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MINIMIZING FISHER INFORMATION OVER MIXTURES OF DISTRIBUTIONS

By P. J. Bickel '2 and J. R. Collins3

1. INTRODUCT1ON

Huber (1964) presented a general theory for minimizing the Fisher

information for location I(F) where F ranges over a convex and vaguely

compact set of distribution functions F on R = [-,]. Here

I(F) = f[(f') 2/f]dx if the restriction of F to R
has an absolutely continuous

(1.1) density f,

= X otherwise

In this paper, we apply Huber's theory to classes of distributions of

the form

(1.2) F = {f F(*,y)v(dy) :v is an arbitrary probability measure on R}
E

where E = [a,b], - < a < b < ; F(,) ,- < y < , is a suitably

regular parametric family of distribution functions, (and F(,±0) are

defined by continuity). E = R is most interesting.

In Section 2 we show (under suitable regularity conditions on the family

F(-,y)), that the probability measure v0 at which the Fisher information is

minimized is concentrated on a countable subset of E. Furthermore, the

only possible accumulation points of the support of vo are ±+.

In Section 3 we apply these results to several examples, including

the following:

(i) E = R :F(x,y) = (l-£)4(x) + £4(xe ) , -_ < y < O
9
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where 0 < E < 1 and cI(x) = J c(t)dt , where ¢(t) = (27)2 exp(-t2/2)

(ii) E =R: a) F(x,y) = (-)¢(X) + ¢(X - y) , - < y <c

and more generally

b) F(x,y) = (1 E)D*rr(X) + EA(x - y)

where 7i0 is a fixed distribution.

(iii) F(x) = (x - y) .

These examples arise naturally in two distinct contexts, Huber's asymptotic

theory of robust estimation of the mean of a normal distribution and

constrained minimax estimation of the mean of a normal distribution.

Thus, Huber (1964) showed that if F minimizes I(F) over F , then

= -f'/fo solves the problem of finding P which minimizes

sup{V(iP, F) F E F} , where V(Q, F) is a functional which, when

defined on the sub-class of F 's with absolutely continuous density f , is

given by

(1.3) V(P, F) = JW2f dx/a(Jf' dx)2

In the robust estimation problem, one observes a random sample X X..PXn
from F(x - 0) , where F is an unknown member of a fixed convex and vaguely

compact set F of distribution functions symmetric about 0 , and 0 is an

unknown parameter to be estimated. Under regularity conditions on ' and F

M - estimators of e based on ' (i.e., suitably-chosen solutions of

n
Z 9(X - 0 ) = 0 ) are seen to be consistent estimators of 0 , with
i=l 1 n

1I ^

n10n - 0) converging in distribution to the normal distribution with mean 0

and variance V(O, F) In this context, the M - estimator based on
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P0 = -f 1/f0 is most robust for the model {F(x - 6) F E F} in the sense that

it achieves minimax asymptotic variance.

A motivation for studying Example (i) is as follows. In Andrews et al.

(1972), the Monte Carlo study of robust estimates of a location parameter is

restricted to error distributions which are scale mixtures of normal distributions

centered at 0 , i.e., to error distributions of the form

(1-4) F(x) = f 4(xe Y) j(dy) ,

where p is a probability measure on [-, co] . This is a broad class of

symmetric unimodal distributions; examples are the t, double exponential

and logistic distributions [Andrews and Mallows (1974)]. Efron and Olshen (1978)

ask the question "How broad is the class of normal scale mixtures?" and answer

it by computing the extrema of F(x3) over distributions of form (1.4)

satisfying F(xl) = aI and F(x2) = a2 . Another possible approach to the

question is to consider Huber's minimax asymptotic variance problem when F

consists of all F of the form (1.4). However this class of distributions

is so large that the problem breaks down in the sense that inf{I(F) FE F} = 0

If the model is modified so that p is allowed to vary only over the convex

sub-class of probability measures of the form p = (1 - 6)61 + EV , where

0 < E < 1 and 61 denotes unit mass at 1 , then one obtains a class of

distributions (Example (i) ) for which Huber's minimax variance problem is

meaningful:

(1.5) F1 = {F : F(x) = (1 - e)O(x) + £Ef(xe Y) v(dy) : V is a

probability measure on R}

Note that F1 is contained in the class

(1.6) F* = {F : F = (1 - e)> + £G , for some (possibly sub-stochastic)
distribution G symmetric about 0 }
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for which the minimax variance problem was solved by Huber (1964). Since (i) I(F)

is minimized over F* at a unique distribution F* = (1 - E6) + EGO , where
0

G{ [-k, k]} = 0 for some k > 0 , and (ii) f4(xe Y)v(dy) places positive mass

on [-k, k] except for the special substochastic case where vr+ oo} = 1 , it

follows that inf{I(F) F E Fl} > I(F*) . In particular, the minimax
0

= -f0/fo (corresponding to the F in F1 minimizing I(F) over F )

cannot coincide with Huber's solution i(x) = x for lxi < k, = k sgn(x) for

|x| > k. One way to measure how "broad" is the class of normal scale mixtures

would be to compute (for various C ) how close inf{I(F) : F E F1} is to

inf{I(F) : F e F*} . Although the problem of computing the least favorable Fo

remains open we establish the following qualitative results in Section 3: the

support of the least favorable vo is a denumerable set with an accumulation

point at +X. Also V (+co) = 0, so that Fo is a proper distribution, i.e.,
0

co

f f (x) dx = 1
00

Example (ii)a), the problem of minimizing I(F) over

(1.7) F = {F: F(x) = (1 - E)4(x) + E¢f4(x - y)v(dy) , where v is a

probability measure on R}

arises as a problem in the asymptotic theory of robust non-linear smoothing of

time series studied by C. Mallows -- for details, see Mallows (1978) and

Mallows (1980) p.711.

Bickel (1980), (1981) and Levit (1979, 1980) and Marazzi (1980) indepen-

dently found an interesting connection between the problems of constrained minimax

estimation with quadratic loss of the mean 0 of a normal distribution with

known variance and minimization of Fisher information. Specifically, if without

loss of generality we take sample size 1 and variance 1 , the Bayes risk for

any prior I is given by,

r (TT) = 1 - I 0*70(1.8)
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where * denotes convolution. Moreover, the Bayes estimate 6
7

is well known

to be given by

fi
(1.9) iT (x) f

where f is the density of b * 7T.

The constrained minmax problem of Bickel (1980) is to find an estimate

such that sup0E(6 0)2 is minimized subject to E (62) < 1 - t , t > 0

He showed this was equivalent to minimizing sup0{(l - E)Eo62 + E E6(6 - 0)21

for some c(t) . By standard minmax arguments this is equivalent to finding fl

and the corresponding f- maximizing 1 - I(D * Tr) for Tr = (1- ) + C y

where y is arbitrary. This is just example (ii)a). Similarly Efron and

Morris (1971) and Marazzi considered the problem of minimizing sup0E0(6 _ 0)2

subject to fE0(6 -0)fro(d0) < c for iT0 a fixed Bayes prior distribution.

This leads to example (ii) b).

Finally, consider the problem of minimizing sup {E0(6 _ 0)2:0 EE}

studied by various workers. Correspondence (1.8) and a standard arguement

shows that this problem is equivalent to minimizing I(F) as in example (iii)

Some results on this problem can be found in Casella and Strawderman (1981), and

Bickel (1981).
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GENERAL RESULT

denote a class of distribution functions

F = { fE F(, y)v(dy) v ranges over all probability measures on

E = [a, b] C R = [- ,o , and F(, Y) is a fixed parametric

of distribution functions satisfying the following conditions:

F(*, y) is absolutely continuous with density f(*, y) for all y E R ;

For every compact set K c R , there is a number c > 0 such that
K

f (x, y) > c for all xe K and for all y E R ;
K

For all y E R , f(*,y) is absolutely continuous with density f'&(, y) ;I

such that

I Both ff' (x,

Let f and f

y) I dx and flxf'(x,y ) Idx are finite for all

be defined by

f+(x, y) = - I[f',] (y, y)dy

f (x, y) = - f| [f']f(y, Y)dy
x

It is easy to see that (A.3) and (A.4) imply,

f = f+ f

(A.5) fIlw(x) If(x, y)dx <c if and only if both fl w(x)lf+(x, Y)dx < and

f Iw(x) If_ (x, y)dx < , where f+ and f are as defined above.

(A.6) I(F(-,y )) < co for all y E R ; and

(A.7) inf{I(F): FE F} > 0 .

2. THE

Let F

(2.1)

where

family

(A.1)

(A. 2)

(A. 3)

(A.4) y E R .
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(B.1) The functions f(x, y) and f'(x, y) are analytic in y (a.e.x)

(B.2) The functions fw(x)f(x, y)dx and fw(x)f'(x, y)dx are analytic in

Y on any interval of y 's for which they are well-defined and finite;

(B.3) For i = 0 or 1 , JIw(x)IIf()(x, y)Idx <co for y = a and y = b

implies that fIw(x) If(I)(x, y) Idx < o for all y E [a, b]

(C.1) F(-, y) converges in distribution to F(-,i o) as y - co

(C.2) The functions f(x,± o) defined by f(x, i o) = lim f(x, y) exist
yr-.c0

(a.e.x) . If the restriction of F(-, + oo) resp. F(-, - co) to R

is absolutely continuous then f(*, 4vo) resp. f(*, --co) is its density

and is itself absolutely continuous with derivative which we write

f'(-*,CO))

Note: Condition C is unnecessary unless either a = - or b =

(D) Either

(i) fw(x) f'(x, y ) dx = 0 for all c <y < d , implies w is

constant a.e.

or

(ii) f(x, ) symmetric in x , fw(x)f'(x, )dx = 0 for all

c < y < d , w antisymmetric in x imply w(x) = 0 a.e.x.

(E) d fEf(xr )v(dy) = J f'(x, y)v (dy) whenever either side exists

and is finite.

(F) Either,

(i) fIf'(x, Y)IV(dy) < c(V)IJEf'(x.,Y)V(dy)l for c(v) < , all

x and all V, or

(ii) supEI(F(, )) < c



-9-

Define J(4, y) for y E E by:

(2.2) J(ip, y) = f[-2p(x)f'(x, y) - 92(X) f(x, y)] dx

if fp2(x) f(x, y) dx < o

=Co otherwise

Note that the integral on the right in (2.2) exists and is finite

|f 2(x) f(x, y) dx <co since I(F(, y)) <o , V Y. To see the implication, let

be the truncation of 4 at iM and note that

J(i, Y) = limMf[2 PM(x) f'(x, y) dx - 2(x) f(x, y)] dx

1, 1
< 1iml f 2 (X) f(x, y) dx] (2I'(F(-, y)))

- [f i2(X) f(x,y )]dx) c-o

if Jfp2(x) f(x, y) dx = .o The converse is immediate.

Theorem 1: Under condition (A) - (F), I(F) is minimized over F by a

probability distribution Fo = fE F(-, y)v, (dy) , such that

(i) Fo is unique

(ii) The density f of F is absolutely continuous and - -
0 0 ~~~~~~~~~~~~~~~f

0
exists a.e.

(iii) The support of v, is contained in {y: J(ipO, y) = I(F)}

(iv) The support of v0 is a countable subset of E with ± as

the only possible accumulation points.

Before giving the proof of theorem 1 we briefly review Huber's (1964,1977) results.

Fisher information I(F) is a convex functional attaining its minimum over F

at an F0 with absolutely continuous density f,. A necessary and sufficient
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condition for F0 to minimize I(F) over F is that

de - ) + eF > 0 for all F E F , or equivalently that

(2.3) f[ -2i0f' _-2f dx > I(F0)

for all Fl E F which have absolutely continuous density f l where the function

+o is defined by + = -f'/f0 . Our study consists of ascertaining the

implications of Huber's condition (2.3) when F is of the form (1.2)

Proof: Evidently F is convex and also weakly compact since F(x, y) is bounded

and continuous in y (by (B.2) and (C.1)). Since, by (A.6), I(F) <c for

some F E F the existence of Fo is guaranteed by Huber. Its unicity is

guaranteed by (A.2), (Huber (1977)) and (i) and (ii) are established.

To establish (iii) note first that by (A.1), (A.3), (C.1), (C.2) and (E)

F(-, v) E F and I(F(-, y)) <co imply that the restriction of F(, v) to

R has an absolutely continuous density f( , v) with Radon-Nikodym derivative

f (-, v) given by,

(2.4) f(x, v) = fE f(x, y)v (dy)

(2.5) f'(x, v) = f f'(x, y)v(dy)
E

Thus, (2.3) implies that,

(2.6) f[- 2i0(x)f'(x,v) - 42(x)f(x, v)] dx > I(Fo )

for all v such that I(F(, v)) < Xo In particular for J defined by

(2.2)

(2.7) J(i0, y) > I(FO)
for all y E E
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We now show that,

(2.8) JE (+0 y)vo (dy) = I(F )

which will establish (iii).

Note that the left-hand side of (2.8) is well-defined because J(p0, y)

is bounded below. Clearly it suffices to show that

(2.9) J[J l2 (x)f(x,y)dx]v0 (dy) = Jfp2(x)[ff(x,y) v (dy)] dx

(2.10) f[lfo (x)f'(x,y)dx]v0 (dy) = fi0o(x)[ff'(x,y)v0(dy)] dx

since then

fJ ( o v,Y)v (dy) = f(2p2 -_2)f(x, v0)dx = I(FO)

Since the right-hand side of (2.9)

non-negative, (2.9) is immediate.

is I(F0) < , and i2 (x)f(x, y) is

To prove (2.10) we need only show that

(2.11) ff1|0(x) I If' (x, y) I dx v0(dy) < .

We claim that (2.11) follows from either condition (F) (i) or F (ii).

First suppose that condition (F)(i) holds. Then

(2.12) > I(F0) = fIo(x) I Iff' (x, y)vo(dy) I dx

> inf I f I(x, y)VO(dy) I
x fIf'x, y) Iv (dy)

1
c(\)0 f.I iI(x) I If (x, vy)Iv,(dy) dx,

so that (2.11) holds. Now suppose instead that condition F(ii) holds.

Then, by the Cauchy-Schwartz inequality,

a f I . 0 (X) I I f I f I (X 31 Y) I vo (dy) I dx
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(2.13) ffjIp0(x) IIf' (x,y) I dx vo(dy) = ffK0(x) I If-(x9y)l f(x,y)dx vo(dy)

_L[JJ u2(X)Of(x,y)dx vo(dy)] *[ff dx v (dy)]

< [I(FO)] [sup I(F(-,y)) ] < X
Y

This completes the verification of (2.8) and hence (iii).

We now prove (iv). Note that X > I(F0) = ff42(x)f(x,y)dx v (dy) implies,

by condition (B.3), that f+2 (x)f(x,Y)dx < X for all y in K , theV0
convex hull of the support of v0 By (B.2), fi2(x)f(x,y)dx is

analytic in Y on K , a.e.x. Also, by Cauchy-Schwartz,
V0

f I o(x)IIf'(x, y)I dx < [f0p(x)f(x,y)dx] [I(F(,y))], so that by (A.6)

I(F(- ,y) < X , (B.2) and (B.3) , it follows that fp0(x)f'(x,y)dx is

analytic in y on K , a.e.x. Thus J(P0, y) is (a.e.x) an

analytic function on Kv , and the support of v0 is contained in a subset

of R on which an analytic function attains its minimum.. There are now two

possibilities:

(a) (iv) holds; or

(b) J(W0, y) I(FO) for all y E K

Otherwise, the support of vo must have an accumulation point in (-co, .o)

But since the analytic function J(p0, y) then is constant on a set containing

a limit point in (- o) , J(p0, y) must necessarily be constant everywhere

on K , so that (b) holds.V0
We claim that (b) is impossible, and hence, establish (iv). We begin

by showing that

(1 >I f 4 2(x) f(x,y ) dx = - fw (x) f ' (x, y) dx
0 0

(2.14)
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a.e. vo , where W0(x) is defined for all x by

(2.15) WOW(x) = |P2(y) dy

The inequality has already been shown to hold a.e. vo To verify the integra-

tion-by-parts, first note that WO(x) <co for all x . For if f042(y)dy = c

for some x , then f o (y) > C > 0 for all y E [0, x] by (A. 2), so that
x a

0 > fp2f0 > Cf ~2 (y) dy , a contradiction. Let [WO]{x) be the positive part
0

of W. Using the notation of condition (A.5), we have (a.e. v0)

(2.16) J [W W](x)[f' +(x, r ) dx = J[oIf (y) dy][f' (x, y) dx
0 0

2
co + f00~()=J49(y)[f [f'] (x, y) dxJ dy = - 2(x)f , ) dx

0 y 0

It follows from similar calculations using integrands [W ] If,]

[w0] [f'] and [W l[f'] , and from conditions (A.5) and (A.6), that

(2.14) holds. Thus condition (b) is equivalent to

(2.17) f[ -2iP0(x) + W (x)] f'(x, y) dx = 1(F0)

for all y E K . In view of (A.4), integration by parts gives,
V0

(2.18) f xf'(x, y) dx = -l

Thus (2.17) and (2.18) give,

(2.19) f[ -240(x) + Wo(x) + [I(FO)]x] f'(x, Y) dx = 0

for all y E K . If condition (D) (i) holds, then
V0

(2.20) Q(x)= -2ip0(x) + f i2 (y) dy + [I(Fo)] x= C a.e.
0

If instead condition D(ii) holds, then Q(x) = Q(-x) a.e. since f (x, Y)
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is symmetric for all V . So Q(x) = 0 a.e. i.e., (2.20) is also satis Iled,

with C = 0 under condition (D) (ii). It follows from (2.20) that Q

is differentiable and satisfies

(2.21) 2 t; (x) _ 42 (x) = +I(FO) > 0 a.e.xx.

The only solutions to (2.21) are of the form p(x) =A tan ½IX(x-c)

where X = I(FO)2 ,valid on the interval C + X So by (A.2) there

exists no absolutely continuous density function f0 for which o =-f'/fo

satisfies (2.21) a.e.x. We have a contradiction and (iv) follows.

Remark 2.1 The support of V in the conclusion of Theorem 1 may be

either a finite or a denumberable set of points. Noting that, under the conditions

of Theorem 1,

(2.22) sup V(ipo, F) = l/[I(FO)] < X
FEF

(where V(4,F) is defined by (1.3)), we see that a sufficient condition

for the support of vo to be a denumberable set is as follows: for every

f* = ff(x, y) v*(dy) for which v* concentrates on a finite set of points,

we have

(2.23) lim sup V(l*, F(, y)) = X
y

where 4* -f*'/f* . This condition can be easily verified in the two examples

in the next section.
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3. EXAMPLES

(i) F(x,y) = (1-E)¢(x) + vD(xe') , y E R

Theorem 2: The conditions and conclusions of Theorem 1 are satisfied

for example (i). Moreover,

a) v0 is a proper probability on R, viz vo{-00} = vO{+OO} = O.

b) The support of V0 is denumerable with an accumulation point at +cx.

Before proving this theorem, we will discuss some of its aspects.

Remark 3.1. The extremal F of Theorem 2 has density of the form

0

(3.1) f (x) = (l-E)C(x) * p for 0 < p. <
i=l i

EPi = 1 and 0 < ai< co for i= 1,2,... . Side conditions determining the

unique values of the pi and ci can be derived by writing, for a general F

of the form (3.1),

(3.2) I ~~~~~2C(-) (X) + e iElPici ¢(xai )}dx
00

0 { (1-E) (X) + E E piai 4(Xac1)}

and minimizing-over ai,Pi subject to the side conditions. Through a

standard argument with a Lagrange multiplier we arrive at,

00
-2 2-1 -

(3.3) 2 j [2xp0(x)a. - 4i(x)]ac
-

(xa.)dx m , i= 1,2,
0

where
2

M = _ [1(F0) (1-Ec) J [2x~ (x) - p(x)14(x)dx] < 0

and
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(3.4) f [2xi (x)Y' (x2x 2_-33) -h2( )( 2 -21x-1
0 1 i

i = 1,2 .. .

We do not know explicit formulae for the (pi,a() nor even whether the

optimal (pi,a.) are the unique solutions of this system of equations.

Nor are we suggesting that this is the approach to numerical solution of

our problem. What may be more appropriate are algorithms of the type

introduced in the theory of convex programming -- see for example Wu (1978).

Remark 3.2. The optimal 4 is clearly antisymmetric and satisfies

~P (x) > 0 for all x>O. It is also shown in the proof of Theorem 2 that

'O (x)/x is monotone non-increasing for x>0. However, it is not known

whether 0is bounded or even whether l0 is continuous at x=0. (For note

that Theorem 2 leaves open the question of whether - X is an accumulation

point of the support of v0.)

Remark 3.3. The conditions for Theorem 1 are undoubtedly too strong.

However, the conclusion can fail without some smoothness conditions on

F(-,4,). A striking example is provided by the unimodal contamination

model considered by Donoho (1978), i.e., F = {F: F = (1-E)D + eG, G symmetric

unimodal} which may also be written as a family of the form (2.1) with

F(x,y) = (l-s)4(x) + e U(xe Y) where U is the uniform distribution on

[-1,1]. To see that the conclusion of Theorem 1 must fail here, note

that if v is any probability measure on R for which the support is a

denumerable set with only - X and co as possible limit points, then the
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corresponding F = I F(x, y) v(dy) has a density which is not absolutely

continuous, so that I(F) = X. In the solution to this particular problem,

the least favorable vo turns out to have an absolutely continuous component.

For the solution, see Donoho (1978). Of course (A) - (F) are violated

in various ways. Since F(x, y) is not continuous in x, I(F(-, y) = co

for all y, and f (x, y) is not a continuous function of y , much less

analytic.

Remark 3.4: If E is a bounded interval and theorem 1 holds the carrier of v0

is necessarily finite. It is trivially clear that we can reparametrize F(-,y)

so that V0 is carried by a finite set even though y ranges over R.

For instance, define

f( , y) = (1- £) q(X) + E X(y) 4(xX(Y) )

where X is an analytic 1 - 1 mapping of R onto (say) [0,1]. For

instance we can take X = (

Proof of theorem 2: The verification of conditions (A.1) - (A.5) is

elementary. Assumption (A.6) follows since I is a convex functional, so that,

I((,y)) < (1 - £) I(b)) + £ I((D(xe y))

= (-y) + E e 2y <

The argument for (A.7) was given in section 1.

Conditions (B.1) - (B.3) follow from standard properties of the Laplace

transform once we represent

flw(x) exp(-
X

dx - 2 ( I W(y½) + Iw(-y½) I) y ½ exp(- f-i) dy



-18-

Conditions (C.1) and (C.2) hold;

Here,

F(, - o) = (1 - ) + E 6 0}

F(-, + o) = (1 - E)>? + £(6{ } + 6{}) *

In this case since the restriction of F(-, - o) to R is not absolutely

continuous I(F(-, - o)) = X . On the other hand, the restriction of

F(-, + o) is absolutely continuous, has density (1 - e)¢ (x) = f(x, co)

with I(F(-, co)) = (1 - c).

To verify condition D(ii) note that f(x, y) is symmetric in x

If fw(x) f'(x, y)dx = 0 , y E (a, b] both fix w(x)|e 1X dx and

x w(x)le-3y exp(-1½ x eY dx converge and thus fxw(x)e3 exp(-!ix'e dx

is finite and analytic in y for a region S containing (a, b) and 0

Therefore,

2
2x

(3.5) xw(x) e-3 exp(-x 2y - (l) fxw(x)e- T dx

for all y E S . Putting y = 0 shows that the right hand side of (3.5)

is 0 . A change of variables leads to

(3.6) f 0[w(vy) - w(-V4)] exp(-y e ) dy = 0

for y E S . The unicity theorem for Laplace transforms completes the

verification of D(ii).

(E) follows similarly from the classical formula for differentiation of

Laplace transforms.

Condition (F) (i) is easily seen to hold with C(v) = 1 for all V.

To complete the proof of the theorem we need to verify a) and b).
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At this point it is convenient to re-parametrize by defining a = e
00

Write G(x, a) for F(x, y) and G(x, p) = fG(x, a) p(da) for F(x, v)
0

with the correspondence p(da) = v(d(log a)). Also let p (do) = vo(d(log a)).

Proof of a): First note that 0{{}= 0 since I(F(.,-oo)) = oo.

Now suppose that po0{+oo} > 0. Then there is a number ac>0 such that every

density of form

(3.7) f1(x) = f0(x) + otef K-) "i(d:)

is the density of an E F . Since as > 0 , Huber's condition (2.3)

f[-2p0(f; _ fo) - o2(f - f0)] > 0 , when applied to all f1 of form (3.7)

yields

(3.8) f[ -240g' _ Wp2g] dx > 0

for all g = G' , G of the form f &(Da) i(da)

In narticular, for each X> 0, there is a G of this form with g(x) = G (x) =

½X exp(-Xlxj) [see Andrews and Mallows (1974)]. Also, since 0 is antisymmetric

and 'P(x) sgn (x) > 0, it follows from (3.8) that

00

Co(3.9) f [2~p (xX2exp(-Xx)- *2 x)A,exp(.Xx)]dx > 0 for all X>0.
0 0(

0

Co

Using the notation Ex(h) = f h(x) X exp(-Xx)dx, (3.9) may be written as
0

(3.10) E2[2X4o - °] > 0 for all X> 0

Since Ex > 0, (3.10) can be written as E2o/[Ex] 6 2X for all X>0.
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Since 0 < Var(0) = E 2- [E 2, it follows that 0 < [EX92/(EX*O)] -E0,
so that

EXp2
O<E Exo < -E 2X and

E ) 6 2XE O < 42 for all X >0
Xo0

Therefore, for all X >0,

co(3.11)
f 2

x e-Xxdx < 4X

Fix X0>0. By (3.11) and monotone convergence, letting \ 0,
000

f *2(x)dx S 4X. Since X is arbitrary, f 2p(x)dx < 0 leading to
Cx0 0 0 0 0 edigt

0O(x) = 0 a.e., a contradiction. It follows that p0{+OH= 0.

Proof of b): We define

O(X)
w(x) = x

and then establish that w satisfies w(x) 0 for all x >0 and is

monotone non-increasing for x >0. Following Andrews and Mallows (1974),

a change of variables 0 = -l/(2a ) yields that

f0 (x) = b(x2)

where
0

b(y) = f e0y v*(de)
-00

where v* is a positive measure on (-co,0). Since b(y) <c for all y>0,

it follows that b(y) is analytic for y > 0 and that

b( )(y) f|n eey v (dO) for y>0 and n =1,2,... . Then,
-00

W 0(x) = [-log f (x)] -2xb(x2)
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so that w(x) > 0 for all x > 0 since b'(y) < 0 for y > 0.

To show that w(x)4 as x -* o, it suffices to show that

[log b(y)] = b' (y) /b(y)t as y + co. But [log b(y)]" > 0 for all

y >O since

f 0 e Y V*(de) rf e eey v*(de)
(3.12) [log b(y)] = 0-

jO e0Y v*(de) _0e v*(d9)

and the right-hand side of (3.12) is the variance of a random variable.

This completes the proof that w(x)+ as x -+ oo.

Now suppose that b) is not true. Then by (iv) of Theorem 1, the

support of VO is either a finite set of points or it is denumerable with a
0~~~~~~~~~~~~~~~~

unique accumulation point at -X. In either case, there is a number a

0 <0* < , such that

f0(x) = (1- E)4(X) + £ Pa-1 ¢(X1)
0~~~~~~~

where the index i ranges over a finite or denumerable set, I Pi = 1,

0 < Pi < 1 for each i, and 0 < avi a* for each i. Then,

(1-C)(x) + £ ZpP . (X:. )
(3.13) w(x) = 1 ii1 1 X$0

(1-£)4(X) + £ E p.0.1 V(x. )
i 11 1

so that clearly w(x) > min{l,(o*)21 > 0 for all x>0. Also since w(x){,

w(oo) exists and hence w(o) > min{l,(a*) 21 > 0.

For each a>0O, let g(&,) = (1-E)d( ) + Eo: ( a ). Then,

f IP2(x) g(x,a)dx = (1-£) ftp (x)q(x)dx + E0 |w2(y)y2C (y)dy

> (1-) 0(x)>(x)dx + £0 2 2(00)
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so it follows that

(3.14) 1rm f p2 (x)g(x,C)dx =c

We also have that

(3.15) 0 < rim [-f 0(x)g' (x,a)dx] < co

To see this, write

00 00

-f tPO(x)g'(x,a)dx = (1-E) f x0W(x)4(x)dx + 2c f w(ay)y2 (y)dy
-.00 ~~~~~~~0

and note that

00 00

(1 -e£) f xlP0(x)4(x)dx f-f iP(x)f (x)dx = I(F ) < 00
-00 _00o0

and that
00

lim 2£ f w(oy)y2 (y)dy = Sw(o) < o0

by the dominated convergence theorem, since w(oy) + w(00) as c + 00

for each y > 0, and since for all a > 1, Iw(ay) y2 +(y) is bounded

above by lY O(Y) (Y) I -
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(ii) F(x, y) = (1 - E)¢ (x) +Ec( x - y)

We state our result for example (ii)a) for simplicity. However, the

proof goes over verbatim to the more general case (ii) b).

Theorem 3:

example (i)

a) vo

b) The

c) v0

The conditions and conclusions of theorem 1 are satisfied for

Moreover,

is symmetric

support of vo is denumerable.

is a proper probability distribution on R .

Remark 3.5: The solution has the form

fo(x) = (2- )4() +[~(x - yk + p(x +
k-l k

where 0 < YI < Y2 < . < X 0 < Pk < 1 for all k and Pk =1
k=lk

By the argument in Remark 3.1, { Yk) , i=1,2,...} satisfy the side

conditions

(3.16)

and

(3.17)

00

2 1 [24o(x) - ]P(x)J½[4(x - + ¢(x + Yk)1 dx = m < 0 for k=1,2,...

f[2i'(x) - p2(x)][(x - y ¢ - ) - +x Yk )Jdx = 0

for k = 1,2,...

Again, other approaches are appropriate for computation.

Mallows (1980) conjectured that Yk = hk for k = 1,2,... and for some

h > 0 , and that Pk = A( -X) for all k for some X > 0 .



-24-

D. Donoho has a modification of this conjecture in which the Y 's are of the

form Yk = a + kh for some a > O and h>O . It is not yet known

whether either conjecture is true, although numerical results for Donoho's

conjecture are encouraging.

Remark 3.6: Another application of this theorem is to the estimation of

log scale for contaminated normal families dealt with in Huber (1964) viz.

f (x, y) = (1 - s) ( .)exp {-½ e Y y}

+ £(r)Iexp{-½e2(YY) - (y -y)}

Proof: We will verify conditions (D)(i) and (F)(ii) . The verification

of the remaining conditions are omitted since they are very similar to the first

example (with an additional complication that the set on which f'(x,y) = [f'J (x,y)

depends on y).

To verify (F)(ii), note that I(F(-, y)) < (1 - C)I(4(-)) +s I(( - y) = 1

so that sup I(F(-, y)) < 1
y

To verify (D) (i), suppose that fw(x)f'(x,y) dx = 0 for all y

a < y < b . Since f' (x, y) = -(1 - £)x¢(x) - £(x - y) (x - y) , we have

(3.18) (1 - )fxw(x)e2 dx + -2 w(x)e-2 +yxdx - ye fw(x)e dx =

for all y E (a, b) . Thus the region of convergence of the Laplace transform
2;2s

fxw(x) e 2 e dx is an interval of s 's that includes both (a, b)
x2Z

and 0 . Setting y = 0, we get fx w(x) e 4 dx = 0 and substituting into

(3.18), we obtain

x2 x2
(3.19) f x w(x) e: eyx dx = y f w(x) e7 +yx dx

for all y E (a, b) . Since the left side of (3.19) is the Laplace transform
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2
x

of x w(x) e 2 at y and the right side is the Laplace transform of

x2
dx [w(x)e ] at y , we conclude by the uniqueness theorem that

dx~ ~ ~ ~

x2 2 s2
(3.20) x w(x) e2 = -d [w(x)e 2 ] = [X W(X) W(X)] e 2 a.e.

so that w'(x) = 0 a.e. and w(x) = C a.e. as desired. So the conclusions

of theorem 1 hold.

To prove that Fo is symmetric, note that I(F(-, V)) = I(F(*, -V)) for

all v , where -v is the reflection of V about 0 . Then Fo = F(*, vo)
could not be the unique distribution minimizing I(-) unless V = -VO 0

As in the proof of theorem 2, the support of vo is denumerable since,

if not, %=-f /f0 can be seen to be approximately linear in the tails so

that sup V(*O, F) = X. Also since Vo = -vO , the accumulation points of
F0

VO are at both + X and - Xo

It remains to show that VO{- co} = VO{+ o} = 0 . Arguing as in the proof

of theorem 2, we need only show that

(3.21) f[-240g' - 4ig] dx > 0 for all g(x) = f1(x - y)v(dy)

implies that = 0 a.e. Consider the following identity (which is straight-

forward to verify)

(3.22) f[2Wp(x)(x-e)Cp(x-e)- 2(x-e)]dx = l-E6(X- p (X) -9)2

where E denotes expectation when the random variable X has a N(e,l)

distribution. Then (3.21) implies (by the choice v = unit mass at 0) that

the left side of (3.22) is >0 for all 0, so that sup E [X- p (X) el2 < 1.

But it is well known that X is the unique minimax estimator of e , i.e.,

that if 6(X) is any other estimator of 0, then sup E0[6(X) -0 ] > 1.

So sup E [X-(X)0]2~1 implies that 0 0 eSo sup E 3[X-9 (X)- 6] < 1 implies that 90-O a.e., completing the proof.

0
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(iii) F(x, y) = 4(x - y)

Verification of conditions for the example is of course trivial if E is

a proper interval. In that case the support of v0 is necessarily finite

(as has long been known), and of course, V0 is symmetric about the midpoint

of E . If E has even one infinite end point, inf {I(F) : F E F} = O

and Condition (A.7) fails. The assertion of theorem 1 on the nature of vo

continues to hold. However, V. is not unique.
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