) for the
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response variable Y is specified for every point x = (x ,.,,x ) in

the design space. The Itth order design consists of a specification of

N points x1,... ,x in the design space and the data consists of these

points together with measurements on the response variables yl,' ,yN* The

Yk} are assumed independent with Yk drawn from the distribution

P(dy )

Denote by PN(dx) the empirical distribution that gives mass 1/N to

each of the points x1,..,xNo Assume further that

^ w

PNP

where P(dx) is a probability measure on the design space. Then P(dy|x)

and P(dx) determine the distribution of random variables Y,XI...,xP
and the optimal transformations are defined as in (1.2).

For the bivariate case, p =1, the optimal transformations e*(Y),

¢*(X) satisfy

(1.3) p*(X,Y) = p(e*, *) = max p[e(Y),q(X)]

where p is the product moment correlation coefficient. The quantity

p*(X,Y) is known as the maximaZ correZation between X and Y, and is

used as a general measure of dependence (Gebelein [1947]; see also Renyi

[1959] and Sarmanov [1958A,B] and Lancaster [19581). The maximal correlation

has the following properties (Renyi [1959]):

(a) Q < p*(X,Y) < 1

(b) p*(X,Y) = 0 if and only if X and Y are independent



- 5 -

(c) If there exists a relation of the form u(X) = v(Y) where u

and v are Borel-measurable functions with var[u(X)] > 0,

then p*(X,Y) = 1.

Therefore, in the bivariate case our procedure can also be regarded as

a method for estimating the maximal correlation between two variables,

providing as a by-product estimates of the functions 6*, p* that

achieve the maximum.

In the next section, we describe our procedure for finding optimal

transformations using algorithmic notation, deferring mathematical

justifications to sections 5 and 6. We next illustrate the procedure

in Section 3 by applying it to a simulated data set where the optimal

transformations are known. The estimates are surprisingly good. Our

algorithm is also applied to the Boston housing data of Harrison and

Rubinfeld [19781 as listed in Belsey, Kuh and Welsch [1980]. The trans-

formations found by the algorithm generally differ from those applied in

the original analysis. Finally, we apply the procedure to a multiple

time series arising from an air pollution study. A FORTRAN implemen-

tation of our algorithm is available from either author. Section 4

presents a general discussion and relates this procedure to other

empirical methods for finding transformations.

Sections 5 and 6 provide some theoretical framework for the

algorithm. In Section 5, under weak conditions on the joint distribu-

tion of Y,X1,...,Xp, it is shown that optimal transformations exist

and are generally unique up to a change of sign. The optimal transfor-

mations are characterized as the eigenfunctions of a'set of linear integral

equations whose kernels involve bivariate distributions. We then show

that our procedure converges to optimal transformations.

Section 6 discusses the algorithm as applied to finite data sets.

The results are dependent on the type of data smooth employed to estimate
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the bivariate conditional expectations. Convergence of the algorithm is

proven only for a very restricted class of data smooths. However, in over

a thousand applications of the algorithm on a variety of data sets using

three different types of data smoothers only one (very contrived) instance

of nonconvergence has been found.

Section 6 also contains proof of a consistency result. Under fairly

general conditions, as the sample size increases the finite data trans-

formations converge in a "weak" sense to the distributional space optimal

transformations. The essential condition of the theorem involves the

asymptotic consistency of a sequence of data smooths, In the case of

i.i.d. data there are known results concerning the consistency of various

smooths. Stone's pioneering paper [19771 established consistency for

k-nearest neighbor smoothing. Devroye and Wagner [19801 and indepen-.

dently Spiegelman and Sacks [1980] gave weak conditions for consistency

of kernel smooths. See Stone [1977] and Devroye [19811 for a review of

the literature.

However, there are no analogous results for stationary ergodic

series or controlled designs. To remedy this we show that there are

sequences of data smooths which have the requisite properties in all

three cases.

This paper is laid out in two distinct parts. Sections 1-4 give a

fairly non-technical overview of the method and discuss its application to

data. Sections 5 and 6 are, of necessity, more technical, presenting the

theoretical foundation for the procedure.

There is relevant previous work. Closest in spirit to the ACE

algorithm we develope is the MORALS algorithm due to Young et. al.[19761

(see also de Leeuw et. al. [19761). It uses a similar alternating least

squares fit, but restricts transformations on discrete ordered variables
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to be monotonic and transformations on continuous variables to be linear

or polynomial. No theoretical framework for MORALS is given.

Renyi [1959] gives a proof of the existence of optimal transformations

in the bivariate case under conditions similar to ours in the general case.

He also derived integral equations satisfied by 0* and f* with kernels

depending on the bivariate density of X and Y and concentrated on

finding solutions assuming this density known. The equations seem

generally itractable with only a few known solutions. He did not consider

the problem of estimating 0*, p* from data.

Kolmogorov (see Sarmanov and Zaharov [19601, Lancaster [19691) proved

that if Yl,so,'Yq ,X1,...,Xp have a joint normal distribution, then the

functions e(Y , 4(X1,...,Xp) having maximum correlation are linear.

It follows from this that in the regression model

p
(1.4) 0(Y) ii 4(X.) + Z

if the f.(X.), i=l,...,p have a joint normal distribution and Z is an

independent N(O,cy2), then the optimal transformations as defined in

(1.2) are 0,4l'... ,,p Generally, for a model of the form (1.4)

with Z independent of (X1...Xop). the optimal transformations are not

equal to 6,4l,... ,0 . But in examples with simulated data generated

from models of the form (1.4), with non-normal {¢.(Xi)}, the estimated

optimal transformations were always close to 0'Il' . p '

Finally, we note the work in a different direction by Kimeldorf,

May, and Sampson [1982], who construct a linear programming type algorithm

to find the monotone transformations o(Y), ¢(X) that maximize the

sample correlation coefficient in the bivariate case p = 1.
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2. The Algorithm

Our procedure for finding *, ,4* is iterative. Assume a knownp
distribution for the variables Y,X .Xp Without loss of generality,

let EE2(Y) = 1, and assume that all functions have expectation zero.

To illustrate, we first look at the bivariate case:

(2.1) e2(o,¢) = E[O(Y)-¢(X)]2

Consider the minimization of (2.1) with respect to e(Y) for a given

function 4(X) keeping E2=1. The solution is

(2.2) 01(Y) = E[E(X)IY]/flE[E(X)IY]I

with 1111 E [E(*)2]12. Next, consider the unrestricted minimization oft(2.1)

with respect to O(X) for a given o(Y), The solution is

(2.3) 1(X) = E[e(Y) IX]

Equations (2.2) and (2.3) form the basis of an iterative optimization

procedure involving alternating conditional expectations (ACE):

BASIC ACE ALGORITHM

set C(Y) = Y/IIYI;
ITERATE UNTIL e2(8,4) fails to decrease:

f (X) = E[e(Y)|X];
replace ¢(X) with ¢1(X);
e1(Y) = E[E(X)IY]/NE[E(X)IY]I;
replace o(Y) with e1(Y);

END ITERATION LOOP;
O and ¢ are the solutions 0* and q*; 4

END ALGORTHM;
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This algorithm decreases (2.1) at each step by alternatingly mini-

mizing with respect to one function holding the other fixed at its

previous evaluation. Each iteration (execution of the iteration loop)

performs one pair of these single function minimizations. The process

begins with an initial guess for one of the functions (e = Y/11YH above)

and ends when a complete iteration pass fails to decrease e2. In

Section 5, we prove that the algorithm converges to optimal transformations

Now consider the more general case of multiple predictors X1,...,Xp.

We proceed in direct analogy with the basic ACE algorithm; we minimize

(2.4) e2(e,19...,f) = E[O(Y) - 0.(X.fl2
p ~~~j=l 'i'

2holding Ee = 1, EQ = Eq1 ='- =EXp = 0, through a series of single

function minimizations involving bivariate conditional expectations. For

a given set of functions 41(X1),...,0p(Xp) minimization of (2.4) with

respect to o(Y) yields

(2.5) e1(Y) = E[ Ep fi(X1)IY]/I1E[Ej (Xi)IY]N
The next step is to minimize (2.4) with respect to (X p (Xp)

given o(Y). This is obtained through another iterative algorithm.

Consider the minimization of (2.4) with respect to a single function

hk(Xk) for given e(Y) and a given set fl'***' k-l'fk+l' '* p* The

solution is

(2.6) hk,l(Xk) = E[e(Y) - j fi(Xi)IXk] *A

The corresponding iterative algorithm is then:
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set p1(X1),. .. (Xp) = 0;
ITERATE UNTIL e2 6.¢190669fp) fails to decrease;

FOR k =1 TO p DO:

fk,l(Xk) = E[6(Y) - kfi(Xi)IXk];
replace hk(Xk) with k,l(Xk);

END FOR LOOP;
END ITERATION LOOP;

fl...9fp are the solution functions;

Each iteration of the inner FOR loop minimizes e2 (2.4) with respect to

the function 4k(Xk), k =l,...,p with all other functions fixed at

their previous evaluations (execution of the FOR loop). The outer loop

is iterated until one complete pass over the predictor variables (inner

FOR loop) fails to decrease e2 (2.4).

Substituting this procedure for the corresponding single function

optimization in the bivariate ACE algorithm gives rise to the full ACE

algorithm for minimizing the (2.4) e2,

ACE ALGORITHM:

set e(Y) = Y/NIYU and f1(X1),..., p(Xp) = 0;
ITERATE UNTIL e2(69l '0p) fails to decrease;

ITERATE UNTIL e (89p) fails to decrease;
FOR k =1 TO p DO:

k,l(Xk) = E[e(Y) - I fj(Xi)lXk];
replace fk(Xk) with 1k,l(Xk);

- END FOR LOOP;
END INNER ITERATION LOOP;

01(Y) = E[ .(X.)IY]/IE[VI/(XN)EYE
i=l 1 i=1.4

replace o(Y) with 01(Y);
END OUTER ITERATION LOOP;
@sfl...sf are the solutions 6*4 ,,*.;p;

END ACE ALGORTHM;
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In Section 5, we prove that the ACE algorithm converges to optimal trans-

formations.
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3. Applications

In the previous section, the ACE algorithm was developed in the con-

text of known distributions. In practice, data distributions are seldom

known. Instead, one has a data set {(yk,xkl1...9xkp)9 1 <k <N} that is

presumed to be a sample from Y,X1,...,X P. The goal is to estimate the

optimal transformation functions e(Y),41(X1),...6,fp(Xp) from the data.

This can be accomplished by applying the ACE algorithm to the data with

the quantity e2, 11 1, and the conditional expectations replaced by

suitable estimates. The resulting functions e* ...,p*0 are then

taken as estimates of the corresponding optimal transformations.

The estimate for e2 is the usual mean squared error for regression,

2 N~l p 2e (6.¢l 'p N E[e(yk) - .1 j(x kj)]
2

If g(y,x1,...,xp) is a function defined for all data values, then ligM

is replaced by

2 1 N 2Ngll N N 9 (Yk,xkl....'xkp)k_l

For the case of categorical variables, the conditional expectation estimates

are straightforward:

E[AIZ =z] = I A.! I 1
z.=zJz .=z

where A is a real valued quantity and the sums are over the subset of

observations having (categorical) value Z =z. For variables that can

*assume many ordered values, the estimation is based on smoothing techniques.

Such procedures have been the subject of considerable study (see, for

example, Gasser and Rosenblatt [1979], Cleveland [1979], Craven and
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Wahba [1979]). Since the smoother is repeatedly applied in the algorithm,

high speed is desirable, as well as adaptability to local curvature.

We use a smoother employing local linear fits with varying window width

determined by local cross-validation ("super smoother", Friedman and

Stuetzle [1984]).

The algorithm evaluates 4* 99,$0 p at all the corresponding

data values, i.e. e*(y) is evaluated at the set of data values {yk}
k=l,...,N. The simplest way to understand the shape of the transfor-

mations is by means of a plot of the function versus the corresponding

data values, that is, through the plots of *e*(yk) versus Yk and

$l,... ,$p versus the data values of x,... ,x respectively.
p p

In this section, we illustrate the ACE procedure by applying it

to various data sets. In order to evaluate performance on finite samples,

the procedure is first applied to simulated data for which the optimal

transformations are known. We next apply it to the Boston housing data

of Harrison and Rubinfeld [1978] as listed in Belsey, Kuh and Welsch

[1980], contrasting the ACE transformations with those used in the

original analysis. For our last example, we apply the ACE procedure to

a multiple time series to study the relation between air pollution (ozone)

and various meteorological quantities.

Our first example consists of 200 bivariate observations {(Yk,xk),
1 <k<200} generated from the model

= exp[xk + ek]
3with the xk and the ek drawn independently from'a standard normal

distribution N(0,1). Figure la shows a scatterplot of these data.

Figures lb-ld show the results of applying the ACE algorithm to the data.

The estimated optimal transformation e*(y) is shown in the plot lb of
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(yk) versus Yk' 1 <k <200. Figure lc is a plot of p*(xk) versus

Xk. These plots suggest the transformations 0(y) = log(y) and f(x)

= x3 which are optimal for the parent distribution. Figure ld is a plot

of '*(Yk) versus $*(xk). This plot indicates a more linear relation

between the transformed vatlables than that between the untransformed

ones.

The next issue we address is how much the algorithm overfits the

data due to the repeated smoothings, resulting in inflated estimates of

the maximal correlation p* and of = 1 - e*2. The answer, on the simulated

data sets we have generated, is surprisingly little,

To illustrate this, we contrast two estimates of p* and R

using the above model. The known optimal transformations are e(Y) =
3log Y, ¢(X) = X3. Therefore, we define the direct estimate for p*

given any data set generated as above by

A* 1
N

____ 3 3
p = kI(log9 Yk -log Y)(xk -x)

k=l

and A*2 = p*2 The ACE algorithm produces the estimates

N kI § (Yk)^*(xk)Nk=l

and R 1 = p In this model p* = 0.707 and R 0.5.

For 100 data sets, each of size 200, generated from the above model,

the means and standard deviations of the p* estimates are

mean s.d.

p* direct .700 .034
ACE .709 .036
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The means and standard deviations of the R*2 estimates are

mean s.d.

R*2 direct .492 .047
ACE .503 .050

We also computed the differences p*p

data sets. The means and standard deviations

A* -A*
A*2 R*2

mean

.001

.012

The above experiment was duplicated for

In this case we obtain

P* - A*p -p
^ 2 R 2R* -_R*

mean

.029

.042

R*2 _ R*2 for the 100and

are

s.d.

.015

.022

smaller sample size N =100.

s.d.

.034

.051

Wle next show an application of the procedure to

generated from the model

Yk= exp[sin(xk) +ek/2]

simulated data

(1 <k<200)

with the xk sampled from a uniform distribution U(0,2-n) and the ek

drawn independently of the xk from a standard normal distribution

N(0,1). Figure 2a shows a scatterplot of these data. Figures 2b and 2c

show the optimal transformation estimates 6*(y) and $*(x). Although

log(y) and sin(x) are not the optimal transformations for this model

(owing to the non-normal distribution of sin(x)) these transformations

are still clearly suggested by the resulting estimates.
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Figure 2c
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Our next example consists of a sample of 200 triples {(yk9xkl,xk2)

1 <k <200} drawn from the model Y = X1X2 with X1 and X2 generated

independently from a uniform distribution U(-l,l). Note that 0(Y) =

log(Y) and f.(X.) = log X (j =1,2) cannot be solutions here since

Y, X1 and X2 all assume negative values.- Figure 3a shows a plot of

e (yk) versus yk' while Figures 3b and 3c show corresponding plots of

$t(xkl) and $*(xk2) (1 <k <200). All three solution transformation

functions are seen to be double valued. The optimal transformations for

this problem are 0*(Y) = loglYl and 4*(X.) = logjXjI (j =1,2). The

estimates clearly reflect this structure except near the origin where the

smoother cannot reproduce the infinite discontinuity in the derivative.

This example illustrates that the ACE algorithm'is able to produce

non-monotonic estimates for both response as well as predictor transfor-

mations.
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For our next example, we apply the ACE algorithm to the Boston

housing market data of Harrison and Rubinfeld [1978]. A complete listing

of these data appear in Belsey, Kuh and Welsch [1980]. Harrison and

Rubinfeld used these data to estimate marginal air pollution damages as

revealed in the housing market. Central to their analysis was a housing

value equation which relates the median value of owner-occupied homes in

each of the 506 census tracts in the Boston Standard Metropolitan

Statistical Area, to air pollution (as reflected in concentration of

nitrogen oxides) and to 12 other variables that are thought to effect

housing prices. This equation was estimated by trying to determine the

best fitting functional form of housing price on these 13 variables. By

experimenting with a number of possible transformations of the 14 varia-

bles (response and 13 predictors), Harrison and Rubinfeld settled on an

equation of the form

log(MV) = al + a2 (RM) 2 + a3 AGE

+ a4 log(DIS) + a5 log(RAD) + a6 TAX

+ a7 PTRATIO + a8(B-0.63)2
+ a9 log(LSTAT) + a10 CRIM + al1 ZN

+ a12 INDUS + a13 CHAS + a14(NOX)P + e

A brief description of each variable is given in Table 1. (For a more

complete description, see Harrison and Rubinfeld [1978], Table IV.) The

coefficients al,...,a14 were determined by a least squares fit to mea-

surements of the 14 variables for the 506 census tracts. The best value

for the exponent p was found to be 2.0, by a numerical optimization

(grid search). This "basic equation" was used to generate estimates for

the willingness to pay for and the marginal benefits of clean air.



TABLE 1

Variables Used in the Housing Value Equation
of Harrison and Rubinfeld (1978)

Definition

Median value of owner-occupied homes

Average number of rooms in owner units

Proportion of owner units built prior to 1940

Weighted distances to five employment centers in the Boston
region
Index of accessibility to radial highways

Full property tax rate ($/$10,000)

Pupil-teacher ratio by town school district

Black proportion of population

Proportion of population that is lower status

Crime rate by town

Proportion of town's residential land zoned for lots greater
than 25,000 square feet

Proportion of nonretail business acres per town

Charles River dumny: = 1 if tract bounds the Charles River;
= 0 if otherwise

Nitrogen oxide concentration in pphm

Variable

MV

RM

AGE

DIS

RAD

TAX

PTRATIO

B

LSTAT

CRIM

ZN

INDUS

CHAS

NOX
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Harrison and Rubinfeld note that the results are highly sensitive to

the particular specification of the form of the housing price equation

We applied the ACE algorithm to the transformed measurements

(Y'x; .xl3) (using p =2 for NOX) appearing in the basic equation.

To the extent that these transformations are close to the optimal ones,

the algorithm will produce almost linear functions. Departures from

linearity indicate transformations that can improve the quality of the fit.

In this (and the following) example we apply the procedure in a

forward stepwise manner. For the first pass we consider the 13 bivariate

problems (p =1) involving the response y' with each of the predictor

variables x' (1 <k <13) in turn. The predictor k1 that maximizes
k __

R2[1(y'),6 1(x()] is included in the model. The second pass (over

the remaining 12 predictors) includes the 12 trivariate problems (p =2)

involving y', x' , xi (k $k). The predictor that maximizes

R2[g2(y'),$2 k (XI )A2 k(xl)] is included in the model. This forward

selection procedure is continued until the best predictor of the next

pass increases the R of the previous pass by less than 0.01.
A2

The resulting final model involved four predictors and had an R

of 0.89. Applying ACE simultaneously to all 13 predictors results in

^2an increased R of only 0.02.

Figure 4a shows a plot of the solution response transformation

g(y'). This function is seen to have a positive curvature for

central values of y', connecting two straight line segments of different

slope in either side. This suggests that the logarithmic transformation

may be too severe. Figure 4b shows the transformati6n ^(y) resulting

when the (forward stepwise) ACE algorithm is applied to the original

untransformed census measurements. (The same predictor variable set
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appears in this model.) This analysis indicates that, if anything, a

mild transformation, involving positive curvature, is most appropriate

for the response variable.

Figures 4c-4f show the ACE transformations $k(XI )---.k (XI )

for the (transformed) predictor variables x' appearing in the final

model. The standard deviation u('*) is indicated in each graph. This

provides a measure of how strongly each $'(x.) enters into the model

for e*(y'. (Note that a(e) = 1.) The two terms that enter most

strongly involve the number of rooms squared (Figure 4c) and the logarithm

of the fraction of population that is of lower status (Figure 4d). The

nearly linear shape of the latter transformation suggests that the original

logarithmic transformation was appropriate for this variable. The trans-

formation on the number of rooms squared variable is far from linear,

however, indicating that a simple quadratic does not adequately capture

its relationship to housing value. For less than six rooms, housing value

is roughly independent of room number, while for larger values there is

a strong increasing linear dependence. The remaining two variables

then enter into this model are pupil-teacher ratio and property tax rate.

The solution transformation for the former, Figure 4e, is seen to be

approximately linear while that for the latter, Figure 4f, has considerable

nonlinear structure. For tax rates up to $320 housing price

seems to fall rapidly with increasing tax, while for larger rates the

association is roughly constant.

Although the variable (NOX)2 was not selected by our stepwise

procedure we can try to estimate its marginal effect on median home

value by including it with the four selected variables and running ACE
'2with the resulting five predictor variables. The increase in R over.
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the four predictor model was .006. The solution transformations on the

response and original four predictors changed very little. The solution

transformation for (NOX)2 is shown in Figure 4g. This curve is a nonmono-

tonic function of NOX2 not well approximated by a linear (or monotone)
function. This makes it difficult to formulate a simple interpretation

of the willingness to pay for clean air from these data. For low concen-

tration values, housing prices seem to increase with increasing (NOX)2
whereas for higher values this trend is substantially reversed.

4
Figure 4h shows a scatterplot of .*(yk) versus I4*(xkj) for

the four predictor model. This plot shows no evidence of additional

structure not captured in the model

4
8*(Y) = I¢(x.) +e

j=l JJ

*2The e resulting from the use of the ACE transformations was 0.11 as

compared to the e2 value of 0.20 produced by the Harrison and Rubinfeld

[1978] transformations involving all 14 variables.

For our final example, we use the ACE algorithm to study the rela-

tionship between atmospheric ozone concentration and meteorology in the

Los Angeles basin. The data consist of daily measurements of ozone con-

centration (maximum one hour average) and eight meteorological quantities

for 330 days of 1976. Table 2 lists the variables used in the study.

The ACE algorithm was applied here in the same forward stepwise manner

as in the previous (housing data) example. Four variables were selected.

These are the first four listed in Table 2. The resulting R2 was 0.78.

Running the ACE algorithm with all eight predictor variables produces

an^2an R of 0.79.
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TABLE 2

Variables Used in the Ozone Pollution Example

SBTP: Sandburg Air Force Base temperature (C°)

IBHT: Inversion base height (ft.)

DGPG: Daggett pressure gradient (mmhg)

VSTY: Visibility (miles)

VDHT: Vandenburg 500 millibar height (m)

HMDT: Humidity (percent)

IBTP: Inversion base temperature (F°)

WDSP: Wind speed (mph)

Dependent Variable
UP03: Upland ozone concentration (ppm)



In order to assess the extent to which these meteorological variables

capture the daily variation of the ozone level the variable day-of-the-year

was added and the ACE algorithm was run with it and the four selected

meteorological variables. This can detect possible seasonal effects
-2not captured by the meteorological variables. The resulting R was 0.82.

Figures 5a-5f show the optimal transformation estimates.

The solution for the response transformation, Figure 5a, shows that,

at most, a very mild transformation with negative curvature is indicated.

Similarly, Figure 5b indicates that there is no compelling necessity to

consider a transformation on the most influential predictor variable,

Sandburg Air Force Base Temperature. However, the solution transforma-

tion estimates for the remaining variables are all highly nonlinear (and

nonmonotonic). For example, Figure 5d suggests that the ozone concen-

tration is much more influenced by the magnitude than the sign of the

pressure gradient.

The solution for the day-of-the-year variable, Figure 5f, indicates

a substantial seasonal effect after accounting for the meteorological

variables. This effect is minimum at the year boundaries and has a broad

maximum peaking at about May 1. This can be compared with the dependence

of ozone pollution on day-of-the-year alone without taking into account

the meteorological variables. Figure 5g shows a smooth of ozone concen-

tration on day-of-the-year. This smooth has an R of 0.38 and is seen

to peak about three months later (August 3).

The fact that the day-of-the-year transformation peaked at the

beginning of May was initially puzzling to us, since the highest pollu-

tion days occur during July to September. This latter fact is confirmed

by the day-of-the-year transformation with the meteorological variables
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removed. Our current belief is that with the meteorological variables

entered, day-of-the-year becomes a partial surrogate for hours of daylight

before and during the morning commuter rush. The decline past May 1

may then be explained by the fact that daylight savings time goes into

effect in Los Angeles on the last Sunday in April.

This data illustrates that ACE is useful in uncovering interesting

and suggestive relationships. The form of the dependence on the Daggett

pressure gradient and on the day-of-the-year would be extremely

difficult to find by any previous methodology.
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4. Discussion

The ACE algorithm provides a fully automated method for estimating

optimal transformations in multiple regression. It also provides a

method for estimating maximal correlation between random variables. It

differs from other empirical methods for finding transformations (Box and

Tidwell [1962]; Anscombe and Tukey [1963]; Box and Cox [1964]; Kruskal

[1964], [19651; Fraser [1967] ; Linsey [19721 ; Box and Hill [1974] ; Linsey

[1972] , [19741; Wood [1974]; Mosteller and Tukey [19771; and Tukey

[1982]) in that the "best" transformations of the response and predictor

variables are unambiguously defined and estimated without use of ad hoc

heuristics, restrictive distributional assumptions, or restriction of the

transformation to a particular parametric family.

The algorithm is reasonably computer efficient. On the Boston housing

data set comprising 506 data points with 14 variables each, the run took

12 seconds of CPU time on an IBM 3081. Our guess is that this translates

into 2.5 minutes on a VAX 11/750 with FP. To extrapolate to other problems,

use the estimate that running time is proportional to (number of variables)

x (sample size).

A strong advantage of the ACE procedure is the ability to incorporate

variables of quite different type in terms of the set of values they can

assume. The transformation functions e(y),41(xl),..., p(xp) assume

values on the real line. Their arguments can, however, assume values on

any set. For example, ordered real, periodic (circularly valued) real,

ordered and unordered categorical variables can be incorporated in the

same regression equation. For periodic variables, the smoother window

need only wrap around the boundaries. For categorical variables, the

procedure can be regarded as estimating optimal scores for each of their
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values. (The special case of a categorical response and a single cate-

gorical predictor variable is known as canonical analysis--see Kendall

and Stuart [1967], p. 568--and the optimal scores can, in this case,

also be obtained by solution of a matrix eigenvector problem.)

The ACE procedure can also handle variables of mixed type. For

example, a variable indicating present marital status might take on an

integer value (number of years married) or one of several categorical

values (N =never, D =divorced, W =widowed, etc.). This presents no

additional complication in estimating conditional expectations. This

ability provides a straightforward way to handle missing data values

(Young et al. [1976]). In addition to the regular sets of values realized

by a variable, it can also take on the value "missing."'

In some situations the analyst, after running ACE, may want to

estimate values of y rather than Q*(y), given a specific value of x.

One method for doing this is to attempt to compute e* ( I fj(xj)).
However, letting

p
Z = X q!(X*)

j=l J J

we know that the best least squares predictor of Y of the form X(Z)
is given by E(YIZ). This is implemented in the current ACE program by

p
predicting y as the function of I j (xj) gotten by smoothing the

data values of y on the data values of I * (x.). We are grateful
j=l J J

to Arthur Owens for suggesting this simple and elegant prediction procedure.

The solution functions Q*(y) and $*(x1),... ,$*(x ) can be stored1 p p
as a set of values associated with each observation 4(Yk,xkl,.,xkp),
1 < k < N. However, since e(y) and 4(x) are usually smooth (for

continuous y, x), they can be easily approximated and stored as cubic

spline functions (deBoor [1978]) with a few knots.
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As a tool for data analysis, the ACE procedure provides graphical

output to indicate a need for transformations, as well as to guide in

their choice. If a particular plot suggests a familiar functional form

for a transformation, it can be substituted for the empirical, transfor-

mation estimate and the ACE algorithm can be rerun using an option which

alters only the scale and origin of that particular transformation. The

resulting e2 can be compared to the original value. We have found

that the plots themselves often give surprising new insights into the

relationship between the response and predictor variables.

As with any regression procedure, a high degree of association

between predictor variables can sometimes cause the individual transfor-

mation estimates to be highly variable even though the complete model

is reasonably stable. When this is suspected, running the algorithm on

randomly selected subsets of the data, or on bootstrap samples (Efron

[1979]) can assist in assessing the variability.

The ACE method has generality beyond that exploited here. An

immediate generalization would involve multiple response variables

Y1,..,Y q* The generalized algorithm would estimate optimal transfor-

mations , , that minimize

E[lq =1 6(Y) -JP=l (X.)]2

subject to =0 , = l,...,q, Ej =O, j = l,...,p and

lllq =l0t(t)112= 1.

This extension generalizes the ACE procedure in a sense similar
A

to that in which canonical correlation generalized linear regression.
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The ACE algorithm (Section 2) is easily modified to incorporate

this extension. An inner loop over the response variables, analogous

to that for the predictor variables, replaces the single function

minimization.
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5.0 Optimal Transformations in Function Space

Introduction

In this section, we first prove the existence of optimal transfor-

mations (Theorem 5.9). Then we show that the ACE algorithm converges

to an optimal transformation (Theorems 5.18 and 5.19).

Define random variables to take values either in the reals or in a

finite or countable unordered set. Given a set of random variables

Y,X1,...,Xp, a transformation is defined by a set of real valued

measurable functions ).. = (e,¢), each function defined on the

range of the corresponding random variables, such that

(5.1) Ee(Y) = 0 , E4i(X.) = 0 , j =1,...,p
2 2

Ee (Y) < co E¢j2(X-) < co =, P3 3

'Use the notation

(5.2) (X) (X

Denote the set of all transformations by F.

(5.3) DEFINITION. A transformation (6*,e*) is optimal for regression

if E(e*)2 = 1, and

e*2 = E[E*(Y)-4*(X)]2 = inf {E[E(Y)-.(X)]2;Ee2=}
- ~F_

(5.4) DEFINITION. A transformation (e**,e**) is optimal for

correlation if E(e**)2 = 1, E('**)2 = 1,

p= E[e**(Y)$**(X)] = sup {E[e(Y)'(X)] ; E')2=1,Ee2=1}

(5.5) THEOREM. If (e**, **) is optimaZ for correZation, then 0* =

= p*e** is optimaZ for regression and converseZy. Furthermore
e*2 =1 _ *2
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PROOF. Write

E(0e-)2 = 1 - Ee4 + E42
- 1 - 2E(e' ) +E+

where ¢ = E/. Hence

> 1 - 2p*/+7+(5.6)

with equality only if

over E-p2 is at E4,2
(e*)2= 1 -(p*)2 and

0*= e**, . *= p*c1**

reversible.

EeO = p*. The minimum of the right side of (5.6)

= (p*)2 where it is equal to 1 (p*)2. Then

if (6**,e**) is optimal for correlation, then

is optimal for regression. The argument is

5.1 Existence of Optimal Transformations

To show existence of optimal transformations, two additional

assumptions are needed:

AI. The only set of functions satisfying (5. 1) such that

6(Y) + .j O.(X.) = 0 a.s.

are individually a.s. zero.
To formulate the second assumption, we use:
(5.7) DEFINITION. Define the HiZbert spaces H2(Y),H2(X1),...9H2(Xp)
as the sets of functions satisfying (5.1) with the usual inner product,

i.e., H2(Xj) is the set of alZ measurabZe 4. such that E4.(X.) = 0,

E¢2(X.) < X with E[jfX =(X
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AII. The conditional expectation operators

E(¢j(Xi) {Y):

E(¢j ( Xj) |Xi ) :

E(e(Y)IX| ):

H2(Xj) -k H2(Y),

H2(XY) -* H2(Xj )

H2(Y) ) H2( Xi )

are all comrpact.

Condition AII is satisfied in most cases of interest. A sufficient

condition is given by: let X, Y be random variables with joint density

fX9y and marginals fX9 fy Then the conditional expectation operator on

H2(Y) -- H2(X) is compact if

(5.8) ff[f2Y/fxfyIdxdy <'o

(5.9) THEOREM. Under AI and AII optimal transformations exicst.

Some machinery is needed.

(5.10) PROPOSITION. The set of all functions f of the form

f(Y,X) = e(Y) + ljfj(Xj) , e E H2(Y), qj E H2(X )

(g,f) = E[gf] v NlfH2 = Ef2

is a HiZbert space denoted by H2. The subspace of aZZ functions $ of

the form

$(X) = Clfj(X ), eH2(XjX

is a closed Zinear subspace denoted by H2(X). So are H2(Y) H2(Xl),...,H2(Xp).

I ~j

with the inner product and norm
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(5.10) follows from:

(5.11) PROPOSITION. Under AI, AII there are constants 0 < cl < C2 < o

such that

c (j0Ie2 +Xpl,4.112) < lie +jp4 1II2 < c2(110112 +jIpjl%112)

PROOF. The right hand inequality is immediate. If the left side does

not hold, we can find a sequence fn = 0n +J¢nsi such that

11oi2 +XPil ii2 = 1, but l1fn112 -*0. There is a subsequence n' such

that en' w 4) ., w 4j in the sense of weak convergence in

H2(Y) ,H2(X1),.. .,H2(Xp) respectively.

Write

[n, j(X )¢n ji(X )] =Ei1n, j(Xj)E(n,i(Xi ,)

to see that AII implies E4) n.qnli.E0j.., i f j and similarly for

Een'n'j. Furthermore lI4)iI <lim 'ln'il, 11011 < lim "en,l1. Thus,

defining f = e +0 jj

l f 2 = 110 + jfJ 2-< lim llfn1112 = 0
Ilfil ~le+ j4). n

which implies, by AI, that 0= =... =0p = 0. On the other hand,

lhf Ai2 = H11, + j140n jill +2 J(e,,4) .) +2 ( n
n. n i n n ,3 ifj nj01i

Hence, if f = 0, then lim lHf R2 > 1.

(5.12) COROLLARY. If f
n

f in H2, then 9n 6 in H2(Y),
4 W. 4) in H (X j =1,...,p, and converseZy.,

PROOF. if f =0 +j 2 eo+jjj, then by (5.11), lim H 1 << ,n n snj n

niii~ < oo. Take n' such that en I e ~* ., 4', and let
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fi = j'jfj. -Then for any g E H2, (g nf (gf) so (g,f )

(g,f') all g. The converse is easier.

(5.13) DEFINITION. In H2, let Py. P and PX denote the projection

operators on H2(Y), H2(X ) and H2(X) respectively.

On H2(X ), P., j # i, is the conditional expectation operator, and

similarly for Py .

(5.14) PROPOSITION. Py is compact on H2(X) -*H2(Y) and PX is compact

on H2(Y) - H2(X)-

PROOF. Take nE H2(X) 4n '4 This implies, by (5.12), that

f.n-* 4.f By AII, PYfn,j L Py4j so that PYfn -. py. Now take

O E H2(Y), Ee H2(X), then (e,Py¢) = (e,6)= ,) h

Px H2(Y) --.H2(X) is the adjoint of Py and hence compact.

Now to complete the proof of Theorem 5.9. Consider the functional

11 on the set of all (e,¢) with 111= 1. For any e, ¢

ge_ 12 > Ne-P oil2

If there is a 0* which achieves the minimum of 0e-PxIO2 over 1f02 = 1,

then an optimal transformation is 0*, Pxe*. On lieu2 = 1

-Pel2= 1 -lip O12

Let s = {sup HPIeu; l=11. Take 0 such that lei = 1, on e0,

and UPXOnfl -. By the compactness of Px, lip6 IIPX91=el

Further, 101 < 1. If 1Oll < 1, then for 0'= 0/1f1, we get the

contradiction lPx0'I > s. Hence 1101 = 1 and (e, PxO) is an optimal

transformation.
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5.2 Characterization of Optimal Transformations

Define two operators U: H2(Y) -)H2(Y) and V: H2(X) -H2(X) by

Ue = PyPxe , = PxPYf

(5.15) PROPOSITION. U and V are compact, self-adjoint and non-negative

definite. They have the same eigenvaZues and there is a 1-1 correspondence

between eigenspaces for a given eigenvaZue specified by

= Px0/11Pxe 1 0e Pq/I11PYfII

PROOF. Direct verification.

Let the largest eigenvalue be denoted by X, X = IIUl = IIVI. Then

(5.16) THEOREM. If 0*, * is an optimaZ transformation for regression,

then
A6* =Ue*, A*=V*

ConverseZy, if e satisfies Xe = U0, 11011 = 1, then 0, PXE is optimal

for regression. If 0 satisfies X4 = V4, then 0 = Py/llPyYiI, and

X4/llPY11 are optimaZ for regression. In addition

(e*)2=1-A

PROOF. Let 0*, * be optimal. Then * = PxQ*. Write

11 o*-.f*112 = 1 - 2(0*,~*) + 11t12

Note that (6*,"*) = (o*,Py*) < NlP $ tI with equality only if

0* = ePy¢*, e constant. Therefore, 0* = P*/P*11 This implies

IIPy *IIe* = U0* , IIPy *I '* = V-*
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so that IIPy¢A is an eigenvalue X* of U, V. Computing gives

1= -*. Now take 6 any eigenfunction of U corresponding to

X, with lieN = 1. Let q = Pxe0 then 1126-1121- This shows that

0*, c* are not optimal unless X* = A. The rest of the theorem is

straightforward verification.

(5.17) COROLLARY. If X has multiplicity one, then the optimal trans-

formation is unique up to a sign change. In any case, the set of optimal

transformations is finite dimensional.

5.3 Alternating Conditional Methods

Direct solution of the equations Xe = Ue or = V" is

formidable. Attempting to use data to directly estimate the solutions

is just as difficult. In the bivariate case, if X, Y are categorical,

then As = Ue becomes a matrix eigenvalue problem and is tractable. This

is the case treated in Kendall and Stuart [1967].

The ACE algorithm is founded on the observation that there is an

iterative method for finding optimal transformations. We illustrate this

in the bivariate case. The goal is to minimize flO(Y)-4(X)112 with

11012 = 1. Denote P 6 = E(C1X), P 4 = E(41Y). Start with any first

guess function e0(Y) having a nonzero projection on the eigenspace of the

largest eigenvalue of U. Then define a sequence of ~unctions by

o0 Pxeo

61 Pyo/flP Y¢OO
= pXe1



and in general 4)n+1 = PXen' 0n+1 = POn+l/llPOn+1II. It is clear that

at each step in the iteration 110-011 is decreased. It is not hard to

show that in general, 0n9 4n converge to an optimal transformation.

The above method of alternating conditionals extends to the general

multivariate case. The analogue is clear; given on,9 n then the next

iteration is

fn+l Px n ' 0n+1 =Yn+l On+1

However, there is an additional issue: How can Px be computed using

only the conditional expectation operators P., j =1,. ..,p? This is done

by starting with some function o and iteratively subtracting off the

projections of n on the subspaces H2(X1),.. .HH2(Xp) until we get a,

function 4 such that the projection of 0-4 on each of H2(Xj) is zero.

This leads to

The Double Loop Algorithm

The Outer Loop

1. Start with an initial guess oe(Y).

2. Put Pen+1"X0n' /n+liPYfn /OPy 11I and repeat until~n+l nli +1 O+1 Yn+1
convergence.

Let PE O be the projection of 00 on the eigenspace E of U

corresponding to A. Then

(5.18) THEOREM. If IIPE6OQ 0, define an optimal transformation by

0* = PE0/ApeEj * Pxeo. Then ii n-0 11 II-lN 11O.

PROOF. Notice that 6n+1 Uen/NlUenN*. For any n, e= a n*+g where

gnIE. Because, if it is true for n, then

-49-
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6n+1 (an s +Ufn)/lanfl +Ugn l

and Ugn is I to E. For any gIE, IlUgil < rAlgll where r < X. Since

an+1= an/iluen"l' 9n+1 = Ugn/hlU0enil then

Olgn+lll/an+l = IIUgnu/'an < (r/X)lgnll/an

Thus lignNl/an< c(r/X)n. But N06nl = 1, an +Dgnilg = 1, implying

a2 -*1. Since aO > 0, then an > 0, so an . Now use iteo o*Ii2=na>'San ne*
(1-a )2 +Ng 112 to reach the conclusion. Since 11"+ 11 = HiPXOnPX*1

n n O+- -X
< jji0*N, the theorem follows.n

The Inner Loop

1. Start with functions 0,

2. If, after m stages of iteration, the functions are c(m), then

define, for j =1,2,...,p,

¢(m+1) = p.(e x (m) m+1)-
J J tjJ *i<j3

(5.19) THEOREM. Let lm= Th¢(m)Ten IIPXO-4mNi 0.

PROOF. Define the operator T by

T =(I-Pp)(I-Pp1 ( Ip1)

Then the iteration in the inner loop is expressed as

(5.20) T+1=(-

= Tm+l(O fo)

Write 6 -0- = - PXO +Px0 - 0. Noting that T(0-PXe) = e -Pe0 (5.20)
becomes

fm+1 = Pxe PTm+ X-O)
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The theorem is then proven by

(5.21) PROPOSITION. For any $ E H2(X), 1ITmI -*0 .

PROOF. N1I(I-P )11I2 = II-,f1 2PI12 < 11112 Thus IITI < 1. There is no

00 such that ITII =I1111. If there were, then IIP.11 = 0, all j.

Then for ; =

(¢q)= yj¢,j = t(j,j = O

The operator T can be decomposed as I + W, where W is compact. Now we

claim that IITmWII .O on H2(X). To prove this, let y > 0 and define

G(y) = sup {IITW 1/1iWI11; 11N11 <1, 11NWI11 >y}

Take

IIQU <

Y> 0

lfnl ' ,1, NWO' r> y so that IITW' fl/1W4n I --G(y). Then~n --~2N n ~n n

1, IIWII ' y and G(y) = NITW4II/11W4N. Thus G(y) < 1, for all

and is clearly non-increasing in y. Then

IITMW4II = IITWTm- 111 < G(IITm-lW-I11)IITm- lWlIl

Put YO = IIWNI, Ym = G(ym_1)Ym 11 then IITmWll < rm- But clearly

The range of W is dense in H2(X). Otherwise, there is a

such that (q',W¢) = 0, all . This implies (W*¢',¢) = 0 or

Then IT*-"I = N"'N and a repetition of the argument given above

to 0'= 0. For any + and £ > 0, take W' so that Nl-W41N

Then T'f I < E+NRTmW 1II, which completes the proof.

-+)0.
Y 0.

w*I = 0.

W*¢'I= O.

leads

< £.

There are two versions of the double loop. In the first, the initial

functions O are the limiting functions produced by the preceding

inner loop. This is called the restart version. In the second, the
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initial functions are ¢0 = 0. This is the fresh start version. The

main theoretical difference is that a stronger consistency result holds

for fresh start. Restart is a faster running algorithm, and is embodied

in the ACE code.

The Single Loop Algorithm

The original implementation of ACE combined a single iteration of the inner

loop with an iteration of the outer loop. Thus, it is summarized by

1. Start with 00, fO = 0.

2. If the current functions are on, ,n define fn+1 by

= T(e -' )
n n+1 n n

3. Let 0pn+/Pyin+i/11Py n+i * Run to convergence.

This is a cleaner algorithm than the double loop and its implementa-

tion on data runs at least twice as fast as the double loop and requires

only a single convergence test. Unfortunately, we have been unable to

prove that it converges in function space. Assuming convergence, it can

be shown that the limiting 0 is an eigenfunction of U. But giving condi-

tions for e to correspond to X or even showing that 0 will correspond

to X "almost always" seems difficult. For this reason, we adopted the

double loop algorithm instead.
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6.0 The ACE Algorithm on Finite Data Sets

Introduction

The ACE algorithm is implemented on finite data sets by replacing

conditional expectations, given continuous variables, by data smooths.

In the theoretical results concerning the convergence and consistency proper-

ties of the ACE algorithm, the critical element is the properties of the data

smooth used. The results are fragmentary. Convergence of the algorithm is

proven only for a very restricted class of smooths. In practice, in over 1000

runs of ACE over a wide variety of data sets and using three different

types of smooths, we have seen only one instance of failure to converge.

A fairly general, but weak, consistency proof is given. We conjecture the

form of a stronger consistency result.

6.1 Data Smooths

Define a data set D to be a set {x,....,xN} of N points in p

dimensional space, i.e. xk = (xk1l...)xkp). Let DN be the collection

of all such data sets. For fixed D, define F(x) as the space of all

real-valued functions f defined on D, i.e. EE F(x) is defined by

the N real numbers {f(xl),...,,(xN)}. Define F(x.), j =1,...,p as

the space of all real-valued functions defined on the set {xlj,x2j ...,xNj}.

(6.1) DEFINITION. A data smooth S of x on x. is a mapping

S: F(x) - F(x.) defined for every D in DN. If ¢ E F(x) denote the

corresponding element in F(x.) by S(4jx.) and itaz,values by S(4Ixkj).

Let x be any one of x1,. .. xp Some examples of data smooths are
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1. Histogram: Divide the real axis up into disjoint intervals {I }. If

Xk E I., define

S(~Ixk) = n1c~(xM)
inx xkEi

2. Nearest Neighbor: Fix M < N/2. Order the xk getting x1 <x2 <.*- <xN

(assume no ties), and corresponding 4(x1),...**(xn) Put

S(GHxk) = 2M M#0M ¢(Xk+m)

If M points are not available on one side, make up the deficiency on the

other side.

3. Kernel: Take K(x) defined on the reals with maximum at x = 0. Then

S(4Ixk) = E 4(xm)K(xm-xk) /E K(xt-xk)
m

4. Regression: Fix M and order xk as in (2) above. At xk, regress

the values of 4(xkM),.. .,4(xk+M) excluding 4(xk) on xkM * ,x

excluding xk, getting a regression line L(x). Put S(4Ixk) = L(xk).

If M points are not available on each side of xk make up the deficiency

on the other side.

5. Supersmoother: See Friedman and Stuetzle [1982].

Some properties that are relevant to the behavior of smoothers are given

below. These properties hold only if they are true for all D E DVn

Linearity. A smooth is linear if

S(act1 +"2) = aSQl "SS2

for all f19 ¢2 E F(x) and all constants a, 3.
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Constant Preserving. If f E F(x) is constant, c = c, then SX = c.

To give a further property, introduce the inner product ( )N on

F(x) defined by

N n Ik O(xk)O (xk)

and the corresponding norm 1 1"N'

Boundedness. S is bounded by M if

lsollN < MIIIN , all f E F(x)
where IISOIIN is defined Qn F(xj) exactly as "4"N is defined on F(x).

In the examples of smooths given above, all are linear, except

supersmoother. This implies they can be represented as an NxN matrix

operator varying with D. All are constant preserving. Histograms and

nearest neighbor are bounded by 2. Regression is unbounded due to end

effects, but in the appendix we introduce a modified regression smooth

that is bounded by 2. Supersmoother is bounded by 2. The bound for

kernel smooths is more complicated.

6.2 Convergence of ACE

Let the data be of the form =0,x(Ykxk...x k=1, ,N

Assume that y = x ='* =xp = 0. Define smooths Sy SIs .*O*Sp where

Sy: F(y,x)-+F(y) and S.: F(y,x)--+F(x.). Let H(y,x) be the set ofy3 2-yx etesto

all functions in F(y,x) with zero mean and H2(y), H2(xi) the corres-

ponding subspaces.

It is essential to modify the smooths so that the resulting functions

have zero means. This is done by subtracting the mean; thus the modified
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S. is defined by

(6.2) S.¢ = S.f- S.J=

Henceforth, we use onZy modified smooths and assume the original smooth

to be constant preserving, so that the modified smooths take constants

into zero.

The ACE algorithm is defined by

1. e(0) ( Yk) = Yk' 0) (Xkj) -°

The Inner Loop

2. At the n stage of the outer loop, start with ( I j

For every m > 1 and j =1,...,p define

,(m+1) = S (e(n) - (m (m)j .1+1)
ij

Keep increasing m until convergence to j.

The Outer Loop

3. Set 0(n+1) = Sy(:jj)/IISy(:j.j)RNN go back to the inner loop

with =(O (restart) or p.(O)=O (fresh start). Continue until
convergence.

To formalize this algorithm, introduce the space H2(0,4) with

elements ( e E H2(y), 4j E H2(xj), and subspaces H2(e)

with elements (O,,O,... ,O) = e and H2(0) with elements (0,4,...p
=§ F A

For f = (f0,f1,.. sfp) in H2(0,§) define S.: (,)H(,)

by

(S.f)i = I

3 i+s(iii
j ,i

j =j
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Starting with 0 = (e,o,O,...0), f(m) = (0,¢(m)1 )) one complete

cycle in the inner loop is described by

(6.3) o-( )=(I-Sp)(I-Sp 1)..(I-S )(e-t(m))

Define T on H2(0,4) H2(0,§) as the product operator in (6.3). Then

(6.4) e(m)= (e

If, for a given 0, the inner loop converges, then the limiting 4

satisfies

(6.5a) S(e-¢) = 0 , j=l,...,p

That is, the smooth of the residuals on any predictor variable is zero.

Adding

(6.5b) = SyI/I1Sy11N

to (6.5a) gives a set of equations satisfied by the estimated optimal

transformations.

Assume, for the remainder of this section, that the smooths are

linear. Then (6.5a) can be written as

(6.6) Sj4 = Sj2 , j =1,...,p 0

Let sp(S.) denote the spectrum of the matrix S.. Assume 1 + sp(S.).
3.- 3

(The number 1 is in the spectrum for constant preserving smooths, but not

for modified smooths.) Define matrices A. by A. = S.(I-S.Y-1 and

the matrix A as l.A. Assume further that -1 + sp(A). Then (.6.6)

has the unique solution

(6.7) ,,= A(I+A)-le ,
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The element § = (Of1y.. . , ) given by (6.7) will be denoted by Pe.

Rewrite (6.3) using (I-T)(e-Pe) = 0 as

(6.8) Pe= oi0m(pe O))

Therefore, the inner loop converges if it can be shown that Tmf >0Ofor

all f E H2(W). What we can show is

(6.9) THEOREM. If det[I+A] 7 0 and if the spectral radii of S1,...,Sp
are all Zess than one, a necessary and sufficient condition for tmf - O

for aZZ f E H2(4) is that

(6.10) det[XI -n(I-S /x)1(I-S )I

has no zeroes in AI > 1 except X = 1.

PROOF. For Tf 0O all f E H2(q), it is necessary and sufficient

that the spectral radius of T be less than one. The equation Tf = Xf

in component form is

(6.11) Xfj = -S(XIf+ I f) j =1,...,p .

Let s = If1 and rewrite (6.11) as
1

(6.12) (XI-S.)f. = s.((1-X)If. -s)
1<3

If X = 1, (6.12) becomes (I-S.)f. = -S.s or s = -As. By assumption,

this implies s = 0, and hence f. = 0, all j. This rules out X = 1

as an eigenvalue of T. For X $ 1, but X greater than the maximum of

the spectral radii of the S., j=1,...,p, define q. = (1-X) I f1-s.

Then f = (gj+l-gj)/(l-X), so

(xI-sj)(g9j+1-g9) = (1-x)sjg.
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or

(6.13) 9 = (I-S ./X) 1(I-S )g.

Since gp+1 = -Xs, g1 = -s, then (6.13) leads to

(6.14) Xs = (I-Sp/x)Y1(I-Sp) ...(I-S1/X)-(IS,)s

If (6.14) has no non-zero solutions, then s = 0, gj = 0, i =1,. ..,p,

implying all f. = 0. Conversely, if (6.14) has a solution s f 0, it

leads to a solution of (6.11).

Unfortunately, condition (6.10) is difficult to verify for general

linear smooths. If the S. are self-adjoint, non-negative definite,

such that all elements in the unmodified smooth matrix are non-negative,

then all spectral radii of S. are less than one, and (6.10) can be shown

to hold by verifying that

p -1lx1 <' IN(I-S./X) 1(I-S ),t
1

has no solutions X with 1XI > 1, and then ruling out solutions with

1Xi = 1.
Assuming that the inner loop converges to Pe, then the outer loop

iteration is given by

e(n+1) =

iIlSyPe IN

Put the matrix SyP =U, so that

(6.15) (n+1) = e

,,O(n)IN1
If the eigenvalue X of U having largest absolute value is real

and positive, then 0(n+1) converges to the projection of e(°) on the
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eigenspace of X. The limiting e, P9 is a solution of (6.5a,b).

However, if X is not real and positive, then 0 oscillates and does

not converge. If the smooths are self-adjoint and non-negative definite,

then SyP is the product of two self-adjoint non-negative definite

matrices, hence has only real non-negative eigenvalues. We are unable to

find conditions guaranteeing this for more general smooths.

It can be easily shown that with modifications near the endpoints,

the nearest neighbor smooth satisfies the above conditions. Our current

research indicates a possibility that other types of common smooths can

also be modified into self-adjoint, non-negative definite smooths with

non-negative matrix elements. For these, ACE convergence is guaranteed

by the above arguments.

However, ACE has invariably converged using a variety of non self-adjoint

smooths (with one exception found using an odd type of kernel smooth). We

conjecture that for "most" data sets, reasonable smooths are "close" enough

to being self-adjoint so that their largest eigenvalue is real, positive

and less than one.

6.3 Consistency of ACE

For OI . . 4p any functions in H2(Y),H2(X1),...,H2(Xp), and

any data set D E DN, define functions P.(.jlxj) by

(6.16) Pj(4ilxkj) = E(¢.(Xi)lXj =xkj)

Let fj in H2(xj) be defined as the restriction of fj to the set of

data values {x,. ..,xNj} minus its mean value over the data values.

Assume that the N data vectors (yk,xk) are samples

from the distribution of (YqX19...,Xn), not necessarily independent or even

random (see Section 6.4).



-61-

(6.17) DEFINITION. Let S(N), 5(N) be any sequence of data smooths. Theyy3
are mean square consistent if

ES(N)4K) ~xI2E 11S(l Xj ) - P (i lxj II NX 0

for allZZ - p as above, with the analogous definition for S(N)0 p y

Whether or not the algorithm converges, a weak consistency result

can be given under general conditions for the fresh start algorithm.

Start with 00 E H2(Y). On each data set, run the inner loop iteration m

times, that is, define

nm 1) = (n) _f(,(n)

Then set

(n+1) = S ¢(n+1)/115lS (n+1)1
-m y .-m y-m N

Repeat the outer loop Q times getting the final functions eN(y;m,Q).

fjN(xj;m,k). Do the analogous thing in function space starting with 60,
getting functions whose restriction to the data set D are denoted by

0(y;m,Z), c .(x.;m,Z). Then

(6.18) THEOREM. For the fresh start algorithm, if the smooths S(N)S(N)
y 3

are m.s. consistent, Zinear, and uniformly bounded as N - , and if for
2 n 2 2 2

any 0 E L2(Y) , Plel1N 11 211 Elli Ii N e 11611 then

E116 (y;m,k)-6(y;,m, ) 112 0, E11j (xj,)-(j;s)l 2 °*

If 0* is the optimaZ transformation PE0O/PE0OI,P* = P then as

m, Q--oo in any way,

@(*;mg,)-e*II -+o , l( ;, -4i 03
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PROOF. First note that for any product of smooths S(N)- ...SN),i1 1h '

11 ½h 0
- Pi. 0 °eN °01 h'*PO0~-

This is illustrated with SjN)S(N)009 i 'j. Since E|S (N) 0 Pje2 Is

then S N) 6 = pj0O¢j,N where

S jN) (SN)e )

Ellk2jNItN O. Therefore

I j i j, N

By assumption RS N)jINnN < MlfNIIN, where M does not depend on

Therefore EISiN)j N12 --.O. By assumption E|SN)P-6-PjP-e2 0

that EIS(N)S.(N) 0-P PO0II2-O.

N.

so

(6.19) PROPOSITION. If 6N

and 6 E H2(Y) such that

is defined in H2(y) for all data sets

E|eI(y)) -O(y) 112 00

10NN 1 2N °then

PROOF. Write 0/NON = 6/01 N + o(/11N -l/ N).

needed. First, to show that

Then two parts are

ElE;llN °12
EI I-NF--0N'N N"

and
second, that El 3(7g - ) 1 I' ).* For

N
the first part, let

2 N 11N(eN(Yk)1
N N kTIINI

e(yk) 2
8N)

= 2(1--eN1NH)

Then S2 < 4, so it is enough to show that S2 Po
N N to get 2ES2 0.ESN'O
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Let

VN =-(0kN(yk)-e(yk) )

VN Nk

22

=11I N11a11+ IIN) - 2(III1NIleN N(NeN

Both terms are positive, and since EVN2-O, E(INIINtII'IIN)20,

E(11611NIN0NNN-(ON,0)N)N O. By assumption i2p 211

resulting in S )0.

Now look at

2=102(kTe1 1 2
2N N= k N (T]

= I ellI2( 1 ) 2
21 12eN

Then EWN2---O follows from the assumptions.

Using Proposition 6.19 it follows that EiIeN(y;m,t)-e(y;m,z)12) 0

and in consequence, that E6. (x-;m,Q)-¢ (x ;m,k) 2 0

In function space, define

p(m)6= 6 -Tmex
Um p P(m)

Y X
Then O

IilUmoOl

The last step in the proof is showing that

B UmO0 iflUe 0m



as m, Q go to infinity. Begin with

(6.20) PROPOSITION. As m )0o, Urm U in the uniform operator norm.

PROOF. IIUmO-UeII = liPyTmpPeII < IITMPXel. Now on H2(Y), IITmPXII -0. If

not, take em' 1ii = 1 such that IITmP xeml > 6, all m. Let m' .*e

then Pxem s Pxe, and

11iT'PXem 11 < 11Tm Px(em e)11 + 11Tm'PXe11

< 1lPX(eM,-e)ll + ilTm PXei

By Proposition (5.21) the right hand side goes to zero.

The operator Urm is not necessarily self-adjoint, but it is

compact. By (6.20), if O(sp(U)) is any open set containing sp(U),

then for m sufficiently large sp(UM) C O(sp(U)). Suppose, for sim-

plicity, that the eigenspace ET corresponding to the largest eigenvalue

A of U is one-dimensional. (The proof goes through if El is higher-

dimensional but is more complicated.) Then for any open neighborhood 0

of A, and m sufficiently large, there is only one eigenvalue Xm of

Ur in 0, X -A and the projection p(m) of U corresponding to
m ~m E m

Am converges to PE in the uniform operator topology. Also, X can

be taken as the eigenvalue of Um having largest absolute value. If

X' is the second largest eigenvalue of U, and Am the eigenvalue of

Um having the second highest absolute value, then (assuming Ex. is

one-dimensional ) AmA '
.

Write

4m =U .p(m) , W=U PEA

so again RWM-WI -O. Now

-64-
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UmO = Am9E 90 + Wte
U 00 E. O+WOO
U9QeO = A PEAeO + W 00

£ > 0 we will show that there exists mi0, Q such that for

-o> 9

IIw'e0l/4~ <1 IIWQ0 11 /~~Q E

Take r = (A+X')/2
Denote by R(X,WM)

and select mO such that r > max(X',IX|I, m>m ).

the resolvent of Wm. Then

Wt= xtR(XWWm)dX
and

li 1W9' < r9, II R(X,,W )IIdIXI
m -27r J IXI=r m

where dIXI is arc length along |A| = r. On |A = r, for m > MO,
IIR(X,Wm)lI is continuous and bounded. Furthermore IIR(X,Wm)ll -*IIR(X,W)N

uniformly. Letting M(r) = max IIR(X,W)II, then

IlW 1N < r M(r)(1+ A )
m

where Am -v-O as m -o. Certainly

IIWPI II < r M(r)

Fix 6 > 0- such that (1+6)r < X. Take

m > max(mo9m )9 Xm > (1+6)r. Then

m' such that for
0

Wk1WIX/X < ( ) M(r)(1+A )
m -I

and

IWzl/AT~ < (1^)9+M(r)

(6.21 )

For any

m > M09

(6.22)



Now choose a new m0 and QO such that (6,22)is satisfied.

Using (6.22)

Il UmeO E

where 5mL -)0 as mgt >X. Thus

Q I EeI emE IIPE GOIiIl

and the right side goes to zero as m,gt-+O.

The term weak consistency is used above because we have in mind a

desirable stronger result. We conjecture that for reasonable smooths, the

set CN = {(Y19X )9 9(Y X algorithm converges} satisfies P(C ) b 1

and that for 0N the limit on CN starting from a fixed 00,

E[Ic lieN e*li2]"N1'

We also conjecture that such a theorem will be difficult to prove. A

weaker, but probably much easier result would be to assume the use of

self-adjoint nonnegative definite smooths with nonnegative matrix elements.

Then we know that the algorithm converges to some 0N' and we conjecture

that

E[eIIION-O*I NJO 0
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6.4 The M.S. Consistency of Nearest Neighbor Smooths

To show that the ACE algorithm is applicable in a situation, we need

to verify that the assumptions of Theorem (6.18) can be satisfied. We do

this first assuming that the data (Yl,xl) (YN,XN) are samples from a

2-dimensional stationary, ergodic process. Then the ergodic theorem implies

that for any e E L2(Y), 2e 116112 and, trivially, Ei eiiN2 ii2
To show that we can get a bounded, linear sequence of smooths that

are m.s. consistent, we use the nearest neighbor smooths.

(6.23) THEOREM. Let (Yl,xl),...,(YN,XN) be samples from a stationary

ergodic process such that the distribution of X has no atoms. Then there,

exists an m.s. consistent sequence of nearest neighbor smooths of Y on X.

The proof begins with;

.6.24) LEMMA. Suppose that P(dx) has no atoms and let PN(dx) w P(dx).
Take 6N > 6N 6>0, define J(x;£) = [x-E, x+£], and

E (x) = min le; PN(J (Xs)) > N

£ (x) = min l; P(J(X9E)) > 61

Then using A to denote symmetric difference

(1) PN(J(X,EN(X)) A J(X,£(X)))- , 0 uniformly in x

(2) lim sup PN(J(X,£(X)) A J(y,E(y))) < E (h)
-N {(x,y);Ix-yI<h} N

where ei(h) -00 as h 0.

proof. Let FN(x), F(x) be the cumulative d.f. corresponding to PN,P.
wSince FN ~ F and F is continuous, then it follows that

sup IFN(x) - F(x) - 0
x
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To prove (1) note that

PN(J(X9,N) A J(x,£)) < IPN(J(X,EN)) PN(J(X,E))I <

I6N PN(J(x, N))I + I6N-6I + IFN(x+c(x)) - F(X+E(X))I + IFN(X-6(x)) FN(X-£(X))|

which does it. To prove (2) it is sufficient to show that

sup P(J(X,E(X)) A J(Y,E(Y)) < E1 (h)
x,Y;lx-Yi< h

First, note that

l£(X) - £(Y)| < IX-YI

if J(X,E(X)), J(Y,E(Y)) overlap, then their symmetric difference consists,

of two intervals Il,I2 such that Jill < 21x-yj, 1121 < 21x-yl. There

is an h0 > 0 such that if |x-y| < ho , the two neighborhoods always

overlap. Otherwise there is a sequence {xn}, with s(xn) 0 and

P(J(xn,(xn ) 6, which is impossible since P has no atoms. Then for

h < ho

sup P(J(X,e(X)) A J(Y,E(y))) < 2 sup P(I)
x,y;|x-y|< h III< 2h

and the right hand side goes to zero as h --+0 .

The lemma is applied as follows: Let g(y) be any bounded function in L2(Y).

Define P6(g|x), using I(-) to denote the indicator function, as

g(Y) I (XI E J(X E:(X)) P(dy,dxl)=C

| (gl( ) I(x'EI(x X,£(x)) P(dx')

Note that P6 is bounded and continuous in x . Denote by S(N) the smooths
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with M = [N6] . Then

(6.25) PROPOSITION. EIIS(N) g - P g II2 0 for fixed 6.

proof. By (1) of the lemma, with probability one

(N) (gjx) =[6N] i g(yJ)I(XjEJ(x9EN(x))
can be replaced for all x by

9N [6N] - Y)(jJx()

where w is a sample sequence.

By the ergodic theorem, for a countable {x } dense on the real line, and

WC-.', P(W') =1,

)N(xn sw) = 9N(xn(w) - P6(gIxn) -- O0

Use (2) of the lemma to establish that for any bounded interval J and any

eWF , N(x,w) - 0 uniformly for xCJ. Then write

( )N 2 I N 2

bN( )II N Nk N(xk w)I(xkC J) +Nw 1 N(xk,w)I(xk J)N'N ~~~k=1 k=l

The 1st term is bounded and goes to zero for wEW', hence its expectation

goes to zero. The expectation of the 2nd term is bounded by cP(XE'J).

Since J can be taken arbitrarily large, this completes the proof.

Using the inequality

EllS6(N) g - pxglN < 2 EIIS(N) g9 P6g9IN+ 211P6g-P 9gI2

gives

(N) ~~2 2
lim EIIS(N) g - PxglIN < 211IP6g - P gli

(6.26) PROPOSITION. For any p(x) E L2(X), lim liP64 - 41I 0

proof. For 4 bounded and continuous
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If ¢ (x') I(x'EJ(x,E(x)))P(dx') --+ (x)

as 6 0 for every x . Since sup IP6P - 41 < c, all 6, then

11P64 - 41 -# 0 The proposition follows if it can be shown that

for every d E L2(X), T1 IIP6II <. But
6

ItP11II = fT- f(x')I(x'eJ(x,E(x)))P(dx')] P(dx)

< (x6 ) P(dxJ)l I(X Ej (x,£(X)))P(dx)]

Suppose that x' is such that there are numbers E ,£E with P([x',x'+£+])

= 6, P([x',x' - e]) = Then x' EJ (x,E(x)) implies x'-E- <x <x' +E, and

(6.27) -fI(x'EJ(x,E(x)))P(dx) < 2

If, say, P([x'oo)) < 6, then x>x' -E and (6.27) still holds, and similarly

if P((-oo,x'])<6

Take {On} to be a countable set of functions dense in L2(Y). By

(6.25) and (6.26),for any £ > 0, we can select 6(s,n),N(6,n) so that for all n

EIS "'-n pX0ne N-< e , for 6 < 6(E,n), N > N(&,n)

Let sm+0 as M o, define M = min 6(e,n), and N(M) = max N(6M,n). ThenM ~~~~~~n<M n<M

Ell en PXanI2N<eMX for n < M, N > N(M)

Put M(N) = max { M; N > max (M,N(M))} . Then M(N) -+ as N-+ and

the sequence of smooths S(N) is m.s. consistent for all En Noting
6M(N)n
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N)2N)2 2
that for OEL2(Y) ElIS)e - P < 3EI1s(N)en - P' o + 91S.-ePie

completes the proof of the theorem.

The fact that ACE uses modified smooths S(N) = S(N) -

and functiotis g such that Eg = 0 causes no problems, since

11S( 2
g3 )215N911~N=

and

S(N) =1 N xW36 NffI=1 9N( k' 'k=

using the notation of Proposition 6.25

Assume g is bounded and write

k=l k=l

By the ergodic theorem, the 2nd term goes a.s. to EPO(gMX), and an argument

mimicking the proof of 6.25 shows that the first term goes to zero a.s.

Finally, write

IEP6(gjX)| = IEP6(gjX) - EPXgI < IIP6 - 1

where f = PXg. Thus, Theorem 6.23 can be easily changed to account for

modified smooths.

In the-controlled experiment situation, the {k} are not random,

but the condition PN(dx).-*P(dx) is imposed. Additional assumptions are

necessary;

(A.1). For 0(Y) any bounded function in L2(Y),

E(e(Y)IX= x) is continuous in x

(A.2) For i $ j and ¢(x) any bounded continuous function E(¢(X;) X. = x)

is continuous in x.



A necessary result is;

(6.28) PROPOSITION. For e(y) bounded in L2(Y) and ¢(x) bounded and

continuous

N =1 (Y)xj) as.- E6(Y)¢(X)
j=l -

N N
Let TN = (Y.)4(x.) . Then ETN g9(x )(x.) , 9(j) = E[I(Y)jX=xl .

By hypothesis, ETN/N -- Ee(Y)(X). Further

2 N 2
zN = Var(TN) = 1 EteO(yj)-g(xj)J p (x.j)

j=l ~ -3 -

N
=I h(xj)4dx.)j
j=l J

2
where h(x) = E[(e(Y) - g(x)) IX= i . Since h4 is continuous and

bounded, then IN/N Eh(X)¢(X). Now the application of Kolmogorov's

exponential bound (see Loeve, 1960, pp.254-255) gives

TN ETN a.s.
N N °

proving the proposition.

In the consistency theorem (6.18) we add the restriction that 0o

be a bounded function in L2(Y). Then the condition on 0 may be
2 P 2

relaxed to For e any bounded function in L2(Y), 1e1N -&i11t

2 2
EIIIIN -' 11e11. These follow from (6.28) and its proof. Further,

because of the H1,H2, m.s. consistency of the smooths can be relaxed

to the requirements that;

(A.3,i) For i$j and every bounded continuous function f(x1)

-72-
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2
if j N

(H.3,ii) For every bounded function e(y)EL2(Y)
2

Eli SO - PJeOlN--.e

(H.3,iii) For every bounded continuous function ¢(x;)

Eli
y N

The existence of sequences of nearest neighbor smooths satisfying (A.3)

can be proven in a fashion very similar to the proof of Theorem 6.23.

(H.3,i) is proven using Lemma 6.24 and Proposition 6.26. (H.3,ii) and

(H.3,iii) require Proposition 6.28 in addition.

If the data is i.i.d. stronger results can be gotten. For instance

m.s. consistency can be proven for a modified regression smooth similar

to supersmoother. For x any point, let J(x) be the indices of the

M points in {Xk} directly above x plus the M below. If there are

only M'< M above (below) then include the M+(M-M') directly below

(above), For a regression smooth

(6.29) S(WIx) = + r x(¢ X) (x-x
X 2

where x , xx are the averages of ¢(Yk), xk over the indices in J(x).

r (4,x), a2 the covariance between ( xk and the variance of xk

over the indices in J(x).

Write the second term in (6.30) as

rp(q,x) (x-ix)
ax ax
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If there are M points above and below in J(x), it is not hard to show

that

x-x

I X. <1
x

This is not true near endpoints where (x-ix)/ax can become arbitrarily

large as M gets large. This endpoint behavior keeps regression from

being uniformly bounded. To remedy this, define a function

Jx, lxi < 1
I xI t=

sgn(x) , Ixi > 1

and define the modified regression smooth by

(6.31) S(4Wx) = + r x(¢x) x-x[
ax ax t

This modified smooth is bounded by 2.

(6.32) THEOREM. Ifv as N --. , M - oo, M/N -#0 and P(dx) has no

atoms, then the modified regression smooths are m.s. consistent.

The proof is in Breiman and Friedman (1983). We are almost certain that

the modified regression smooths are also m.s. consistent for stationary

ergodic time series and in the weaker sense for controlled exper-

iments, but under less definitive conditions on rate at which M o.
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APPENDIX 1

Proof of Theorem 6.32

If the window size goes to zero at the right rate as N -- o, then for

i.i.d data most "reasonable" smooths which utilize local smoothing are m.s.

consistent. There is a substantial literature on consistency, usually in

higher dimensional spaces.

The cormon definition of consistency is: given a set of N-1 inde-

pendent copies (X,Y ),..*.,(XN l,YN 1 of (X,Y) drawn from the same

bivariate distribution, and EE L2(Y), call s(N) L2-consistent if

E[S( }§X)-E(0(Y)jX)]- 0. To see that our definition is equivalent, put

down the fixed point (x,y) and then the other N-1 random points
(Nt2(x 1y1) ... (XN 19YN-1 Now compute E[S 'Ix)-E((Y)Ix)1 2= gN(x). Our

definition of m.s. consistency is then

1
E[n Ik 9N(Xk)] -+ 0

or EgN(X) -0.
Uniform boundedness is a critical condition for consistency proofs.

A key element in Stone's [1977] proof is (put in different form)

(A.1 ) PROPOSITION. Take data sets drawn from a bivariate distribution

(X,Y), S(N) a uniformZy bounded sequence of smooths on x, Px the

conditional excpectation operator. If, for a set of functions{i}

dense in H2(Y),
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Ell|S(N) (¢ 1x)-Px(¢I x) II I O. 0

then the S(N) as m.s. consistent. If, for a set of functions {h}

dense in H2(X),

(A. 2 )E||S N(h Ix)-h(x)lN 0

then (A.2 ) holds for aZZ h E H2(X).

The proof is simple and is omitted.

Assume S(N) is linear. Then

(A.3 ) EDS(N)O-Pxoil2 < 2EIIS(N)(q-PX)U2 + 2ENS(N)PxO-PxOI2I

If it can be shown that EIIS(N)h-hH 2 for all continuous h E H2(X)
vanishing off at finite intervals, and if the first term on the right

in (A.3 ) goes to zero for all ¢ such that 1111 < 00, then (A.1 )

implies that S(N) is m.s. consistent. This strategy works for a wide

variety of smooths.

To illustrate, because Stone's results [19771 do not seem immediately
applicable to bivariate regression smooths, m.s. consistency is proven for

the modified regression smooths (Theorem 6.32).
Assume 1111 - <o and use the inequality (A.3) with g(x) =

px( Ix). Then

S(4 glx) 2M jEjE(X)(¢(yj)-9(xj)){+ ai x Gt}
x x
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ro(vex)r the covariance between x(k''Xk and the variance of xk
over the indices in J(x).

Write the second term in (A.3 ) as

a a
x x

If there are M points above and below in J(x), it is not hard to show

that
x-x

I X I < 1.
x

This is not true near endpoints where (x-ix)/ax can become arbitrarily

large as M gets large. This endpoint behavior keeps regression from

being uniformly bounded. To remedy this, define a function

x[ IxI < 1

sgn(s) , Ixi > 1

and define the modified regression smooth by

r (¢,x) x-x
(A.5 )SWfx) = +

Cy LC x]
x x

This modified smooth is bounded by 2.

(A.6 ) THEOREM. If, as N--*co, M--+looJ1ogN/N-*O and P(dx) has no

atoms, then the modified regression smooths are m.s. consistent.

PROOF. Assume 11i11i < X and use the inequality (A.3 ) with g(x) =

Px(4lx). Then

S(¢-glx) = 2I j (I ( yj)-g(xj)){1 + (-i-)]-*t}2jE(x )jjax atx
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The conditional expectation of [S(G-gjx)]2 given {Xk} is

2 ~~(x.- )x-X
;;g2 .1(x)E[( (yj)-g(xj))2 Ix ]{l + aX_]}

4M ~~ ~~~~~~xx

< 10¢"0 .

Thus, the first term in (A.3 ) is asymptotically zero. Now look at

S(hIx) -h(x), h E H2(X), h continuous and zero outside a finite

interval;

=1 ~~~~~~(xj-i)x x-i
S(hlx) -h(x) ma jEj(x)(h(xj)-h(x)){l +-c.La2t{x

Then, for H(6) = max{Ih(x')-h(x")I; Ix'-x"lj <6},

2 12
[S(hlx)-h(x)]2 < ljq j(x)(h(xj)-h(x))] 2t

< 2H( max Ixj-xI)_ jE(x) '

Then to get E[S(hlx)-h(x)]2-0, it is enough to show that A

AN = max{Ixj-xI; x.eJ(x)} converges in probability to zero. Take x

to be a point such that P[(x,x+£)] > 0, P[(x-e,x)] > 0 for all £ > 0.

The set S of all such points has P(S) = 1. Then

{AN >£} C {at most 2M-1 of {xk} in (x-£,x)}

U {at most 2M-1 of {xk} in (x,x+£)}

But

{ at most 2M-1 of' {kI in (x-£,x)}

IN ~~~~2M-1i {-E I(xke(x-E,x)) - N
k=l

and similarly for the number of ' {xkI in (x,x+s). Using the Law of

Large Numbers and M/N 0 results in P(AN>c) - 0, proving the theorem.
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SUBROUTINE ACE (P,N,X,Y,W,L,DELRSQ,TX,TY,RSQ,IERR,M,Z)
C

C---- ----__________________

C
C ESTIMATE OPTIMAL TRANSFORMATIONS FOR MULTIPLE REGRESSION AND
C CORRELATION BY ALTERNATING CONDITIONAL EXPECTATION ESTIMATES.
C
C (7/11/84)
C
C (BREIMAN AND FRIEDMAN, 1984, REV.)

CODED BY: J. H. FRIEDMAN
DEPARTMENT OF STATISTICS AND
STANFORD LINEAR ACCELERATOR CENTER
STANFORD UNIVERSITY
STANFORD, CA. 94305

PUT:

N : NUMBER OF OBSERVATIONS.
P : NUMBER OF PREDICTOR VARIABLES FOR EACH
X(P,N) : PREDICTOR DATA MATRIX.
Y(N) : RESPONSE VALUE FOR EACH OBSERVATION.

MISSING VALUES ARE SIGNIFIED BY A VALUE
PREDICTOR) GREATER THAN OR EQUAL TO BIG.
(SEE BELOW - DEFAULT, BIG = 1.OE20)

W(N) : WEIGHT FOR EACH OBSERVATION.
L(P+1) : FLAG FOR EACH VARIABLE.

L(1) THROUGH L(P) : PREDICTOR VARIABLES.
L(P+1)
L(I)=O
L(I)=1
L(I)=2

L(I)=3
L(I)=4
L(I)=5

OBSERVATION.

(RESPONSE OR

RESPONSE VARIABLE.
=> ITH VARIABLE NOT TO BE USED.
=> ITH VARIABLE ASSUMES ORDERABLE VALUES.
=> ITH VARIABLE ASSUMES CIRCULAR (PERIODIC) VALUES

IN THE RANGE (0.0,1.0) WITH PERIOD 1.0.
=> ITH VARIABLE TRANSFORMATION IS TO BE MONOTONE.
=> ITH VARIABLE TRANSFORMATION IS TO BE LINEAR.
=> ITH VARIABLE ASSUMES CATEGORICAL (UNORDERABLE) VALUES.

DELRSQ : TERMINATION THRESHOLD. ITERATION STOPS WHEN
RSQ CHANGES LESS THAN DELRSQ IN NTERM
CONSECUTIVE ITERATIONS (SEE BELOW - DEFAULT, NTERM=3).

UTPUT:

TX(N,P) : PREDICTOR TRANSFORMATIONS.
TX(J,I) = TRANSFORMED VALUE OF ITH PREDICTOR FOR JTH OBS.

TY(N) = RESPONSE TRANSFORMATION.
TY(J) = TRANSFORMED RESPONSE VALUE FOR JTH OBSERVATION.

RSQ = FRACTION OF VARIANCE(TY<Y>)
p

EXPLAINED BY SUM TX(I)<X(I)> .
I=1

A4

IERR : ERROR FLAG.
IERR = 0 : NO ERRORS DETECTED.
IERR > 0 : ERROR DETECTED - SEE FORMAT STATEMENTS BELOW.

C
C
C
C
C
C
C
C IN]
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C Ot
C
C
C
C
C
C
C
C
C
C
C
C
C

ACE FORTRAN Al PAGE 001I
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C SCRATCH:
C
C M(N,P+1), Z(N,12) : INTERNAL WORKING STORAGE.
C (Z(J,l), J=1,N) CONTAIN (TRANSFORMED) RESIDUALS AS OUTPUT.
C
C NOTE: ACE USES AN ITERATIVE PROCEDURE FOR SOLVING THE OPTIMIZATION
C PROBLEM. DEFAULT STARTING TRANSFORMATIONS ARE TY(J)=Y(J),
C TX(J,I)=X(I,J) : J=1,N, I=1,P. OTHER STARTING TRANSFORMATIONS CAN
C BE SPECIFIED (IF DESIRED) FOR EITHER THE RESPONSE AND/OR ANY OF
C THE PREDICTOR VARIABLES. THIS IS SIGNALED BY NEGATING THE
C CORRESPONDING L(I) VALUE AND STORING THE STARTING TRANSFORMED
C VALUES IN THE CORRESPONDING ARRAY (TY(J), TX(J,I)) BEFORE
C CALLING ACE.

C-------------________________________
C

INTEGER P,PP1,M(N,1),L(l)
REAL Y(N),X(P,N),W(N),TY(N),TX(N,P),Z(N,12),CT(10)
COMMON /PARMS/ ITAPE,MAXIT,NTERM,SPAN,ALPHA,BIG
DOUBLE PRECISION SM,SV,SW,SW1
IERR=O
PPl=P+l
SM0O.O
SV=SM
SW=SV
SW1=SW
DO 10 I=1,PP1
IF (L(I).GE.-5.AND.L(I).LE.5) GO TO 10
IERR=6
IF (ITAPE.GT.O) WRITE (ITAPE,550) I,L(I)

10 CONTINUE
IF (IERR.NE.O) RETURN
IF (L(PP1).NE.0) GO TO 20
IERR-4
IF (ITAPE.GT.0) WRITE (ITAPE,530) PP1
RETURN

20 NP=O
DO 30 I=1,P
IF (L(I).NE.O) NP=NP+1

30 CONTINUE
IF (NP.GT.0) GO TO 40
IERR=5
IF (ITAPE.GT.0) WRITE (ITAPE,540) P
RETURN

40 DO 50 J=1,N
SW=SW+W(J)
IF (L(PP1).GT.0) TY(J)=Y(J)

50 CONTINUE
IF (SW.GT.O.0) GO TO 60
IERR=1
IF (ITAPE.GT.0) WRITE (ITAPE,500)
RETURN

60 DO 160 I=1,P
IF (L(I).NE.0) GO TO 80
DO 70 J=1,N

ACE FORTRAN Al PAGE 002
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TX(J, I)=O.O
70 CONTINUE

GO TO 160
80 IF (L(I).LE.O) GO TO 100

DO 90 J=1,N
TX(J, I)=X(I ,J)

90 CONTINUE
100 DO 110 J=1,N

IF (TX(J,I).GE.BIG) GO TO 110
SM=SM+W(J)*TX(J, I)
SWl=SWl+W(J)

110 CONTINUE
IF (SW1.GT.O.0) GO TO 130
DO 120 J=1,N
TX(J,I)=O.O

120 CONTINUE
SM=O .0
SW1=SM
GO TO 160

130 SM=SM/SW1
DO 150 J=1,N
IF (TX(J,I).GE.BIG) GO TO 140
TX(J, I)=TX(J, I)-SM
GO TO 150

140 TX(J,I)=O.O
150 CONTINUE

SM=O.0
SW1=SM

160 CONTINUE
DO 170 J=1,N
M(J,PP1)=J
Z (J, 2)=Y (J)
IF (TY(J).GE.BIG) GO TO 170
SM=SM+W(J)*TY(J)
SW1=SW1+W(J)

170 CONTINUE
IF (SW1.GT.0.O) GO TO 180
IERR=1
IF (ITAPE.GT.O) WRITE (ITAPE,500)
RETURN

180 SM=SM/SW1
DO 200 J=1,N
IF (TY(J).GE.BIG) GO TO 190
TY(J)TY(J) -SM
GO TO 200

190 TY(J)=O.O
200 CONTINUE

DO 210 J=1,N
SV=SV+W(J)*TY(J)**2

210 CONTINUE
SV=SV/SW
IF (SV.LE.O.O) GO TO 220
SV=1 . O/DSQRT(SV)
GO TO 250

220 IF (L(PP1).LE.O) GO TO 230

A%
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IERR=2
IF (ITAPE.GT.O) WRITE (ITAPE,510)
GO TO 240

230 IERR=3
IF (ITAPE.GT.O) WRITE (ITAPE,520)

240 RETURN
250 DO 260 J=1,N

TY (J)--TY(J)*SV
260 CONTINUE

CALL SORT (Z(1,2),M(1,PP1),l,N)
DO 280 I=1,P
IF (L(I).EQ.O) GO TO 280
DO 270 J=1,N
M(J,I)=J
Z(J,2)=X(I,J)

270 CONTINUE
CALL SORT (Z(1,2),M(1,I),1,N)

280 CONTINUE
CALL SCALE (P,N,W,SW,TY,TX,DELRSQ,P,Z(1,5),Z(1,6))
RSQ=O.O
ITER=O
NTERM=MINO(NTERM,10)
NT0O
DO 290 I=1,NTERM
CT(I)=100.0

290 CONTINUE
300 ITER=ITER+1

NIT=O
310 RSQI=RSQ

NIT=NIT+1
DO 330 J=1,N
Z(J,5)=TY(J)
DO 320 I=1,P
IF (L(I).NE.O) Z(J,5)=Z(J,5)-TX(J,I)

320 CONTINUE
330 CONTINUE

DO 390 I=1,P
IF (L(I).EQ.0) GO TO 390
DO 340 J=1,N
K=M(J,I)
Z(J,1)=Z(K,5)+TX(K,I)
Z(J,2)=X(I,K)
Z(J,4)=W(K)

340 CONTINUE
CALL SMOTHR (IABS(L(I)),N,Z(1,2) ,Z,Z(1,4),Z(1,3),Z(1,6))
SM=0.O
DO 350 J=1,N
SM=SM+Z(J,4)*Z(J,3)

350 CONTINUE
SM=SM/SW
DO 360 J-1,N
Z(J,3)=Z(J,3)-SM

360 CONTINUE
SV=0 .0
DO 370 J=1,N
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SV=SV+Z(J,4)*(Z(J,1)-Z(J,3) )*J2
370 CONTINUE

SV=l.O-SV/SW
IF (SV.LE.RSQ) GO TO 390
RSQ=SV
DO 380 J=1,N
K=M(J,I)
TX(K,I)=Z(J,3)
Z(K,5)=Z(J,1)-Z(J,3)

380 CONTINUE
390 CONTINUE

IF ((NP.NE.1).AND.((RSQ-RSQI.GT.DELRSQ).AND.(NIT.LT.MAXIT))) GO TO
1 310
DO 410 J=1,N
K=M(J,PP1)
Z(J,2)=Y(K)
Z(J,4)=W(K)
Z(J,l)=O.O
DO 400 I=1,P
IF (L(I).NE.0) Z(J,1)=Z(J,1)+TX(K,I)

400 CONTINUE
410 CONTINUE

CALL SMOTHR (IABS(L(PP1)),N,Z(1,2),Z,Z(1,4),Z(1,3),Z(1,6))
SMO . 0
SV=SM
DO 420 J=1,N
K=M(J,PP1)
SM=SM+W(K)*Z(J,3)
Z(K,2)=Z(J,1)

420 CONTINUE
SM=SM/SW
DO 430 J=1,N
Z(J,3)=Z(J,3)-SM
SV=SV+Z(J,4)*-Z(J,3)**'2

430 CONTINUE
SV=SV/SW
IF (SV.LE.O.O) GO TO 440
SV=1.O/DSQRT(SV)
GO TO 450

440 IERR=3
IF (ITAPE.GT.0) WRITE (ITAPE,520)
RETURN

450 DO 460 J=1,N
K=M(J,PP1)
TY(K)=Z(J,3)*SV

460 CONTINUE
SV=O .O
DO 470 J=1,N
SV=SV+W(J)*(TY(J)-Z(J,2))**2 A

470 CONTINUE
RSQ=l.0-SV/SW
IF (ITAPE.GT.0) WRITE (ITAPE,490) ITER,RSQ
NT=MOD(NT,NTERM)+1
CT(NT)-RSQ
CMN=100.0
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CMX=-100.0
DO 480 I=1,NTERM
CMN=AMIN1(CMN,CT(I))
CMX=AMAX1(CMX,CT(I))

480 CONTINUE
IF ((CMX-CMN.GT.DELRSQ).AND.(ITER.LT.MAXIT)) GO TO 300
RETURN

490 FORMAT( 11H ITERATION I2, 23H R**2 = 1 - E*-'2
500 FORMAT( 41H IERR=l: SUM OF WEIGHTS (W) NOT POSITIVE.
510 FORMAT( 29H IERR=2: Y HAS ZERO VARIANCE.)
520 FORMAT( 30H IERR=3: TY HAS ZERO VARIANCE.)
530 FORMAT( 11H IERR=4: L(I2, 18H) MUST BE NONZERO.)
540 FORMAT( 29H IERR=5: AT LEAST ONE L(1)-L(I2, 18H) Ml

IRO.)
550 FORMAT( 11H IERR=6: L(I2, 3H) =G12.4, 30H MUST I

1NGE (-5, 5).)
END
SUBROUTINE MODEL (P,N,Y,W,L,TX,TY,F,T,M,Z)

=G12.4)
)

UJST BE NONZE

BE IN THE RA

C--------------_______--______________________
C
C COMPUTES RESPONSE PREDICTIVE FUNCTION F FOR THE MODEL YHAT = F(T),
C WHERE
C P
C F(T) = E(Y : T), T = SUM TX<I> ( X<I> )
C I=1
C USING THE X TRANSFORMATIONS TX CONSTRUCTED BY SUBROUTINE ACE.
C IF Y IS A CATEGORICAL VARIABLE (CLASSIFICATION) THEN
C
C
C INPUT:
C

- 1

F(T) = TY (T).

P,N,Y,W,L : SAME INPUT AS FOR SUBROUTINE ACE.
TX,TY,M,Z : OUTPUT FROM SUBROUTINE ACE.

C OUTPUT:
C

C F(N),T(N) : INPUT FOR SUBROUTINE ACEMOD.
C

C NOTE: THIS SUBROUTINE MUST BE CALLED BEFORE SUBROUTINE ACEMOD.
C

-------------_____________________--_______

C

INTEGER P,PP1,M(N,l),L(l)
REAL Y(N),W(N),TX(N,P),TY(N),F(N),T(N),Z(N,12)
COMMON /PARMS/ ITAPE,MAXIT,NTERM,SPAN,ALPHA,BIG
PPl=P+l
IF (IABS(L(PPl)).NE.5) GO TO 20
DO 10 J=1,N
T(J)=TY(J)
M(J,PP1)=J

10 CONTINUE
GO TO 50

20 DO 40 J=1,N
S=0 .0

C
C
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DO 30 I=1,P
S=S+TX(J,I)

30 CONTINUE
T(J)=S
M(J,PP1)=J

40 CONTINUE
50 CALL SORT (T,M(1,PP1),1,N)

DO 140 J=1,N
K=M(J,PP1)
Z(J,2)=W(K)
IF (Y(K).GE.BIG) GO TO 60
Z(J,1)=Y(K)
GO TO 140

60 J1=J
J2=J1

70 IF (Y(M(Jl,PPI)).LT.BIG) GO TO 80
Jl=Jl-l
IF (Jl.GE.1) GO TO 70

80 IF (Y(M(J2,PP1)).LT.BIG) GO TO 90
J2=J2+1
IF (J2.LE.N) GO TO 80

90 IF (Jl.GE.1) GO TO 100
K=J2
GO TO 130

100 IF (J2.LE.N) GO TO 110
K=J1
GO TO 130

110 IF (T(J)-T(J1).GE.T(J2)-T(J)) GO TO 120
K=J1
GO TO 130

120 K=J2
130 Z(J,1)=Y(M(K,PP1))

T(J)=T(K)
140 CONTINUE

IF (IABS(L(PP1)).NE.5) GO TO 160
DO 150 J=1,N
F(J)=Z(J, 1)

150 CONTINUE
GO TO 170

160 CALL SMOTHR (1,N,T,Z,Z(1,2),F,Z(1,6))
170 RETURN

END
SUBROUTINE ACEMOD (V,P,N,X,L,TX,F,T,M,YHAT)

C
C--- ---------------------------------------------

C
C COMPUTES RESPONSE Y ESTIMATES FROM THE MODEL
C
C YHAT= F ( T( V))
C
C USING THE X TRANSFORMATIONS TX CONSTRUCTED BY SUBROUTINE ACE AND
C THE PREDICTOR FUNCTION (F,T) CONSTRUCTED BY SUBROUTINE MODEL.
C
C INPUT:
C
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C V(P) : VECTOR OF PREDICTOR VALUES.
C P,N,X,L : SAME INPUT AS FOR SUBROUTINE ACE.
C TX,M : OUTPUT FROM SUBROUTINE ACE.
C F,T : OUTPUT FROM SUBROUTINE MODEL.
C
C OUTPUT:
C
C YHAT : ESTIMATED RESPONSE VALUE FOR V.
C
C NOTE: THIS SUBROUTINE MUST NOT BE CALLED BEFORE SUBROUTINE MODEL.
C

C-----------------____________________
C

INTEGER P,M(N,1),L(1),LOW,HIGH,PLACE
REAL V(P),X(P,N),F(N),T(N),TX(N,P)
COMMON /PARMS/ ITAPE ,MAXIT,NTERM,SPAN,ALPHA,BIG
TH=O.0
DO 90 I=1,P
IF (L(I).EQ.O) GO TO 90
VI=V(I)
IF (VI.LT.BIG) GO TO 10
IF (X(I,M(N,I)).GE.BIG) TH=TH+TX(M(N,I),I)
GO TO 90

10 IF (VI.GT.X(I,M(1,I))) GO TO 20
PLACE=1
GO TO 80

20 IF (VI.LT.X(I,M(N,I))) GO TO 30
PLACE=N
GO TO 80

30 LOW=O
HIGH=N+1

40 IF (LOW+1.GE.HIGH) GO TO 60
PLACE=(LOW+HIGH)/2
XT=X(I,M(PLACE,I))
IF (VI.EQ.XT) GO TO 80
IF (VI.GE.XT) GO TO 50
HIGH=PLACE
GO TO 40

50 LOW=PLACE
GO TO 40

60 IF (IABS(L(I)).EQ.5) GO TO 90
JL=M(LOW,I)
JH=M(HIGH,I)
IF (X(I,JH).LT.BIG) GO TO 70
TH=TH+TX(JL,I)
GO TO 90

70 TH=TH+TX(JL,I)+(TX(JH,I)-TX(JL,I))*(VI-X(I,JL))/(X(I,JH)-X(I,JL))
GO TO 90

80 TH=TH+TX(M(PLACE,I),I)
90 CONTINUE

IF (TH.GT.T(1)) GO TO 100
YHAT=F(1)
RETURN

100 IF (TH.LT.T(N)) GO TO 110
YHAT=F(N)
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RETURN
110 LOW=O

HIGH=N+l
120 IF (LOW+1.GE.HIGH) GO TO 150

PLACE=(LOW+HIGH)/2
XT=T (PLACE)
IF (TH.NE.XT) GO TO 130
YHAT=F(PLACE)
RETURN

130 IF (TH.GE.XT) GO TO 140
HIGH=PLACE
GO TO 120

140 LOW=PLACE
GO TO 120

150 IF (IABS(L(P+1)).NE.5) GO TO 170
IF (TH-T(LOW).GT.T(HIGH)-TH) GO TO 160
YHAT=F(LOW)
GO TO 180

160 YHAT=F(HIGH)
GO TO 180

170 YHAT=F(LOW)+(F(HIGH)-F(LOW))y;(TH-T(LOW))/(T(HIGH)-T(LOW))
180 RETURN

END
BLOCK DATA

C
C ---------------__________________________

C
C THESE PROCEDURE PARAMETERS CAN BE CHANGED IN THE CALLING ROUTINE
C BY DEFINING THE ABOVE LABELED COMMON AND RESETTING THE VALUES WITH
C EXECUTABLE STATEMENTS.
C
C ITAPE : FORTRAN FILE NUMBER FOR PRINTER OUTPUT.
C (ITAPE.LE.O => NO PRINTER OUTPUT.)
C MAXIT : MAXIMUM NUMBER OF ITERATIONS.
C NTERM : NUMBER OF CONSECUTIVE ITERATIONS FOR WHICH
C RSQ MUST CHANGE LESS THAN DELCOR FOR CONVERGENCE.
C SPAN, ALPHA : SUPER SMOOTHER PARAMETERS (SEE BELOW).
C BIG : A LARGE REPRESENTABLE FLOATING POINT NUMBER.
C

C----------_______________________________

C
COMMON /PARMS/ ITAPE,MAXIT,NTERM,SPAN,ALPHA,BIG
DATA ITAPE,MAXIT,NTERM,SPAN,ALPHA,BIG /6,20,3,0.0,5.0,1.OE20/
END
SUBROUTINE SMOTHR (L,NN,X,Y,W,SMO,SCR)
REAL X(NN),Y(NN),W(NN),SMO(NN),SCR(NN,7)
COMMON /PARMS/ ITAPE,MAXIT,NTERM,SPAN,ALPHA,BIG
DOUBLE PRECISION SM,SW,A,B,D
N=NN
SM=0.0
SW=SM

10 IF (X(N).LT.BIG) GO TO 20
SM=SM+W(N)*Y(N)
SW=SW+W(N)
N=N-1
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IF (N.GE. 1) GO TO 10
20 IF (N.GE.NN) GO TO 40

NP 1=N+l
SM=SM/SW
DO 30 J=NP1,NN
SMO (J)=SM

30 CONTINUE
40 IF (N.LT.1) RETURN

IF (L.LT.5) GO TO 90
J=1

50 JO=J
SM=W(J)*Y(J)
SW=W(J)
IF (J.GE.N) GO TO 70

60 IF (X(J+1).GT.X(J)) GO TO 70
J=J+1
SM=SM+W(J)*Y (J)
SW=SW+W(J)
IF (J.LT.N) GO TO 60

70 SM=SM/SW
DO 80 I=JO,J
SMO(I)=SM

80 CONTINUE
J=J+1
IF (J.LE.N) GO TO 50
GO TO 200

90 IF (L.NE.4) GO TO 140
SM=O.O
SW=SM
B=SW
D=B
DO 100 J=1,N
SM=SM+W(J)*X(J)*Y(J)
SW=SW+W(J)*X(J)-'**2
B=B+W(J)*-X(J)
D=D+W (J)

100 CONTINUE
A=SW-(B-:2)/D
IF (A.GT.O.O) GO TO 110
A=0.0
GO TO 120

110 A=SM/A
120 B=B/D

DO 130 J=1,N
SMO(J)=A*(X(J) -B)

130 CONTINUE
GO TO 200

140 CALL SUPSMU (N,X,Y,W,L,SPAN,ALPHA,SMO,SCR)
IF (L.NE.3) GO TO 200 A
DO 150 J=1,N
SCR(J, 1)=SMO(J)
SCR(N-J+1,2)=SCR(J, 1)

150 CONTINUE
CALL MONTNE (SCR,N)
CALL MONTNE (SCR(1,,2),N)
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SM=O.0
SW=SM
DO 160 J=1,N
SM=SM+(SMO(J)-SCR(J,1))**2
SW=SW+(SMO(J)-SCR(N-J+1,2))*'-:2

160 CONTINUE
IF (SM.GE.SW) GO TO 180
DO 170 J=1,N
SMO(J)=SCR(J, 1)

170 CONTINUE
GO TO 200

180 DO 190 J=1,N
SMO(J)=SCR(N-J+1, 2)

190 CONTINUE
200 RETURN

END
SUBROUTINE MONTNE (X,N)
REAL X(N)
INTEGER BB,EB,BR,ER,BL,EL
BB=O
EB=BB

10 IF (EB.GE.N) GO TO 110
BB=EB+1
EB=BB

20 IF (EB.GE.N) GO TO 30
IF (X(BB).NE.X(EB+1)) GO TO 30
EB=EB+1
GO TO 20

30 IF (EB.GE.N) GO TO 70
IF (X(EB).LE.X(EB+1)) GO TO 70
BR=EB+1
ER=BR

40 IF (ER.GE.N) GO TO 50
IF (X(ER+1).NE.X(BR)) GO TO 50
ER=ER+1
GO TO 40

50 PMN=(X(BB)*(EB-BB+1)+X(BR)-(ER-BR+1))/(ER-BB+l)
EB=ER
DO 60 I=BB,EB
X(I)=PMN

60 CONTINUE
70 IF (BB.LE.1) GO TO 10

IF (X(BB-1).LE.X(BB)) GO TO 10
BL=BB-1
EL=BL

80 IF (BL.LE.1) GO TO 90
IF (X(BL-1).NE.X(EL)) GO TO 90
BL=BL-1
GO TO 80 4

90 PMN=(X(BB)*(EB-BB+1)+X(BL)*(EL-BL+1))/(EB-BL+1)
BB=BL
DO 100 I=BB,EB
X(I)=PMN

100 CONTINUE
GO TO 30
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110 RETURN
END
SUBROUTINE SCALE (P,N,W,SW,TY,TX,EPS,MAXIT,R,SC)
INTEGER P
REAL W(N),TY(N),TX(N,P),R(N),SC(P,5)
DOUBLE PRECISION S,H,T,U,GAMA,DELTA,SW
DO 10 I=1,P
SC(I,l)=O.O

10 CONTINUE
NIT-O

20 NIT=NIT+1
DO 30 I=1,P
SC(I,5)=SC(I,1)

30 CONTINUE
DO 160 ITER=1,P
DO 50 J=1,N
S=0.O
DO 40 I=1,P
S=S+SC(I,1)*TX(J,I)

40 CONTINUE
R(J)=(TY(J)-S)*W(J)

50 CONTINUE
DO 70 I=1,P
S=0.0
DO 60 J=1,N
S=S+R(J)*-TX(J,I)

60 CONTINUE
SC(I,2)=-2.0'-S/SW

70 CONTINUE
S=0 .0
DO 80 I=1,P
S=S+SC(I,2)**2

80 CONTINUE
IF (S.LE.O.O) GO TO 170
IF (ITER.NE.1) GO TO 100
DO 90 I=1,P
SC(I ,3)=-SC(I,2)

90 CONTINUE
H=S
GO TO 120

100 GAMA=S/H
H=S
DO 110 I=1,P
SC(I ,3)=-SC(I,2)+GAMA*SC(I,4)

110 CONTINUE
120 S=0.0

T=S
DO 140 J=1,N
U=0.0
DO 130 I=1,P
U=U+SC(I,3)*TX(J,I)

130 CONTINUE
S=S+U*R(J)
T=T+W(J)*U**2

140 CONTINUE
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DELTA=S/T
DO 150 I=1,P
SC(I,1)=SC(I,l)+DELTA*SC(I,3)
SC(I ,4)=SC(I,3)

150 CONTINUE
160 CONTINUE
170 V=0.0

DO 180 I=1,P
V=AMAX1(V,ABS(SC(I,1)-SC(I,5)))

180 CONTINUE
IF ((V.GE.EPS).AND.(NIT.LT.MAXIT)) GO TO 20
DO 200 I=1,P
DO 190 J=1,N
TX(J,I)=SC(I,1)JTX(J,I)

190 CONTINUE
200 CONTINUE

RETURN
END
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SUBROUTINE SUPSMU (N,X,Y,W,IPER,SPAN,ALPHA,SMO,SC)
C
C---- ------_____--__--_________________________-_

C
C SUPER SMOOTHER (FRIEDMAN AND STUETZLE, 1984).
C
C VERSION 3/10/84
C
C CODED BY: J. H. FRIEDMAN
C DEPARTMENT OF STATISTICS AND
C STANFORD LINEAR ACCELERATOR CENTER
C STANFORD UNIVERSITY
C STANFORD CA. 94305
C
C INPUT:
C N : NUMBER OF OBSERVATIONS (X,Y - PAIRS).
C X(N) : ORDERED ABSCISSA VALUES.
C Y(N) : CORRESPONDING ORDINATE (RESPONSE) VALUES.
C W(N) : WEIGHT FOR EACH (X,Y) OBSERVATION.
C IPER : PERIODIC VARIABLE FLAG.
C IPER=1 => X IS ORDERED INTERVAL VARIABLE.
C IPER=2 => X IS A PERIODIC VARIABLE WITH VALUES
C IN THE RANGE (0.0,1.0) AND PEROID 1.0.
C SPAN : SMOOTHER SPAN (FRACTION OF OBSERVATIONS IN WINDOW).
C SPAN=O.O => AUTOMATIC (VARIABLE) SPAN SELECTION.
C ALPHA : CONTROLES HIGH FREQUENCY (SMALL SPAN) PENALITY
C USED WITH AUTOMATIC SPAN SELECTION (BASE TONE CONTROL).
C (ALPHA.LE.O.O OR ALPHA.GT.10.O => NO EFFECT.)
C OUTPUT:
C SMO(N) : SMOOTHED ORDINATE (RESPONSE) VALUES.
C SCRATCH:
C SC(N,7) : INTERNAL WORKING STORAGE.
C
C NOTE:
C FOR SMALL SAMPLES (N < 40) OR IF THERE ARE SUBSTANTIAL SERIAL
C CORRELATIONS BETWEEN OBSERATIONS CLOSE IN X - VALUE, THEN
C A PRESPECIFIED FIXED SPAN SMOOTHER (SPAN > 0) SHOULD BE
C USED. REASONABLE SPAN VALUES ARE 0.3 TO 0.5.
C

C---------__________________________________
C

DIMENSION X(N),Y(N),W(N),SMO(N),SC(N,7)
COMMON /SPANS/ SPANS(3) /CONSTS/ BIG,SML,EPS
IF (X(N).GT.X(1))-GO TO 30
SY=0.0
SW=SY
DO 10 J=1,N
SY=SY+W(J)*Y(J)
SW=SW+W(J)

10 CONTINUE
A=SY/SW
DO 20 J=1,N
SMO(J)=A

20 CONTINUE
RETURN
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30 I=N/4
J=3*I
SCALE=X(J) -X(I)

40 IF (SCALE.GT.O.O) GO TO 50
IF (J.LT.N) J=J+1
IF (I.GT.1) I=I-1
SCALE=X(J)-X(I)
GO TO 40

50 VSMLSQ=(EPS*SCALE)*:2
JPER=IPER
IF (IPER.EQ.2.AND.(X(1).LT.O.O.OR.X(N).GT.1.O)) JPER=1
IF (JPER.LT.1.OR.JPER.GT.2) JPER=1
IF (SPAN.LE.O.0) GO TO 60
CALL SMOOTH (N,X,Y,W,SPAN,JPER,VSMILSQ,SMO,SC)
RETURN

60 DO 70 I=1,3
CALL SMOOTH (N,X,Y,W,SPANS(I),JPER,VSMLSQ,SC(1,2*I-1),SC(1,7))
CALL SMOOTH (N,X,SC(1,7),W,SPANS(2),-JPER,VSMLSQ,SC(1,2*I),H)

70 CONTINUE
DO 90 J=1,N
RESMIN=BIG
DO 80 I=1,3
IF (SC(J,2*I).GE.RESMIN) GO TO 80
RESMIN=SC(J,2*I)
SC(J,7)=SPANS(I)

80 CONTINUE
IF (ALPHA.GT.O.O.AND.ALPHA.LE.10.O.AND.RESMIN.LT.SC(J,6)) SC(J,7)=
1SC(J,7)+(SPANS(3)-SC(J,7))*AMAX1(SML,RESMIN/SC(J,6))**(10.0-ALPHA)

90 CONTINUE
CALL SMOOTH (N,X,SC(1,7),W,SPANS(2),-JPER,VSMLSQ,SC(1,2),H)
DO 110 J=1,N
IF (SC(J,2).LE.SPANS(1)) SC(J,2)=SPANS(1)
IF (SC(J,2).GE.SPANS(3)) SC(J,2)=SPANS(3)
F=SC(J,2)-SPANS(2)
IF (F.GE.O.O) GO TO 100
F=-F/(SPANS(2)-SPANS(l))
SC(J,4)=(1.0-F)*SC(J,3)+F*SC(J,1)
GO TO 110

100 F=F/(SPANS(3)-SPANS(2))
SC(J,4)=(1.0-F)*SC(J,3)+F*SC(J,5)

110 CONTINUE
CALL SMOOTH (N,X,SC(1,4),W,SPANS(1),-JPER,VSMLSQ,SMO,H)
RETURN
END
BLOCK DATA

C
C_. ----------------------- ---- ----- ---- ---- ----- -- _- ----

C
C THIS SETS THE COMPILE TIME (DEFAULT) VALUES FOR VARIOUS
C INTERNAL PARAMETERS
C
C SPANS : SPAN VALUES FOR THE THREE RUNNING LINEAR SMOOTHERS.
C SPANS(1) : TWEETER SPAN.
C SPANS(2) : MIDRANGE SPAN.
C SPANS(3) : WOOFER SPAN.

SUPSMU FORTRAN Al PAGE 002



Dated 07/10/84 15:27:50 From disk JHFl91

C (THESE SPAN VALUES SHOULD BE CHANGED ONLY WITH CARE.)
C BIG : A LARGE REPRESENTABLE FLOATING POINT NUMBER.
C SML : A SMALL NUMBER. SHOULD BE SET SO THAT (SML)**(10.0) DOES
C NOT CAUSE FLOATING POINT UNDERFLOW.
C EPS : USED TO NUMERICALLY STABILIZE SLOPE CALCULATIONS FOR
C RUNNING LINEAR FITS.
C
C THESE PARAMETER VALUES CAN BE CHANGED BY DECLARING THE
C RELEVANT LABELED COMMON IN THE MAIN PROGRAM AND RESETTING
C THEM WITH EXECUTABLE STATEMENTS.
C

C ---------------__--_____________________

C
COMMON /SPANS/ SPANS(3) /CONSTS/ BIG,SML,EPS
DATA SPANS,BIG,SML,EPS /0.05,0.2,0.5,1.0E20,1.OE-7,1.OE-3/
END
SUBROUTINE SMOOTH (N,X,Y,W,SPAN,IPER,VSMLSQ,SMO,ACVR)
DIMENSION X(N),Y(N),W(N),SMO(N),ACVR(N)
INTEGER IN,OUT
DOUBLE PRECISION WT,FBO,FBW,XM,YM,TMP,VAR,CVAR,A,H,SY
XM=O.0
YM=XM
VAR=YM
CVAR=VAR
FBW=CVAR
JPER=IABS(IPER)
IBW=0.5*SPAN*N+O.5
IF (IBW.LT.2) IBW=2
IT=2*IBW+1
DO 20 I=1,IT
J=I
IF (JPER.EQ.2) J=I-IBW-1
XTI=X(J)
IF (J.GE.1) GO TO 10
J=N+J
XTI=X(J)-1.0

10 WT=W(J)
FBO=FBW
FBW=FBW+WT
XM=(FBO*XM+WT*XTI)/FBW
YM=(FBO*YM+WT*Y(J))/FBW
TMP=O .0
IF (FBO.GT.O.O) TMP=FBW*WT*(XTI-XM)/FBO
VAR=VAR+TMP*(XTI-XM)
CVAR=CVAR+TMP*(Y(J)-YM)

20 CONTINUE
DO 70 J=1,N
OUT=J-IBW-1
IN=J+IBW
IF ((JPER.NE.2).AND.(OUT.LT.1.OR.IN.GT.N)) GO TO 60
IF (OUT.GE.1) GO TO 30
OUT=N+OUT
XTO=X(OUT)-1.0
XTI=X(IN)
GO TO 50
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30 IF (IN. LE. N) GO TO 40
IN=IN-N
XTI=X(IN)+1 .0
XTO=X(OUT)
GO TO 50

40 XTO=X (OUT)
XTI=X(IN)

50 WTW(OUT)
FBO=FBW
FBW=FBW-WT
ThP=O. 0
IF (FBW. GT. 0.0) TMP=FBOi*WT* (XTO-XM) /FBW
VAR=VAR-TMP* (XTO-XM)
CVAR=CVAR-TMP*(Y(OUT)-YM)
XM=(FBO*XM-WTlXTO)/FBW
YM=(FBO*YM-WT*Y(OUT))/FBW
WT=W(IN)
FBO=FBW
FBW=FBW+WT
XM=(FBO*XM+WT*XTI)/FBW
YM=(FBO*YM+WT*Y (IN))/FBW
TMP=O .0
IF (FBO.GT.O.0) TMP=FBW*WT*'(XTI-XM)/FBO
VAR=VAR+TMP*(XTI-XM)
CVAR=CVAR+TMP*(Y(IN)-YM)

60 A=0.O
IF (VAR.GT.VSMLSQ) A=CVAR/VAR
SMO(J)=A*(X(J)-XM)+YM
IF (IPER.LE.O) GO TO 70
H=1.O/FBW
IF (VAR.GT.VSMLSQ) H=H+(X(J)-XM)**2/VAR
ACVR(J)=ABS(Y(J)-SMO(J))/(1.O-W(J)*H)

70 CONTINUE
J=1

80 JO=J
SY=SMO(J)*W(J)
FBW=W(J)
IF (J.GE.N) GO TO 100

90 IF (X(J+1).GT.X(J)) GO TO 100
J=J+1
SY=SY+W(J)*SMO(J)
FBW=FBW+W(J)
IF (J.LT.N) GO TO 90

100 IF (J.LE.JO) GO TO 120
SY=SY/FBW
DO 110 I=JO,J
SMO(I)=SY

110 CONTINUE
120 J=J+1

IF (J.LE.N) GO TO 80
RETURN
END
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SUBROUTINE SORT (V,A,II,JJ)
C
C PUTS INTO A THE PERMUTATION VECTOR WHICH SORTS V INTO
C INCREASING ORDER. ONLY ELEMENTS FROM II TO JJ ARE CONSIDERED.
C ARRAYS IU(K) AND IL(K) PERMIT SORTING UP TO 2**(K+1)-1 ELEMENTS
C
C THIS IS A MODIFICATION OF CACM ALGORITHM #347 BY R. C. SINGLETON,
C WHICH IS A MODIFIED HOARE QUICKSORT.
C

DIMENSION A(JJ),V(1),IU(20),IL(20)
INTEGER T,TT
INTEGER A
REAL V
M=1
I=II
J=JJ

10 IF (I.GE.J) GO TO 80
20 K=I

IJ=(J+I)/2
T=A(IJ)
VT=V(IJ)
IF (V(I).LE.VT) GO TO 30
A(IJ)=A(I)
A(I)=T
T=A(IJ)
V(IJ)=V(I)
V(I)=VT
VT=V(IJ)

30 L=J
IF (V(J).GE.VT) GO TO 50
A(IJ)=A(J)
A(J) =T
T=A(IJ)
V(IJ)=V(J)
V(J)=VT
VT=V(IJ)
IF (V(I).LE.VT) GO TO 50
A(IJ)=A(I)
A(I)=T
T=A(IJ)
V(IJ)=V(I)
V(I)=VT
VT=V(IJ)
GO TO 50

40 A(L)=A(K)
A(K)=-Tr
V(L)=V(K)
V(K)=VTT

50 L=L-1
IF (V(L).GT.VT) GO TO 50
TT=A(L)
VTTV(L)

60 K=K+1
IF (V(K).LT.VT) GO TO 60
IF (K.LE.L) GO TO 40
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IF (L-I.LE.J-K) GO TO 70
IL(M)=I
IU(M)=L
I=K
M=M+1
GO TO 90

70 IL(M)=K
IU(M)=J
J=L
M=M+1
GO TO 90

80 M=M-1
IF (M.EQ.0) RETURN
I=IL(M)
J=IU (M)

90 IF (J-I.GT.10) GO TO 20
IF (I.EQ.II) GO TO 10
I=I-1

100 I=I+1
IF (I.EQ.J) GO TO 80
T=A(I+1)
VT=V (I+1)
IF (V(I).LE.VT) GO TO 10(
K=I

110 A(K+1)=A(K)
V(K+1)=V(K)
K=K- 1
IF (VT.LT.V(K)) GO TO 11(
A(K+1 )-T
V (K+1 )=VT
GO TO 100
END

)

)

SORT FORTRAN Al PAGE 002



TECHNICAL REPORTS
Statistics Department

University of California, Berkeley

1. BREIMAN, L. and FREEDMAN, D. (Nov. 1981, revised Feb. 1982). How many variables should be
entered in a regression equation? Jour. Azner. Statist. Aso. March 1983, 78, No. 381, 131-136.

2. BRILUNGER, D. R. (Jan. 1982). Some contrasting examples of the time and frequency domain
approaches to time series analysis. MesriesM d in Hydsciences. (A. H. El-Shaarawi and
S. R. Esterby, eds.) Elsevier Scientific Publishing Co., Amsterdan, 1982, pp. 1-15.

3. DOKSUM, K. A. (Jan. 1982). On the performance of estimates in proportional hazard and log-linear
models. Survival AnzIY.isL (John Crowley and Richard A. Johnson, eds.) IMS Lecture Notes - Monograph
Series, (Shanti S. Gupta, series ed.) 1982, 74-84.

4. BICKEL, P. J. and BREIMAN, L (Feb. 1982). Sums of functions of nearest neighbor distances, moment
bounds, limit theorems and a goodness of fit test. An FProb.. Feb. 1982, 11. No. 1, 185-214.

5. BRILLINGER, D. R. and TUKEY, J. W. (March 1982). Spectrum estimation and system identification
relying on a Fourier transform. 2be Collected W orks of L W.W vol. 2, Wadsworth, 1985, 1001-1141.

6. BERAN, R. (May 1982). Jackknife approximation to bootstrap estimates. Ann. S March 1984,
12 No. 1, 101-118.

7. BICKEL, P. J. and FREEDMAN, D. A. (June 1982). Bootstrapping regression models with many
parameters. Lehma&m Festschrift. (P. J. BickeL K. Doksum and J. L. Hodges, Jr., eds.) Wadsworth Press,
Belmont, 1983, 2848.

8. BICKEL, P. J. and COLLINS, J. (March 1982). Minimizing Fisher information over mixtures of
distributions. Sankhya 1983, 45, Series A, Pt. 1, 1-19.

9. BREIMAN, L. and FRIEDMAN, J. (July 1982). Estimating optimal transformations for multiple
regression and correlation.

10. FREEDMAN, D. A. and PETERS, S. (July 1982, revised Aug. 1983). Bootstrapping a regression
equation: some empirical results. JASA. 1984, 79, 97-106.

11. EATON, M. L. and FREEDMAN, D. A. (Sept. 1982). A remark on adjusting for covariates in
multiple regression.

12. BICKEL, P. J. (April 1982). Minimax estimation of the mean of a mean of a normal distribution
subject to doing well at a point. Recent Advances in Stitics, Academic Press, 1983.

14. FREEDMAN, D. A., ROTHENBERG, T. and SUTCH, R. (Oct. 1982). A review of a residential energy
end use model.

15. BRILLINGER, D. and PREISLER, H. (Nov. 1982). Maximum likelihood estimation in a latent
variable problem. Studin Econometrics, Tie mid Multivariate Sttics. (eds. S. Karlin, T.
Amemiya, L. A. Goodman). Academic Press, New York, 1983, pp. 31-65.

16. BICKEL, P. J. (Nov. 1982). Robust regression based on infinitesimal neighborhoods. Ann. Statist..
Dec. 1984, 12, 1349-1368.

17. DRAPER, D. C. (Feb. 1983). Rank-based robust analysis of linear models. I. Exposition and review.

18. DRAPER, D. C. (Feb 1983). Rank-based robust inference in regression models with several observations
per cell.

19. FREEDMAN, D. A. and FIENBERG, S. (Feb. 1983, revised April 1983). Statistics and the scientific
method, Comments on and reactions to Freedman, A rejoinder to Fienberg's comments. Springer New York
1985 Cohor[ Analysis in Social Reseach. (W. M. Mason and S. E. Fienberg, eds.).

20. FREEDMAN, D. A. and PETERS, S. C. (March 1983, revised Jan. 1984). Using the bootstrap to
evaluate forecasting equations. L of Forecasting 1985, Vol. 4, 251-262.

21. FREEDMAN, D. A. and PETERS, S. C. (March 1983, revised Aug. 1983). Bootstrapping an
econometric model: some empirical results. JBES. 1985, 2, 150-158.



- 2 -

22. FREEDMAN, D. A. (March 1983). Strucural-equation models: a case study.

23. DAGGE-lT, R. S. and FREEDMAN, D. (April 1983, revised Sept 1983). Econometrics and the law:
a case study in the proof of antitrust damages.. Qf gmb Berkdey Conference in honor of Jerzy Neyman
and Jack Kiefer. Vol I pp. 123-172. (L. Le Cam, R. Olshen eds.) Wadsworth, 1985.

24. DOKSUM, K. and YANDELL, B. (April 1983). Tests for exponentiality. HnanbokoQf Statistics
(P. R. Krshnaiah and P. K. Sen, eds.) 4, 1984.

25. FREEDMAN, D. A. (May 1983). Comments on a paper by Markus.

26. FREEDMAN, D. (Oct. 1983, revised March 1984). On bootstrapping two-stage least-squares estimates
in stationary linear models. Am. Stast. 1984, 12, 827-842.

27. DOKSUM, K. A. (Dec. 1983). An extension of partial likelihood methods for proportional hazard
models to general transformation models. Ann. S 1987, 15, 325-345.

28. BICKEL, P. J., GOE¶IZE, F. and VAN ZWET, W. R. (Jan. 1984). A simple analysis of third order
efficiency of estimates. P . of L Nman-Kiefer Conference (L. Le Cam, ed.) Wadsworth, 1985.

29. BICKEL, P. J. and FREEDMAN, D. A. Asymptotic normality and the bootstrap in stratified sampling.
Aim1 Statist. 12 470-482.

30. FREEDMAN, D. A. (Jan. 1984). The mean vs. the median: a case study in 4-R Act litigation.
Th.ES.1985 Vol 3 pp. 1-13.

31. STONE, C. J. (Feb. 1984). An asymptotically optimal window selection rule for kernel density
estimates. Ann. S Dec. 1984, 12, 1285-1297.

32. BREIMAN, L. (May 1984). Nail finders, edifices, and Oz.

33. STONE, C. J. (Oct 1984). Additive regression and other nonparametric models. Ann1 Statist.
1985, 13, 689-705.

34. STONE, C. J. (June 1984). An asymptotically optimal histogram selection rule. Proc. of the Berkeley
Conf. in Honor of Jerzy Neyman and Jack Kiefer (L. Le Cam and R. A. Olshen, eds.), II, 513-520.

35. FREEDMAN, D. A. and NAVIDL W. C. (Sept. 1984, revised Jan. 1985). Regression models for
adjusting the 1980 Census. Statistical Science. Feb 1986, Vol. 1, No. 1, 3-39.

36. FREEDMAN, D. A. (Sept. 1984, revised Nov. 1984). De Finetti's theoreni in continuous time.

37. DIACONIS, P. and FREEDMAN, D. (Oct. 1984). An elementary proof of Stirling's formula.
Amer. Math oMQndbl Feb 1986, Vol. 93, No. 2, 123-125.

38. LE CAM, L. (Nov. 1984). Sur l'approximation de familles de mesures par des familles Gaussiennes.
An. Est. kHemi E.QincrP. 1985, 21, 225-287.

39. DIACONIS, P. and FREEDMAN, D. A. (Nov. 1984). A note on weak star uniformities.

40. BREIMAN, L. and IHAKA, R. (Dec. 1984). Nonlinear discriminant analysis via SCALING and ACE.

41. STONE, C. J. (Jan. 1985). The dimensionality reduction principle for generalized additive models.

42. LE CAM, L. (Jan. 1985). On the nornal approximation for sums of independent variables.

43. BICKEL, P. J. and YAHAV, J. A. (1985). On estimating the number of unseen species: how many
executions were there?

44. BRILLINGER, D. R. (1985). The natural variability of vital rates and associated statistics. Biometrics.
to appear.

45. BRILLINGER, D. R. (1985). Fourier inference: some methods for the analysis of array and
nonGaussian series data. Water Resources Bulletin. 1985, 21, 743-756.

46. BREMN, L. and STONE, C. J. (1985). Broad spectrum estimates and confidence intervals for tail
quantiles.



- 3 -

47. DABROWSKA, D. M. and DOKSUM, K. A. (1985, revised March 1987). Partial likelihood in
transformation models with censored data.

48. HAYCOCK, K. A. and BRILLINGER, D. R. (November 1985). LIBDRB: A subroutine library for
elementary time series analysis.

49. BRILLINGER, D. R. (October 1985). Fitting cosines: some procedures and some physical examples.
hi Festschriftl 1986. D. Reidel.

50. BRILLINGER, D. R. (November 1985). What do seismology and neurophysiology have in common?
- Statistics! C =Rendus Math. R, Acad. X, Canada. January, 1986.

51. COX, D. D. and O'SULLIVAN, F. (October 1985). Analysis of penalized likelihood-type estimators with
application to generalized smootiing in Sobolev Spaces.

52. O'SULLIVAN, F. (November 1985). A practical perspective on ill-posed inverse problems: A review
with some new developments. To appear in Joumal 2f Statistial Science.

53. LE CAM, L and YANG, G. L. (November 1985, revised March 1987). On the preservation of local
asymptotic normality under information loss.

54. BLACKWELL, D. (November 1985). Approximate normality of large products.

55. FREEDMAN, D. A. (Decenber 1985, revised Dec. 1986). As others see us: A case study in path
analysis. Prepared for the LJouma Qf Educational Saistics

56. LE CAM, L. and YANG, G. L. (January 1986). Distinguished Statistics, Loss of information and a
theorem of Robert B. Davies.

57. LE CAM, L. (February 1986). On the Bernstein - von Mises theorem.

58. O'SULLIVAN, F. (January 1986). Estimation of Densities and Hazards by the Method of Penalized
likelihood.

59. ALDOUS, D. and DIACONIS, P. (February 1986). Strong Uniform Times and Finite Random Walks.

60. ALDOUS, D. (March 1986). On the Markov Chain simulation Method for Uniforn Combinatorial
Distributions and Simulated Annealing.

61. CHENG, C-S. (April 1986). An Optimization Problem with Applications to Optimal Design Theory.

62. CHENG, C-S., MAJUMDAR, D., STUFKEN, J. & TURE, T. E. (May 1986, revised Jan 1987).
Optimal step type design for comparing test treatments with a control.

63. CHENG, C-S. (May 1986, revised Jan. 1987). An Application of the Kiefer-Wolfowitz Equivalence
Theorem.

64. O'SULLIVAN, F. (May 1986). Nonparametic Estimation in the Cox Proportional Hazards Model.

65. ALDOUS, D. (JUNE 1986). Finite-Time Implications of Relaxation Times for Stochastically
Monotone Processes.

66. PiTMAN, J. (JULY 1986, revised November 1986). Stationary Excursions.

67. DABROWSKA, D. and DOKSUM, K. (July 1986, revised November 1986). Estimates and confidence
intervals for median and mean life in the proportional hazard model with censored data

68. LE CAM, L. and YANG,-G.L. (July 1986). Distinguished Statistics, Loss of information and a theorem
of Robert B. Davies (Fourth edition).

69. STONE, C.J. (July 1986). Asymptotic properties of logspline density estimation.

71. BICKEL, PJ. and YAHAV, J.A. (July 1986). Richardson Extrapolation and the Bootstrap.

72. LEHMANN, E.L. (July 1986). Statistics - an overview.

73. STONE, C.J. (August 1986). A nonparametric framework for statistical modelling.



- 4 -

74. BLANE, PH. and YOR, M. (August 1986). A relation between Levy's stochastic area formula, Legendre
polynomials, and some continued fractions of Gauss.

75. LEHMANN, E.L. (August 1986, revised July 1987). Comparing Location Experiments.

76. O'SULLIVAN, F. (September 1986). Relative risk estimation.

77. O'SULLIVAN, F. (September 1986). Deconvolution of episodic hormone data.

78. PriMAN, J. & YOR, M. (September 1987). Further asymptotic laws of planar Brownian motion.

79. FREEDMAN, DA. & ZEISEL, H. (November 1986). From mouse to man: The quantitative assessment
of cancer risks.

80. BRILLINGER, D.R. (October 1986). Maximum likelihood analysis of spike trains of interacting
nerve cells.

81. DABROWSKA, D.M. (November 1986). Nonparametric regression with censored survival time data.

82. DOKSUM, K.J. and LO, A.Y. (November 1986). Consistent and robust Bayes Procedures for Location
based on Partial Information.

83. DABROWSKA, D.M., DOKSUM, KA. and MIURA, R. (November 1986). Rank estimates in a class
of semiparametric two-sample models.

84. BRILLINGER, D. (December 1986). Some statistical methods for random process data from seismology
and neurophysiology.

85. DIACONIS, P. and FREEDMAN, D. (December 1986). A dozen de Finetti-style results in search of a
theory.

86. DABROWSKA, D.M. (January 1987). Uniform consistency of nearest neighbour and kemel conditional
Kaplan - Meier estimates.

87. FREEDMAN, DA., NAVIDI, W. and PETERS, S.C. (February 1987). On the impact of variable
selection in fitting regression equations.

88. ALDOUS, D. (February 1987, revised April 1987). Hashing with linear probing, under non-uniform
probabilities.

89. DABROWSKA, D.M. and DOKSUM, KA. (March 1987, revised November 1987). Estimating and
testing in a two sample generalized odds rate model.

90. DABROWSKA, D.M. (March 1987). Rank tests for matched pair experiments with censored data.

91. DIACONIS, P and FREEDMAN, D.A. (March 1987). A finite version of de Finetti's theorem for
exponential families, with uniform asymptotic estimates.

92. DABROWSKA, D.M. (April 1987, revised September 1987). Kaplan-Meier estimate on the plane.

92a. ALDOUS, D. (April 1987). The Harmonic mean formula for probabilities of Unions: Applications
to sparse random graphs.

93. DABROWSKA, D.M. (June 1987). Nonparametric quantile regression with censored data.

94. DONOHO, D.L. & STARK, PB. (June 1987). Uncertainty principles and signal recovery.

95. RIZZARDL F. (Aug 1987). Two-Sample t-tests where one population SD is known.

96. BRILLINGER, D.R. (June 1987). Some examples of the statistical analysis of seismological data.
To appear in Proceedings, Centennial Anniversary Symrposium, Seismographic Stations, University of
California, Berkeley.

97. FREEDMAN, DA. and NAVIDI, W. (June 1987). On the multi-stage model for cancer.

98. O'SULLIVAN, F. and WONG, T. (June 1987). Determining a function diffusion coefficient in the heat
equation.



- 5 -

99. O'SULLIVAN, F. (June 1987). Constrained non-linear regularization with application to some
system identification problems.

100. LE CAM, L. (July 1987, revised Nov 1987). On the standard asymptotic confidence ellipsoids of Wald.

101. DONOHO, D.L. and LIU, R.C. (July 1987). Pathologies of some minimum distance estimators.

102. BRILLINGER, D.R., DOWNING, K.H. and GLAESER, R.M. (July 1987). Some statistical aspects
of low-dose electron imaging of crystals.

103. LE CAM, L. (August 1987). Harald Cramer and sums of independent random variables.

104. DONOHO, A.W., DONOHO, D.L. and GASKO, M. (August 1987). Macspin: Dynamic graphics
on a desktop computer.

105. DONOHO, D.L. and LIU, R.C. (August 1987). On minimax estimation of linear functionals.

106. DABROWSKA, D.M. (August 1987). Kaplan-Meier estimate on the plane: weak convergence, LIL
and the bootstrap.

107. CHENG, C-S. (August 1987). Some orthogonal main-effect plans for asymmetrical factorials.

108. CHENG, C-S. and JACROUX, M. (August 1987). On the construction of trend-free run orders of
two-level factorial designs.

109. KLASS, M.J. (August 1987). Maximizing E max S,/ES': A prophet inequality for sums of I.I.D.
mean zero variates.

110. DONOHO, D.L. and LIU, R.C. (August 1987). The "automatic" robustness of minimum distance
functionals.

111. BICKEL, P.J. and GHOSH, J.K. (August 1987). A decomposition for the likelihood ratio statistic
and the Bartlett correction- a Bayesian argument.

112. BURDZY, K., PITMAN, J.W. and YOR, M. (September 1987). Some asymptotic laws for crossings
and excursions.

113. ADHIKARI, A. and PlTMAN, J. (September 1987). The shortest planar arc of width 1.

114. RITOV, Y. (September 1987). Estimation in a linear regression model with censored data.

115. BICKEL, P.J. and RITOV, Y. (September 1987). Large sample theory of estimation in biased
sampling regression models I.

116. RITOV, Y. and BICKEL, P.J. (September 1987). Unachievable information bounds in
non and semiparametric models.

117. R1TOV, Y. (October 1987). On the convergence of a maximal correlation algorithm using altemating
projections.

118. ALDOUS, D.J. (October 1987). Meeting times for independent Markov chains.

119. HESSE, C.H. (October 1987). An asymptotic expansion for the mean of the passage-time distribution
of integrated Brownian Motion.

120. DONOHO, D. (October 1987). Geometrizing rates of convergence, II.

121. BRILLINGER, D.R. (October 1987). Estimating the chances of large earthquakes by radiocarbon dating
and statistical modelling. To appear in Statistics a Guide to the Unknown.

122. ALDOUS, D., FLANNERY, B. and PALACIOS, J.L. (November 1987). Two applications of um
processes: The fringe analysis of search trees and the simulation of quasi-stationary distributions of Markov
chains.

123. DONOHO, D.L. and TAYLOR, B.M. (November 1987). Minimax risk for hyperrectangles.

124. ALDOUS, D. (November 1987). Stopping times and tightness II.



- 6 -

125. HESSE, C.H. (November 1987). The present state of a stochastic model for sedimentation.

126. DALANG, R.C. (Decenber 1987). Optimal stopping of two-parameter processes on hyperfinite probability
spaces.

127. DONOHO, D. and GASKO, M. (December 1987). Multivariate generalizations of the median and
trimmed mean L.

128. DONOHO, D. and GASKO, M. (December 1987). Multivariate generalizations of the median and
trimmed mean II.

Copies of these Reports plus the most recent additions to the Technical Report series are available from the
Statistics Department technical typist in room 379 Evans Hall or may be requested by mail from:

Department of Statistics
University of California
Berkeley, California 94720

Cost $1 per copy.


