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Abstract

The paper deals with a class of nonparametric regression estimates introduced
by Beran (1981) to estimate conditional survival functions in the presence of right
censoring. Weak convergence results are established for kernel and nearest neigh-
bour estimates of the conditional cumulative hazard and survival functions as
well as the quantile and L-type regression functionals.

Key words and phrases: Kernel and nearest neighbour regression, right censoring.



- 2 -

1. Introduction.

Let T be a nonnegative random variable (rv) representing the survival time

of an individual taking part in a clinical trial or other experimental study, and let

Z - (Z,, * , Zd ) be a vector of covariates such as age, blood pressure,

cholesterol level. The survival time T is subject to right censoring so that the

observable rv's are given by Y min (T, C), 6 = I(T < C) and Z. Here C

is a nonnegative rv representing times to withdrawal from the study. Beran

(1981) proposed a class of nonparametric estimates of the conditional survival

and cumulative hazard functions, and related quantile and L-type regression

functionals. We consider weak convergence results for these estimates.

Since Beran's paper does not seem to be generally available, we briefly sum-

marize his ideas. Denote by F(t z) P(T > t I Z z),

HI(t z) = P(Y > t, 6=11 Z = z) and H2(t z) P(Y > t Z z)

the respective conditional survival functions and let

t

A(t I z) -f F(s- I z)-1 dF(s I z)
0

be the conditional cumulative hazard function associated with F(t z). It is

assumed throughout that T and C are conditionally independent given Z, which

is a sufficient condition to ensure identifiability of A(t z) and F(t I z).

Specifically, for any t such that H2(t I z) > 0 we have

A dH,(s I z)A(t Iz)-
0 H2(S- I Z)'

F(T I z)= exp{-Ac(t I z)} {1 -AA(s I z)},
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where AC (s z) is the continuous component of A(s I z), the product is taken

over the set of discontinuities of Hj(s z) and s < t, and

AA(s z ) A(s I z) - A(s - I z). This is the well known product-integral

representation of distribution functions, see for instance Peterson (1977) and Gill

(1980).

Let (Y,, 6 ,, Z ), j = 1 *, n , be a sample of i.i.d. rv's each having the

same distribution as (Y, 6, Z). The subdistribution functions H1(t z) and

H2(t I z ) are estimated by

n

Hin(t z) = X I(Y, > t 6, -1)Bnj=(A )
J-I
n

H2n(t I z)=E I(Yj > t)Bnj(Z)7
where Bn (z) is a random set of nonnegative weiglhts depending on covariates

only. Examples of possible weights include kernel type weights, nearest neigh-

bours or local linear weights. Beran's estimates of A(t z) and F(t z) are pro-

vided by

An (t IZ)=- (1.1)
of n2(SI Z)

and

Fn(t I z) = 11 {l - n (S z)} (1.2)

where the product is taken ()%e-r s < t. Both An (t z) and Fn (t z) are right

continuous functions of t . junmps occur at discontinuity points of Hln (t j z).

Note that in the homogene>ims case, (1.1) and (1.2.) are sinply the Aalen - Nelson

(Aalen (1978), Nelson (1972)) a.nd( Kaplan - Meier (1958) estinates.
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Beran studied conditions which entail uniform consistency of Fn (t I z). We

recall his result in Section 2.1. In this paper, we shall consider asymptotic nor-

mality results. Define processes L. (t I z) = b,, (A8 (t| z) -A(t I z)) and

S (t I z)=b (F (t I z)-F(t Iz )), where{b},b oo is a sequence of nor

malizing constants. Let p denote the distribution of Z. Under suitable condi-

tions, in Section 2.2 we shall show that for p - almost all z, the processes

S. (t I z ) and L. (t I z ) converge weakly to a mean zero Gaussian process with

covariance structure similar to that of the limiting distribution of the Kaplan

-Meier and Aalen - Nelson estimates of the unconditional survival and cumulative

hazard functions. In particular, the covariance function of the limiting proces

depends on C (t z ), a nondecreasing function of t, given by

C(t l Z) f
H (Z) (1.3)

where o(z) is a function depending on the underlying model through the distribu-

tion of Z only. The special case of nearest neighbour and kernel estimates is

considered in Section 3.

Along with estimation of the conditional survival functions, in practice we

would like to deal with some descriptive statistics that estimate parameters of

the unknown underlying conditional distributions. In the case of location, mean

regression would be the common choice. In the presence of censoring, estimation

of the mean regression creates however some problems. Firstly, the mean regres-

sion is in general not identifiable. Although this problem can be resolved by

assuming mild conditions on the supports of the conditional distributions of sur-

vival and censoring variables (see Doksum and Yandell (1081)), in order to ensure
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weak convergence results, one needs additional, somewhat cumbersome conditions

on the tail behaviour of these distributions. Rather than estimate the mean

regression, we can look at estimates of truncated mean, or choose to estimate

other location parameters. Quantile regression, for instance and related to it L -

type regression functionals provide a broad range of possible estimates of location

of the conditional distributions (see Bickel and Lehmann' (1976), Huber (1981)).

We briefly discuss asymptotic normality results for these estimates. We refer to

Stone (1977), Mallows (1979, 1980), Stiutzle and Mittal (1979) and Velleman

(1977) for a discussion of some recent developments in the area of robust non-

parametric regression estimation for uncensored data. For censored data, Dok-

sum and Yandell (1981) considered median regression based on asymmetric

nearest neighbour estimates and compared it to the median regression derived

from the Cox proportional hazard model.

This fully nonparametric approach towards regression estimation in the pres-

ence of censoring was first adopted by Beran (1981). Various alternative

approaches exist. Horvaith (1981) for instance, proposed to estimate the condi-

tional survival function by integrating an estimate of the conditional density.

The latter was constructed as a ratio of two estimates: an estimate of joint den-

sity obtained by kernel smoothing the multiyariate product limit estimator of

Campbell and Foldes (1981) and a kernel estimate of the marginal density of

covariates. Further, several authors discussed estimation of mean regression.

Owing to identifiability problems, these approaches require additional assump-

tions on the dependence structure among covariates and censoring times. In par-

ticular, under assumption that the covariate is independent of the censoring
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variable, Doksum and Yandell (1981) developed simultaneous confidence bands

for asymmetric nearest neighbour estimates of mean regression. An analogous

approach was more recently adopted by Tsai and van Ryzin (1985).

Among other approaches, most popular are methods related to multiplicative

intensity models. Define the multivariate counting process

N(t) = (NI(t), , N,(t)) by Ni(t) I(Y, < t, 6 = 1) and let

X(t = (XI(t), ,X*n (t)) be its random intensity. The Cox (1972) propor-

tional hazard model corresponds to X,(t)= ao(t) exp{/3Tz}I(Y; 2 t) where

ao is an unknown hazard function and /B is a vector of regression coefficients. In

this model, the estimation of the unknown parameters is usually carried out in

two steps: first an estimate , is obtained by maximizing the so-called partial (or

rank) likelihood. An estimate of a0 is next constructed by maximizing a Kiefer -

Wolfowitz type nonparametric likelihood function at the point ,B= ,. We refer

to Cox (1972, 1975), Kalbfleisch and Prentice (1980), Andersen and Gill (1982),

Begun et al. (1983) and references therein for a discussion of various theoretical

and practical aspects of this approach. Tibshirani (1984) and O'Sullivan (1986)

proposed a nonparametric version of this model by replacing exp {jT Z } with

exp {t(z )}, where il(z) is a smooth function, and used additive approximations

and maximum penalized partial likelihood, respectively, to estimate ,l. Finally,

we mention a model introduced by Aalen (1980) who suggested a matrix version

of the multiplicative model assuming that Xi (t) = Eaa(t)X,j(t), where

(ca,, * a, F)T, p < n is a vector of unknown functions and

Xi (t )-{X l,(tt X )it 1,* ** , n } is a matrix of predictable
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processes.

Methods related to linear models have been generalized to censored data

among others by Miller (1976), Buckley and James (1979), Koul et al. (1981),

Miller and Halpern (1981) and Leurgans (1984). These methods, although

parametric in mind, are usually coupled with some nonparametric techniques in

order to reconstruct missing observations. Both parametric and the parametric

part of the Cox model may give a systematic bias when estimating for instance

the quantile regression.

The nonparametric approach of this paper is useful in the exploratory data

analysis and in the analysis of large data sets. Since minimal assumptions on the

underlying model are imposed, this method is very flexible and can be used to

determine if any of the parametric or semiparametric models give a good fit to

the data.

The method has several weak points. A genuine drawback of the non-

parametric regression is that it does not work well for d > 3 and the usual sam-

ple sizes. The convergence to the limiting distribution is much slower than in the

case of parametric or semiparametric methods. In the case of kernel estimates for

instance, we have (nan')1/2 - convergence with an tending slowly to zero, whereas

in the parametric and semiparametric approaches the rate n1/2 persists. The

amount of data required to avoid an unacceptably large variance increases

rapidly with increasing dimensionality. In this respect the parametric and semi-

parametric methods seem to be advantageous, except when large data sets are

available. Projection pursuit (Friedman and Stutzle (1981), Huber (1985)) and
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generalized additive models (Hastie and Tibshirani (1986)) provide useful alterna-

tives to the nonparametric regression considered in this paper.

Practical user of these methods has to face the problem of the choice of the

smoothing parameter (e.g. bandwidth). This parameter determines the degree of

smoothing and is a delicate trade-off between the variance and the bias of the

estimator. A possible systematic way of choosing it is to determine the value

which minimizes the cross-validation mean square error.

2. Main results.

2.1. Uniform consistency.

We recall Beran's (1981) uniform consistency result.

Proposition 2.1. Let 4z) < {s : H2(s z) > 0}. Suppose that Hi.(t I z),

i - 1,2, are strongly consistent in the sense that for p-almost all z

SuPt IHin (t- I Z) - Hi (t - I z )I|- 0 a.s. and supt IHin (t + I z Hi-H(t + I z)I --. °

a.s. as n -oo. Then, for p-almost all z, sup IFn (t z) - F(t z)j -0O a.s. in

the supremum norm on [0, T(Z )J.

An analogous result holds for the conditional cumulative hazard function.

Proposition 2.2. Under assumptions of Proposition 2.1, for p-almost all z,

suplAn (t I z) -A(t j z)I -0 a..s. in the supremum norm on 10, T(Z)J

Proof. Suppose 0 < t < j:f). Then H2(t I z) > 112((z)!:) > 0 and with

probability 1, H2n (t 1: ) > 1(i( ) z) > 0 for it-almost all z and n

sufficiently large. Integration by parts and a little algebra yield

lAn(t I z)-A(t I z)l < O(l)lplonl(t- I )- H2(t-I :)I -;
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o (1)suplHlH (t I z) - HI(t z)l, where the suprema are taken over [0, r(z)J. It

follows that A. (t I z) is pointwise consistent. Since A. (t z) and A(t I z) are

bounded monotone functions, we also have uniform consistency on 10, T(z )J.

The following argument, borrowed from Shorack and Wellner (1986, p. 305),

is a simple way to see uniform consistency of F. (t I z). From Proposition A.4.1

in Gill (1980, p. 153), we have

t F (s-Ijz)d(j)F. (t I z)-F(t I z) =-F(t I z)f F"(s z) d i(s I z)
where

'(t jz) =f 1 - F(s Iz) )d(A.(s I z)-A(s I z)).

Integration by parts implies jF,(t z) -F(t z)I < O(1)supj?,(t z)I a.s.,

where the supremum is taken over [0, 4z )J. But

suplV(t I z)l < suplA.(t I z)-A(t j z)j
+ supE JAF (s I z)|I F(s I z )-'I AA,,(s I z AA(s I z )I
< 3 O(1)supIAn(t I z)-A(t z)I.

Here the sum is taken over s < t such that AF (s z) > 0. Proposition 2.2

entails pointwise consitency of Fn (t z). Since F. (t z) and F(t z) are

bounded monotone functions, we also have uniform consistency on 10, z )J.

2.2. Weak convergence.

We shall discuss now weak convergence results for the estimates of the condi-

tional survival and hazard function. It is assumed throughout that Hi (t z ) is

continuous in t for p-almost all z.
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Let {b, } be a sequence such that b. -_ oo as n - oo. Further, let N(z) be a

function depending on the underlying model through the distribution of Z only.

For i = 1,2, set

Wits (t I z) b= (Hi,s (t I z)- H (t I z))
(2.1)Win,(t I z) (WI,,(t I z), W2% (t I z))

and let L.(t z ) be (As (t z ) -A(t z )) and S (t z)=

b, (Fs (t I z)- F(t I z )). Finally, given 4z) < sup{s H2(8 I Z ) > 0),

let D 10, r(z)J be the space of cadlag functions endowed with Skorokhod topology.

The following proposition is an analogue of Theorem 4 in Breslow and Crow-

ley (1974).

Proposition 2.3. Let i(z) < sup{s : H2(8 I Z) > 0). Suppose that, for p-

almost all z, the process W. (t I z) converges weakly in D 10, %z )] X D [0, i(z )j

to W(t I z) = (WI(t I z), W2(t I z)), a two-dimensional mean zero Gaussian

process with covariance function

cov(W;( IZ), W,(t Iz)) (2.2)
- {Hmi(g,j) (t I z)- H,(8 I z)Hi (t I z)) k(z)

for s < t. Then, for p-almost all z, the processes L. (t I z) and S, (t I z) con-

verge weakly in D 10, i(Z )j to mean Zero Gaussian processes with covariance func-

tions cov{L(s I z), L(t I z)} = C(s I z) and cov{S(8 I z), S(t I z)}-

F(s I z)F(t Iz)C(s I z), where s < t and C(t I z) is given by (1.3).

The proof is postponed to Section 7. The result is not surprising, since

A(t I z) and F(t I z) are smooth (ie. compactly differentiable) functionals of

H1(t I z) and H2(t Iz ).
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For practical purposes we shall need to estimate the covariance function from

the data. Let qn (z ) be an estimate of 0b(z) and let

t

Cn (t I Z) - O>n(z)fH -'(s1 )AIz)d
0

Corollary 2.1. Suppose that the assutnptions of Proposition 2.1 are satisfied and

that, for p-almost all z, qn (z) -+ t(z) a.s. Then, for -almost all z,

Cn(t I z) C(t I z) and Fn(t I z)Cn(t I z)-F(t I z)C(t z) almost surely

in the supremum norm on [0, (z )J.

This follows directly from Propositions 2.1 and 2.2. We omit the details.

As an immediate consequence of Proposition 2.1, we obtain asymptotic nor-

mality of the truncated mean regression. Let r(z) < sup{s : H2(s z) > 0}.

Then the truncated mean regression

r(z)
m(z; r(z))= f F(s I z)ds (2.3)

0

is identifiable. The sample counterpart m (z; T(z)) of (2.3) can be defined by

substituting Fn (t I z) for F (t I z). Obviously, under assumptions of Proposi-

tions 2.1 and 2.3 for p-almost all x,

Im. (z; (z)) - m (z; 4z))I < sup IF. (t I z) - F (t Iz)ITz)-°+ a.s. and

bn (m (z; (z))-m (z; z ))) converges weakly to a mean zero normal distribu-

tion with variance

r(z r(z)

o2(z; (z)) f ( f F(t j z)dt)2ds C(s I z). (2.4)
0 J

The asymptotic variance can be estimated consistently by substituting F. (t z)

and C.(s I z) for F(t I z) and C(s I z) in (2.4).
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2.3. Quantile and L-type regression functionals.

As an alternative to the mean regression, Beran (1981) proposed to consider

quantile regression and related to it L-type regression functionals. These fune-

tionals are attractive because of their robustness properties.. Survival time distri-

butions are often skewed to the right. Consequently, the conditional mean and

its estimate are pulled to the right by heavy right tails and outlying observations

on the right, respectively. For this reason the conditional median or trimmed

mean are often more useful.

For any p E (0, 1) the p-th conditional quantile is taken to be

Q (p z) inf{t F(t z) < 1 - p Further, we consider L - type regression

functionals I(F(t z)) =I (F(t z)) + 12(F(t z)) where

I1(F(t Iz)) f Q (p z)J(p )dp
m

12(F(t jz))=z c Q(p I z)

where c; are some weights and J is a linear combination of densities on (0, 1).

Special cases include the a -trimmed mean

(J(p)=I(a < p < 1 - a)/(1 -2a), m =0), the a-Winsorized mean

(J(p)=I(a <p <1-a)/(1-2a), m =2, pi=a, P2= 1-a and

b =b2 a )), etc. The sample counterparts Q. (t I z) and I (z) are defined

analogously. In particular, Q. (t I z =-inf{t : F. (t j z) < 1 - p } with the

exception that if F. (t I z ) > 1 - p over its entire domain then Q. (p I z ) is left

undefined.

To establish weak convergence of Q. (p z) and I,n (z) we shall require
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I. There exists points 0 < a < b < 1 such that for p-almost all z

Q(b Iz)<sup{s :H2(s Iz)>0} and for t e[Q(a Iz), Q(b Iz)
F(t I z) has a continuous density f (t I z) bounded away from zero.

II. The function J is continuous with compact support la, b 1,

0 < a < b < 1. For p-almost all z, max{Q(b z), Q(p, I

j = 1,.., m} < sup{s : H2(s z) > O}, and the function F(t I z) has

positive density in neighbourhoods of its pi quantiles, j 1, * , m.

With an abuse of notation, we shall write in what follows f o Q (p I z),

f o°Q.(p I z), etc. to denote the value of f (u jz) at u = Q(p I z) and

u = Q. (p z), respectively. Similar convention applies to S oQ(p I z),

C o Q (p I z), etc. The following corollary is an analogue of results of Sander

(1975 a & b), Reid (1981), Aly et al. (1985) and Lo and Singh (1986) for the

unconditional quantiles and L-functionals. See M. Cs6rg6 (1983) for other refer-

ences and theoretical results.

Corollary 2.2. (i). Under condition I and the assumptions of Propositions 2.1

and 2.8, for p-almost all Z, Un(p I Z) = b {Q (p z - Q (p I z)} converges

weakly in D la ,b to a nmean zero Gaussian process U(p z) given by

U(p Iz)=-S oQ(p jz)f :Q(p Iz)'z

(ii). Under condition I! and assumptions of Propositions 2'.1 and 2.8, for p-

almost all z, bn (in (z) - l(:)) is asymnptotically mean zero normal with variance

2(z) = Var {-S(t z)J( t(t I Z))dt + !cj U(pij z)}.
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As a consequpnce of this corollary, we can derive approximate confidence

intervals for the a-trimmed mean regression. Let I(F(t z)) be the a-trimmed

mean, i.e. J(p ) = I(a < p< 1 - a )/(1 - 2a) and m =O. Then the asymp-

totic variance of 1, (z) = (F. (t I z ) is equal to

l-a l-a
u2(z)=2(1-2a)-2 f (1-u)CoQ(u Iz) fvdQ(v Iz)Jdu.

a u

The sample analogue u,2(z) is a consistent estimate of 2(z). It follows that an

approximate level (1 - a) - confidence interval for the trimmed mean is given by

I, (Z) ± Wa,/2 a (z), where Wa/2 is the (1 - a/2)th quantile of the standard normal

distribution.

Construction of confidence intervals for the quantile, say median, regression is

more complicated since the asymptotic variance depends on the unknown condi-

tional density f (t I z). Though estimates of f (t I z) could be devised by

applying a smoother to Fn(t I z), the rate of convergence is very slow.

Bootstrap provides an alternative and will be pursued elsewhere.

3. Kernel and nearest neighbour estimates

In this section we consider kernel and nearest neighbour estimates and give

conditions under which the assumptions of Propositions 2.1 and 2.3 are satisfied.

For the sake of convenience, we assume that the covariate Z is univariate.

Extensions to the multidimensional case are briefly mentioned in Section 3.4.

Three estimates are discussed. In the first case the weights Bn, (z) are given

by
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Bnj (z) = (na)-1K(GK (z)-Gn(Z ) I (3.1)

where K is a nonnegative kernel function, an -O 0 is a sequence of bandwidths

and Gn is the empirical distribution function of Z 's. The resulting estimators

Hin (t z) might be considered as smooth nearest neighbour estimates of

Hj(t z). In particular, if K is supported on the set 1-1, 1J then given z, the

kernel K assigns positive weight to an n nearest neighbours of z on the right

and an n nearest neighbours of z on the left. The second estimate is a

Nadaraya-Watson kernel type estimate with weights

Bj((z )=K Kt,I/ K IK (3.2)

Finally, we consider asymmetric nearest neighbour estimates with weights

Bni (Z) = K(Z i E' lzK Zk [(3.3)Rnk=Zj/n1 ZR-n

where Rn is the Euclidean distance between z and its mn-th nearest neighbour

among Z, 's. The smooth nearest neighbour estimates were considered in particu-

lar by Stute (1984a, 1986a), Yang (1981) and Johnston (1981), kernel estimates

by Nadaraya (1964), Watson (1964), Rosenblatt (1969), Schuster (1972) and Stute

(1986b), asymmetric nearest neighbour estimates by Stone (1977) and Mack

(1981).

Throughout it is assumed that Z has a continuous distribution function G.

In the case of kernel and asymmetric nearest neighbour estimates, Z is required

to have a density g. The kernel K is a density with compact support, and we

write

a(K) - fK2(u )du.
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3.1 Smooth nearest neighbour estimates.

We shall first consider the problem of uniform consistency. Introduce func-

tions Hl(t G-(u )) P ( Y > t c = 1 1 G (Z) = u ) and H2(t G -(u)) =

P(Y > t G(Z) = u). We need to assume

Al. K is continuously differentiable, a. - 0, nan -* 00 and

E exp{-pnan4} < oo (3.4)
for all p > 0.

A2. K is a mean zero density. Given z, the functions Hi (t G-(u )),

i 1,2 are twice continuously differentiable in a u in a neighbourhood

U(z) of 0 < G(z) < 1 and

sup suplH,"(t G-1(u))j <0.
U(z) t

Note that condition (3.4) is always satisfied whenever (n-'log n )1/4 = o (an).

Define

Hin(t|z) = a fHi(t I u)K G(z) G (u) dG(u)

Proposition 3.1. If Al holds then for p-almost all z,

SUPIHin (t I Z)-i( { ) Oas n ulin (t- I z)-Hin(t- z )I --O a.s.

If in addition A2 is satisfied then suplH,n (t I z) - Hi (t I z)l -. 0 and

suplHin(t-Iz)-Hi(t-Iz)l - 8o that Hi.f(t Iz) and Hi.(t-Iz) are uni-

formly consistent.

The proof of the first part of the proposition is given in Section 4.1. The

second part deals with the bias term. More precisely, under assumption A2, for
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n sufficiently large and p-almost all z we have

H. (t I z)-H(t I z)
f{Ii(t I G-(G (z) - ua )) -H(t I G-(G (z )))} K(u )du

1/2 an2 H" (t I G'-(G (z))) fU 2K (u )du + o (an2) - (an2)
uniformly in t (see Stute (1984a)).

We shall consider now weak convergence results. We shall need

A3. K is continuously twice differentiable and na 3 00.

A4. The sequence an satisfies nan5 -+ 0.

Let Wn (t z) be given by (2.1) with bn (nan )1/2 and let

Win (t I Z) Win(t I Z ), W2n (t Iz))) where W)n.(tz

(nan )1/2(Hin (t |Z)_- Hin (t I Z )

Proposition 3.2. If A3 holds then for p-almost all z Wn (t I z) converges

weakly in D 10, 4z )] X D [0, i(z )] to a two-dimensional mean zero Gaussian pro-

cess W(t z) = (W1(t I z), W2(t I z)) with covariance function given by (2.2)

with q(z) =-a(K). If in addition A2 and A4 are satisfied, then for p-almost all

z, the process Wn (t z) converges weakly to W(t z).

The second part of the proposition deals with the bias term and follows from

the remark after Proposition 2.1. The proof of the first part is deferred to Sec-

tion 4.2. For uncensored data but multivariate response variables, Stute (1986a)

obtained an analogous result. His proof of tightness rests on some bounds for the

oscillation modulus of multivariate empirical processes.

3.2. Kernel estimates.
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We turn now to the Nadaraya - Watson kernel estimates with weights (3.2).

Beran (1981) considered the question of uniform consistency of Hin (t I z); the

estimates are consistent if log n = o (an n ).

To derive weak convergence results, define functions

Hi (t, z) =g (z) Hi (t I z). The following conditions will be needed.

Bi. The sequence an satisfies nan -* 00.

B2. K is a mean zero density and na5 -O. Given z, the functions

g (u) and Hi (t ,u) are continuously twice differentiable in u, where u

belongs to a neighbourhood U(z) of z. Moreover

sup sup i"(t ,u) < oo sup Igg (u)I< oo.
U(z) t U(z)

Let 1Vn (t I z) be given by (2.1) with bn =(nan)1/2* Introduce processes

Wn (t lZ) = Wln (t ZZ), W'2n(t I z)) where Vjn(t1-)=

(nan )12(Hin (t I z)- Hin (t | )and

Htn (t z)Z) an-lHi(t u)K Z-u du /9n (U

n ) an

gn (U= anf-ifK _j g (u ) du. (3.5)

Proposition 3.3. If B1 holds then for p-almost all z such that g (z) > 0, the

process wn (t z) cont erges weakly in D [0, r(z )j X D 10, r(z )J to

W(t I z) = (W1(t I z), W^(t 1:))I a two dimensional mean zero Gaussian pro-

cess with covariance function giren -by (2.2) where gz)=g1(z)a(K). If in

addition B2 is satisfied then. for t-alrnost all z, the process It," (t z ) converges

weakly to W(t I z).
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The proof of the first part of the proposition is given in Section 5. The

second part deals with the bias term. We have

EHn (t I z) = In (t z) + 0 (n-'an-1) uniformly in t. Under assumption B2, by

Taylor expansion

Hn(t z) -H(t I z) = l/2an2g'-(z)HI'(t,z) fu2K(u)du
- 1/2 a.29g'(z )H(t I z =-1/2 an2g1l(z) fU2K(u)du + o (a 2) = 0(a.2)

uniformly in t. The condition nan5 - 0 ensures asymptotic unbiasedness of

Win (t I Z )

Since the covariance function depends on the density g (z), in practice we

have to estimate it from the data. Parzen's (1962) estimate

gn (z) =(n) 1annK( (3.6)
is a natural choice, but other strongly consistent estimates can be used as well.

3.3. Asymmetric nearest neighbour estimates.

Our final example is the mn - nearest neighbour estimate with weights (3.3).

Beran (1981) considered the problem of uniform consistency of H,n (t I z). The

estimates are consistent if the sequence mn satisfies mn - oo,mMn o (n ) and

logn o(mn).

To derive weak convergence results,-the following conditions will be required.

Cl. The sequence mn satisfies mn -. oo and mn =o (n). The functions

g (u) -and H(t I u) are continuously differentiable in u in a neighbourhood

U(z) of z and

sup sup IH'j(t I u) < oo sup jg'(u )I < °o.
.U(z) t U(z)
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Moreover, P (IZ - z I > s= O (s -) for some q > 0 as s - oo.

C2. K is a mean zero density and m 5n 4 -_+ 0. The differentiability con-

ditions of Cl are satisfied by the second derivatives.

Let Wn (t jz) be given by (2.1) with b. =(mn-1)1/2 Define processes

Wn(t Z) (Wl (t I z), W2.(t I z)) where Wi.(t I z)

(Mn - 1)1/2(Hin (t I Z)-EHin (t I Z))-

Proposition 3.4.

If Cl holds then for z such that g (z) > 0, the process W, (t I z) converges

weakly in D [0, (z)] X D [0, i(z)J to W(t I z) = (WI(t I z), W2(t I z)), a two

dimensional mean zero Gaussian process with covariance function given by (2.2)

where )(z) = 2a(K). If in addition C2 is satisfied then for z such that

g (z) > 0, the process Wn (t z) converges weakly to W(t I z).

The first part of the proposition is proved in Section 6. The second part deals

with the bias term. From Mack (1981), under differentiability conditions of C2,

we have

EHn (t I z)-H(t I z )=
1/8 mn 2n g(z)3{H(t I z)g(z)}fu 2K(u)du + o(m2n-2) + o(mn)

uniformly in t. Therefore mn5n4 _ 0 implies asymptotic unbiasedness of

Win (t |z)

3.4. Extensions to the multivariate case.

In practice one usually has to deal with multivariate covariates. Uniform con-

sistency of kernel estimates was studied by Beran (1981) and Stute (1986b), weak
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convergence can be established by applying results of Rosenblatt (1969). Uniform

consistency and weak convergence of smooth nearest neighbour estimates can be

derived from results of Stute (1983). For the asymmetric nearest neighbours, the

proof of the weak convergence result is essentially the same as in Section 6. In

all cases the required smoothness conditions are analogous to those in assump-

tions A, B and C, and the covariance structure of the limiting processes has the

same form as in Propositions 3.2 - 3.4.

4. Proofs of Propositions 3.1 and 3.2.

4.1. Proof of Proposition 2.1.

We shall verify that for any fixed t and p-almost all z,

Hin(t ±jz)- inf(t ± Iz) -+ 0 a.s. Since Hi.f(t ±Iz) and Hi.(t ±Iz) are

bounded monotone functions, we then also have uniform consistency.

We consider Hin (t z ) only, the proof for Hi. (t - I z) is analogous. Fix t .

Let MI(y,u)=P(Y < y,6=1 Z < u), M2(Y,u)=P(Y < y,Z < u)

and let MI. (y ,u) and M2n (y ,ut) be the respective empiricals. The mean value

theorem implies Hin (t I z) = I + II where

I = anfI(y > t)K( (z)a (u) JdM.n(Y, u)

II = a,-2fI(Y > t)(Gn (z) - Gn (u) - G(z) + G(u))K'(.n)dMn (y, u).

Here A . is a random function assuming values between an-'[Gn (z) - G. (u )] and

an-[G (z)- G(u). Since K has compact support, say [-1, 1], the above expan-

sion is valid for integration restricted to u 's for which I Gn (z) - Gn (u )j < an
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For p-almost all z, I - Hi. (t I z) -* 0 a.s., by Hoeffding's (1963) inequality

and A. 1. To handle the second term, set

Vn = a,-2supIGC(z)- G.(u)- G(z)- G(u)l where the supremum is restricted

to those u's for which IGn (z) - G. (u)I < an . We have

II < Vn fjK'(An)IdMin (yvu)

Since K ' is bounded, it is enough to show that Vn -_ 0 a.s.

Fix C > 0 and let 0 < tj < 1/8 be arbitrary. Then for n sufficiently large,

an < q/3 and IGn(u) - G(u)I <v/3 uniformly in u, with probability 1. It

follows that for n large enough, V, S n-1/2 a-2 w, (v) with probability 1. Here

Jn (1) = n 1/2 supl G. (z) - Gn (u) - G (z) - G (u )I with sup taken over those u's

for which jG(z)- G(u)l < v. By Lemma 2.4 in Stute (1982),

P (w (q) > n 1/2 an2E) < v1 exp{-v2na,4} for some v I and v2 = v2(E). Assump-

tion Al and Borel - Cantelli theorem imply V.- 0 a.s. p - a.e. This completes

the proof.

4.2. Proof of Proposition 3.2.

Define Wn*(t I z) = (Wl*(t I z), W2*(t z)) where for i 1, 2

Win*(t I z)=

(na+ -1) /2f (I(y > t) Hi (t I z )) K GZ G()|d (Min(Y,u)-Mi(Y,u))

Here MI(y,u)=P(Y < y,6= 1,Z < u), M2(y,u)=P(Y < y Z < u)

and M1n(y,u) and M2n (y,u) are the respective empiricals. Results of Stute

(1984a) imply that for any t, W1t"*(t I z) - Vn (t z) -_ 0 in probability p - a.e.

It can be verified that this holds uniformly in t. Therefore, it is enough to
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establish weak convergence of W7 *(t I z). We shall verify that for p-almost all

z, the finite dimensional distributions of W.*(t z) are asymptotically multivari-

ate normal and the process W.*(t z) is tight.

Choose t 1 < * < t < T(Z) and let Cip , p 1, r i=1, 2, satisfy

#0. Then n1/2E2X c* Wj*(tp z ) is a sum of centered independent rv's
'pipPP

whose third absolute moment is of order 0 (an-1/2). Further,

=2 Var(EY2c,pWW;*(tp jz))
.p

Ej E Cip Cjq {Hmjn(g,j)(max(tp , tq) I z) - Hi(tp I z )Hj(tq I z )}a(K) + o(1)

and the variance is bounded away from zero. Berry - Esseen Theorem and Cra-

mer - Wold device complete the proof of the joint asymptotic normality of the

finite dimensional distributions.

Further, for p-almost all Z and any tI < t < t, we have

E { W.n*(t Iz) - W (f z )}2 { Win(t z) -Z 1 (t )} (4.1)

< 3(Hi (t I Iz) -Ili (t I z)} (Hi (t I z)-Hi (t,I z)} a2(K)+ rn

where rn --. 0 Theorem 15.6 in Billingsley (1968), implies that for p-almost all z

the process Win*(t z) is tight. To verify this inequality, set

Win*(t 1 z)- Win*(t z ) na.'~½2EAy and

Win*(t Z) Win*(t2 Z ) (nan 1.2 B. Then the left hand side of (4.1) is

equal to n-'an2{E;.lI BJ1 ±(n -1)EAl2 EB +2(n -1)(EA4B1)2}.

Repeated application of Theorem 3 in Devroye and CGvrfi (1985, p. 8) yields

n-an12EAI = O(n la, ). n ,'(n - 1)an-2('A IBI)2 p2q2a2(K) + o(1)

and n'l(n - 1)an2E._l ["E1 - p(- p )q (1 - q )(k2() o(l). Here
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p =Hi(t1Iz)-Hi(t Iz) and q Hi(t Iz)-Hi (t2Iz). The bound on the

right hand side of (4.1) follows.

5. Proof of Proposition 3.3.

Define HiI,(t, z) =g.(z)Hi. (t I z) and H,n(t, z) =g"n(z) Hin(t I 4
where gn (z) and 9n (z) are given by (3.6) and (3.5), respectively. For i = 1, 2

set naH z)ad e 3 zstWin (t, z ) = (nn )2Hin (t , z ) - in (t,z))adltW ()=

(nan )1/2 (gn (z )9'n (Z ))-

Let tI < *< t, and let cip, i= 1, * ,r, i = 1, 2 satisfy E c .2 -7 0.
'p

Then n 1/2 2 X cip Win (tp z) and n 1/2 W3n (z) are sums of centered indepen-
. p

dent rv's whose third absolute moment is of order 0 (an-1/2). Further, by

Theorem 3 in Devroye and Gy6rfi (1985, p.8),

Var(E c;p IVni (tp I z) = a E Hmin (i,j) (max (tp , tq z) a(K) + o (1)jp iijpq
COV( cip W'Vn (tp ZZ), W3. (Z)) = XE c,pHi (tp, z)a(K) + o (1)

ip 'p

Var(W3n (z)) (z )a(K) + o(1).

Berry - Esseen Theorem and Cramer-Wold device yield joint asymptotic normal-

ity of Win (tp, z ) and W3n (z ), i = 1, 2 p = 1 r . It follows that the finite

dimensional distributions of Win (t z) are asymptotically normal, and a

straightforward calculation gives the desired covariance.

It remains to verify tightness. It is enough to consider the processes

W;, (t ,z). For p-almost all z and any t1 < t < t2 we have

{Win (t I )i ;in (t, Z} Win (tsi ) Vin (t2 t)2 (.

<3{Hi(tI, z)-Hi(t, z)} {Hi(t, Z)-H,(t2, Z)} Ca2(K)-+ rn,
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where rn -. 0. Theorem 15.6 in Billingsley (1968), implies that for p-almost all

z, the process W; (t, z) is tight. To verify this inequality, write

Win (t 1 z)- Win (t, Z) (nan)T1/2XSAj and

WVn(t, Z)- Win(t2, z) = (nan) E/22Bi Then the left-hand side of (5.1) is

equal to n-la"2{EA 2B?2 + (n - 1)EA 2EB 2 + 2(n - 1)(EA 1B1)2}. Repeated

application of Theorem 3 in Devroye and Gy6rfi (1985, p.8) yields

n a -2EA = O(n-lan 1), n '(n - 1)a -2(EA B )2 = p2qc2a2(K) + o(1)

and n'1(n - 1)a _2EA 2EB2 -p (1 - p)q (1 - q)a2(K) + o (1). Here

p =H, (t 1, z) - Hi (t ,z) and q Hi (t,z) - H, (t2,z). The right hand side of

(5. 1) follows.

6. Proof of Proposition 3.4.

Theorem 3 in Mack (1981) and Cramer - Wold device imply weak convergence

of finite dimensional distributions of W- (t I z). Furthermore, by Proposition 6

in Mack (1981), for fixed t (mn - 1)1/2n(E(I (t z)R) - EHin (t I z)) con-

verge in probability to zero p - a.e. Under assumption Cl this convergence is in

fact uniform in t. Therefore to complete the proof, it is enough to verify tight-

ness of Wn*(t I z) = (W1,(t I z), W2*n(t I z)), where Win*(t I z)

(mn - 1)1/2(Hin (t I z) - E(H,n (t I z) Rn )). We shall show that for p - almost

all z and t1 < t < t2

E{ TIVn*(t 1 1 z)- Wn*(t I z )}2 { W,n(t I Z)- Win(tI21 Z)}2 (6.1)

<6r Hi (t IT z) -1Hi6(t I Z)i gHiy(t (z) -Hie(t2I Z)te2(K) + rn

where rn -- O. Theorem 15.6 in Billingsley (1968) implies tightness.
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We shall check this inequality for i =1. Define

H1(t , t z)= (H1(t I z)-H1(t I z))g(z) and HIn(t1, t,z)=

(Hin (t I z) - Hin (t Zz ))9n (Z), where g9 (z) is the nearest neighbour density
estimate given by

gn(Z) = (nRn) K(R i

We argue by conditioning on Rn. Since Z has a continuous distribution, almost

surely all Z, 's are distinct. Given Rn = r, let Im(z)= {j : iZi -zI S r}

Then (Yj, J4, Z,), j E I.(z) are conditionally independent given Rn = r.

Conditional on Rn W (t I z) - WI*(t I z)-EAj and

WI* (t z)- WI* (t2l z) = EBi, where the summation extends over j E J(z)

and

A, = Rmn [I(tl < Yj < t, Jj =1) an] K - Z

m. J
nRn Can
Mnm. - [(t < Yi < t 2, Jj 1 bn ]K Z - Zj

Here an =E(Hln(t1,t,z)lRn), bn =E(Hin(t,t2,z)IRn) and

C E (gn (Z) I Rn) With this in mind, the left hand side of 6.1 is equal to

(mn - 1)-1E {E(A;2 B2 I Rn) + 2(mn - 2)(E(Ai Bj I Rn ))2 +

(in3 - 2)E(A 2 I Rn )E(B,21 Rn)}. It can be easily verfied that

(in3 -1l)-1EA2B,2 = 0 (in,1). Further, after some algebra,

E(AjBj I Rn )=(Mn - 1){an bn f3f3c3- an en cn3 - bn dn cn-3}

E(Ai2 I Rn ) = (Mn - 1){an2fn cn 4 + dn c32 - 2an fJn cn3}
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E(Bi2I Rn - (Mn - 1){bn2fn Cn,4 + en c-2 - 2bn fn Cn-3}

where dn = E(H1(t ,t,z)Rn) en E(H (t, t2, Z) I Rn) and

fJn =E(gn2(z)IRn).

Let X be the mn -th order statistic from an ordered sample of size n from a

uniform distribution on (0,1). If I is the distribution of Iz - Z, 1, then

Rn -I1(X). We have

rn-i
an - nX fK(U)Hl(t 1,t,z - URn)du

rn-i
b - n fK(u)HI(tR -)uRd

nRX
mn - 1

c nx fK(u)g (z- uRnd
dn =. n )d()I(ltzuRn

rn-i

en = f1K2(u )Hl(t , t2, z uR, )du
fl RnX

rn-

fn = n X fK2(u)g(z -uRn)du

Using these expressions, we find after lengthy calculation

(Mn - 2)(Mn - 1)i1 E(E(AiB, I Rn ))2 - 2p2q2a2(K) + 0 (Mn,1) + 0 (mn n'-)

and (Mn - i)-'(mn - 2)E(E(A 2 I Rn )E(Bj2 I Rn)) =

2pq(i -p)(i - q)a2(K) + 0(inn') + 0 (Mn n-1), where

p =HI(t 1I z) - HI(t jz) and q =HI(t I z) - H(t2 z). In computing these

expectations, we use a Taylor expansion of g (z - uRn ) and H1(t 1, t, z - uRn)

around z - u*4(m /(n + 1)) and 8 - I-'(t) = g(x )-'t + o (t ) as s I o, and

follow developments in Mack and Rosenblatt (1979) and Mack (1981). This com-

pletes the proof.
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7. Proof of Proposition 2.3 and Corollary 2.2.

7.1. Proof of Proposition 2.3.

We sketch the proof; the details are analogous to Breslow and Crowley (1974).

Unless stated otherwise, all suprema are taken over [0, r(z )J.

Suppose 0 < t < 4z). Then H2(t z) > 0 and with probability 1,

H2n (t I z ) > 0 for p-almost all z and n sufficiently large. By appealing to the

Skorokhod construction, we can assume without loss of generality that for p-

almost all z, the sample paths of W(t I z) are continuous and WV. (t I z) con-

verges almost surely to W(t z) in the supremum metric on 10, (z )J X [0, 4z )J.

We have

t W2n (s- I z)dA(s I z) I d1VIn (s z)
L~(t lz)= H2( -I)Z H2( -IjZ)

where Rn (z) is a remainder term. By the assumed weak convergence of

Wn (t z), the first two terms converge almost surely in the sup norm on

[0, Nz)] to

tW2.(s I z )dA(s I z) t dW1,(s Iz)
(I) r H.,(s - I Z ) IH2(

which is a mean zero Gaussian process. Integration by parts, analogous to

Breslow and Crowley (1974). shows that the covariance function of this processes

is given by (1.4). The remnainder term can be treated in a similar way as in

Breslow and Crowley (1971) (s(e Gill (1983) for a necessary correction). Further,

by Taylor expansion, S.(t I:) F(t z)Ln(t ) R1I(t,z) + R2(tz)

whereRRn(t,Z) = bn-'L2(t :)p( (t )) and I?4f(t,:)=
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bn (F. (t z) - exp (-A. (t I z ))). Here A.*(t I z) is a random function assuming

values between A(t z) and A. (t I z). By weak convergence of Ln (t j z) and

consistency of A. (t I z), sup IR In (t ,z )I -- 0 in probability p - a.e. Further, for

p-almost all z and n sufficiently large H2n (t z) > O, F (t I z) > 0 and

exp{-A. (t I z )} > 0 for t E [0, A(z )]. After some easy algebra

JR2n (t,z)4 S bn IE {log (l - AA( It)+An8 )

< bn E H -'(s I z)H '(s - I z)AH 2 (S I z)
t

< bn suplAH1n(t I f)H2-1(8 I z)dAn(s j z),
0

where the sum is over s < t. Weak convergence of Hin(t I z) and consistency

of H2n (t z ) and An (s z ) entail sup JR 2n (t ,z )j - 0 in probability p-a.e.

7.2. Proof of Corollary 2.2.

(i). Suppose that z does not lie in the exceptional p - null set. For c(z) > 0

arbitrary but small enough there exist points Ta (z ) and Tb (z ) such that

0 < r. (z) < Q (a z )-E(z) < Q(b z) +E(z) < Tb (Z) <

sup{t : H2(t z) > 0}. Under condition I, Q (p z), p E [a,bJ, is the unique

solution of F(t I z) < 1 - p < F(t- z) and, by the strong consistency of

Fn(t I z), for n sufficiently large rT(z) < Qn(a I 7) < Qn(b z) < rb(z) with

probability 1.

Further, there exist processes S (t I z) and Sn (t z) defined on a common

probability space with the same distributions as S(t zZ) and Sn (t I z) and such

that the sample paths of S(t z) are continuous and S. (t z) converges to

S(t z) almost surely in the supremum norm on [0,Tb(z)I. Set
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Fn (t z) bn- Sn( |z(t t ),Qn (P If Z)

inf{t :Fn(t z) < 1-p} and let Un(p I z) and U(p I z)

gously to Un(p I z) and U(p z). Then, for n

Ta(Z) < Qn (a I z) < Qn(b I Z) < Tb(Z) with probability 1

will follow if we show that Un(p I z) -- U(p I z) a.s. in

Dla,bJ.

We can write

be defined analo.

sufficiently large

and the assertion

the sup norm on

U.(p I(z) -V |(p z) (7.1)

f. Q(p lz)

+ V. (p I z) oQ(p I Z)

where Vn(p z) = -bn(F o Qn(p I z)-1 + p). By the uniform continuity of

f oQ (p I z )-, it is enough to show that V.(p I z) converges almost surely to

Vn (p z) = S o Q (p I z) and the second term in (7.1) is asymptotically negligi-

ble.

Adding and subtracting terms

supp Vn (P I Z)- V(P I Z )| < SUp, |Sn ° Qn (P I Z))-g ° Qn (P I Z )I
+ supp bn IFn (Qnp l z)lZ) +upI + SuPpISo Qn(P Iz)- S °Q(PI z)I

where the suprema are taken over p E [a ,b J. The first term is bounded above by

supt ISn (t I Z) - S(t I Z )I - 0 a.s. with sup taken over Ir. (z ), Tb (z )J. Further,

suppIF °Qn(P I Z)-1l + p 1 suPpIF. oQn(P I z)-F oQ.(p I z)l
+ supp lFn °Qn (P I z)- + p I < supt IF.(t I z)-F(t I z )I + R.(z) (3

where Rn(z) = H (rb I z)supt AH1n(t z)l and the suprema are over

p E [a ,bJ and t E[ra (Z ), b (z). The consistency of Hi. (t I z ) and Fn (t I z)
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entails that this bound converges in probability to 0. Furthermore,

supp b. IF. ° Q. (p I z) - 1 + P I < supt bn I.F. (t l z )I S b. R. (z) - O in pro-

bability p- a.e. This remains valid for the processes F o Q (p I z) and

F. °Q. (p z) except that the convergence is almost sure. It follows that

F, Q. (p I z) is strongly consistent and the second term in (7.2) converges

almost surely to 0 p-a.e.

Further, for p E [a,bJ, we have S oQ.(p j z) = S oQ(p l z) where

p' 1 - F o Q. (p I z). The uniform continuity of the sample paths of

S o Q (p I z ) and strong consistency of F o Q. (p I z ) implies therefore that the

third term in (7.2) converges almost surely to 0 p-a.e.

Finally, the second term in (7.1) converges almost surely in sup norm on

[a ,b J to 0 by almost sure boundedness of V. (p I z ) and (7.2).

(ii). To prove the second part, suppose that z does not lie in the exceptional

p - null set. For c(z) > 0 arbitrary but small enough we can find

0 < Tr.(Z) < Q(a - l z) < Q(6+e I z) < Tb(Z) < sup{t H2(t I Z) > 0}.

By the strong consistency of Fn (t I z), for n sufficiently large,

m
bn(l(z)-l(z))=-fS.(t lz)J(F(t Iz))dt + mE c-Q(pi Iz)i=

+ l S"(gl ((I s) JFt Iz)-J(F(t Iz)) -J(F(t I z)) dt

where the integrals are taken over [r. (z ), Tb (z )J. Replacing processes S. (t I z),

U. (p I z ) and F. (t I z ) by the processes constructed in part (i), it follows that

the first two terms converge to a mean zero normal distribution. The third term

is asymptotically negligible, by the uniform continuity of J(u), dominated con-



- 32 -

vergence theorem and almost sure con, ,gence of S. (t z ) in the sup 'norm on

[Ta(Z ), Tb (Z)J
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