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Abstract. We consider Bayes procedures for a location parameter 0 that are robust with

respect to the shape of the distribution F of the data. The case where F is fixed (nonran-

dom) and the case where F has a Dirichlet distribution are both treated. The procedures

are based on the posterior distributions of the location parameter given the partdal inforna-

tion contained in a robust esimate of location. We show consistency and asymptotic nor-

mality of the procedures and give instances where the Bayes procedure based on the full

sample diverges while the Bayes procedures based on partial information converges and is

asymptotically normal. Finally, we show that robust confidence procedures can be given a

Bayesian interpretation.

1. Introduction. In a frequentist setting, it has long been recognized that in semi-
parametric models it can be advantageous to use only part of the information contained
in the sample. Thus partial likelihood methods, which in many instances corresponds
to using only the information supplied by the ranks of the data, have been shown to be
very useful for estimating the parameters in semiparametric models. See for instance
Cox (1972, 1975), and Kalbfleich and Prentice (1973, 1980),

In a Bayesian context, the use of partial information can be found in the work of
Bernstein (1946), von Mises (1931), Pratt (1965), Savage and Saxena (see Savage
(1969)), and Pettitt (1983) among others.
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We consider Bayes procedures for location based on the partial information con-

tained in robust estimates of location. We find that these procedures are consistent in
some of the cases considered by Diaconis and Freedman (1986a,b) where the Bayes
procedures based on the full sample diverges. Moreover, the posterior distribution of
the location parameter given a robust estimate converges to a normal distribution and
the Bayes procedure inherits the robustness properties of the robust estimate used in
the conditioning. This result can be regarded as giving a Bayesian interpretadon to
robust estimation theory.

Section 2 treats the case where the shape F of the distribution is nonrandom,
known or unknown. Here we obtain robust confidence intervals for location with a
Bayesian interpretation in the spirit of Rubin (1984). In Section 3 the consistency and
asymptotic normality results are established for the case where F is assumed to have a
Dirichelet distribution. Section 4 contains a convergence lemma and proofs of two of
the results in Sections 2.

2. Consistent and robust Bayes procedures when the error distribution is non-
random, known or unknown.

We consider the location model where X 1, , X, is assumed to satisfy

Xi = O+e1Ji =l, ,n

The errors e1, - ,Ie are i.i.d. F

0 has density i(O) and is independent of e1, ...* en

Here 0 is the location parameter of interest and the error distribution F is a nui-
sance parameter which, in this section, is assumed to be nonrandom.

The robustness literature is full of practical examples where this model is appropri-
ate. Here is one from a newspaper headline.

Example. (Washington Post, Feb. 1986) Consider a rocket whose performance
depends crtically on the launchtime temperature 0 on its surface. Hand-held infrared
measuring devices are used to read temperatures on the surface immediately before the
launching of the rocket. The readings are subject to errors with unknown error distri-
bution. Gross errors are suspected leading to a desire for a robust estimate of 0. The
density i(O) is known from readings by accurate instruments during days of non-
launch conditions.

In terms of distributions, our model is

0 has density c(O)
(2.1) Given 0, X1, * * * ,Xn are i.i.d. Fe, where F0(x) = F (x -0)'
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This is the usual Bayesian set up except F is not assumed to be N(O,c2). We will call
(2.1) the Bayesian location model with distributions x and F.

We first investigate the consistency, asymptotic normality and robustness of Bayes
procedures when the distribution He(x) = H(x -0) that actually generates the data is
different from FO(x) = F (x - 0). Thus we are considering a Bayesian version of
Huber's (1964) robustness set up where he asked: "If we use the estimate appropriate
for the model F0(x) = F (x - 0), how does it perform if the true error distribution H is
different from F? Related Bayesian versions of this question have been considered by
Freedman (1963, 1965), Fabius (1964), Doss (1984), and Pratt (1965), as well as
Diaconis and Freedman (1986a,b) and Blackwell (1986).

2(a) CONSISTENCY.

Using the arguments of Diaconis and Freedman (1986a,b), we 'immediately find
that Bayes procedures can perform very badly when H .F. We compute the Bayes
procedure using model (2.1) with F Cauchy since a heavy tailed F is a good candidate
for coming up with a robust procedure. Here is what happens:

PROPOSITION 2.1. Let -In be the posterior probability distribution of 0 given
X1, * * * ,XXn computed according to model (2.1) with the prior x standard normal and
F standard Cauchy. Suppose that X 1, - * * ,Xn is actually generated by a distribution
H*F. It is possible to specify an H with an infinitely diferentiable density h which is
symmetric about zero (i.e. the true 0 is zero), with a unique maximum at zero, such
that IH,, is inconsistent. More precisely, as n - , almost surely (a.s. [H ]), the pos-
terior -In concentrates near ±y for some positive number y in the sense that, for each
T1>O, as n -*o,cpII I{: 10-,A1<1l or 10+ 1< )-*1 a.s. [H ]. Moreover, for n large,
the probability that Fln concentrates close to y is near 1/2, and the probability that -In
concentrates close to -y is near 1/2.

PROOF. Diaconis & Freedman (1986b) consider F random with a Dirichelet dis-
tribution, D (a), with a/a(R ) standard Cauchy. However, they point out that Korwar
and Hollander (1973) have shown that IH, for the model with F D (a), equals a.s.
[H ] the Hn, for the model with F nonrandom and equal to ala(R). The result now
follows from the arguments of Section 2 of Diaconis and Freedman (1986b).

One of the surprising aspects of the above result is that a study of the likelihood
function for the Cauchy model suggests the use of the sample median to estimate 0,
and the sample median does quite well for the Diaconis-Freedman counterexample
density h described in Proposition 2.1 above. In fact, in both these models, the sam-
ple median 0 is strongly consistent and 4n (0 - 0) is nearly normal for moderate sam-
ple sizes n. This suggests a strategy for coming up with a consistent "Bayes"
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procedure: Since the posterior given the
sample concentrates near the wrong values ±y, why not use the posterior given the
sample median since then the posterior (by Bayes Theorem) will be close to a normal
distribution centered at the cofrect 0 value? More generally, we would use the poste-
rior distribution of 0 given some consistent, well behaved estimate T,. This idea can
be found in the work of Bernstein (1946), von Mises (1931), and Pratt (1965), among
others. We can think of it as a Bayes procedure based on the partial information con-
tained in T,. Or in other words, it uses a partial likelihood, i.e. the density (likelihood
function) of T, rather than the full likelihood, in Bayes Theorem. For instance, if Tn
is the sample median, F has density f and n is odd, then the posterior density of 0
given Tn is

(n-1)
(RATOn) c(O)f (Tn - f0)(F (Tn - 0)[ 1-F (Tn-9 2

where denotes "proportional to".

Besides the sample median, other good candidates for consistent robust estimates
Tn would be the Hodges-Lehmann (1963) estimate, the trimmed mean, or one of the
Huber (1964) estimates.

Returning to the general case, we adopt Bernsteins (1946) condition on the esti-
mate Tn of 0:

(2.2) The conditional distribution of Tn -0 given 0 does not depend on 0.

Note that (2.2) is satisfied if Tn is a translation equivariant estimate of 0. If Tn
satisfies (2.2), we will say that it is translation equivanant in distribution.

In what follows a sequence of random distribution functions Gn will be said to
converge weakly in probability to the distribution function G if Gn (t) converge in
probability to G (t) at each continuity point t of G. This notion of convergence has
also been used by Walker (1969) and Darwid (1970). Let 8% denote point mass at 00,
and let : denote weak convergence, then our consistency result for the partial poste-
rior is

THEOREM 2.1. Let rln (0ITn) be the posterior probability distribution of 0 given
Tn computed according to the Bayesian location model with error distribution F and
with prior density x continuous and bounded away from zero and infinity in a neigh-
borhood of the true parameter value 00. Assume that for X1,... ,XXn a sample from
FO, Tn is translation equivariant in distribution and that Tn converges in probability
to 0. Finally, suppose that

(2.3) T, -+ O a.s. [H00].
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We conclude that

(a) ]In ( - IT ) is consistent in the sense that

rIn - JTn);==> a.s. [Hoo] as n -4oo

(b) the quadratic loss Bayes estimate E (0ITn) is consistent in the sense that

E(0ITn) -e o a.s. [Hoo] as n -+ oo.

(c) If the convergence in (2.3) is in Ho. probability, then so is the convergence in

(a) and (b).
The proof, which is similar to the proof in Lo (1984), is given in Section 4.

The assumptions in the above result assume that Tn is consistent for samnples from

F00 and for samples from Ho,. Without a condition of this type, identifiability is lost

and no consistency result is possible. If F and H are symmetric about zero, then it is
satisfied for (practically) all the T. that have appeared in the literature. In particular,
if Tn is the sample median and if x, F and H are as in Proposition 2. 1, then fln( ITn)
is consistent and we have an example where the posterior based on the entire sample is
inconsistent while the posterior based on partial information is consistent.

Note that if Tn is the sample median, rI( - ITn) is consistent if F and H have medi-
ans zero and densities positive at zero.

2(b) ASYMPTOTIC NORMALITY.

Next, we turn to the limit of the posterior distribution of 4n (O - Tn ) given Tn com-
puted according to the Bayesian location model with prior xn and error distribution F.
It turn out that if X1,I . ,XXn is generated by H.*F0, then this posterior does not
converge to the asymptotic distribution that -4W (T -0) has when X1, * * * ,Xn is a

sample from Ho, but it converges to the asymptotic distribution that -4W (T -0) has
when X1, * - - ,XXn is a sample from F(. Thus, in the limit, the distribution assumed in
the model "dominates" the true distribution. Here is the result:

THEOREM 22. Suppose that c(O) and Tn satisfy the assumptions of Theorem 2.1.
Assume that there exist a distribution function G and a sequence of constants (an)
such that for X 1, * * * ,Xn a sample from F0,

(2.4) -an (Tn -0) => G.

Let (1 T,) denote the posterior probability distribution of an (O- Tn ) given Tn
computed according to the Bayesian location model with error distribution F. Then

(i) fin((ITn)= G a.s. [Hoo] as n -300

(ii) If the convergence in (2.3) is in probability, so is the convergence in (i).

The proof is given in Section 4.
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Typically, an = -Jn and G is the N(O,'F2) distribution, where t2 is the asymptotic
variance of 4n (T, -0) when X1, * Xn is a sample from F.

In a much more general setting, Le Cam (1953, Theorem 7) considered the case
corresponding to F( = Ho and established the convergence of the posterior density of

4'1(O-Mn) given the sample X= (X1, * * * ,Xn) to a normal density, where Mn is the
MLE (maximum likelihood estimate) of 0. Results of this type had been formally
derived by Laplace (1820). Recently Blackwell (1986), also in a more general setting,
considered the case F.*He and established the convergence of the posterior density
of 4 (0-Mn) given X to a normal density determined by F0.
2(c) UNKNOWN ERROR DISTRIBUTION.

Theorem 2.2 refers to the case where the posterior is computed assuming that F is
specified. Now we consider the case where F is unspecified and propose an approxi-
mate posterior distribution for 0 given Tn which depends only on the data and not on
F. Suppose that for X1, . . . , Xn a sample from H0(t) = H (t - 0), -4 (Tn - 0)
converges weakly to N (0, rA) for some i > 0 which does not depend on 0. Now
Theorem 2.2 suggests that the posterior distribution of 0 given Tn can be approximated
by the N (0, i/I n) distribution. Since irH is unknown, we replace it by a consistent
estimate t2 and propose the N (0, t2/ n) distribution as the approximate distribution of
0 given Tn. Under certain conditions, this can be justified:

Theorem 2.3. Suppose that the prior density x is continuous and bounded away
from zero and infinity in a neighborhood of the true parameter value 00. Assume that
for X1, . . . , Xn a sample from Ho, Tn is translation equivariant in distribution and
that -4'1 (Tn - 0) converge to a N (0, H2) distribution. If t is an estimate of tH
which for each e> 0 satisfies

(2.5) P [ It -tH I > e I Tn ] Oas n -+ooa.s. [H00].
Then for each x E R,

p (T xITn -s (x)as n *oo a.s. [H00]

where 'D is the standard normal distribution function.

PROOF. Let PTn denote the probability distribution of (0,t) given Tn. On a set
with probability one, t converges in PT probability to t, and 4- (0 - T,) converges in
PT law to N(0,t2). The result now follows from the Cram6r-Slutsky theorem.

REMARK 2.1. Theorem 2.3 implies that the confidence interval Tn ± zat, where

-=r1(1 - 1-a), has a Bayesian interpretation.a ~~2
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REMARK 2.2 When F is symmetric about zero, Theorem 2.2, in conjunction with
the ideas of Stein (1956), can be used to construct an adaptive Bayes procedure: Let
Tn be the adaptive estimate of location given by Stone (1975), then, under the condi-
tions of Theorem 2.2 and those of Stone, L(4- (0 - T^) I T1,) converges weakly in

probability to the N(0,1/I(F)) distribution, where I(F) is the Fisher information of F.
This N(0,1/I(F)) limiting posterior distribution is the best possible for samples from
F (x - 0), in fact, as shown by Le Cam (1953), the limiting posterior density of
4-(e - M^) given Xis N(0,1/I(F)). See also DeGroot (1970).

REMARK 2.3. Lindley (personal communication) asks whether our partial posterior is
the full sample posterior for some model. The answer is yes, approximately, in many
interesting cases: Many robust estimates are maximum likelihood estimates (MLE's)
for some model. Thus Huber's (1964) robust estimate is the MLE for Huber's least
favorable distribution. Let Qe(x) = Q (x - 0) denote the distribution for which T. is
the MLE, then, when H = F = Q, the approximate posterior given in Theorem 2.2 is
the approximate full sample posterior for samples from Q. This follows from Le Cam
(1953). This remark corresponds to the idea that we obtain robust Bayes procedures
by using a model distribution for (X I 0) with heavy tails.

REMARK 2.4. The results of this section apply not only in the location case. For
instance, suppose we model X1, *; *X,n to be a sample from a distribution Fe with
support (0,o). Then if Tn = X(1) = smallest order statistic, and if X1, * * * ,X, is a

sample from a distribution He with support (0,oo), then Theorems 2.1 and 2.2, apply.

3. Robust and consistent Bayes procedures when F has a Dirichlet distribu-
tion.

Next we consider the case where F is treated as a nonparametric nuisance parame-
ter with a Dirichlet (e.g. Ferguson (1973)) prior distribution. In particular we consider
the model of Dalal (1979) and Diaconis and Freedman (1986a,b) where

0 has density x(O)
F has the Dirichlet distribution D(a) with absolutely continuous
parameter measure a

(3.1) 0 and F are independent
Given(0,F),K, * * * ,X, are independent with distribution function
F0(x)=F(x -0), all xeR

Again we consider the convergence of the Bayes procedure given an estimate Tn
when the sample X1, * ,Xn is generated by a continuous distribution He not neces-
sarily connected to the model (3.1). Let a(t) = a((-o,t]) and
as(t) = a(t - 0)/a(R), We find
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THEOREM 3.1. Suppose that ic(0) is continuous and bounded away from zero and

infinity in a neighborhood of the true parameter value 00, and suppose that the poste-

rior frI ((01 Tn) of 0 given Tn is computed assuming that X1, * - * ,Xn is generated
according to (3.1). In addition, assume that Tn is translation equivariant and that

(3.2) Tn - 00 a.s. [H ]; H00 continuous

Then

(a) rl,,(-IT) is consistent, i.e. In(-ITn)-8o0 a.s. [H0O] as n -+00.

(b) E(0ITn) is consistent, i.e. E(0ITn)-+0o a.s. [H00] as n -oo

(c) If the convergence in (3.2) is in probability, so is the convergence in (a) and (b)
above

(d) if there is a distribution function G and a sequence of constants {an I such that

forX1,*** ,Xn a sample from a0,

(3.3) -an (Tn -0) =:>G

then the posterior probability distribution fIn( I T) of an(O- TO) given Tn computed
according to model (3.1) converges in law a.s. [H00] to G, i.e.

(3.4) fn(-ITn)=;'G a.s. [H(0] as n -*0o

(e) if the convergence in (3.3) is in probability rather than a.s., so is the convergence
in (3.4)

Proof: Let An be the part of the underlying probability space where Xi . Xj for

1 < i < j c n . Then An has H0o probability one. We will consider rln (ITn ) onAn
On An, we may find the conditional distribution of (0,F) given Tn by first condition-
ing on An, then on Tn. By Theorem 2.5 of Korwar and Hollander (1973), given An,
X, ...., Xn are i.i.d. with distribution a, and by the proof of Lemma 2.1 in Diaconis

and Freedman (1986b), the joint distribution of 0 and X1, . . . , Xn is the same as in

model (2.1) with F0 replaced by N. Since Tn is a function of X1, ... , Xn, it follows
that in An, f ( ITn) equals the posterior for model (2.1) with F0 replaced by Nc.
The present result then follows from Theorems 2.1 and 2.2.

If we apply this result to the Diaconis-Freedman (1986b) example where a is Cau-
chy and H is the Diaconis-Freedman distribution (see Proposition 2.1 above), we find
that the posterior for model (3.1) based on the whole sample diverges, while the poste-
rior of 0 given the sample median converges a.s. to 00.

4. Proofs of the main results.
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LEMMA 4.1. Let (p,n } be a sequence of probability measures on R, let (tn ) be a
sequence of real numbers, and let toe R. If

(i) g is a continuous and bounded (by C ) function on R.

(00] gn ==> So
(iii) tn - to

then jIg (tn-s)-g(t9)jp1n(ds) -0
PROOF: Let Dn(s,tn) = Ig8(tn-s)-g(tn)I. For any 8>0

|n (Sttn )9]n (ds ) Dn (s gtn )gAn (ds ) + |Dn (S gtn )9n (ds)
A A

whereA= [ Is I < ]. Note that

|Dn(Ss n)9n(ds) < 2Cgn (IsI>S)
Ai

which tends to zero by (ii).

It remains to consider the integral of Dn on A8. Let K be a closed and bounded
interval containing to in its interior. For n large enough, say n . no, tn e K. Let
I = (t +s : t e K,s E [ Is I < 81] and note that I is a compact interval. Hence g is uni-
formly continuous on I. That is, for all e>0, there is a 8>0 such that Is 1.8 implies
suplg(t -s)-g(t)I<e. Therefore
tel

sUpIg(t -s)-9g(tn)|<e for Is1<8S
n ano

It follows that

Dn (stn )Ln (ds ) <eln [ Is I .8 ] .e
AB

and the proof is complete.

PROOF OF THEOREM 2.1: Let Qn denote the probability distribution of Tn for
x1, * * * ,Xn a sample from F. Since Tn is equivariant in distribution, then,

P (Tn eBB) = Qn (B -0)

for each Borel set B. It follows that

Ji(G)Qn (Tn - d 0)
Hn(0 BITn) =

J7(0)Qn (Tn - dO)
where Qn (t) = Q^((`o,t)) is the distribution function of Tn when 0 = 0. By the
change of variable s = Tn - 0, we have
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| 1(Tn -s)Qn (ds)

Il-n (0eEBITn) =

|J(Tn - S )Qn (ds)
Similarly, the characteristic function corresponding to the posterior distribution

In (iTn ) is

(4.1) Je U(Tus) I(Tn S)Qn (ds)
|(Tn - S)Qn (ds)

Let Nn (u ) denote the numerator of this expression. Then

VV(u)-eiUTIV(Tn )l-i'sQn(ds)<<e-iIX(Tn-s)-e-iI(Tn)IQn(ds)
= rIt(Tn -s)-7N(Tn)IQn(ds).

The last expression tends to zero a.s. [HOO] by the Lemma 4.1. Moreover, since

Qn =:o then Je-Qn (ds)-+ 1. Thus

limNn(u) = lime iut(Tn) = eiu0 (O) a.s. [H0].
n-oon-o

By a similar argument, the limit of the denominator in (4.1) is iL(00) >0, thus

(4.2) lim n (uITn) = eiU%° a.s. [Hoo]
n o

and fIn (ITO) 8(,, a.s. [H0 ]. This completes the proof of (a).
To establish (b), note that

E (0IT) J(Tn -s)rc(Tn -s)Qn(ds)
|x(Tn S )Qn (ds )

As before, fiC(Tn -S)Qn(ds) -+(00) a.s. [H00] Next note that

IJ(Tn -s )ic(Tn - S)Qn(ds )-Tn X(Tn)JQn(ds )I

:| (Tn-s)i(Tn - s) - Tn(Tn)lQn(ds)-O a.s. [H00]
by Lemma 4.1. Thus since Tnn(Tn)-+00c(00) a.s. [H0], then E(0ITn)--+00 a.s.

[Hoo].
To establish (c), we use a Skorokhod representation and replace Tn with a

sequence Yn (0o) with the same conditional distribution given 00 as Tn, but with

Yn (00) - 00 a.s. [H00 ].

By construction, given 00, Yn (00) has the same probability distribution as Tn.
Thus the proof of (a) and (b) above leads to the conclusion that the characteristic
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function 4n (u I Yn (0o)) on the right hand side of (4.1) with Tn replaced by Yn (0o) con-
verges a.s. [H00 I to the appropriate limits. Since, On (ulYn (0o)) has the same distribu-

tions as On (u I Tn) then (c) follows for the posterior distribution. The proof for

E(0ITn) is similar.

PROOF OF THEOREM 2.2. Note that the posterior characteristic function of

an(0-Tn) given Tn is

ia,,(T. -s-T.)u( sQ(s
|x( (Tn-Q(s)Q) s(4.3) 4(U ITO) =

feLL4XLMS(Tn -s )Qn(ds)
|X(Tn ~S)Qn (ds)

Let Nn (u) denote the numerator of (4.3), then

INn (u )7-E(Tn )JeiUa,s Qn (ds )I

.'JX(Tn-S)- N(Tn)IQn (ds) -4O a.s. [H0 ] by Lemma 4.1.
Next note that by (2.4),

JeusaXiQn (ds) e 4(u)

where ¢(u) denotes the characteristic function of the conditional limiting distribution
G. Thus Nn(u)-+7E(00)4(u) a.s. [H0]. Similarly, the denominator of (4.3) con-

verges a.s. [H(0] to i(OHo)>O, thus k (u ITn)-+(u) a.s. [H(00] and the proof of (i) is

completed. The (ii) part follows from a Skorokhod construction as in the proof of
Theorem 2.1.
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