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THE 1983 WALD MEMORIAL LECTURES

SOME STATISTICAL METHODS FOR RANDOM PROCESS DATA

FROM SEISMOLOGY AND NEUROPHYSIOLOGY

BY DAVID R. BRILLINGER'
University of California, Berkeley

"The purpose of statistics,..., is to describe certain real phenomena."

A. Wald (1952)

We present examples of some statistical techniques for the analysis of random process
data and examples of their uses in the substantive fields of seismology and neurophy-
siology. Problems addressed include; frequency estimation for decaying cosinusoids,
measuring association, assessing causal connections, estimation of speed and detection,
structural modelling. Techniques employed include; complex demodulation, nonlinear
regression, probit analysis, deconvolution, maximum likelihood, singular value decom-
position, Fourier analysis.

I. INTRODUCTION

The concern of these lectures is raw data distributed in time and/or space.
The basic data are curves and surfaces. If n denotes the sample size and p
denotes the dimension, then the concern is with the case of n << p. In the situa-
tions addressed, the phenomena have developed or are developing in time or
space. They are complex, so that subject matter plays essential roles in the ana-
lyses made and in the interpretations and conclusions drawn. There need to be
combinations of both physical and statistical reasoning. Indeed, a principal goal
of the lectures was to bring out the key role that subject matter plays in the
analysis of random process data. A further intention was to show that the fields
of seismology and neurophysiology are rich in problems for statisticians, particu-
larly those with some interest in applied mathematics. The work presented
involves a mixture of data analysis and structural modelling. The problems dis-
cussed are specific, but the techniques employed broadly applicable. The data
concerned is of high quality, so that detailed analyses are possible. The material
presented consists of personal (collaborative) work and a few success stories of
other particular methods. An attempt is made to present problems from a
unified point of view.

The study of random process data provides a major interface of statistics
with science and technology. Indeed there has been an explosion in the collection
of spatial-temporal measurements, (corresponding in part to much of modern

1 Prepared with the partial support of the National Science Foundation Grants CEE-7901642, MCS-8316634 and
while the author was a Guggenheim Fellow.

AMS 1970 eutject cla.eification. Primary 6UM9O, 6tP99.
Key words and pArases. seurophyeiology, point processee, ecismology, time #criee, array data, average evoked

responee, binary data, Fourier inference, compks demodulation, probit an.lyeie, spatial-temporal procetese, system
identification.



- 2 -

technology having become digital.) Some particular issues and procedures become
emphasized as a result of the interaction of statistics with technology. These
include: system identification, systems analysis, inverse problems, Fourier infer-
ence, bias versus variability (resolution versus precision), averaging functions,
dynamics, micro versus macro study. These strains run through the examples
presented.

Some provisos are necessary. There is no claim made that the analyses are
definitive. What is presented is an overview, rather than specific details. Further
there is little presentation of formalism.

There are two lectures. The first concentrates on some statistical methods
in seismology, the second on some corresponding methods in neurophysiology. It
is interesting to see the same methods playing central roles in the analysis of data
from two quite disparate fields.
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III. SEISMOLOGY

"Jeffreys ... attention to scientific method and statistical detail has been one of the
main forces through which Seismology has attained its present level of precision.

Bullen and Bolt (1985)

1. The Field and Its Goals. The term seismology refers to the scientific investiga-
tion of earthquakes and related phenomena. It has been defined as the "science
based on data called seismograms, which are records of mechanical vibrations of
the Earth", Aki and Richards (1980). This second definition allows the admission
that seismologists also study vibrations caused by the sea, by volcanoes or by
man. One further definition that has been given is: the science of strain-wave
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propagation in the Earth.
Whatever the definition, the broad goals of seismology are to learn the

Earth's and planet's interior composition and to predict the time, size, location
and strength of ground motion in future earthquakes. Workers in the field seek
to provide valid explanations of earthquake related phenomena and to under-
stand those phenomena so that life may be made safer.

Specific problems addressed include: the detection, location and
quantification of earthquakes, the distinguishing of earthquakes from nuclear
explosions, and the determination of wave velocity in the Earth's interior as a
function of depth.

The accumulation of knowledge in seismology has displayed a steady back-
and-forth between new insight concerning the waves and new insight concerning
the media through which the waves propagate. Among major "discoveries" one
can list: the inner core, the liquid central core, the Mohorovic discontinuity, the
movement of tectonic plates causing earthquakes themselves, and the locating of
numerous gas and oil fields.

The field is largely observational, with the basic instruments the seismogram
and clock. There are important experiments too, where tailored impulses are
input to the Earth and the resulting vibrations studied. The field experienced
the "digital revolution" in the fifties and now poses problems exceeding the capa-
bilities of even today's computers.

Statistical methods have played an important role in seismology for many
years - in large part due to the efforts of Harold Jeffreys (see Jeffreys (1977), for
example.) Vere-Jones and Smith (1981) provide a review of many contemporary
instances. Statistics enters for a variety of reasons. The data sets are massive.
There is substantial inherent variability and measurement error. Models need to
be refined, fit and revised. Inverse problems need to be addressed. Experiments
need to be designed. Sometimes the researcher must fall back on simulations.
The basic quantity of concern is often a (risk) probability. In particular, it may
be pointed out, that in the construction of the Jeffreys and Bullen (1940) travel
time tables, one has an early, perhaps greatest success, of the use of
robust/resistant methods. (B. A. Bolt's (1976) presidential address "Abnormal
seismology" is well worth reading in this connection.)

Seismologists deal with data of a variety of types. The important forms are
digital wave forms from spatial arrays of seismometers of various dimensions
(where the instruments have been arranged in such a fashion that an earthquake
signal may be seen as a moving, changing shape) and catalogs (containing lists of
event's times, locations, sizes and other characteristics) for geographic regions of
interest.

Seismology is not without its controversies. There are fundamental ones,
such as whether or not plate tectonics is a validated theory. There are practical
ones, such as does the size of the motion of an earthquake increase steadily as
one approaches the fault or does it level off? As is so often the case, the existing
data prove inadequate to resolve these disputes.

A general reference that provides much of the pertinent seismological back-
ground is Bullen and Bolt (1985). We turn to a presentation of some specific
problems and techniques.
2. Free Oscillations of the Earth. This subject is one of the principal
developments in seismology over the last twenty five years. Whenever there is a
great earthquake, the Earth vibrates for days afterwards. The seismogram then
consists, approximately, of a sum of an infinite number of exponentially decaying
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cosinusoids plus noise, see expression (2) below. The frequencies of the
cosinusoids and the corresponding rates of decay, relate to the Earth's composi-
tion. Measured values may be used to make inferences re that composition. The
techniques of complex demodulation, nonlinear regression and regularization may
be employed in this connection. Some details on these techniques will follow.

As is the case with many natural systems, the vibratory motion of the Earth
may be described by a system of equations of the form

dtY) -AY(t ) + X(t) (1)

with X(.) a (vector-valued) input. In the case that the input is bW(t), with a(.) the
Dirac delta function (corresponding to the earthquake shock) and initial condi-
tions Y(0-) = 0, the general solution of (1) may be written

Y(t) =exp{At }b

exp(pu tSu,

t > 0, where.s, , u are the (assumed distinct) latents of the matrix A. The spec-
trum occurring is discrete because of the finiteness of the Earth as a body.
Focussing on one of the coordinates of Y(t), and assuming the presence of noise
one has

Y(t) = EIk exp(- t )co (7t t +6k) + E(t) (2)
k

with -#I, and 7t the real and imaginary parts of the i, and e(.) the noise. This
model may be checked by complex demodulation of the series Y(t) in the neigh-
borhood of frequencies At, as estimated from the periodogram. Provided the
bandwidth of the demodulation is not too great a single cosinusoid should be
included, the log amplitude should fall off linearly and the phase angle should be
approximately constant. Details are given below, specifically at (5).

Figure 1 is a plot of the seismogram recorded at Trieste of the 1960 Chilean
great earthquake after removing the tides. Figure 2, the logarithm of the
periodogram of this data suggests the presence of many periodic components.
The periodogram of a stretch of time series values Y(t), t =O,...,T-1 is defined as
follows; set

T-l
dyT(X) F, Y(t)exp{-i X t (3)

t)m

-oo < X < x, then the periodogram at frequency X is defined as

IyY (X) = (2rT)1 I dyT(X) (4)
For data from the model (2), IyT(X) may be expected to show peaks for X near the

The basic ideas of complex demodulation are: frequency isolation by narrow
band filtering to focus on a single term in expression (3), followed by frequency
translation to slow the oscillations down. The specific steps are: i)
Y(t) -_ Y(t)exp{iX>), (modulation), followed by ii) local smoothing in t of
Y(t)exp{iXt} to obtain Y(t,X), the complex demodulate at frequency X. In the
case that Y(t = aexp{-Ot )coo (at +6), one has

Y(t,X) aesce' t el.((>7)t fror X ear 7 (5)

0O otherwise
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Hence log I Y(t ,X) log - fit and arg {Y(t ,X)} - 6+(X--/)t. Plots of these quanti-2
ties, versus t, provide checks on model adequacy and provide preliminary esti-
mates of parameters. Figures 3 and 4 presents such plots for the Chilean data
for two frequencies, 3.89 and 5.67 cycles/hour. The rate of decay, #, generally
varies with frequency in the present seismological situation. Results for the
Chilean data for a variety of frequencies may be found in Bolt and Brillinger
(1979).

The parameters could be estimated from the complex demodulate pictures.
It is generally more effective to proceed via nonlinear regression. This has the
further advantage of providing estimated standard errors. Suppose one has a
model

Y(t) = S(t;6)+((t)
with S(.) known up to the finite dimensional parameter e and e(.) a noise series.
In the present case s(t = aexp(-6t )cos (-It +6) and = {a,f,7,6. For the next step,
it is convenient to take X}- 2rjj/T and to write Yt dyT(= , , El-dX I ) and
S, (a) = dsT(X,). One will estimate U by minimizing

S I Y, -S,(Ifl2 (6)

for J a range of subscripts with X, near a. The logic of this is the following:
there are a variety of central limit theorems for empirical Fourier transforms (see
for example Brillinger (1983).) Suppose that the noise series e(.) is stationary and
mixing with power spectrum f ,(X). Then for large T, E, is approximately com-
plex normal with mean 0 and variance 2nTf c Further the variates E,, Ek are
approximately independent. It follows that the determination of an estimate of o
to minimize expression (6) is approximately the maximum likelihood procedure.
The statistical properties of such estimates were indicated in Bolt and Brillinger
(1979) and developed in detail in Hasan (1982). For example one finds the
asymptotic variance of

^

to be proportional to
4rfrf
T 3cg2

having considered a limiting process with i='/ T as T-oo.
Earlier in the paper it was noted that progress in seismology shows a to-

and-fro between new knowledge of waves and new knowledge of the structure of
the Earth. This occurs in the case of free oscillations. Suppose one has an initial
model for the Earth in terms of some physical parameters, eg. expressions for
density, shear wave velocity and compression wave velocity as functions of depth,
say p(r), cS(r), cp(r) respectively, r denoting depth. Figure 5, based on the data
in Tables 3 and 4 of Bolt (1982), shows what is meant by an Earth model. Given
such a model, one can compute the implied frequencies of free oscillation, -Yk.
How to do this is described in Chapter 6 of Lapwood and Usami (1981) for exam-
ple. The relationship involved is nonlinear, but perturbations may be expressed
linearly via kernels. Specifically, suppose one perturbs the parameters by
amounts Ap, acS, Acp respectively, then the perturbation of the frequency of the
k-th free oscillation is given by

R R R

A1k - fAk(r)Ap(r)dr + fBk(r)Acs(r)dr + fCk(r)Acp(r)dr (7)
0 0 0

for kernels Ak, Bk, Ck. Expression (7) is said to lay out the "direct problem"
given Ap, AcS, Acp find ay. Now suppose a great earthquake occurs. Then new
estimates of the frequencies, ak, are available. One has the "inverse problem" :
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given the observed A-yk , find the Ap, aCs, Acp. It seems worth setting out the
type of problem involved here in a specific notation. Let T and e denote normed
spaces. Let X denote a map from e to T , Y = Xe. The values Y and X are
given, a value for 9 is desired. Let a denote a scalar. Some methods for selecting
a 9 currently being studied include: a) regularization, chose o to minimize
IIY- Xeg12 + a110112, b) sieve, choose 0 subject to 11011 < a to minimize IIY-Xell , c) resi-
dual, choose U subject to lly-XOII < a to minimize 11911. A characteristic of the solu-
tions obtained is that one has to be content with the estimation of some form of
average of the unknown 0. Chapter 12 of Aki and Richards (1980) contains a dis-
cussion of inverse problems in geophysics. A characteristic that distinguishes the
present earth model problem, from the usual inverse problems, is that there are
discontinuiuties present in the model - corresponding to the Earth's layers.

Several other references to the study of free oscillations may be noted. Han-
sen (1982) extends the procedure of Bolt and Brillinger (1980) to handle the case
of several eigenfrequencies present in the nonlinear regression fit. Dahlen (1982)
sets down the asymptotic results for the case of tapered data, that is when con-
vergence factors have been introduced into the Fourier transform computations.
Zadro and Caputo (1968) look for nonlinearities via bispectral analysis.

3. Estimation of Fault Plane Parameters The see-saw between the study of
the Earth's structure and the study of earthquake sources was pointed out ear-
lier. In this section it will be indicated how a (nonlinear) probit analysis may be
employed to estimate basic characteristics of the source of an earthquake.

An important quantity read off the seismic trace of an earthquake at a par-
ticular observatory is the sign of the increment at the arrival of the first energy
from the event. This sign corresponds to whether the initial motion is a compres-
sion or a dilation. In many cases, following the observation of an earthquake at a
number of stations, if the observed signs of first motion are plotted on a map
centered at the epicenter of the event a (radiation) pattern results. Figure 6,
taken from Brillinger, Udias and Bolt (1980), provides such a plot for one of the
aftershocks (event 4) of the Good Friday 1964 Alaskan event. Following Byerly
(1926), such plots have been employed to learn about the source. Before describ-
ing what may be learned, some details of the earthquake process will be set
down. The usual assumption (the elastic rebound theory) is that earthquakes are
due to faulting. A crack initiates at a point and (in the case of pure slip) spreads
out to form a fault plane. As the crack passes a given point, slip takes place (on
the fault plane) resulting in a stress drop and the radiation of seismic waves.
The radiated (P-) waves may be shown to have a quadrantal pattern with one of
the axes parallel and the other perpendicular to the fault plane of the event. It
follows, and this is what Byerly (1926) contributed, that the data may be used to
estimate the fault plane orientation. Having an estimate of the fault plane and
the direction of motion on that plane is important to geology and geophysics.
Researchers seek to tie together surface and subsurface features, to consider
regional stress directions and to use the results to confirm and extend the theory
of plate tectonics. The results can be crucial to seismic risk computations.

Byerly proceeded graphically and this has continued to generally be the
working approach. However the results so obtained are subjective, have no
attached measure of uncertainty and may not be easily combined with estimates
derived from other events at the same site, however.

The problem may be approached in formal statistical fashion as follows: the
data available consists of; hypocenter of earthquake, locations of observatories,
directions of observed first motions (compressions or dilations) at the observa-
tories and a store of knowledge concerning the Earth's structure (velocity models
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as given in Jeffreys and Bullen (1940) for example). It may further be argued
that seismographic noise is approximately Gaussian (see Haubrich (1965).) Let a
fault plane be described by three angles (UT,0.,,p). Let A,,(UT T'UP) denote the
theoretical expression for the wave amplitude on the focal sphere for event i at
station j. This expression may be found in Brillinger, Udias and Bolt (1980).
(The focal sphere is a "little" sphere of unit radius around the hypocenter. In
carrying out the amplitude computation one has to trace the ray from the hypo-
center to the observatory through the focal sphere.) Let Y,, denote the realized
amplitude of the seismogram at the onset of the event. Then one can write
Y]= all A,, + e,, with a,, a scale factor and e,, normal mean 0 and variance o2
variate. Let y,, = 1 if Y,, > o and o otherwise. It follows that

Prob {y,, = 1) = Prob {Y,, > 0) =(pq A,)
where p = ala. The model may be further expanded by including a term, y,,, to
allow for reader and recorder errors now writing

Prob {y,, = 1) = 7,, + (1-27,, )4,(p,j Al,)
Precise data correspond to y and a small (hence p large) and imprecise to z near
.5 or p near 0.

The model is seen to take the form of a nonlinear probit, (with a term, 7,
corresponding to "natural mortality".) An example of a corresponding likelihood
is provided by

][4(p Ai If'] (I - t(p, A,,))ll , (8)
I,

assuming p to depend on event alone and 7 = 0. One can now proceed to esti-
mate the unknown parameters, Ur, 4T, Up, p, by maximum likelihood.

Figure 6 includes the fitted planes for the case of event 4 of the Alaska
sequence. These particular estimates were computed restricting the likelihood (8)
to the observations of event i = 4. It is crucial to assess the fit of the model. In
Brillinger, Udias and Bolt (1980) this was done by comparing the theoretical and
estimated probability functions. Figure 7 is based on a pooled analysis of some
16 of the Alaskan events that seemed to go together. The figure provides the
empirical probability that the observed first motion agrees with the theoretical as
a function of amplitude. The fitted amplitudes have been grouped into cells of
width .1 in the work. What is plotted is

#{(i,i) ogn Y., = ogn A,,, A-h < A < A +h )/# {(i,j)I A-h < A < A +h ) (9)

for t =.05. The fit seems adequate.
The results of further computations of this type may be found in the just

cited reference and in Buforn (1982). The maximization program VAO9A of
Harwell was found effective in determining the maximum likelihood values. The
estimates were however non-unique and poorly determined in the cases of some
small data sets.

An important byproduct of such analyses is to form clusters of like fault
plane solutions for events in the same region, in order to get at motions occurring
on the same fault plane. The maximum likelihood standard errors are useful in
this connection. The practical implication of the work just reported is that large
collections of events may be handled routinely and that geophysical conjectures
may be checked formally. The final fault-plane solution may be plotted in tradi-
tional fashion allowing examination of the data for difficulties. What remains is
for more realistic seismic source models than the one treated in the papers listed,
to be fit statistically. An elementary reference to the subject matter of concern
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here is Boore (1977).

4. Quantification of Earthquakes. One of the important and difficult ques-
tions of seismology is how to measure the "size" of an earthquake. Size is an
essential feature that a seismologist makes use of in attempts to deal with earth-
quake hazards and to understand the basic phenomena of concern. Specifically,
the seismologist is not only interested in estimating the direction of movement at
the source, he is further interested in the overall deformation that took place and
the amount of energy that was released. Among the physical quantities of
interest for a given earthquake are the seismic moment (a measure of the seismic
energy released from the entire fault) and the stress drop (difference between the
initial and final stress.)

For a variety of seimic source models, seismologists have related the seismic
moment and stress drop to characteristics of the amplitude spectrum, I S(X) I,
the modulus of the Fourier transform of the signal. Suppose that the seismogram
is written

Y(t) = 8(t;O) + E(t) (10)
where 8(.) is the signal, 0 is an unknown parameter and e(.) is a noise disturbance.
If S(X;0) denotes the Fourier transform of u(t;0), then what is given, from the
source model, is the functional form of I S(X,a) I. Common forms (for displace-
ment measurements) include

I S (X;G) I = a/i/i7+(X/o3) and a/ ( + (X/Xo)2)
with 0 = {a,#,Xo). Estimates of the seismic moment and stress drop may be deter-
mined once estimates of a and X0 are available. The practice has been to esti-
mate the unknowns graphically from a plot of the modulus of the amplitude of
the empirical Fourier transform, I dy(X) I. The following formal procedure was
suggested in Brillinger and Ihaka (1982).

The asymptotic distribution of I dyT(X) I may be evaluated in the case of sta-
tionary e using a central limit theorem of the type mentioned in Section 2. The
asymptotic distribution is found to depend on I S(X;G) I and f ,(X) alone. Hence
one needs an expression only for the modulus of S. Next, with the model (10),
and small noise,

I dy(X) - S(X;G) | + (dT(X) + dT(-))/2 + ...
showing variation around I S I not depending on S I. However when devia-
tions of I dT I from a heavily smoothed version of itself are plotted versus the
smoothed values, dependence of the error on I S I is apparent. An example is
provided in Figure 8. This is the result of computations for an earthquake of
magnitude 6.7 that occurred in Taiwan on 29 January 1981. The data was
recorded by one of the instruments of the Smart 1 array, see Bolt et al (1982).
The top graph of the figure provides the transverse S-wave portion of the
recorded accelerations. The lower graph provides the deviations plot just referred
to. This plot suggests that the noise is in part "signal generated". There are
various physical phenomena that can lead to signal generated noise. These
include multipath transmission, reflection and scattering. The following is an
example of a model that includes signal generated noise.

Y(t) 8(t ) + E (7yk(t-rk) + kOH(t_k )) + E(t)
k

with the Tk time delays, with 8H the Hilbert transform of 8 and with yk, 6E
reflecting the vagaries of the transmission process. The inclusion of the Hilbert
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transform allows the presence of phase shifts. With the oyr, 5k, Tk random, and
after evaluating the large sample variance, one is led to approximate the distribu-
tion of Y, = dJ(X,) by a complex normal with mean S(X, ;6) and variance
r, = 27rT(p2l S(X, ;O) 12 + a2), where now e has been assumed to be white noise (
of variance o2), and also it is assumed that E7tYk, E6k = 0, and that the process Tk
is Poisson. The ratio p2/a2 measures the relative importance of signal-generated
noise. One can proceed to estimate 6 by deriving the marginal likelihood based
on the I Y, I This likelihood may be evaluated and found to be

[I[exPI- IY)1 2+IsIjS (2 21 Y 1S,I jIJ
where Io denotes a modified Bessel function. Figure 9 shows a fit of the model

I S(X) |=-a XA /(1+(X/XO)4) to the data of Figure 8.
Once estimates of a, Xo are at hand, these may be converted to estimates of

the seismic moment and stress drop via theoretical relationships developed by
geophysicists. Details may be found in Ihaka (1985). We remark that this model
fit corresponds to a time domain pulse s(t ) = axo2p (x0t) where

p(t)=Iuin + t coo( t57r) c t/vr
for t > 0 and p (t) = 0 otherwise. The form of this pulse indicates how X0
corresponds (inversely) to the duration of the event and how a corresponds to
size.
5. Array Data. Today it would be a very strange thing for an earthquake to be
recorded on just one seismometer. Indeed from the earliest days, readings of the
same event at geographically scattered observatories have been made use of.
Since the sixties seismometers have been deliberately arranged in geometric
designs over distances of miles to hundreds of miles in order to allow extraction
of traditional information and sometimes extraction of new information.

An important use has been the estimation of the direction from which a
seismic signal is arriving and the velocity with which it is moving. One manner
in which this is done is by the computation of estimates of frequency-
wavenumber spectra. The procedure may be described as follows. Suppose one
has array data; Y(x9 y ,t), j =O,...,J, t =0,...,T-1. Here (z, Iu,) denotes the coordi-
nates of the location of the i-th sensor. The frequency-wavenumber periodogram
of this data is given by

IY(Js,v,X) = Y(z , y,,t )exp{-i(pz,+vy,+Xt)) 12 (11)
tt

-00 < sy,x < x0. A motivation for this definition is the following. Suppose one
has a plane wave Y(z,y,t) = p cou (ax +#y +-yt +6) of temporal frequency 7 and
wave number x = (a,o). Then the periodogram will have a peak near (a,,'4).
(Incidentally, this wave is moving with apparent velocity i/a from azimuth
given by tan -= l/a.) An example of array data is given by Figure 10. What is
plotted are the locations ("*") of 9 of the seismometers of the Smart 1 array
located in Taiwan. Also plotted are the portions of the traces used in the compu-
tations. These traces correspond to the vertical P-wave part, of the 29 January
1981 earthquake. (The initial near flat part is the noise, saved in a buffer, just
before the onset.) The estimated epicenter of this earthquake was 30 km
southeast of the array. Figure 11 gives central portion of the frequency-
wavenumber periodogram, for this data, as computed via formula (11), at fre-
quency x corresponding to 1.944 cycles/second. There is seen to be a large peak in
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the southeast quadrant, at an azimuth that turns out to correspond to that of the
epicenter of the event. The radial distance corresponds to the velocity of P-
waves.

Seismologists working with this type of data have often preferred to employ,
what they call, the "high-resolution" or "Capon" statistic, see Capon (1969),
instead of the periodogram (11). The high-resolution statistic typically shows
more dramatic peaks than the periodogram. Before defining it, we introduce
some notation. Let Y(t) denote thej-vector,I Y(2J ,y,,t 1. Set

r

-1 2,rktyk-T-1 jY(t )exp{ i'2fT
tml

for k =0,1,2,... Further let B [ep{-i(pz, +vy, )}J. If X = 2ff1/T, I an integer,
then the periodogram (11) is proportional to I B'Yl1 2 Next define

M =Y YkT,
with the sum overk with 2kf/T near X. Now the high-resolution statistic at fre-
quency X may be written 1/B'M-1B. If Y(z ,y ,t ) = pcos (ax +f6y +'yt +6) + noiue, this
statistic may be expected to show a peak for (p,v) near (a,P) and X near -y. This
statistic has been introduced, in part, in order to be able to present the next
example.

Figure 12 is reproduced from Scheimer and Landers (1974). It shows the
high-resolution statistic computed for two portions of data recorded by the Large
Apperature Seismic Array in Montana following a strip-mining blast. These com-
putations confirmed the validity of the high-resolution approach. The statistic
for one portion shows a single large peak in the direction of the blast. The statis-
tic for the following portion shows energy arriving from various directions. This
analysis provided empirical proof of the existence of scattering of seismic waves.
That this phenomenon existed had been theorized for years. A frequency-
wavenumber data analysis has provided the confirmation.

Spectral analyses are (too) often thought of as being appropriate only for
stationary data. As the preceding example shows, the technique may be dramati-
cally useful in nonstationary cases as well. As a second example we mention the
results of Bolt et al (1982). If, in fact, an earthquake is caused by faulting then
the direction of the source of seismic energy will be changing as the fault is rip-
ping, that is as the fault tip is advancing. In the paper cited, Bolt et al present
high-resolution spectra for succeeding time stretches of the 29 January 1981
Smart 1 event. There is an apparent shift in direction with time. Their work
may have been the first experimental measurement of a seismic dislocation mov-
ing along a rupturing fault.

In each of the preceding two examples, frequency-wavenumber analysis has
allowed researchers to confirm the presence of suspected scientific phenomena.
6. Exploration Seismology (Reflection Seismology). The problem of learn-
ing the Earth's crustal structure can be approached as one of system
identification. The approach to be described takes advantage of the fact that the
Earth is made up of layers. Signals, such as powerful impacts or explosions, can
be deliberately input to the Earth and the consequent vibrations recorded by an
array of seismometers or geophones. Such experiments may be carried out in a
search for gas and oil, or in a scientific study of the general geological makeup of
a region of interest. The results of these experiments may be viewed as one of
the grand success stories for statistical techniques generally, and of least squares
particularly. An unusual aspect of the inferences made, is that in many cases one
gets to examine their validity, by the later drilling of a well.
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In its simplest form, the energy of an initiated seismic disturbance pro-
pagates through the Earth with a spreading wavefront. When it meets an inter-
face between geological strata, part of the energy may be reflected back and part
continue forward. The sensors record the returning reflected energy echoes.
Knowledge of subsurface velocities allows estimation of the depths and angles of
inclination of the various reflectors. Knowledge of the locations of reflectors
allows estimation of velocities. In practice the initiating impacts will be repeated
a number of times at the same location, and at points of a grid.

If the input signal is taken to be X(t) and if Y(t) denotes the corresponding
output, then the two may be modelled as related, assuming linearity and time
invariance, by

Y(t) fa (t-8)X(8)d8 (12)
The function a (.) is called the impulse response, since if the Dirac delta function
6(t ) is taken as input, then the resulting output is Y(t ) = a (t ). The function a (.)
evidences the reflectors and velocities in the earth beneath the source and
receiver. The model and its interpretration may be motivated as follows. Sup-
pose a pulse is applied at time r. Suppose in consequence a wave is generated,
travels at velocity vI to a reflector at distance d, and a proportion a, is reflected
back. With X(t ) = 6(t -r), then Y(t ) = a16(t-r-2dI/v,). (This is actually the naive
model for radar or sonar.) Suppose further that the transmitted portion continues
downward at velocity v2 to a reflector at distance 42 and a proportion of its
energy is reflected back, some of which is transmitted by the first reflector to
reach the receiver. Now the response has the form
Y(t) - aj6(t-r-2dj/vj) + a24t-r-2dj/vj-2d2/v2). This last is seen to correspond to
the system of expression (12) with impulse response
a (t ) =ctl(t -2dI/vl)+ag6(t -2d,/vl-2d2/v2). One can clearly extend this model to
situations with many layers, many velocities and many corresponding transmis-
sion and relection coefficients. Peaks in the function a (t) may be seen as
corresponding to reflectors. (It must be noted that unfortunately such an elemen-
tary interpretation is likely to be complicated in practice by interfering
phenomena such as ghost reflections unfortunately.) Two references discussing
the basics of exploration seismology are Wood and Treitel (1975) and Robinson
(1983).

The problem has now been formulated as one of system identification; given
stretches of corresponding input, X, and output, Y, determine an estimate of the
impulse response a(.). In the case that a pulse close to a Dirac 6 may be gen-
erated and that the function a (.) drops off to 0 reasonably quickly, a convenient
procedure results from taking

MX(t)= 6(t-MA)
m. 1

as input and the "average evoked response'
I Ma (8) -k Y(8 +mA)

as an estimate of a (8). This input corresponds to applying pulses periodically.
In practice, the Dirac 6 function is an unachievable input and one seeks for

feasible probe functions and estimation procedures. In this connection, suppose
one sets myx(t) = Y*X(t) for some convolution operation " ". Then from equa-
tion (12) one has

myx (t fat(-o)mxx(o)d8
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and one has a deconvolution (or inverse) problem to solve. Suppose one decides
to seek an X(.) such that

fla(t-8)mxx(.)ds 0%- a (t)
to allow elementary processing. In terms of Fourier transforms, the left hand side
here may be expressed as fexp(it)XA(X)Mxx(X)dX, with M,xx a Fourier transform
of mxx. Then what is wanted is an X such that Mxx(X) ; 1 on the support of A (.).
If A (X) is known to be near 0 for 0 < x < x0 and for X > x1, then a possible func-
tion is the "chirp" signal

X(t coo(sXo+(X1-Xo)rst)
for o < t < r. In the seismic case, the values of x0, x1 have been determined in
various experiments. The chirp probe originated in radar work in the second
world war, (see Cook and Berenfield (1976).) It may be seen to attach near equal
power to the frequencies between x0 and X1 In the seismic case special devices
have been developed to input the chirp signal to the earth. The signal is input
repeatedly and the results averaged. The response is then convolved with the
chirp function, that is myx is formed, to estimate a (.). Structure can appear
dramatically during the cross-correlation processing described here.

In practice subtle further processing is employed to handle wavefront curva-

ture, ghost reflections, and other natural phenomena that may be present.
7. Other Problems. There are other problems arising in seismology to which
statistical methodology can be applied fruitfully. These include: analysis of the
coda, analysis of scattering, risk analysis, nonlinear phenomena, point process
studies, polarization, cepstral analysis, discrimination of earthquakes from explo-
sions, seismicity study, travel time table construction, attenuation laws, earth-
quake location, azimuthal dependence of characteristics. Vere-Jones and Smith
(1981) discuss several of these problems. In some cases work has begun.

8. Discussion. Seismologists have long been serious users of statistical methods.
One finds Harold Jeifreys making the following statement in the entry 'Seismol-
ogy, statistical methods', in the International Dictionary of Geophysics: " The
uncertainty is as important a part of the result as the estimate itself. ... An esti-
mate without astandard error is practically meaningless." Hudson (1981) remarks:
" The success of the Jeffreys-Bullen travel time tables was due in large part to
Jeffreys' consistent use of sound statistical methods." When I asked my colleague
B. A. Bolt what he saw as the role of statistics in seismology, he replied:
"Seismology is largely an inferentialscience. ... The role of statistics in seismol-
ogy is to provide a rigorous procedure for turning observations onseismic waves,
etc., into probabilistic statements about properties of the (real) Earth."

One may note that work in seismology is characterized by: massive data
sets, inherent variability and measurement error, defining/fitting/refining models,
design of experiments, simulation, probabilistic description, needs for
robust/resistant procedures, predictive situations, inverse problems and combina-
tion of observations. Statistics has much to offer in all these connections.

9. Update. Since the lectures were presented in 1983 work has progressed on
various of the problems covered. Abrahamson (1985) has employed Smart 1 data
to better see the movement of the fault rupture tip. Chiu (1986) studies the
problem of estimating the parameters of a moving energy source. Lindberg
(1986) develops "optimal" tapers to employ in the estimation of the frequencies of
free oscillations. The book, Udias et al (1985) goes into substantial detail over
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the formal estimation of fault plane parameters. Brillinger (1985) develops a
maximum likelihood statistic for detection and estimation of a plane wave given
array data. Donoho et al (1986) have developed a robust/resistant procedure for
better aligning the seismic traces of a section. Shumway and Der (1985) indicate
how the EM-method may be employed to deconvolve pulses hidden in seismic
traces. The thesis, Ihaka (1985), has been completed. Ogata, (eg. Ogata (1983)
and Ogata and Katsura (1986)), has carried out a variety of likelihood based ana-
lyses of earthquake times as a point process. Many statisticians have begun
working on statistical aspects of inverse problems. We specifically mention
O'Sullivan (1985).

IV. NEUROPHYSIOLOGY

modern biometry is the interdisciplinary endeavor to build structural stochastic
models of biological phenomena."

J. Neyman (1974)

10. The Field and Its Goals. Neurophysiology is the branch of science con-
cerned with how the elements of the nervous system function and work together.
The functioning is seen to involve chemical mechanisms, electrical mechanisms
and physical arrangement. The studies extend from the movements of individual
ions, through to the mass behavior of the components of the brain.

The goals of neurophysiologists range to the heroic: how to explain things
like memory, emotion, learning, sleep, expectation, behavior. At a less ambitious
level neurophysiologists are concerned with how a single nerve cell responds to
stimuli, transmits information and changes with alterations of the environment.

The neuron is both the functional and structural unit of the nervous system.
The brain is a multiprocessor of dramatic complexity. The elements of the ner-
vous system may be said to differ from those in the seismic case, in that they
apparently have purposes.

The field is largely experimental with researchers collecting varied and exten-
sive data sets. The data include: photographs made via electron microscopes,
fluctuating voltages and current levels within single nerve cells and finally elec-
troencephalograms, (the brain's electrical potential at points near the skull.) The
studies are sometimes simply observational, but often complex experimental
designs are employed.

Important techniques that are made use of include: staining to identify indi-
vidual neurons, insertion of microelectrodes to make measurements within indivi-
dual cells, and the averaging of whole suites of responses to a stimulus of interest
in order to reduce what can be the dominant effects of noise. Many experiments
are computer controlled and computer processed.

Discoveries of neuroscientists include: nerve cells communicate with each
other in both chemical and electrical fashion, the voltage pulse that travels along
a neuron's output fibre is of near constant shape, there are a broad variety of
nonlinear phenomena that occur. A number of verifiable physical laws and
effective deterministic models (such as the Hodgkins-Huxley equations) have been
set down. Much insight has been gained, especially at the level of small groups of
neurons. At the level of the brain itself, knowledge is mainly phenomenological.
Here the brain is viewed as a black box and studied by system identification tech-
niques. Whatever the approach, discoveries have been made leading to lifesaving
and life improving clinical diagnoses.
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Statistical methods entered with the quantification of the field. No single
individual scientist seems to have had a dominating effect, rather there have been
many contributing workers - researchers concerned with EEG's and researchers
concerned with small collections of neurons. Statistical methods entered both
because of high noise levels and because a variety of phenomena seemed to be
inherently stochastic. Evidence for this last is presented in Burns (1968) and Hol-
den (1976). Pertinent books on neurophysiology include: Freeman (1975), Aidley
(1978) and Segundo (1984). General reviews of statistical models and methods in
neurophysiology are given in Moore et al (1966) for the cases of single neurons
and of small groups of neurons and by Glaser and Ruchkin (1976) for EEG's.
Statistical methods for classification and pattern recognition, for handling
artefacts and for data summarization are in common use.

Neurobiology is one of the most active branches of science. The physiologi-
cal phenomena with which it is concerned are fundamental and in most cases
barely understood.

11. Neuronal Signaling. One of the important means by which nerve cells
comunicate is via spike trains. (The inlays at the tops of the three graphs of Fig-
ure 13 give spike times representative of three different sorts of behavior;
pacemaker (near-periodic), bursting (activity occurs in bursts), and bursting with
acceleration (of firing within bursts.)

Suppose that a neuron fires at times r, , n =0,*1,2,.... A convenient formal
representation of its temporal behavior is provided by writing

Y(t ) - 6(t-rx)

with a(.) the Dirac delta function. This representation leads to results analagous
to ordinary time series results in many cases. In the case that the r, are random,
one has a stochastic point process {r)}. A principal descriptor of a point process
is provided by its rate function. This is given by

limA Prob (point in (t ,t +h J}/h

as h tends to 0. In the stationary case, where the stochastic properties of the
process do not depend on the time origin, the rate function is constant and so
only crudely useful then.

The autointensity function is an important parameter in the stationary case.
It is defined as

limh Prob (point in (t,t +h I I point at 0)/h
as h tends to 0. This parameter may be used for example to describe the
behavior of spontaneously firing neurons. Figure 13 presents examples for three
cases. In the first case the neuron is firing approximately periodically. The (esti-
mate of) the autointensity is seen to oscillate (with period equal to the interval
between the points.) In the second case the neuron is evidencing activity in
bursts. The probability that the neuron fires again soon after it has fired is high.
In the third case the neuron is also firing in bursts; however now there is struc-
ture within the bursts, the rate of firing is seen to increase therein. The bursts
here are at regular intervals.

The autointensity functions have been estimated, for this figure, by the
statistic

# {I t, -r.-t I < h1/2)/Nh
with N the total number of points and h a small binwidth. The data analysed
are for the cell L10 of Aplysia californica , the sea hare. They were collected and
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previously analysed by Bryant, Marcos and Segundo (1973). The experimental
procedures and details of the data preparation may be found in that reference.

A question that arises in the study of small networks of neurons is which
neurons are interacting with which? In other words, which spike trains are asso-
ciated with which others? A useful parameter to employ in the study of such
questions is provided by the crossintensity function. Supposing one has spike
trains named M and N, then the cross-intensity function of N given M, at lag t
is defined as

limh Prob (N point in ( ,t +h | M point at O)/h
as h tends to 0. If the M spike train consists of points a. and the N train of
points r,, then this crossintensity may be estimated by

#{I|T,Um4-t I < h /2)/Mh
with M denoting the number of M points in the data set and h a small binwidth.
Figure 14 presents three examples of estimated crossintensity functions. The first
graph refers to data from cells L3 and L10 of Aplysia californica The behavior
exhibited here is that of negative association; L10's firing is inhibiting the firing
of L3 (for approximately .5 second.) If one asks whether the values at negative
lags differ from the level of no-association by more than sampling fluctuations,
one finds they do not. This result is consistent with the cell L10 driving the cell
L3. The middle graph corresponds to positive association. It is for a cell in the
right viscero-pleural connective (RVP) and cell R15. The first cell tends to excite
the second for about .25 seconds. The final graph represents a more complicated
(polyphasic) situation. These data sets were also analysed in Bryant et al (1973)
where further details may be found. The approximate sampling distributions of
such statistics were developed in Brillinger (1975). It was found, for example,
that it could be more convenient to graph the square root of the estimate in some
circumstances.

The crossintensity function, being a point process analog of covariance, may
be expected to be an inadequate measure of relationship. In the case of elemen-
tary statistical data it is usual to turn to regression as a better technique. In the
point process case it is possible to carry out regression type analyses. For exam-
ple one may fit the following form of model

limhProb {N spike in (t,t+h) M spike train)/h = A +Fa(t-om)

as h tends to 0. The function a (t) appearing in this model is referred to as the
impulse response. This model may be fit as follows. Set

d34(X) - exp{-iXuar.

with a similar definition for dNr(X). These are point process analogs of the empiri-
cal Fourier transform, (3), of time series data. The cross-periodogram of the
given data at frequency X is defined as

INm (X) - (2frTf- dNr(A)dy
If the cross-periodogram is smoothed to obtain fJT(X), then f TM(X) is an estimate
of the cross-spectrum in the case that {M,N) is a bivariate stationary point por-
cess. Now A(X) the Fourier transform of the impulse response a (t), may be
estimated by fNM(X)f TM(X)-1. The impulse response itself may be estimated by
back Fourier transforming A T. The strength of the relationship proposed in the
model may be measured, at frequency x, by the sample coherency function
RNMN(X)-N(X)/VIMM(X)INN(X). Its modulus squared is called the sample
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coherence. The coherence lies between 0 and 1, being nearer to 1 the stronger the
relationship. More details of these computations may be found in Brillinger
(1975) and Brillinger et al (1976).

Figures 15 and 16 provide the results of such an analysis for the first two
data sets of Figure 14. In each case the first graph is of the sample coherence.
The coherences are at some distance from the value 1.0 but above the 95% null
significance level, (given by the horizontal lines in the figures.) The relationship is
inherently nonlinear, so it could have been anticipated that the coherence esti-
mate would not be close to 1.o. Further discussion of these and similar analyses
may be found in the just cited work.

12. Assessing Connectivrities. Questions that can arise with small networks of
neurons include; is one neuron driving the rest and if one apparently is, which
one is it? The next data analysis to be presented concerns three Aplysia cells L2,
L3 and L10. From other experiments the neurophysiologists knew that cell L10
was driving cells L2 and L3. It was not known if there were any direct connec-
tions between L2 and L3. The first three graphs of Figure 17 present estimates
of the three coherences, L10 with L2, L2 with L3, L10 with L3. As might have
been anticipated, these suggest relationship exists in each case.

It is possible to address the question of the direct connection of cells L2 and
L3, in the presence of L10, by partial coherence analysis. Suppose that {A,B,C)
is a trivariate stationary point process. Let RAB(X) denote the coherency function
of processes A and B, with similar definitions of RAc and RBC. Then the partial
coherency of the processes B and C, having removed the (linear time invariant)
effects of process A is given by

RBc - RBA RAC
RBc- BA12)1 IRAA (13)

suppressing the dependence on x. This definition may be motivated several ways.
One is: it is the coherency between the processes resulting when their best linear
predictors based on A are removed. A second is: it is given by

fB{A f CACcorr.~(dB!- L~±. d,dJ.. -LidATcorrtD AA f7cc
Here corr denote the (complex) correlation coefficient. An estimate may be deter-
mined by substituting estimates for the quantitics appearing on the right hand
side of expression (13). If there is no connection between the processes B and c
beyond their joint dependence on A, then the sample partial coherence, RjC,T
may be expected to be near zero.

The final graph of Figure 17 provides the results of the computation for the
cells L2, L3, L10 referred to. There is no suggestion of a direct connection being
present. Further discussion and other examples of partial coherence computa-
tions may be found in Brillinger et al (1976).

13. A Structural Stochastic Model. The analyses of neuronal firing, so far
presented, are of the correlation and regression type. Parameters with direct bio-
logical interpretations have not been introduced. In Brillinger and Segundo
(1979) a mechanistic model is constructed and fit by the method of maximum
likelihood. The model involves the following elements.

Input to a nerve cell leads to electrical current genesis. This current flows to
a trigger zone, being filtered in the course of its passage. When the voltage level
at the current zone exceeds a threshold value, the nerve cell fires. The neuron
remembers back only to the time of previous firing. This process may be
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specified analytically as follows. Let U(t) denote the voltage (membrane poten-
tial) at the trigger zone at time t. Let B(t) denote the time elapsed since the
neuron last fired. Let X(t) denote the (measured) input to the cell. Then,
assuming linearity and time invariance, one can write

B(t)

U(t)= f a(s)X(t-u)ds
0

for some summation function a (.). The neuron fires when the process u(t)
crosses a threshold level 6(t ).Depending on the level at which the threshold is set
and the internal mechanics of the nerve cell, the input will either accelerate
(excite) or slow (inhibit) the firing. In Brillinger and Segundo (1979) this mechan-
ism was completed and discretized as follows. Input to the cell was written
Xt, t=O,...,T-1 . Corresponding output was Yt, t=O,...,T-1 with Yt=1 if there
was a firing in the (small) interval immediate to t and with Yt= 0 otherwise.
With B, denoting the time elapsed at t since the preceding time that Y = 1, they
set

Bt -1

Ut- E as Xt-s
s=0

The presence of Bt in the model had the effect of introducing a form of feedback.
Finally they assumed that the threshold function had the form et-= +et with the
's independent standard normals.

The likelihood function of the given data and model then took the form
r-1 y

10u 8)1-Y
t J

Parameter estimates were determined by maximizing this likelihood with respect
to e and the as. Approximate standard errors were determined by procedures
traditional to maximum likelihood.

Figure 18 presents the results of one such analysis. In this case fluctuating
current, X(t), was injected directly into the cell R2 of Aplysia. The current level
was taken to have marginal distribution that was approximately uniform,(but
that is not crucial to the technique.) The sampling rate was 50 samples per
second. The top graph of the figure gives a stretch of the noise signal inserted
and the corresponding times at which the neuron fired. It is very dificult, if not
impossible, to see a connection between these two stretches of data. The middle
graph gives the estimated summation function, a's. The bottom graph is one
means of assessing the fit of the model. It is analagous to expression (9) of Sec-
tion 3, and given by

#(Yt =1 unth U-h < Ut < U+h)/# {t with U-h < Ut < U+h} (14)
for small h, plotted versus U. Here

Bt -1

'tSaS _ts
s =0

The smooth curve is the corresponding s. The fit may be described as adequate.
The computations were carried out by a variant of the program developed for
handling the seismic first motion data. Details of the experiments are given in
Bryant and Segundo (1976). Further examples and discussion may be found in
Brillinger and Segundo (1979). Other types of input are employed and alternate
estimating procedures compared there. The large sample properties of such esti-
mates may be studied as in Sagalovsky (1982). A great advantage of the model
building approach, of this section, is that the parameters introduced and
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estimated have biological interpretations. A further advantage of the maximum
likelihood approach, over that of partial coherency, is that the spike trains
involved can be nonstationary.

14. Analysis of Evoked Responses. A traditional means of studying the ner-
vous system involves applying sensory stimuli to a subject and examining the
ongoing electroencephalogram for an evoked response. The stimulus may be
auditory, visual (eg. light flash, checkerboard pattern), olfactory, somatosensory
(eg. an electrical shock), gustatory or a task. Generally the stimulus is applied
for a time interval that is brief in comparison to the duration of the response.
Evoked response experiments play an essential role in quantitative biology.
Because the experimenter is able to chose which stimuli to apply, and when to
apply them, conclusions can pass beyond associations noted to formal inferences
concerning causal mechanisms.

Some dramatic success stories of the technique may be mentioned. One is
presented in Bergamini et al (1967). Siamese twins were joined in such a way
that it was not possible to determine by traditional means if the peripheral ner-
vous pathways were interconnected. Before operating it was crucial to determine
the interconnections of the twins. Ongoing EEG's were recorded for each. A
series of trials were carried out in which each of the twins' legs were stimulated
in turn by electrical shocks. What was found was that when a leg of one twin
was stimulated, response was noted only in her EEG. On the basis of this infor-
mation the twins were separated - successfully. A second notable example of the
use of the evoked response technique is provided by hearing exams for newborn
infants (including infants asleep.) Ongoing EEG's are recorded. These are exam-
ined for responses after loud clicks are made near the infants' ears. Rapin and
Graziani (1967) present an example for an infant with hearing difficulties, both
wearing and not wearing a hearing aid. The hearing aid is found to have an
objectively measurable effect.

Figure 19 presents an example of evoked response data recorded at a 4 by 4
array of sensors implanted in a rabbit. In this case the stimulus was an odour
and the sensors were implanted in order to study the rabbit's olfactory system.
These responses were recorded concurrently. A second example is given in Figure
20. It gives the 20 successive responses evoked by applying a current pulse to the
lateral olfactory tract of a rabbit and recording from a sensor implanted in the
depth of the pre-piriform cortex. The signal is fairly pronounced in Figure 19. In
Figure 20 the strength of the stimulus was weak and the signal is not apparent.
Both of these data sets were collected in the laboratory of W. J. Freeman,
University of California, Berkeley. Some details of his experiments may be found
in Freeman and Schneider (1982).

Crucial to many evoked response experiments is the fact that it is generally
insufficient to apply a stimulus once. Rather it must be applied repeatedly,
(perhaps thousands of times), and the responses averaged. In the twins and
infant examples above M equalled 250 and 100 respectively. Formally, if Y(t)
denotes the ongoing EEG and the stimulus is applied at times a.r, m
then it is usual to take as the basic statistic, the average evoked response

I M
F(s) = , Y (8 +aTm)

Figure 21, left-hand column, presents the results of averaging the data of Figure
20 with M = 3, 5, 10, 20 and 38. With increasing averaging a signal is slowly
appearing from the noise. Some alternate evidence for the presence of a signal is
provided by the results of the right-hand column. These are averages of 38
responses where the stimulus has been applied at a succession of increasing
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strengths.
A variety of questions, that have statistical formulations, arise in the course

of work with evoked responses. These include: 1. does an applied stimulus elicit
a response? 2. do two different stimuli elicit the same response?, 3. is the same
response elicited at two different sensor locations?, 4. is the response stationary?,
5. if the order of stimuli application is altered, are the corresponding responses
altered?, 6. are the efects of different stimuli additive?, 7. how does the response
depend on the stimulus intensity?, and 8. how do the responses depend on exo-
genous variables? To go with answers to these questions, researchers seek quick
efficient data collection, precise estimates and indications of variability.
Difficulties that commonly arise include: small response, large noise, variability in
response, artifacts present and effects are superposed. Next in this section, two
formal set-ups will be presented that may be employed to address the situation.

Suppose, to begin, that there is a single stimulus and that it is applied at
times amr. Let a (.) denote the response in a single shock experiment. If the sys-
tem is time invariant, and the effects of the various shocks additive (superpos-
able), then a model for consideration is

Y(t)-= i + Ea(t-a.)+ f(t) (15)
m

with Y(.) denoting the ongoing EEG and e(.) denoting noise. In the case of the
EEG this model seems to have to be empirically verified, rather than being an
implication of basic biology. For example, the assumption of superposability may
be examined as follows. To begin, carry out some single shock experiments, i.e.
apply the shocks at times far enough apart that their individual effects seem
likely to have died off. Let d (8) denote the average of the responses evoked, with
8 lag since stimulus application. Now carry out some two shock experiments, i.e.
apply shocks say A time units apart. Let & (8 A) denote the average of the
responses evoked. To examine the assumption of superposability compare
a (8) + a (8-A) with b (8 ,A). The results of carrying out such a check, in an experi-
mental situation, are given in Biedenbach and Freeman (1965). They form aver-
ages of M = 1SO responses, and do not note departure from superposability.

We now turn to one formal analysis of the model (15). If one writes
X(t)- E>6(t m )

then (15) takes the form
Y(t)=p +fa(8u)X(t -8)d8 +E(t)

i.e. it is seen to be the model of cross-spectral analysis. Taking Fourier
transforms, one has

dyT(\) - A (X)dxT(X) + d T(X)
for X > o, with A (X) denoting the Fourier transform of a (.) . Consider a number
of frequencies k = 27rk / T near X . Then, assuming A(.) smooth, one has the
approximate linear model

Yk A (X)Xk + Ek

with
T-1 ~~~27rktYk x, Y(t )e2p{-sZ*.

t=M

and similar definitions of Xk, Ek. Next, via a central limit theorem for empirical
Fourier transforms, the noise variates, Ek, may be approximated by independent
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(complex) normals having mean o and variance 27rTf ,(X) . All the inference pro-
cedures for the linear model become available. For example, as an estimate of
A (X) one has

A(X)Y=XZkXk

and this variate will be approximately distributed as complex normal with mean
A (X) and variance 2irTf (c(X)/>j l X,1 2 This formulation has a variety of con-
venient properties. It directly extends to the cases of multiple stimuli and multi-
ple responses. It handles stimuli of varying intensity. It allows the individual
responses of the separate shocks to overlap. Formal inference procedures, such as
tests, are available. Complex experiments may be designed and analyzed - com-
plexities handled such as: blocking, rotation, factorial treatment structure, meas-
ured covariates. Formal checks for interaction are available. Finally, one can
turn to the question of optimal design.

It is sometimes convenient to adopt a different viewpoint for the problem.
Suppose that the shocks are applied at times such that om+i-am > V with
a(a) Ofors > V ands <o. Write

Ym(8) = Y( +a,,)
Then Yn(8) = i + a (s ) + (m(8) for o < 8 < V . The average evoked response is
now conveniently denoted Y(u) . As an example of the use of this formulation,
suppose there are I different stimuli and that each are applied J times, then one
is led to set down the model

Y,,(8) = + a (8) + b, (8) + e,J (8)
with i indexing stimuli and j indexing replicates. Other methodologies such as
growth curves and discriminant analysis are seen to become available with this
formulation.

It was mentioned that evoked response data may be contaminated by
artefacts. It is perhaps worth noting that robust/resistant estimates are directly
available. Suppose one has a measure of distance, such as

v

11 Y-a 112 = Y(8 )-a (8 )12ds
0

and an estimate of scale, p. Then a family of robust/resistant estimates is pro-
vided by

a(8) =EWm Ym(i)I(VWm
m m

with Wm = W(II Y,m -apl/) and W(.) a univariate set of multipliers for
robust/resistance. The estimate will need to be computed recursively. An ele-
mentary example is provided by the "trimmed mean"

a(8)-StE Y'.(8)/#M
with E' over the OM smallest 1 Ym -a' 1j. This class of estimates was proposed in
Brillinger (1981) and investigated in Folledo (1983). The top graph of Figure 22
provides an example of this estimate with 50% trimming (-= .5), in the case of
data like that of Figure 20, (but with a stimulus of strength 122% of the thres-
hold stimulus.) The sold curve denotes the average evoked response, the dashed
one the trimmed statistic. The two curves are near identical, although when
examined the individual responses are found to differ by a fair amount.

It is to be noted that a "real-time" version of such a trimmed mean may be
computed, see Brillinger (1981). This statistic is given recursively for m = 1,2,...
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by

Pm +I1-Pmp-(
L

-

if Y.Y IIPm and
Pm+, =lp +L /m

otherwise, and by

= a() +m+1(8 )-m (8 ) + im(Ym +1(8 a (8 )

if 11 Y., +,-a,m 11 Pm and
&m+1(8 ) = m(8 )

otherwise. In preparing a worked example, it was found more convenient in the
choice of L to replace p by its logarithm. The bottom graph of the figure gives
the result for the same data as that of the top graph. The alogorithm was run
setting ai() = YI(s) and L =.15. The real-time estimate, given by the solid line,
has performed virtually as well as the dead-time estimate in this case.

15. A Confirmed (Fourier) Inference. Muscle cells are electrochemical dev-
ices. If the chemical acetylcholine is applied at the neuro-muscular junction,
measurable voltage fluctuations result. Specifically, acetylcholine release causes
postsynaptic membrane channels to open leading to voltage fluctuations. Katz
and Miledi (1971,1972) measured voltage fluctuations associated with this
phenomenon and found that the power spectrum could be approximated by the
functional form a/(02+X2) . (An example of the fit of this function to such data
and a description of a fitting procedure may be found in Bevan et al (1979).
They proposed the model

y(t ) =Sa (t-a)

with the o,, points of a Poisson process and with a (t) = exp{-Bt }. This a (.) func-
tion corresponds to the effectiveness of an open channel decaying exponentially
and leads to a power spectrum of the indicated form. Katz and Miledi mentioned
that the pulses might actually be rectangular of random duration, but they pre-
ferred to deal with the exponential form. Stevens (1972) proposed the specific
model

Y(t) = a.(t-a.)
m

also with (a., ) Poisson, but now with a (t) 1 for 0 < t < Tm, and a (t) = 0 other-
wise. The T.m are independent exponentials of mean 1/O and correspond to the
lengths of time that the channels are open. Stephens noted that this model also
led to a power spectrum of the form a/(9f+X2). The models were indistinguishable
with the data collected.

The problem was later resolved by improved experimental technique. Neher
and Sakman (1976) developed a technique that allowed the opening and closings
of individual channels to be seen. They found that the channels remained
equally effective and open for time periods of varying lengths. The two proposed
models could be distinguished.

Examples of single-channel data and the corresponding estimated power
spectrum may be found in Lecar (1981). Jackson and Lecar (1979) present results
confirming the exponential duration of the openings.
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16. Other Topics. Spatial temporal data are commonly collected by neuros-
cientists. One form is the electroencephalogram recored by an array of sensors on
the scalp. Figure 19 presented an example of data collected for the olfactory sys-
tem of the rabbit. The stimulus was release of the odour ethylacetate. An 8 by
8 array of electrodes was imbedded in the animal. The data, already presented in
Figure 19, gives the responses for the sensors at the postitions with x-coordinates
2, 4, 6, 8 and y-coordinates 1, 3, 5, 7 of Figure 23. One procedure that W. J.
Freeman has found helpful for understanding this type of data is the computing
of empirical orthogonal functions, see Freeman (1980). Figure 23 gives an exam-
ple. These results are derived by stacking the responses into a matrix, X, with
rows corresponding to sensor and columns to time, and then computing the
singular value decomposition , X = UDVf, of that matrix. The U for a particular
component, say the first, are then plotted versus sensor location as in the top
graph of Figure 23. The V values are similarly plotted versus time and appear in
the bottom graph. The results of Figure 23 are based on 64 series, not just the
16 of Figure 19. The contour plot suggests the presence of a focus of activity.
The time series component elicited may be seen lurking in the individual
responses of Figure 19. (It may be mentioned that meteorologists have long com-
puted empirical orthogonal functions for spatial-temporal data and used them in
forecasting, see Lorentz (1956) for example.)

Childers has also made use of array data in studying the neural system. In
Childers (1977) he estimates the frequency-wavenumber spectrum for responses
evoked by visual stimuli (light flashes) in the human EEG. He was concerned to
estimate the speed and direction of propagating waves. In the paper cited he
first notes an apparent high-velocity wave. After this wave has been "removed",
he notes the presence of a pair of waves moving in opposite directions. His
research is directed at developing a diagnostic procedure for various visual disord-
ers and at obtaining insight concerning how the visual system functions.

The decaying cosine model of Section 2 has also found a use in neurophysiol-
ogy. In his work with the olfactory system Freeman (1972, 75, 79) found that the
average evoked response could be well-fitted by the sum of a few decaying cosine
terms. He developed a model involving spike to wave conversion, involving col-
lections of constant coeficient second-order differential equations, involving feed-
forward and feedback and involving wave to spike conversion. He employed non-
linear regression in the time domain to estimate the unknowns. In one case,
involving two cosines, he was led to view the stronger wave as representing
intracortical negative feedback and the weaker as representing a second feedback
loop. Of interest in this type of work is what happens to the frequencies and the
decay rates when the experimental conditions are altered. A second reference to
decaying cosines is Childers and Pao (1972). They consider the model

Y(t) = ak t exp{-flk t )co8 (,k t +6k ) + E(t)
k

for visual evoked responses monitored over the occipital region. In particular
they study the data by complex demodulation.

Brief reference will be made to several other topics. Dumermuth et al (1971)
estimate the bispectrum of human EEG's. de Weerd and Kap (1981) discuss the
computation of some time-varying quantities. Marmarelis and Naka (1974) con-
sider the case of biological systems with several inputs. An extreme case of this
occurs when the input is varying in both time and space. This circumstance is
considered in Yasui et a! (1979). The book Marmarelis and Marmarelis (1978)
goes into great detail concerning the identification of systems that are polynomial
and time invariant in the input. They emphasize the advantages resulting from
employing a Gaussian white noise input. The dedication of the book is worth
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mentioning - " To an ambitious new breed: SYSTEMS PHYSIOLOGISTS"
Another area of research activity has been that of control. The works Pog-

gio and Reichardt (1981) and Wehrhahn et al (1982) may be noted. They are
concenerned with data that are three dimensional trajectories.
17. Discussion. As the examples presented hopefully indicate, a broad range of
data types arise in the neurosciences. Further, that data is collected at both the
micro level and the mass level. Procedures developed have the opportunity to
move on to clinical use.

The field of neurophysiology has the satisfying aspect that often controlled
laboratory experiments are possible and repeatable. Further there are opportuni-
ties for design of experiments. In the field statistics has been seen to provide
techniques for model formation and validation, for measuring uncertainty in con-
clusions and for addressing questions of causality. Statistical techniques have led
to insight concerning the underlying physiology.

It is interesting to note the evolution of the analysis in the case of the neu-
ronal signaling analysis as presented in Sections 11 and 13. One can recognize
the stages of: 1. (feature) description, 2. correlation/association, 3. (adhoc) regres-
sion, 4. mechanistic model. These stages are usual in many elementary situa-
tions.

18. Update. The analysis of single ion-channel data, briefly referred to in Sec-
tion 15, has become a whole industry. Models with several states are now rou-
tinely fit. References include: Colquhoun and Hawkes (1983), Labarca et al
(1986). Extending the work of Section 13 Brillinger (1986) presents a number of
examples of the maximum likelihood fitting of a neural model employing
corresponding spike train input and output data. Smith and Chen (1986) study a
more complicated neural model. The chirp signal was propounded as being of
substantial importance in seismic exploration. Some use of it has been made
recently in physiological studies. In Norcia and Tyler (1985) a 10 second spatial
freqency sweep stimulus is employed and the corresponding visual evoked poten-
tial measured. Finally we note that Grajski et al (1986) apply modern
classification procedures to study the effects of applying different odours on the
olfactory bulb EEG's of rabbits.

V. CONCLUDING REMARKS

In this article we have presented a number of examples, drawn mainly from
our personal experience, showing the use of the same statistical technique in the
rather separate sciences of seismology and neurophysiology. It now seems
appropriate to ask what, if anything, have the three sciences - statistics, seismol-
ogy, neurophysiology - gained from each other as a result of connections albethey
indirect? Having in mind a broader class of examples then those discussed in this
paper, one can say that: i) statistics is richer for having been led to develop and
study various novel methods to handle specific problems arising in seismology or
neurophysiology, ii) both seismology and neurophysiology are the richer for the
other's field having generated a problem for the statistician to abstract
sufficiently that the result's applicability to their field became apparent, iii) either
seismology or neurophysiology benefit from a statistical formulation because vari-
ous of their problems seem necessarily to need to be stated in terms of probabili-
ties (eg. neither neuron firings nor earthquakes seem deterministic) and because
these fields need procedures to validate results and to fit conceptual models. The
methods of statistics can lead to important insight and understanding in
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substantive problems.
It may be remarked that the applicability of statistical procedures to these

two substantive fields has further grown in direct consequence of their move to
greater quantification and digital data collection. The data sets analysed were of
high quality. The fact that the analyses were informative to an extent here
bodes well for the use of such techniques in fields with data of lesser quality.

The reader will have noted that some of the analyses were time-side and
some were frequency-side. Each domain has its advantages. It is possibly worth
pointing out specifically that stationarity was not required for some of the
frequency-side procedures.

On review it may be seen that the techniques employed for time series data
and for point process data in many cases are not that different. Brillinger (1978)
presents some comparative discussion of the techniques for the two cases. Our
presentation is somewhat remiss in the seismological case in not presenting some
worked examples of auto and cross- intensity estimation.
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Figure 1. Trace of the Chilean great earthquake of 22 May 1960 as recorded by
the tiltmeter in the Grotta Gigante at Trieste.

Figure 2. The logarithm of the periodogram of the data of Figure 1 using 2548
data values.

Figure 3. The result of complex demodulating the data of Figure 1 at the fre-
quency of 3.89 cycles per hour. The top graph gives the logarithm of the running
amplitude. The bottom graph gives the running phase. The bandwidth of the
filter employed is .594 cycles/hour.

Figure 4. As for Figure 3, but at the frequency of 5.67 cycles per hour.

Figure 6. The CAL 8 earth model. The scales for the velocities are km/sec.
The scale for the density is g/cm3.

Figure 6. The P-wave first motion data for the earthquake of the Alaskan
sequence that took place 30 March 1964 at 0200. The solid circles refer to
compressions. The open circles to dilations.

Figure 7. A plot of the statistic (9) of Section 3 for the data of 16 events of the
Alaskan sequence.

Figure 8. The top graph gives the transverse shear wave component of the sig-
nal of the 29 January 1981 magnitude 6.7 Taiwan earthquake as recorded by the
accelerometers of the Smart 1 array some 30 km northwest of the epicenter. The
lower graph plots the difference between the amplitude of the Fourier transform
of the data and a strongly smoothed version of those values versus the strongly
smoothed values.

Figure 9. The amplitudes of the Fourier transforms of the Taiwan data of Fig-
ure 8 and the corresponding expected values as computed for the model of Sec-
tion 4. The data stretch consisted of 256 points. Both scales of the plot are loga-
rithmic.

Figure 1O. The vertical P-wave portion of the 29 January earthquake as
recorded at 9 of the sensors of the Smart 1 array. The "*" are plotted at the
physical locations of the sensors.

Figure 11. The frequency-wavenumber periodogram of the data of Figure 10.
The time series stretches contained 720 points. The temporal frequency was 1.94
cycles/second.

Figure 12. The high resolution (or Capon) spectrum computed for S-wave data
recorded, following a strip mining blast, at the Large Aperture Seismic Array
located in Montana. The temporal frequency was 1.25 cycles/second.
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Figure 13. Point process data from the cell L10 of Aplysia californica behaving
in three different fashions. The inlays at the top of the three graphs give brief
stretches of the data. The functions plotted are estimates of the autointensity
functions based on 1538, 1019, 1631 spikes respectively.

Figure 14. Estimates of the crossintensity functions for three pairs of Aply8ia
neurons. The estimates are based on (1746,302), (1101,288), (1019,993) spikes in
the pairs of trains respectively.

Figure 15. The estimated coherence and impulse response for the data of the
top graph of Figure 14. The horizontal line gives an estimate of the level
exceeded by chance only 5% of the time when the spike trains are independent.

Figure 16. The estimated coherence and impulse response for the data of the
middle graph of Figure 14. The horizontal line in the top graph give the upper
95% null point of the distribution of the sample coherence.

Figure 17. Data for a network of three Aplysia neurons. The partial coherence
estimate is based on expression (13) of Section 12. In each case the horizontal
solid line gives the upper 95% null level.

Figure 18. The results of fitting the neuron model of Section 13 to data
obtained in an experiment with the cell R2 of Aplysia. The upper graph is a seg-
ment of the data. Noise, (lower trace), is introduced into the cell. The upper
trace gives corresponding observed firing times. The interval between the sam-
pling points is .02 second. The middle graph gives the maximum likelihood esti-
mate of the summation function, a(.). The bottom graph provides the statistic
(14) of Section 13.

Figure 19. The bursts of activity recorded at the 16 sensors of a 4 by 4 array
following the stimulation of a rabbit by an odour. The units of the x-axis are
seconds.

Figure 20. Twenty successive responses evoked in the pre-piriform cortex by
(electrically) stimulating a rabbit. The x-axis units are seconds.

Figure 21. The various graphs here are meant to show the effects of changing
the number of responses averaged (left column) and the strength of stimulus
applied (right column) for data such as that of Figure 20.

Figure 22. Top graph compares the average evoked response with the 50%
trimmed mean for the data taken at 122% of a threshold value. The lower graph
contrasts the 50% trimmed mean statistic with a value computed recursively.

Figure 23. The results of a singular value decomposition of the full set of the
data from which the bursts of Figure 19 were taken. The values graphed are for
the first components. The axes in the top graph give spatial location.
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Periodogram - Chilean Data
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Log Amplitude at 5.67 cycles/hour
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Taiwan Event - Shear Wave
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Taiwan Event - Amplitude Spectrum9
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Frequency-Wavenumber Periodogramn : Taiwan Event
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Neuron R2 - Noise Driven
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Rabbit Olfactory System - Responses at 4 by 4 Array
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Individual Responses - Rabbit Pre-piriform Cortex
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Average Evoked Responses - Several M's, Several Intensities
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Average Evoked Response and RobustResistant Variant
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Latent Spatial Component
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