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1. Introduction. We consider the two sample problem where Xl, * ,Xm and

Y1,**... , Yn are independent random samples from populations with continuous distri-

bution functions F and G, respectively. Many of the models in which rank (partial,

marginal) likelihood methods are useful can be put in the form

(1.1) F(t) = D(H(t), 01); G(t) = D(H(t), 02)

where H(t) is an unknown continuous distribution function, D(u,0) is a known continu-

ous distribution function on (0,1), and 01 and 02 are in some parameter set 0.

For inference based on rank likelihood, the above model is equivalent to the model

obtained by using the distributions of Ui = F(Xi) = D(H(Xi),g 0) and

Vj = F(Yj) = D(H(Yj), 01). These distributions are

F(u) = u,ue (0,1); G(v) = D(D-1(v,0),2),ve (0,1)

In the case where (D(u,0): 0 e 0) is a group under composition satisfying D(u,1) = u,

D(D-1(u,O), 02) = D(u,0), 0 = 02/01, we can write

(1.2) F(u) = u, uE (0,1); G(v) = D(v, 0), v e (0,1)

From this point on we assume that (1.2) is satisfied. The distribution function F is

treated as a nuisance parameter and we consider the problem of estimating 0. This

model goes back to Lehmann (1953), and includes the following models that have

important applications in survival analysis, reliability, and other areas.

Example 1.1. Proportional Hazard Model. If F and G have proportional hazards,

1

then D(v,0) = 1 - [ 1 - v ] 0 , 0 > 0. Lehmann (1953) and Savage (1956) considered

testing in this model. Cox (1972, 1975) developed estimation procedures in a much

more general regression problem with censored data.
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Example 1.2. Proportional Odds Model. For any continuous distribution H the

odds rate is defined by rH = H/(1 - H). If F and G have proportional odds rates, in

the sense that rG(t) = 01rF(t), then D(v,0) = v [ (1 - v)O + v ]-l. This model has been

considered by Ferguson (1967) and Bickel (1986) in the two-sample case and in more

general regression models by Bennett (1983) and Pettitt (1984), among others.

Example 1.3. Proportional y-Odds Model.

For any continuous distribution function H, the y-odds rate is defined by

rH,et) = ( [ 1 - H(t) ]f - 1/y,y > 0

= -log [ 1 - H(t) ], Y = 0

If F and G have proportional y-odds, then

D(v,O) =1 - { 0(1 - v)'Y }t1 Y=1- (1-v)8+(-)

- 1-(1-v)0, Y= 0

This model, which has been considered by Harrington and Flemming (1982), Clayton

& Cuzick (1986), Bickel (1986), and Dabrowska and Doksum (1986), reduces to

Example 1.1 when y = 0, and to Example 1.2 when y = 1.

Example 1.4. Transformation Shift Model. Let Q be any known continuous distri-

bution function which is strictly increasing on the whole real line. If F and G satisfy

the transformation shift model where for some increasing transformation h, Xi and Y

can be written

h(Xi) = g, + , i m

(1.3) h(Yj) = ±2+ ej-)i ... , n

with p2 - 1 = logO, N = m + n and l1, * * , eN independent with distribution function
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Q, then D(v,O) = Q(Q-l(v) - logO). To see this, set h(t) = Q-1(F(t)) + 1l. Then (1.3)

is equivalent to (1.2) with D(v,0) = Q(Q-l(v) - logO). This is an extension of the

power transformation model where h(t) is of the form sign(t) I t 1 or

[sign(t) ItI- 1 /, and where Q is the standard normal distribution function. See

Anscombe and Tukey (1952), Tukey (1957), Box and Cox (1964), Bickel and Doksum

(1981) and Doksum (1987). This transformation shift model reduces to the propor-

tional odds model if we take Q to be the logistic distribution function

L(x) = 1/[1 +e7x].

t Theory and methods for dealing with semiparametric models and paril likelihood

have been developed by Begun (1981), Begun, Hall, Huang and Wellner (1983),

Begun and Weilner (1983), Wellner (1986) and Wong (1986) among others. However,

these methods do not lead to tractable efficient scores or tractable efficient estimates

for any of the above models except the proportional hazard model. For arbitrary 00

and under certain regularity conditions, Bickel (1986) obtained the asymptotically

optimal rank test for testing Ho: 0 = 00, vs H1: 0 > 00. His regularity conditions are

satisfied by the y-odds model with 7> 1. However, the optimal test statistic is a non-

linear rank statistic whose value can be obtained only after solving certain functional

equations numerically on the computer. Attempts to extend these methods to obtain

estimates that are asymptotically efficient in the semiparametric sense have not yet suc-

ceeded. Doksum (1987) and Dabrowska and Doksum (1988) propose a resampling

scheme for computing maximum partial (rank) likelihood estimators in general semi-

parametric transformation regression models with censored data. These estimates per-

form well in Monte Carlo simulation studies, but the theoretical properties are difficult
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to establish. Clayton and Cuzick (1986) proposed estimates for the proportional y-odds

model that also apply to regression and censored data, but the theoretical properties of

these estimates are also not well understood.

Methods based on local (near 0 = 1) approximations to the likelihood have been

developed by Pettitt (1984), Doksum (1987), and Dabrowska and Doksum (1986).

These estimates are asymptotically normal for 0 in neighborhoods of 0 = 1, however

they are not consistent for fixed 0* 1.

In this paper we consider the uncensored case and introduce two classes of esti-

mates. The advantage of these estimates is that they are relatively simple to imple-

ment in practice and that their properties can readily be derived and understood.

Moreover they are based on intuitive estimation equations that are immediate exten-

sions of the familiar M and R estimate equations. Although the new estimates are not

fully efficient for all values if 0, such fully efficient estimates are not available for

y*0.

In Section 2 we introduce estimates of 0 that can be regarded as rank approxima-

tions to Huber's (1981) M-estimates based on score function if. We show asymptotic

normality of these RAM (rank approximate M) estimates. We compare these estimates

with the asymptotically optimal estimates for F known, and find that for a certain

range of parameter values, not much efficiency is lost. In fact, the score function N,
can be chosen so that the estimate is fully efficient at 0 = 1.

In Section 3 we introduce estimates of 0 based on the Hodges-Lehmann (1963)

rank inversion idea and obtain asymptotic normality of these estimates. For appropri-

ate choices of the score functions, these estimates have the same asymptotic distribu-
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tion as the RAM estimates.

2. M estimates based on ranks. In this section we introduce estimates that, in an

approximate sense, are M estimates based on ranks. We start by assuming that the

distribution F of the X's is known and introduce M estimates of 0 that depend on F.

Let

Ui = F(Xi), Vj = F(Yj), i = 1, ,m,j= 1, ,n.
m n

The joint distribution of U1, * * * , Um, V1, ... ,V is HIuj1HD(vj,0), so that
i= j=1

(V1,*.* ,Vn) is sufficient for 0. Let iy(v, 0) be a function which is monotone decreas-

ing in 0, and satisfies E00oi (V, 0o) = 0 where V is distributed according to D (v, 0o)

and 00 is the true parameter value. An M-estimate (see Huber (1981)) of 0 is defined

as a solution to the equation INf(V , 0) = 0.

Let N = m + n. When F is unknown, we define F(u) = mFm(u) / (m + 1) for

u 6 [X(1) X(m)I, F(u) = 1/(N + 1) for u < X(1) and F(u) = N/(N + 1) for u > X(m).

Here X(1) and X(m) denote the first and the last order statistics of the Xi's and

Fm(u) = mn1#(i: Xi < u).

We set Vi = F(Yj), and we let 0 be any "solution" to

n

1f(Yj1,O) = 0.

More precisely, 0 is any value in the interval [O*,0] where

0* = sup(0: I (V^j0) > 0) and 0* = inf(0:0 Nf(Vj,0) < 01.

In terms of the rank likelihood, VI,* ,Vn are sufficient for 0. To see this, let

Y(1)<* <Y(n) be the ordered statistics and let K(j) = mF(Yoj)). Then it is easy to

check that K(1), . ,K(n) are equivalent to the ranks. Thus we call 0 a RAM (Rank
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Approximate M) estimate.

Here is an example where we get an explicit formulae for 0.

Example 2.1. Assuming F is known, the M-estimate based on

i (v, 0) = -0 - log(1 - v) is the MLE (Maximum Likelihood Estimate) for the propor-

tional hazard model of Example 1.1. This estimate is n711 - log(l - F(Yj)). The

corresponding RAM estimate of 0 which applies when F is unknown is

n

0 = n1 -log(1 - F(Yj))
j=1

We return to the general case and show asymptotic normality of the RAM esti-

mates. We assume throughout that the limits no = lim (m/N) and it1 = lim (n/N) exist

and are strictly between 0 and 1. Further, we assume that if is continuously

differentiable in u and we set 1 (u, 0) = Vav (u, 0) and d (u, 0) = Cj D (u, 0). Define

1 1

~(0) = fw(u,0)d(u, 00)du, %1(0) = Jvl(u,0)du,
0 0

u

VJ(U.0) = JV(v,0)d(v,0o)dv,
0

1 1

02(0) = 7 (fN-12(u,0)du - kj2(0)) + Xj1 (JNv2(u,0)d(u,00)du - X2(0)1.
0 0

Assume that for 0 in a neighbourhood of the true parameter value 00, the following

conditions hold:

A.1 IV(-,,0)1 =0(ra)and 1W( ,0)1 =0o(al)

where r(u) = [u(l - u)]-l and a = 1/2 - X for some 0 < X < 1/2.

A.2 Jr(u)1-'Id(u,0)du < oo uniformly in 0 for some 0 < il < X
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A.3 mjumd(u,0)du = 0(1) and mJ(1 - u)md(u,0)du = 0(1)

uniformly in 0 and m.

The assumption A.3 is satisfied whenever the density d(u, 0) is bounded uniformly

in 0 in a neighbourhood of 00. In particular it holds for the proportional hazard model

with 00 . 1 and y-rate models of Examples 1.2 and 1.3. Condition A.2 is satisfied in

all three examples.

Theorem 2.1. Suppose that i (u, 0) and k(0) are continuous in 0 for 0 in a neigh-

borhood of the true parameter value 00 and suppose that 00 is the unique point with

k(00) = 0. Assume that a2 (0) is finite, nonzero and continuous in a neighborhood of

00 and that A.1, A.2 and A.3 hold. Then 1(0) is asymptotically normally distri-

buted with mean zero and vanrance a2 (0o). If in addition, if k'(00) exists and

X'(00) < 0, then (e - 00) is asymptotically normal with mean zero and variance

02(O) / [X (00) ]2.

Proof. First we note that asymptotically all 0 e [0*,0**] are equivalent so it is

enough to consider 0*.

By the assumed monotonicity of Ni (u, 0) in 0, the function X (0) is monotone

decreasing. Let y be fixed. Since X (00) = 0 and x is continuous, for N sufficiently

large, there is ON such that y = -NlX(0N). In fact, ON = --1 (-Y/14R). Let Gn

denote the empirical distribution function of the Y's. Then

P(_qNX(0*) < y) = P(0* < ON) =

N[N4(F, 0N)dGn- (ON)] _ y L Y

II(ON) G(ON) (Oo) J

To see this we note that
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(2.1) N [f|v(F, ON)dGn - X((N)
- 4 [ (FM - F)V (F, ON)dG + fi (F, ON)d(Gn - G) ] + rN,

where rN is a remainder term. We have

J(Fm - F)W (F, 0N)dG
m m

- m- f[ I(Xi < x) - F(x) ]( (F(x), 0N)d(F(x),Oo)dF(x) =ZAim

which is a sum of independent identically distributed (iid) random variables. By

assumption A.1, I Aim I = O(1)rl/2T+'1(F(Xi))frl1(u)d(u,0o)du. By assumption A.2, in a

neighbourhood of 00 the deterministic part of this upper bound is uniformly bounded

from above. Further, for some t1 > 0 the random part of this bound has an absolute

moment of order 2 + r1, which is uniformly bounded above.

Further, fv(F,ON)d(Gn - G) is a sum iid random variables. By assumptions A.1

and A.2, they have a finite absolute moment of order 2 + t2 for some 2 > 0. Berry-

Esseen's theorem completes the proof of the asymptotic normality of the first two

terms. The remainder term rN is considered in Section 4.

Note that when 00 = 1, the asymptotic variance of 0 reduces to

(n -1 + xr-l1) EV2(Ua)/[E a f (U. 0) I&1 ]

where U is uniform on (0,1). This is exactly the same as the asymptotic variance of

the M estimate for the model (1.1) with H known. Thus if we choose

'y(V,0) = alogd(v,0)

then 0, in addition to being consistent and asymptotically normal for general 00, is

asymptotically efficient when 00 = 1.

n
If we consider the RAM estimate 0 = n-1 ~-log(l - F(Y1)), we find that in the

j=1
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proportional hazard model the asymptotic variance is ICO1 0 (2 - 0)-i + n -1 02 for

0 . 1. We can compare this estimate with the Cox partial likelihood estimate. The

usual parametrization in the Cox proportional hazard model is in terms of 1 = In 0. If

* is the Cox partial likelihood estimate then from Efron (1977) we find that its

asymptotic variance is given by

DOx1 +n_1 ou(0l-1)O du ]-I1
0

The asymptotic variance of f30 = In 0 where 0 is the RAM estimate is given by

I10 o-1 (2 - 0)-1 + s1j
for 0 . 1. For nto = it1 = 1/2 the asymptotic relative efficiency of 00 with respect to

13* is equal to 1, 0.951, 0.863, 0.757 and 0.647 for 0 = 1, 1/2, 1/4, 1/8 and 1/16.

Example 2.2. Proportional y-odds model. Our main application is to the propor-

tional y rate model, y > 0. The xi function corresponding to the MLE for the F known

case is

(2.2) Nf (uG1 -(1 - u) + 0(1 -

Using Theorem 2. 1, we find that the asymptotic variance of the RAM estimate

simplifies when y is of the form y = 1/k, where k 2 1 is an integer. In this case the

asymptotic variance is

H2 2+k 02 1 (__+_k)2_ 3+k 1 __-_0 k+O
7t +(1 0)2io j( k)0k+23j (3+k}..~ ] [+ 2n, k (1 - ()2 no k i_=o i i+k l k J

For y= k = 1, the proportional odds model, the asymptotic vanance is

302itj1 + (0.2)0it 1(4 + 70 + 402) while for k = 2, it equals

2x-102 + 0On-'(18 + 230 + 1202 + 303}/28.



- 10-

To judge the performance of the RAM estimate based on (2.1), we compute the

efficiency of this estimate with respect to the MLE for the y-odds model with F known

and the X's and Y's distributed as D(H(x), 01) and D(H(y), 02), respectively, where D

is given in Example 1.3, and 0 = 02/01. For m = n, this efficiency is given by

e(ORAM,OMLE) = 600(8 + 440 + 802)-1 for k = 1 and 1120(18 + 790 + 1202 +

for k = 2.

Here is a brief table of these efficiencies.

Table 1 about here.

We see from Table 2.1 that when y= 1 and 1/2, 9 is quite efficient for 0 in the

range (0.5, 2). The efficiency increases as y increases. In fact it is easy to show that

as y -* 0o the efficiency tends to one for all 0. The efficiency given is a lower bound

in the efficiency of 0 with respect to the asymptotically optimal estimate based on the

ranks.

3. Rank inversion estimates. In this section, we introduce rank-inversion esti-

mates based on the ideas of Hodges-Lehmann (1963). Again, we start by assuming

that F is known and let Ui, Vj and D(u,0) be as in Section 2. In particular, we assume

that D (u, 0) is monotone decreasing in 0. Note that U11 * * * , UM,

D(V1,0), * * * , D(Vn,0) all have the same distribution when 0 = Oo, where 00 is the

true value of the parameter. Let Ri(O) denote the rank of Ui among U1,.. ,Unm,

D(V1,0),*** , D(Vn,0), and let

TN(o) = m7 1 JN r R 1
dent aN+1 J

denote a linear rank function with monotone increasing score function JN The F-
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known Hodges-Lehmann estimate of 0 is obtained by solving TN(O) = JJ(u)du for 0,
0

where J(u) is the limit of JN(u). Without loss of generality, we assume JJ(u)du = 0.
0

Suppose now that F is unknown. Let X(1) < <*X(m) be the vector of order

statistics of Xi's Let F be defined by

F(u) = + (i-(hl) - (i + 1)X(i)
(m + 1)(X(i+l) - X(i)

for X(i) 5 u 5 X(i+), i = 1, * ,m - 1. Thus on the interval [X(1), X(m)], F is a

linearized version of the right-continuous distribution function mFm/(m+ 1), where

Fm(u) = m7l#(i: Xi 5 u). Further, let Y(1) and Y(n) be the first and the last order

statistics of the Y 's. If Y(j) < X(1) or Y(n) >X(m), then we extend F to the interval

[min(X(G), Y(1)), max(X(m), Y(n)) ] linearly with F(Y(j)) = l/(N+l) if Y(1) < X(1) and

F(Y(n)) = N/(N+1) if Y(n) > X(m).

Further, let Ri(O) be the the rank of F(Xi) among F(Xi), * F(Xm)g

D(F(Y1),0), ,D(F(Yn), 0). Let OR be any "solution" to

TN(() =m JN r =(OTN(O) = i=_1 IN+1 =

More precisely, let OR be any point in [0 *,0 where 0 u= sup(O: TN(O) < 0) and

OR = inf{0: TN(O) > 0). Similar estimates have also been considered by Doksum and

Nabeya (1984) and Miura (1985).

Example 3.1. Assuming F is known, the Hodges-Lehmann type rank estimate

based on J(u) = 2u - 1 is asymptotically optimal for the proportional odds model. Let

L(x) = 1 / [ 1 + ex ] be the logistic distribution function and note that if we set
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= L1-(F(Xi)) and Zj = L-(F(Yj)), then Wi and Zj foilow a logistic shift model

(Wi - L(w), Z. - L(z - logO)) with parameter logO. Since the ranks are invariant

under the increasing transformation L-1, it follows that the Hodges-Lehmann estimate

of 0 is

OHL = exp(median(Zj - Wi))
The corresponding OR, which is appropriate when F is unknown, is

OR = exp tmedian(L-1(F(Yj) - L-1(F(X))).
i,j

We return to the general case and show the asymptotic normality of -lN(0R - 00).

From (1.2), we have

(3.1) D(D-1(u,O),8) = D(u,8/O), D(u,l) = u.

Let

D(u,H) = -~-D(u,0) 11 = fJ(u)D(u,1)du

1 1 1

IT ) = c1JJ2(u)du + ic[ Ja2(u)du - (Ja(u)du)2]
0 0 0

where a is defined by

da(u) - J'(D(u,0))[ d(u,O) ]2
du

Further, let GnO(u) = n7l#[j: D(F(Yj), 0) < u] GnF--D(u0-1)
H(u) = (mFmF1l(u) + nGn((u)) / (N + 1), GO(u) = D(D-1(u, 0),Oo) = D(u, 00/0) (by

(3.1)) and H0(u) = nou + njG0(u). In terms of these functions, we have

TN(() = m1i [N ] fJN(HN(F))dFm = JJN(HN)dFmF-

Assume



- 13 -

BA riN = WJ(JN(HNO) - J(HN0)1dFmF-I 4p0 as N-oo uniformly for 0 in a

neighbourhood of Oo.

Moreover,

B.2 J is a differentiable function with bounded continuous derivative J', and

0< fJ2(u)du < oo*.

Finally, we assume that the limits no = lim (m/N) and 7i = lim (n/N) exist and are
N)oN

strictly between 0 and 1.

Theorem 3.1. If D(u,0) is decreasing in 0, and if the preceeding conditions hold

then 4N(OR - o0) has asymptotically a normal distribution with mean zero and vari-

ance 2 t2(00)/192

Proof. As in the case of Hodges-Lehmann (1963), 0o, 0j and any point between

them, such as OR, wil have the same asymptotic distribution. Further,

P(4NR (i*/O0 - 1] < t) = P(INTN(5) > 0) where 8 = Oo(l + t/IN_). We have

'INTN(8) = fJN(HN(u))dFmF (u)
= 14JJ(HN(u))d [FmFP(u) - u I + IN [ J(HN(u) - J(H8(u))] du
+ N [ J(H6(u) - J(u) ]du + rlN = I, + I2 + 13 + rlN.

Note that I, = -4%TJ [ FmF-1 - u ]dJ(HN(u)). This term is bounded in absolute value by

sup 4N I FmFP(u) - u J'(u) I du, which tends to zero since

suplFmFt(u) - ul ' 2/(m + 1) and JIJ'(u)Idu < oc by B.2.

The second term can be written as

I2 = INJ '(H6(u)) [ HN(u) - H8(u) ] du + r2N

where
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r2N= 4IN(H - H8) (J'(H_) - J'(H6))du

and Ha assumes values between HN and H8. We have

(3.2) 4NJJ(HW(u)) [ HN(u) - H8(u) ] du

= |1NJ'(H6(u)) [ m/(N + 1)FmP1(u) - rou ] du

+ -iiNfJ'(H6(u))(n/(N + 1)) [GnF1D-1(up,) - GF1D-1(u8) ]-du
+ 4NJJ(H(u)) [ n/(N + 1)GF1D-1(u,8) - n,GF1D-1(u,8) ] du

The first term converges in probability to 0 by an argument similar to I,. The next

two terms of this expansion converge weakly to

1i(ij1 2JJ'(u) B2(u)du - irl12fJ'(D(u,Oo))d2(u,Oo)Bl(u)du)
where B1 and B2 are independent Brownian bridges. This follows since 4H(Gn - G)

and 41- (F-1; -F-1) converge weakly to B2 (G) and -f(F-1) B (u), respectively and

suplF- - F-1l = op(1). The standard Skorokhod construction yields the desired

result. Further, r2N -p 0 by B.2, sup I HN - H68 -+p 0 and sup4N4(HN - H6) = Op(l).

Finally,

I3 = 'INJ'(u)n(D(u,0W8) - u}du + r4N -* -iltJJ'(u)D(u,1)du

and

r4N = |NJ[J (H6) - J'(u)] l [D(u,0o/S) - u]du

where H6 assumes values between H6 and H u. This term converges to 0 by

assumption B.2 and Taylor expansion of D(u,60 / 8).

If we let J(u)=[ 1 + f1](1 - u)Y -Tf1, y 1, then in the proportional y-odds

model, OR given in Example 3.1 will have the same asymptotic variance as the RAM

estimate based on (2.2). See example 2.2.
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4. Proof of Theorem 2.1: remainder terms. The remainder term rN in (2.1) is

given by

rN = Nf(Nf(F,9N) - iV(F,(N))dGPn - 4Nf(Fm - F)1I(F,ON)dG.

For small ye (0,1) define Sy = [F-1(y), F-1(1 - y)]. Further let AN = [Y(1), Y(n)] and

EN = [X(l), X(m) I where X(l), X(m), Y(j) and Y(n) are the first and last order statistics

7
among Xi's and Y 's. Then, after some algebra, rN = riN where

rlN = NN J (V(F*,(N) - (F,N))(F- F)dGn
ANoST

rN =N J I (F,N)(F-Fm)dGn

r3N = |NJ (F,v N)(Fm - F)d(Gn- G)
ANCnSy

r4N = - J V(F, ON)(Fm - F)dG

r5N =4 f '(F 0N)(F- F)dGn
ANnS{rEN

r6N = Nw J v(F, ON)dGn

r7N = -IN f (F, ON)dGn
ANnS{nEN

Here F* is a random function assuming values between F and F. We shall show that

for any fixed y, rlN r2N, r3N and r6N converge in probability to 0 and r4N, r5N and r7N

converge in probability to 0 as y - 0 and N -* oo.

Lemma 4.1. For fixed y, rlN -*pO as N -< oo.

Proof. Given ye (0,1) let = (O:Sups,lF - Fl <y/2). Then

rlN = I(f1pj)r1N + I(U2q)rlN. The second term converges in probability to 0, by the

Glivenko - Cantelli theorem. Further, we have supsvY4hI F - Fl = Op(l). The function

V(u,ON) is uniformly continuous on [y/2, 1 - y/2 ] and I F* -F I < IF - F 1. Therefore,
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by the Glivenko-Cantelli theorem,

I(9N rlN I < Op()sups, IV(F*,ON) - W'(F, N)I - 0.
p

Lemma 4.2. For fixed y, r2N O as N-- oo.
p

Proof. This follows since I F - Fm I . 1 / (m + 1) and 4Vn(F)dGn -4 O(NF)dG.

Lemma 4.3. For fixed y, r3N -p0 as N - co.

Proof. For each positive integer k define a function Xk on [ 0,1 ] by

Xk(O) = 0

Xk(S) = (i - 1)/k for (i - 1)/k < s < i/k i = l,...,k.

Then, by Lemma 4.3 of Ruymgaart et al. (1972)

sup-4hi|I FmFlXk(F) -Xk(F) - Fm + F I -pO
3

as k,m - oo. Furthermore I r3N I<. r3;N where

r31N = N J I (Fm - F)V(F, ON) - (FmF1Xk(F)-Xk(F))NI(Xk(F), ON) dGn
ANCiSY

r32N = I (Fm - F)<i(F, ON) - (FmF1Xk(F) - Xk(F))V(Xk(F), ON) I dG
AwnsCS

r33N = 1 4N (FmFPXk(F) - Xk(F))<V(Xk(F), ON)d(Gn- G) I.
ANnSY

The proof is similar to Corollary 5.5 in Ruymgaart et. al (1972). Given e>0 there

exist constants M and lkN -*0 as k,N - co such that the sets

N =(sup4iilFm-FI < M)
kN = supUP(I Fm-F-FmF1 Xk(F) + Xk(F) I<. TN)

have probability at least 1 - e. Further, the function V(U,ON) is bounded by My and

uniformly continuous on [0, 1 - y]. Finally

4k-P = SUP I i(F, ON) - V(Xk(F), ON) I 00Sy
Therefore, for i=1,,2
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I(9kN r) QN)r3iN ' (nkMy + M4k N/m - 0.

Finally, for each o e QN, the integrand of r33N is a step function assuming value aikN,

IaikNI s M(M~+ kyN)N/m on the interval (F-1((i - 1)/k), F-P(i/k)] = RkN and

k

I(QN)r33N = aikN f d(Gn- G) I s 2kM(My + kN)4N/msupIGn- G I 4p 0
R=i

as N - oo.

Lemma 4.4. Asy4OandN-*oo,r4N-p 0.

Proof. Let e > 0 be fixed. By Theorem Al of Shorack (1972), there exists a con-

stant M such that the set

ON = (4(Fm - F) < Mr_1/2 + F11(F))
has probability at least 1 - e. By assumption A. 1

(4.1) I(QN) I r4N I ' O(1)M4N/M r(F)1dG.

Let us consider the integral

(4.2) Jr(u)1-'ld(u, 0)du.
Sc

By assumption A.2, we can find a value y of y such that (4.2) is less than e provided

y < y. For this y there exists N such that P(AN ' Si) > 1 - e provided N > N. It fol-

lows that the integral on the right of (4.1) is less than £ with probability larger than

1-efory<yandN>N. Thusr4N *Oasy%kOandN *oo.
p

Lemma 4.5. As y IO and N e oo, r5N * O.
p

Proof. Let e > 0 be fixed. By Lemmas 6.1 and 6.2 in Ruymgaart et al. (1972),

there exist constants M1 and M2 such that the sets

Q1N = (i IF -FF I < M1r1124TXl (F) on EN) and

Q2N = {ra+l(F*) . M2ra+(F) on EN) have probability at least 1 - E. Then
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EI(Q1N r Q2N) I r5N I < O(1)M,M2N/m J r1 (F)dG.

The right-hand side converges to 0 as y .V 0.

Lemma 4.6. For fixed y, r6N -o 0 as N - oo.
P

Proof. Let e > 0 be fixed. Given y (0,1), we can find N such that the set

QN = (SycEN) has probability at least 1 - £ for N > N. By assumption A.1,

EI(N) I r6N I < O((N/m)1T)ml- P(Y E EN). But

P(Y e EN) = f um d(u,ON)du + 1 - u)m d(u,ON)du.
By assumption A.3, EI('N)Ir6NI -+ 0-

Lemma 4.7. As y JO and N> oo, r7N - °-

Proof. By assumption A.1,

Ir7IN I < 4N | r(F)'dGn
ANnS.nEN

H6lders inequality yields

E I r7NI . {Nm(mP(Yi e Ec) 112 f r(F)2adG) 1/2.

By assumption A.2 and A.3, mP(Yi E EEN) = 0(1) and the integral on the right-hand

side converges to 0 as y b 0.
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