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Abstract.
The first k coordinates of a point uniformly distributed over the n-sphere are

independent standard normal variables, in the limit as n -- oo with k fixed. If
k oo the theorem still holds, even in the sense of variation distance, provided
k = o(n). The main result of this paper is a fairly sharp bound on the variation
distance. The bound gives another proof of the fact that orthogonally invariant
probabilities on R°° are scale mixtures of sequences of iid standard normals.
Similar results are given for the exponential, geometric and Poisson distributions.
We do not have the right general theorem.
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1. Introduction.
n

Let ( be chfosen at random on the surface of the sphere {(: f2=2 n}.

Then 6, are for k fixed, in the limit as n -+ oo, independent standard
normal variables. This result is usually- but we think incorrectly - attributed to
Poincare (1912). The history, and the connection with Levy's work, will be dis-
cussed in Section 6 below. We allow k = o(n), a growth condition which is
necessary as well as sufficient. We get a reasonably sharp bound on the variation
distance between the law of 4i * (k and the law of k independent standard nor-
mals: this bound is essentially 2k/n.

More formally, let Qnrk be the law of 6, , when ( *
G-1l * * * X (n) is uniformly distributed over the surface of the sphere

n

&21 r2}. Let p k be the law of aoj, ok where the ~'s are indepen-

dent standard normals. Section 2 proves

(1) IIQnrkPr/l_VnII < 2(k + 3)/(n-k-3) for 1 < k < n-4.

The order k/n is right, although the 2 is not sharp. The inequality has content

only when k < 1-n -3.
2

The inequality is connected to a representation theorem of the de Finetti
type. ILet X1, X2,... be infinite sequence of random variables. Call this sequence
orthogonally invariant if for every n, the law of X1, - . , X. is invariant under all
orthogonal transformations of Rn. A sequence is orthogonally invariant if it is a
scale mixture of iid standard normals, a result usually attributed to Schoenberg;
and see Freedman (1962). This theorem is false for finite sequences; indeed, Qnrn
is orthogonally invariant but not a mixture of normals.

Inequality (1), however, does lead to a finite version of the representation
theorem, and then the infinite version follows by a passage to the limnit. For the
finite version, suppose (X1 Xn) are n orthogonally invariant random variables.
Let Pk be the law of X1, , Xk; recall that I, 2, - are independent standard
normal variables and pck is the law of aoj, a,k. Let Pk fPk p(da) where
p is a probability on [O,cc).

(2) Theorem. If XI,--- , Xn are orthogonally invariant, there is a probability
p on [O,oo) such that for 1 < k < n - 4,

IIPk - PklI < 2(k + 3)/(n - k - 3).

In short, the first k of n orthogonally invariant variables are within about
2k/n of a scale mixture of iid standard normals. This is almost immediate from
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(1). Indeed, consider the class of orthogonally invariant probabilities Pn in Rn.
This is convex, and the typical extreme point is the uniform distribution Qnrn on
the sphere of radius r. Clearly, if P e Pn,

P J fQnrn X\(dr)

where X is the P-law of / Xi . So

Pk JfQnrk X(dr).
By convexity, it is enough to prove (2) for the extreme Qnrn, and that is (1). The

mixing measure p can be taken as the law of v/TT 2.

Again, the k/n rate is sharp, although the 2 is wrong. This is a bit more com-
plicated to argue: if P =Qn n, and k/n is bounded away from 1, then
IlPk - PkklI is nearly minimized when p is point mass at 1: compare (Diaconis
and Freedman, 1980, sec 4) on the binomial.

The infinite case, ie Schoenberg's representation theorem for orthogonal
invariance, follows from the finite. Let X1,X2, be an infinite sequence of
orthogonally invariant random variables, with law P in R°. Let PO be the law
of ofl, o2, where the ~'s are iid standard normals. Let PJ fPr p(da).

(3) Theorem. Let X1, X2,.* be orthogonally invariant. Then there is a
unique p with

P fPO (da).

Proof. For each n, let X1,I , Xn be the first n variables in the sequence,
with law Pn. Clearly, Pnk = Pk. Apply theorem (2), getting a probability p,n on
[O,ox) with

I lPk - Pp,,kl I S 2(k + 3)/(n - k - 3) for 1 < k < n - 4.

The sequence Pn is tight, because

fProb{IoaiI > a)} pn(do) Prob{ XII > a)} + 0(1/n)
goes to zero if n - oo and then a- oo: but Prob{lalj> a}_1 as a -+ oo.
For existence, let p be a subsequential limit of Pn: clearly, P -n P weak star
along the subsequence. For uniqueness,

itl
00 I1A2

E{eitXl} fe 2 p(du)
0

determines p, by the uniqueness theorem for Laplace transforms. For a more
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general and less analytic proof of uniqueness, see Dubins and Freedman (1979,
Theorem 3.4). For an even more abstract version of uniqueness, see Diaconis and
Freedman (1984, TheoreTn 4.15). 0

We have similar results in three other cases. Again, the rates are sharp, but
not the constants. The argument from the bound to the finite version of
deFinetti's theorem to be the infinite is the same in all cases, and will not be dis-
cussed in detail each time; nor will the sharpness of the rates.

The exponential. If e = 1, X) is uniform on the simplex {(; > 0
n

and E fj = s}, then 61, * k are nearly independent and exponential with
1

parameter n/s: the variation error is at most

2(k + 1)/(n - k - 1).

This leads to a characterization of mixtures of independent exponential variables,
as uniform on the simplex given the sum. Details on the bound are in Section 3.

The geometric. This follows the pattern for the exponential, restricting
attention to nonnegative integer-valued variables. The exact bound is more com-
plicated:

(2k + 3)n/[(n - k -1)(n - k - 2)].
Details on the bound are in Section 4.

The Poisson. The analog of Poincare's theorem is a Poisson approximation
to the multinomial: Drop s balls into n boxes. Count the number falling into
box 1, box 2, ..., box k. These k counts are nearly iid Poisson variables with
parameter s/n: the variation error at most 1.2k/n, according to Kersten (1963);
also see Vervaat (1970). Mixtures of iid Poisson variables can now be character-
ized as being conditionally multinomial given their sum. Details on the bound
are in Section 5.
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2. The normal case.
We begin with some general remarks on variation distance. Let P and Q be

probabilities on the measurable space (0,F). Then

(2.1) IIP - QIIF- 2 SUPAEF jP(A) - Q(A)I.
If IF is understood, it may dropped. The 2 is a conventional nuisance factor.
Clearly,

(2.2) iIP - Qll - 2 suplf dP - fq dQi,

the sup being taken over all F-measurable ¢b with 0 < X < 1.

If P and Q are absolutely continuous with respect to a a-finite reference meas-
ure p, having densities p and q, then

(2.3) lP-Ql iflp-ql dp=fPl -11 qdp
q

2fJ(p - q)+ dp - 2f( P - 1)+q dp
q

where f f when f > 0 and 0 otherwise.

Let E be a sub a-field of F which is sufficient in the sense that for all A E IF,
P(A I E)-Q(A I E) ae P and ae Q.

(2.4) Lemma. If 2 C F is sufficient, then lIP - Qll- IIP - QllF
Proof. Clearly, IIP - QIE < IIP - QiiF. In the other direction, if A E F,

then

IP(A) - Q(A)l - if dP- f dQi <-IIP - Qlli

where X P(A 3) = Q(A E) and (2.2) was used for the inequality. 0

We are now ready to prove inequality (1).

Proof of (1). Since variation distance is invariant under 1-1 mappings, eg
scaling, it suffices to take r = so a = r/x/ = 1. Recall that

n
= (G & Gk+1,* * ) is uniform on the sphere E (i2 - n while

S1 S2J... are iid N(0,1). Let Q be the Qnrk-law of 4±2+ +.± and P the Pk
law of S^2+ * + k. By lemma (2.4),

(2.5) I IQnrkPr/GVnl I IiQ -P| |

We realize Q as the law of q,/R, * , n/R, where R2 = 1 Y i2. So Q is the
nl

law of
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k n

n( 1)/( S
1 - I

ie, n times a beta [k/2, (n-k)/21 variable (Cramer, 1946, sec 18.4). Thus, Q has
density

f(x) n21F(n/2)_
n r(k/2)F[(n-k)/21

k n-k

2-) (1 _ x ) I
n n

for 0 < x < n

=0 for x > n

On the other hand, P is Xk with density
-xk-12 2

g() 2k/2rF(k/2)
for 0 < x < oo

(Cramer, 1946, sec 18.1). By (2.3)

(2.6) IIQ - PIl = IIQ -iii = f(x) _1)+g(x) dx

Clearly,

f/g - Ah

where

A = (2)k/2r(3)/(n-k)(n 2 2

x

h(x) =e2 (1 -

n-k

x) 2
n1

-o

for 0 < x < n

for x > n.

We must estimate h and A, and this is the core of the proof. We begin with
h, and claim

log h(x) < -(k + 2) + 2 (n - k - 2)log (12 ~~2
--k+2)forl < k < n-3.

n

Indeed, an easy calculation shows that

a log h(x) 0 for x = k + 2.

Next, we claim

(2.8) log [(1- k+2-)A < _{-(n-k-2)log(1- k+2 )-k-2} for k even with 1 < k < n-3.
n 2 na

Indeed, P'(z 1) zF,(z), so

(2.7)
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r()2)r(2k )( 2 - 1) ( 2 -
k

2 2 2
2 42-(n - 2)(rn - 4) (n - k)2-/

(n )k/2(1 )(1 ) (1-- )
2 n n n

Then

k+2 (k+2)/2 2ilog(1 n ) + log A iS log (1 - l )n i=1 n

(k+2)/2 2x
< f log(1- -)dx

0

- -[-(n-k-2)log(1- k+2)-k-21.2 n

This proves (2.8). Combining (2.7-8) gives

(2.9) If k is even with 1 < k < n-3, then (1 k+2 )f/g < 1.

If k is even with 1 < k < n - 3, then (2.9) and (2.6) show

IIQn,V4,k-P1kII IQ -I s n2k-2
If k is odd with 1 < k < n - 4, then k + 1 is even, and

IlQn,v/,k - PIll . IlQn,-,k+1-P 1k <
n 3k-3

This completes the proof. 0

(2.10) Remark. Lemma (2.4) is used only to simplify the calculations; indeed,
k

with t2 = S Xj2, the density of Qnrk at (xl - Xk) is

|1_ | ( / ) | 1 - _
rvi r [(n-k)/21 r2

for Itl < r; and 0 for Iti > r.

(2.11) Remark on unique lifting. The uniqueness part of Theorem (3) is not
surprising, because uniqueness always hold for infinite versions of de Finetti's
theorem. For finite version, the situation is more complicated: for example, if
p n makes X1, , Xn iid coin tosses with success probability p, then f p n p(dp)
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only determines the first n moments of p, so ,i is not unique. For orthogonally
invariant probabilities, however, uniqueness hold even for the finite version of de
Finetti's theorem - and a little more. To state the result, let Cn be the convex
set of all orthogonally invariant probabilities on Rn, and Cnk = {Pk: P E Cn}
i.e., ir E Cnk iff r Pk is the P-law of the first k coordinates, for some P e Cn,
Then

i) Cn is a simplex with extreme points the Qnrn.
ii) P is uniquely determined by Pk.

iii) Cnk is a simplex.

iv) The extreme points of Cnk are the Qnrk.

Proof. i) P fQnrn X(dr), where X is the P-law of N . .

ii) It suffices to show that P1 determines P. By orthogonal invariance, the

characteristic function of P depends only on Itl = t/I2, say as 0(ItI). Now

the characteristic function of P1 is

E{eitlXl} -k(1tjI)
and this determines X, so P, by Levy's uniqueness theorem. That Pk determines
P is the unique lifting property. Claims iii) and iv) follow by general arguments
from the unique lifting property. 0

(2.12) Remark on sharpness. The rates in (1) and (2) are sharp, but not the
constants. Indeed, let k and n tend to oo, with lim sup k/n < 1. We think we
can prove that IIQ.,vik- P,kII is minimized, at least asymptotically, when p is
point mass at 1. Now

a) IlQn,v;D,k - PkII 7yk/n if k = o(n)
b) IIQn,,k -P11k || k(O) if k/n -_ 0 < 1.

Here, a-= Ell - Z2I and
2

!0Z2

0(a) =E 1 -V/ie2 I
k

with Z a standard normal. Informally, E (j2 is n - betalk/2, (n-k)/21 which is

k k
asymptotically normal with mean k and variance nearly 2k(1 - k-); while E i2 is

n 1
Xk2 which is about N(k,2k). Multiplying a centered normal variable by v

changes the distribution by O(0) in variation distance, and q(0) ''y0 for small 0.
Details are omitted, but see the next remark.
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(2.13) A more general result. We belive that we have proved the result in
(2.12) for a fairly broad class of exponential families, including eg scale mixtures
of gammas with fixed shape, or shape mixtures of gammas with fixed scale. We
require uniformly bounded standardized fourth moment and some smoothness in
the carrier measure, in order to get uniform bounds like (1) or (2). See Diaconis
and Freedman (1986). More specifically, let I be an open interval (a, b), possibly
infinite. Let h > 0 on I be locally integrable. Let A (a, #3) be open, and for
X E A we have the exponential Px with density

) exx h(x) for x E I
c(X)

where

c(X) feXx h(x) dx.
I

Let mx be the mean of Px, and a>2 the variance. As usual, mx is continuous and
strictly increasing. We assume

i) A is maximal, in the sense thatmx- a as X-- a whilemx - b as X_ I.

ii) Fourth moments: supx - f(X - mx)4 Px(dx) < o
ax

iii) Smoothness: sup x sup 4tl>b,,If eitx Px(dx)I < °o.
I

Let X1, , Xn be iid Px. Then S= XI+ +Xn is sufficient for X. Let
Qnsn be the usual version of the regular conditional distribution for X1, * .*
given S s. Let s/n e I. Let X* = X * be chosen so mx* = s/n. Let n and
k -. oo.

a) IlQnsk - Px*kll ^yk/n + o(k/n) if k = o(n)
b) IIQnsk - Px*kjII = .(0) + o(1) if k/n -_ 0 with 0 < 0 < 1

These estimates are uniform in s with s/n E I. Dropping the uniformity condi-
tions i) - ii) - iii), the estimates still hold provided X* is fixed in I and s/n -+ mx*;
but the error depends on X*. Under such conditions, we can also prove the fol-
lowing.

c) Suppose k/n - 0 with 0 < 0 < 1. Fix X* E I; for each n, choose s as

The

XI+

s/n - mx*. Then IIQnsk - Pkll . IIQnsk - PX*kII + o(l).
idea of the proof for eg a) is this: let fk1 X be the Px - density of
... + Xk. Then the norm in a) is

f fn X*(S ) -1| fk,x*(t) dt

and fn-kx* (s - t)/fn,x*(s) can be estimated by Edgeworth. For k = o(n) this
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turns out to a good approximation to be

I k (1 - t2), where t = (t - kmx*)/ax*k2 n

For c), let p. = ffk x p(dX) be the P,A-density of X +--...+ Xk. Let Q be the

QnSk-law of X1 + - + Xk, with density q. Let f = fk X*. Then

IIQ~~2- pl2(q- p,)+IIQ -P~I fqp)

> 2f(q - p,)j
K

2 2f(q - p)
K

2f( q - 1)f + 2f(1 - PAi )f.
K f K

Choose for K the interval

t < -a log 1

essentially where Q > PI. The first integral is q(0) + o(1). The second is posi-
tive, up to o(1): only point masses need be considered for p. We have a similar
bound for k = o(n).

These estimates apply to the normal and exponential distributions. They do
not apply fully to the geometric or Poisson cases, because the standardized fourth
moments blow up near zero. However, the estimates do apply locally, and
demonstrate the sharpness of the k/n rate.
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3. The exponential case.

The main result of this section shows that the uniform distribution on a sim-
plex has approximately independent exponential coordinates. Some of the rea-
soning in the previous section will be useful in this connection and can be
abstracted as a lemma. This is a more direct version of (Diaconis and Freedman,
1980, p. 757)
(3.1) Lemma

a) For 0 < x < N, let 0(x) = log(1 - N |J. Then O(0) =0,0b is strictly

decreasing, strictly concave, and O(N-) = -oo.

b) For 0 < x < 1, let f(x) = -(1 - x)log(1- x) - x. Then f(0) - 0, f is strictly
decreasing, strictly concave, and f(1-) = -1.
m nm

c) Z )(i) < ff (x) dx
i=l ~~0

rn-i m m

d) E )1(i) 2 fJ (x) dx > fJ (x) dx
i=1 1 0
y

e) f q(x) dx -(N - y)q(y) - y = Nf(y/N)
0

f) (1 (1 )(1 ) b 1 (1 a+b
M M NF N M+N M±N-

Proof. Claims a) and b) are elementary; c) and d) follow. Claim e) is ele-
mentary. For f), the log of the left side is bounded above by

(3.2) Mf( M) + Nf( )
M N

The log of the right side is bounded below by

(3.3) (M + N)f( a+b
M+N

The expression in (3.2) is smaller than that in (3.3), by Jensen's inequality. 0

We are now ready to state and prove the analog of inequality (1) for the uni-
form. Let p n be the law of S, . * * Sn which are iid exponentials with parameter

so p n{,; > y} = e-Y. Given 1+ * + n = s, the S's are conditionally uni-
form on the simplex. Let Qnsk be the law of 6, e where
=-(61 * * * X Gk+17 * * n) is uniform on the simplex

n
{>j> 0 for all i and E (i = s}. The next result shows that Qnsk is nearly P k

1 nlal
provided k = o(n). Informally, this is because ~j4 + ~n is practically
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constant, so the conditioning is immaterial.

(3.4) Theorem. IlQnsi - PAsl < 2(k + 1)/(n - k + 1) for 1 < k < n - 2.

Proof. It suffices to do the case s = n. The sum is sufficient so lemma (2.4)
applies7 and

(3.5) 1IQnsk- n/'sII =-I QPti
where Q is the Qnsk law of ++*+ and P is the p k law of *+ik.
We realize Q as the law of nq1/s, , nfk/S where S = S± * +n and the ~'s
are iid standard exponentials. So, Q is the law of

k

1

n

fi/E fis~I

ie, n times a beta (k, n - k) variable, with density

f(x) = 1 r(n) ( X )k-l(1 - X )a-kl1
n r(k)F(n -k) n n

for 0 < x < n

=0 forx > n.

On the other hand, P is gamma, with density

g(x) 1 e-x xk-l for 0 < x < oo.
rb(k)

As before

IiQ - PIl = I -P1|| 2f( -1)+g dx
g

and we must estimate f/g = Ah, where

A k r( -7n) (1 I )( 2 )n' (n -k) n n
* (1- k)

n
n-k-i

h(x)-0

=

(1-k+1)f < 1forf
n g

forO < x < n

for x > n.

<k < n - 2.

Indeed, the log of the left side is
kl1

x+(n-k- 1) log (1-_x) + k
n ,=1

(3.6)

We claim

(3.7)

log (1 - )
n
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< x +(n -k -1)log (1-_x )_(n -k -1) log (1 _k ) k - 1
n

by lemma (3.1). The upper bound is maximized at x = k + 1 where it vanishes,
proving (3.7). Then (3.6) proves the theorem. 0

(3.8) Remark. The rate but not the constant is sharp. Lemma (2.4) is only to
avoid tedious calculation, since the Qnsk density is

(ls )k(l 1 ) 1_ k)( _ n--

s nl n s

where t xl±+ -+xk < s and all xi > 0.

(3.9) Remark. Heuristic versions of (3.4) are known: The uniform distribution
on the simplex can be represented as the joint law of the spacings of n - 1 points
dropped at random into the unit interval, and the spacings are approximately
independent exponentials for many purposes. See Feller (1971, p74) or Diaconis
and Efron (1986) for further discussion. Rigorous versions and applications are
given by LeCam (1958), Pyke (1965), and Holst (1979).

(3.10) de Finetti's Theorem. Let R+- [0, oo); Let X1, Xn be the coordi-
nate variables on R+n and S XI+ + Xn. Let Cn be the class of probabili-
ties on R+n which share with the iid exponentials the property that given S s,
the conditional joint distribution of X1, X2, , Xn is uniform on the simplex. If
P is a probability on R+, let Pn be the P-law of the first n coordinates. The
infinite form of de Finetti's theorem asserts that if a probability P on R+ has
Pn e Cn for every n, then P is a unique scale mixture of iid exponential variables.
The infinite theorem follows from the finite version, which is given in the next
remark.

(3.11) Finite de Finetti. Recall Q from (3.10). Clearly, Pxn E Cn; SO iS
P = fp n p(dX) for any probability p on [0,oo). If P E CQ, ie, P is condition-
ally uniform give the sum, then there is a p such that for all k < n - 2,

IIkPk- P.klI< 2(k + 1)/(n - k + 1).
In other words, if n nonnegative random variables are conditionally uniform on
the simplex given their sum, the first k = o(n) are to within about 2k/n a scale
mixture of iid exponentials. As in the normal case, the k/n rate is sharp, but not
the constant 2.
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(3.12) Another characterization of C.. With previous notation, P E C. if
P(A) = P(A + x) for all Borel sets A and all n-tuples xl, , xn of real numbers

n I

with E xi = 0, provided A C R+' and A + x C R+ In one direction, suppose

P E Cn. Then P = Qnsn X(ds), so it is enough to prove that Q(A) = Q(A + x),
where Q stands for Qnsn, the uniform distribution on the simplex. But
A l (S s} and (A + x) n {s- s} are congruent, and hence of equal Lebesgue
measure. In the other direction, suppose P(A) = P(A + x). Let V, be a regular
conditional distribution for P given S = s, so VS(S = s) 1 for PS-'-almost all
s. For any particular B and x,

Vs(B) = Vs(B + x) for PS-'-almost all s,

as one sees by integrating over S > s: take A B {S > s}. The invariance
must hold for eg for all spheres B with rational center and radius, and all rational
x, forcing Vs to be Lebesgue measure on {S = s}.

Some lemmas on the beta will be developed in order to prove the unique lift-
ing property.

(3.13) Lemma. If X is beta (p,q) and independently Y is beta (p+q, r) then XY
is beta(p, q+r).

Proof. Let U, V, W be independent gamma variables with parameters p, q, r
respectively. Then U/(U + V) is beta (p, q) independently of U + V which is
gamma (p + q), so the trivial identity

U U+V U
U+V U+V+W U+V+W

proves the lemma. 0

(3.14) Corollary. If X has a beta distribution, then log X is infinitely divisible.

Proof. If X is beta (p, q), then eg X can be represented as
beta (p, q - E) - beta (p + q - E, c). 0

(3.15) Corollary. If X is beta with given parameters, and Y > 0 is independent
of X, then the law of XY determines the law of Y.

Proof. By (3.14), the characteristic function of log X never vanishes. 0

(3.16) Remark on unique lifting. The analog of (2.11) holds in this context
too. As before, let Cn be the convex set of all probabilities on the positive
orthant of Rn which are conditionally uniform given the sums of the coordinate
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variables X1 X,. Let Cnk {Pk: P E CJ,j ie, ir E Cnk iff ir Pk iS the P-
law of XI *- Xk for some P E CQ. Now

P fQnsn \(ds)
so

Pk .fQnsk X(ds)
and it is enough to compute X from Pk. To avoid trivialities, suppose
1 < k < n - 2. The critical case is k 1, and it is enough to compute X from
P1. Now Q,ns is s - beta (1, n - 1). So P1 is the law of SX, where S and X are
independent, S has the law X, and X is beta (1, n - 1). Finally, P1 determines X
by (3.15).

Another argument for unique lifting starts from the characterization (3.12) of
Cn. Take A {X1 > y1, * * * X Xn 2 Y.) with yi 0O; take x =-Y2+ Y*n*+
X2 -Y27 * * * X Xn -Yn: SO

A + x -{X1 > Y1+ * * * +Yn) X2 > 0° * Xn 2 O} {Xl > YI+ ***+Yn}-

The upshot is that for P E Cn,
P{X1 > Y1 XXn 2 Ynl} P1{X1 > Y1+ +Yn}

and P1 determines P.
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4. The geometric case.

Let P be law of S ¢, which are iid geometric variables with parameter
p, so pn{,; = j} = (1 - p)pJ for j = 0,1,... Given 1+ + = s, the ~'s are

uniform on the simplex. Let Q11,k be the law of 6i * (k where
&(6Xk+1l ,-}(n) is uniform on the simplex

n
{(j is a nonnegative integer for all i and E =i s}.

The analog of (1) is the following theorem.

(4.1) Theorem. Let p = s/(n + s). For 1 < k < n - 3,

n2
IIQnsk -pk1 < 2{ (n-k-1)(n-k-2) 1}

Proof. Here scaling is not feasible, so all values of s must be considered. Let
t = jl+ - +jk. Clearly,

(4.2) PPkjj ...* jk} = (1_p)kpt.
By the "stars and bars" lemma (Feller, 1968, sec 11.5), there are (n+s-1) n-5
tuples il i* n of nonnegative integers with sum s. Then for
t jl+ +ik < s,

(4.3) Qnsk(i<* ,iJk) =(n-k-s-t-1)/ (n-s-1).
Dividing (4.3) by (4.2), the ratio Qn,k(i1l, * kji/P k(jl, , hk) is seen to equal

(n+s-k-t-l)! s!(n-l)!
(S-t)!(n-k-l)! (n+s-l)!

nk St

(n+s)7 (n+s)t

This is N/D, where
N - 1 2 ti- 1 2 k

s s s n n n
(4.4) {DI(j ) 2 k±t

Now N(i )(I - + ) < D by Lemma (3.1f). The balance of the argument is
n n

omitted. 0
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(4.5) Remark. The usual remark on sharpness of rates is omitted.

(4.6) Remark. In physics, the conditional distribution of iid geometric variables
given their sum (viz, the uniform on the simplex) is referred to as 'Bose-Einstein';
the conditional distribution of iid Poissons given their sum (the multinomial) is
'Maxwell-Boltzman'. See (Feller, 1968, pp4off).

(4.7) de Finetti's theorem. Let Z+ denote the nonnegative integers. Let

X1,I * , X. be the coordinate variables on Zn and S =X+ * *+Xn. Let Cn
be the class of probabilities P on Z+ which share with the iid geometrics the pro.
perty that given S = s, the conditional joint distribution of X1, , X. is Qns,
the uniform on the simplex. If P is a probability on Z ', let Pn be the law of the
first n coordinates. The infinite form of de Finetti's theorem asserts that if a pro-
bability P on Z+ has Pn e Cn for every n, then P is a unique mixture of iid
geometric variables. The infinite theorem follows from the finite version, given in
the next remark.

(4.8) Finite de Finetti. Clearly, p n E Cn; and so is Pn = fp n p(dp) for any
probability p on [0,11. If P e Cn, there is a p such that for k < n - 3,

IIPk IP.kl' 2{ (n-k-1)(n-k-2) -I.

In other words, if n nonnegative integer-valued random variables are condition-
ally uniform on the simplex given their sum, the first k - o(n) are to within
about 2k/n a mixture of iid geometrics. The rate is sharp, but not the constant.

(4.9) Another characterization of Cn. With previous notation, P E Cn if
P(A) P(A + x) for all sets A and all n-tuples x - xl+ +xn of integers with
n
E xi 0, provided A C Z+ and A + x C Z+. By A + x, of course, we mean

{a + x: a E A}. The proof is omitted as elementary.

(4.10) Unique lifting. Continue with the notation of (4.7). Let P E Cn. Then
Pk, the P-law of X1, * * , Xk, determines P. To avoid trivialities, suppose n > 2
and k 1. Let X be the Pn-law of S. The problem is to compute X from P1.
But

(n-l+s-j-1)
00 s-jP1(j) = j X(s)S=i (n+s-1)

S
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for j = 0,1,... By taking successive differences n - 1 times, one recovers
X(s)/ (n+ss1 ) and hence 'X(s). A less-algebraic proof starts from (4.9).
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5. The Poisson case.
Let PXn be the law of 1 fn w-vhich are iid Poisson variables with parameter

X. Given S =1+ * +n s,5,he 's are multinomial. Let Qnsk be the law of
S1, * , fkgiven S s

(5.1) Theorem. IIQnsk - PxklI < 1.2k/n with X = s/n, for k < 2 n.

Proof. By sufficiency, IIQ - Pll = IIQ - P11, where Q is binomial with s tri-
als and success probability k/n, while P is Poisson with parameter ks/n. Now
appeal to Kersten (1963). 0

(5.2) Finite de Finetti. Let Z+ denote the nonnegative integers; let X1 Xn
be the coordinate functions on Z 4n and S x1,+ +Xn. Let P E Cn iff Qnsn is
the P-law of X1 Xn given S = s. Clearly, p n E Cn; and so is
P fPx p(dX) for any probability p on [O,oo). If P e Cn, there is a p such

that for k < -n,
2

IIPk-QuklI S 1.2k/n.
In other words, if n nonnegative integer-valued random variables are condition-
ally multinomial (n, s/n, - - , s/n) given their sum, the first k o(n) are to
within about k/n a mixture of iid Poissons. The rate is sharp but not the con-
stant.

(5.3) Unique lifting. Let P E C. Then Pk, the P-law of X1, * , Xk, deter-
mines P. To avoid trivialities, suppose n > 2 and k - 1. Let X be the P-law of
S. The problem is to compute X from P1. But

co

pi(j) E (S) (1)( X)-(s).s=jJ n n

Let
n-1e(s) _ S X(s)
n

and
00

)(x) E O(s)x5
s=O

with radius of convergence n/n-i. Clearly,

)(j)(1) j! (n - 1)j PI(j)
and since qs is analytic on the disk {x: ixi < n/n - 1} it is determined by its
derivatives at 1.
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(5.4) More on unique lifting. We consider (4.10) and (5.3) a bit more gen-
erally. Let M(i,j) be an infinite stochastic matrix with entries which are positive
for j < 1 and vanish for j > i, ie, M is a lower triangular matrix on the nonnega-
tive integers Z+. Let X be a probability distribution on Z+. In essence, the
unique lifting property is that XM determines X, for certain M. More specifically,
letX1, , X. be the coordinate process on Z+. Let M(i, - ) be the law of X1
when X1I+ + X, is uniformly distributed on the simplex {X1,+ +Xn i},
that is, M(i, ) is the Qnsl corresponding to the exponential. Then XM deter-
mines X by (4.10). Likewise for the M corresponding to the multinomial, by (5.3).
For general M, a formal inverse always exists. Indeed, let M. be the upper n X n
submatrix of M: then M`I=l M-' when it can. However, M is not necessarily
1-1. The counterexample M, with domain the positive integers, is

1 1

2 21 1

|4 4 -2s 4 +2 4l1 1 1 1

4 4 4 4 -eB eB

|1 1 1 1 12fr, + 2 16

1 1 1 1 1 1
6 6 6 6-)7 6

Algebraically, for i - 3, 5, 7,

M(i,ij) i forj=1**i-2
1

i-1-El forj-1

=i for j i.

For i - 4, 6, 8,

M(i,j) = forj 1, i-3or;j i
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i--2Ei-1 for j i-2
i
1~~~~~1- l +E.fciIr j i---i.

Let

X(i) = 0 for odd i

- 1/2i/2 for even i.

Let

X'(1) 0

XI'(i) 0 for even i

XA(i) 1/2(i-l)/2 for odd i > 3.

Then XM = X'M.
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6. History.
1) Poincare, Borel, and Maxwell. The asymptotic normality of the first k
coordinates of a random-l- point on the n-sphere is a theorem usually attributed to
Poincare (1912): see eg McKean (1973, p197), Letac (1981, p412), or Billingsley
(1979, p342). However, after a diligent search, we were unable to find the result
in Poincare. The closest we came was a brief mention of statistical mechanics at
p43, and Liouville's theorem at ppl45ff.

The earliest reference to the theorem we could find in the probability litera-
ture was Borel (1914, Chapter V). In equation (12) on p66, Borel gives a sharp
statement of the theorem for k = 1. On pp90-93, he makes the connection with
the kinetic theory of gas. (We continue with our notation, rather than switching
to his.) Consider m particles, each with 3 velocity coordinates, to be denoted
xl,.. , xn, with n = 3m. Each particle has the same mass, to be denoted by c.
The system is constrained to lie on the surface of constant kinetic energy,
1 n

c E x.2 - h2 A uniform distribution on this energy surface is assumed
2 i=l

I

(Liouville's theorem is the usual -- but partial -- justification). Now xl tends in
distribution to N(O, 2h2/nc) as n -_ oo, uniformly in h and c. Borel asserts
asymptotic independence and normality for xi, . , x.-k, provided n - k -_ 00.
This may be true in some sense, but for variation distance k o(n) is required.

Borel was aiming for "the usual form of Maxwell's theorem," that the empiri-
cal distribution of x1, * xn tends to normal. From a modern perspective, this
is quite easy. If Z1, * , Zn are iid N(0,1) variables, then their empirical distri-
bution tends to N(0,1). So must the empirical distribution of Z1/Rn, ,Zn/R,,

2
n

whereR_ E Z_2 - 1. One reference of historical interest is Maxwell (1875,n i= 1

p309); a second, Maxwell (1878, eqn(49-55)), is more technical and focused on the
law of the individual x's.

The application to kinetic theory is an example of what mathematical physi-
cists now call the equivalence of ensembles. If H(x) is the Hamiltonian, one can
work with the "microcanonical distribution," the uniform distribution on
{x: H(x) - h2}. Alternatively, one can work with the Gibb's distribution G(dx)
on Rn. This is a probability whose density is proportional to e-cH(x). The con-
stant c is chosen so f H(x) G(dx) h2. The equivalence of ensembles obtains
when

f g(x) G(dx) f g(x) U(dx)
for some wide class of functions g, and for some well-specified meaning of the
approximate equality.
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To get Borel's example, take H(x) = -c(x2+ + x2). Theorem 1 gives2n
the equivalence-of ensembles as n tends to infinity, for the g's depending on o(n)
coordinates. Physicists tend to assume that the equivalence always holds,
although currently there is a move towards rigor. The leading researchers are
Dobrushin, Lanford, and Ruelle. A convenient reference is Ruelle (1978, Chapter
1).

2) Paul Le'vy. Levy made extensive use of versions of theorem 1 for k finite in
discussing means on function spaces. The material is first presented in Chapter
III of Levy (1922). This is reprinted without essential change in Levy (1951).
Also see McKean (1973) who describes Brownian motion as "the uniform distribu-
tion on the sphere of radius Vo".

We will attempt here to sketch the connection to theorem (1). Levy's idea
was to define the mean value M of U as the expected value of U(f), where U is a
functional, and f is chosen at random on the unit sphere of L210,1I. This is
clearly insane, because there is no rotationally invariant countably additive pro-
bability on that sphere. Nothing daunted, Levy defines M(U) for certain U by a

limiting process. Following Gateaux (1919), he discretizes [0, 11 as [0, 1 l
n

1 2 n-i(,- J , (-n , nJ and considers the approximation fn to f obtained by
n n n

averaging f over these intervals. So fn is constant on each interval. Let a, a.
be the values of fn on the n intervals. Now Mn(U) is defined as E{U(fn)}, when fn

in 1
is chosen at random on the n-sphere -- X a2 -= 1, ie, f f 2(t) dt = 1. If Mn(U)n i=1 n

converges as n -+ oo, the limit is declared to be M(U). For example, suppose at

least formally that U(f) = p[f( 2 )J where p is a real-valued function. Then
2

Mn(U) =P[fn(-)], whose expectation by (1) tends to

00 12

f e 2 p(z) dz

Similar things can be done if U depends on f at o(n) coordinates.

3) de Finetti. The original theorem (de Finetti, 1931) states that an exchange-
able process of O's and l's is a unique mixture of coin-tossing processes. The
move from {0,1} to a compact Hausdorff space is due to Hewitt and Savage
(1955), which also gives some history. The result is false for abstract spaces
(Dubins and Freedman, 1979).
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4) Recent literature on Poincare's theorem. Stam (1982) proved a version
of theorem (1) with an error bound in variation distance, assuming k = o(VH).
He gives some interesting applications to geometrical probability theory. Gal-
lardo (1983) and Yor (1985) gave an argument (with k fixed) using Brownian
motion in n dimensions.

Freedman and Lane (1980, Lemmas 1 and 2) showed how to derive the con-
vergence of an empirical distribution of dependent random variables ("the usual
form of Maxwell's theorem") from information on the limiting behavior of pair-
wise joint distributions. Indeed, in the general setup of (2.13), suppose s/n -_ mx.
Then the empirical distribution of xl, ,xn converges weakly in Qnsn-
probability to Px. This is because Qnsnis exchangeable, and Qn,2 -_+ p2 by
(2.13).

5) Recent literature on de Finetti's theorem. The infinite representation
theorems were discussed in Freedman (1962, 1963), who gave characterizations
for mixtures of the versions exponential families. Diaconis and Freedman (1980)
gave a finite form of de Finetti's theorem for 0-1 variables, with an error bound.
The present note is a sequel, carrying out the analysis in four additional families
of distributions. Zaman (1986) has results for Markov chains. See Eaton (1981)
on the normal case, and Diaconis-Eaton-Lauritzen (1986) for vector-valued ran-
dom variables. Partial exchangeability is discussed from various perspectives in
Diaconis and Freedman (1984), Aldous (1985), Lauritzen (1984), Ressell (1985).
Finite versions of these results do not seem to be available in any degree of gen-
erality. Local central limit theorems are relevant, as in Martin-Lof (1970); or
conditioned limit theorems, as in Csiszair (1984) and Zabell (1980).

6) Corrections. We would like to correct some errors in Diaconis and Freed-
man (1980). On p757, in equation (36) replace O(k/n) by o(k/n). In that equa-
tion and (41), assume k - oo, although the argument does give a result for
k O(1). On p764, in the last remark, the urn is to contain rn = 1 red balls
and bn = n - 1 black balls. Let H be the hypergeometric distribution for the
number of red balls in k draws made at random without replacement from this
urn. Let Bp be the binomial distribution with k trials and success probability p.
Then IIH - BI/nlI a: 2k2/n2. The minimal value for IIH - Bpll is essentially k2/n2,
for

1 k-1 1 k-1
p + or p - + -

n n2 n 2n2
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