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Abstract Suppose that a neuron is firing spontaneously or under the influence of
other neurons. Suppose that the data available are the firing times of the neu-
rons present. If the principal neuron's firing is modelled as occurring when an
internal state variable crosses a random threshold, then one may develop max-
imum likelihood estimates of the unknown parameters. The resulting procedure
appears useful for estimating biologically meaningful parameters of neurons, for
understanding the connections present in networks of neurons and for aiding
description and classification of neurons and synapses. Analyses are presented for
a number of data sets collected for the sea hare, Aplysia californica by J. P.
Segundo. The computations were carried out quite directly via the Glim statisti-
cal package. An example of a Glim program realizing the work is presented in
the Appendix.

1 Introduction

At this point in time quite a number of stochastic models have been set down to
describe the firing of a neuron and the interactions of firings of neurons in groups.
Various of these models are reviewed in Holden (1976). In this paper a threshold
model is constructed based on firing times of influencing neurons and summation
functions. A method of directly addressing the question of causal connections of
possibly inter-related neurons, given data consisting of the times at which the
individual neurons fired results. The new method is a maximum likelihood pro-
cedure supported by the known neurobiology. This approach has the substantial
advantage that biologically interpretable parameters are estimated. The
approach is an alternate to an indirect second moment based method which had
been given earlier, (Brillinger , Bryant and Segundo (1976). It provides an alter-
nate to the visual technique suggested by Gerstein et al (1978) with the advan-
ta.ge of being applicable to arbitrary sized collections of neurons. It is an alter-
nate to a procedure presented in Borisyuk et al (1985) with the advantage of
making use of more biology. One other work that may be cited is Nakao et al
(1985). These researchers employed an extended Kalman filter and mean squared
error fitting. The maximum likelihood method of this paper extends the one Bril-
linger and Segundo (1979) presented for the case of continuous input.

The computations of the paper were carried out in the statistical system
known as Glim, see Baker and Nelder (1978). This system is fairly widely avail-
able. It is interactive and available for microcomputers as well as large machines.

2 Some Statistical Methodology

We begin with a few definitions taken from stochastic point process theory.
Counting Process. For points (r, } randomly scattered along a line, the counting
process N(t) gives the number of points realized in the time interval (o,tJ. For
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the case of a neuron spike train, with the neuron firing at times r, , N(t ) gives
the number of times the neuron fired between time 0 and time t,

N(t) = #{r, with O< r, < t}

History. The history, H1 , consists of the variates determined up to and includ-
ing time t that are necessary to describe the evolution of the counting process.
For example for the process N-{r, ), one might take Ht = {r, I r, .t }.

Conditional Intensity. For the process N and history H,, the conditional inten-
sity at time t is defined as

g(t ) = limh. Prob (event in (t ,t +h I Ht }/h

For small h one has the interpretation,
Prob (event in (t ,t +h | Ht q(t )h

Given a sufficiently rich history, the conditional intensity determines the process.
If the process N is under the influence of various other processes, then their
influence may be described formally by setting down a specific functional form
for / in terms of those processes.

The likelihood of a data set is defined to be the probability of obtaining the
data values as a function of the unknown parameters. One may show that in the
point process case, given the process realization for the time interval (0,TJ , the
likelihood may be written

T T T

exp{-fJa(t )dt + flog p(t )dN(t )} exp{-f s(t )dt } [I s(r,) (2.1)
0 0 0

in terms of the conditional intensity function.
References to the theory of stochastic point processes include Cox and Lewis

(1966), Lewis (1972) and Snyder (1975). Likelihood for point process data and
the issue of causality are also addressed in Ogata et al (1982).

In our computational work, specifically in determining the maximum likeli-
hood estimates via Glim, it will be convenient to approximate the point processes
involved by 0-1 time series. Suppose that a small time interval A is taken.
Define the following series

Nt = 1 if there is an event in (t ,t +Al
Nt = 0 otherwise

for t = 0,±A,±2A,.... The point process N (t) is thus replaced by a time series Nt
that is o most of the time and 1 occasionally. Let

Pt = Prob {Nt+=1 Ilt } (2.2)
with Ht = (Nu I u <t ), then the likelihood is given by

flPt (1 -PNt (2.3)

In this paper we work with maximum likelihood estimates. These are
defined as the parameter values that maximize expressions like (2.1) and (2.3)
above. The asymptotic properties of such estimates in the point process case
were studied formally in Sagalovsky (1982), under mixing (that is asymptotic
independence) assumptions, and Dzhaparidze (1985). The specific practical



problem becomes that of finding appropriate expressions for the conditional
intensity function p(t) or the approximating Pt.

3 A Biological Description and an Associated Analytical Model
We turn to a crude description of some of the biology involved, in order to con-
struct a conceptual model of the situation. One process by which a neuron
influences the firing of a second may be described as follows. With the firing of a
neuron, a transmitter is emitted from its axon terminal. If another neuron is
nearby, this chemical may pass over and act on its dendrite. The permeability is
changed and there is a brief current flow. This current propagates to create a
change in postsynaptic potential at a trigger zone. When that potential passes
an extant level, then the cell fires. Depending on the situation, the potential
created by the first cell will either accelerate or slow the firing of the second.
(There may be later swings in effect as well.) A further aspect of the process is
that on firing, the potential at the trigger zone is reset to the extant level. It is
to be noted that the potential may further be affected by the internal mechanics
of the neuron itself. This last leads to spontaneous firing. (It must be remarked
that but one class of neurons has been described here. Other neurons behave
differently.)

The above biological description may be put into an analytic form as fol-
lows. Let the spike trains of two neurons say B and c be described by counting
functions B (t), C (t) respectively. Here B (t) gives the number of spikes of the cell
B that occur in the time interval (0,t J. c (t ) has a similar meaning. Suppose one is
interested in the firing of neuron C. Supposing that the neuron B fired at time r
, let b (t -r) represent the effect on the potential at the trigger zone of the second.
It will be called a summation function. If y(te) denotes the time elapsed at time t
since the second neuron last fired, then the (membrane) potential at its trigger
zone may be represented as

U(t) f b(u)dB(t-u) (3.1)
0

assuming additivity of the effects of the individual firings. (The presence of y(te)
introduces feedback into the system.)

Let 6(t) denote the threshold level at time t and assume that it has the form
6(t )=O+e(t), with e(t) noise. Then the conditional intensity of the neuron C's
firing is based, for h small, on

Prob {spike in (t ,t +h I I Ht } = Prob {U (s )crosses6(v ) for some e in (t ,t +hh Ht}

taking the history to consist of B's and C's past firings. An explicit likelihood
function of a given data set may now be set down by means of expression (2.1)
once an expression for the probability on the right above has been set down. In
practice it may be reasonable to add a term like

V(t ) = 1(t ) + #2q(t )2 + O3_y(t )3 (3.2)
to U(t), corresponding to to C 's own effect on the potential. It allows for spon-
taneous firings of the neuron. References presenting analytic models for neuron
firing include Johannesma (1968), Gestri (1971) and Knox (1974). Holden (1976)
is a general reference. One may also mention Nakao et al (1985) and Borisyuk et
al (1985).

The problem of evaluating a crossing probability like (3.1) is generally a
difficult one. For the case of a high threshold, approximations are sometimes
available. (See for example Cuzick (1981).) In the case of a random step function
(with jumps occurring at the points of a rate v Poisson process and amplitudes
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independent normals with mean 0 and variance a2) ten Hoopen et al (1963) show
that (3.1) is given by

I({2 I - dd log{l - I I

where $ is the standard normal cumulative. This will be approximately
v4(g (t )/a) for v large or the derivative of U small.

The following discrete approximation to this model might be employed to
develop analyses . Let Ct and Bt denote 0-1 valued time series corresponding to
the point processes, with t =0,±A,±2A,.... Let -7t denote the time elapsed at t since
the preceding time that Ct =1. Let

J1 -A

Then we assume C, = 1 if ut 2 6+E, and equals 0 in the contrary case. Further,
let Ht = {Bu ,Cu I u<t } denote the history. Assuming that et+.A is statistically
independent of the previous e 's and Gaussian with mean 0 and variance 1, one
has

Pt = Prob {Ct+IlIHt = Prob {Ut+&.+et+& I Ht}
= 4(Ut+&-G)

This is the crucial expression providing the required Pt. The coriesponding
discrete approximation to the likelihood is

H PtC1(1-Pt )1" (3.3)

The maximum likelihood estimates of the unknowns appearing would be deter-
mined by maximizing expression (3.3) as a function of {bu } and e.

Consider next the case of neuron c firing away, possibly under the influence
of two neurons A and B . A model for consideration has u (t) given by

it) it)

U(t)= f a(u)dA(t-u)+ f b(u)dB(t-u) (3-4)
0 0

and V(t) given by (3.2). For the fitting, again approximate the point processes
by 0-1 time series. Suppose the time variable t is defined to take on the values
0,±1,±2,..., that is A=1. Suppose that V(t) of (3.2) is present and that e, is a
sequence of independent standard normal variates. The probability, Pt, of (2.2) is
now given by

7t 7t

Pt = | aA -u + E bu Bt-u + el6yt + 627t2 + y3 - 80 (3.5)u
u

0

As an issue of causality it would be of interest, for example, to see if the
coefficients {bu } are near o. This would correspond to the neuron B not
influencing the neuron c in a direct fashion. Any apparent association of neu-
rons B and c would be due to their both being influenced by A. One could also
consider the case of neuron B under the influence of neurons A and c . Once
estimates of the parameters are available, estimates of the processes U(t),V(t)
themselves may be computed.
4 Experimental Methodology.
The particular experimental procedure and the electrophysiological recording
techniques leading to the data analyzed are described in detail in Bryant et al.
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(1973). Briefly, experiments were performed with identified nerve cells of the
abdominal ganglion of the sea hare (Aplysia californica). The ganglion, including
interconnected cells, was removed from specimens. Microelectrodes were inserted
into the cells in order to measure their electrical activity and on some occasions
to induce activity. The presynaptic cell was stimulated with about 50-msec
pulses each of which elicited one spike. In one experiment to be considered,
hyperpolarizing pulses were injected to make the cell respond in an inhibitory
fashion. The data collected were the successive times at which the individual
neurons fired.

Data from these and similar experiments were also analyzed in Brillinger et
al (1976) making use of a "linear" model and employing second-order moments
alone.
5 Results

5.1 Two Cell Experiments. The first data set analyzed consisted of corresponding
spike trains of the cell R15 and of an unidentified neuron in the right viscero-
pleural connective (RVP). It is data like that of Figure 14A of Bryant et al
(1976). RVP had the property of exciting R15. In the experiment analyzed, RVP
was driven by a Poisson process. The number of spikes observed were 720 and
224 respectively. The spikes trains were replaced by 0-1 time series taking a
sampling interval, a, of .075 seconds. This lead to series of approximately 10000
points. The unknowns were estimated by maximizing the likelihood (3.3),
employing expression (3.5). Figure 1 shows the estimated summation function,
b6, the estimated spontaneous potential function, V(t), and an estimate of the
probability of firing as a function of the total potential. Specifically, the top
graph gives bu (and estimated + two standard error lines.) The function b is seen
to swing positive, corresponding to an excitory junction, followed by about half a
second of slowing. The spontaneous function V(t), given in the second graph, is
seen to be rising slowly and to be far below the threshold level O',. The bulk of
the firing of R15 is apparently resulting from the RVP stimulation, rather than
spontaneous behavior. Suppose that v denotes the estimated linear predictor,

^2 stu ++ G17t + 027t + s7t - (5.1)

Then the bottom graph provides an estimate of Pt. Specifically points are plotted
at

>Z{Ct with Q-h < <t+h }/ {1 with ii-h <f,<7+h}
t t

for selected v and small h. The smooth graph is ¢(v). This graph is one means of
studying the validity of the model. The variability of the final plotted points is
large, there not being many cases, so the fit seems not unreasonable.

The second pair of point processes analysed corresponded to an inhibitory
junction. Neuron L10 was injected with hyperpolarizing pulses. There were 531
pulses and 503 action potentials respectively. The data analyzed is like that of
Figure 16A in Bryant et al (1976). The pulses were taken as the input process B,
and the L10 firing times as the output process ct. Figure 2 provides the results
of the analysis. The top graph makes apparent the inhibitory nature of the
pulses. The second graph shows the rapid rise of v'(t), necessary for the cell to
fire at all. The bottom graph suggests that the model is fitting to some reason-
able extent.

The computations of these and the following data sets were carried out via
Glim . Because of the character of Berkeley's implementation of Glim, only 31
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coefficients could be included in the analysis. In order to study longer lags, in
some computer runs, the sampling interval, A, was taken larger than the .075 of
the results presented here. Those runs suggested that the summation functions
were near 0 at the longer lags. In the actual computations it seemed simplest to
first create a data file via a FORTRAN program then to process that file via
Glim. The data file consisted of vectors yt,Ct,Bt,Bt_1,Bt_2,..-- A Glim program for
one of the three cell experiments, discussed in the next section, is given in the
Appendix.

5.2 Three Cell Experiments. The first set of three spike train computations
presented are mainly meant to demonstrate that the proposed technology of
addressing causal connections works in a situation of known structure . In the
previous section's experiment with hyperpolarizing pulses a neuron L3 was
present as well. It is known that the firing of L10 inhibits the firing of L3, (see
Bryant et al (1973).) Given that the pulses have been injected directly into L10,
the only connection of the pulses and L3 should be through L10. Figure 3
presents the results of fitting the model with Pt given by expression (3.5), taking
c to correspond to L3, A to correspond to the pulse train and B to correspond
to the L10 train. The top graph provides a' and bt. The solid lines provide ± 2
standard error limits. The only connection indeed appears to be with L10 and it
is inhibitory as anticipated. The second graph demonstrates that L3 may be
expected to fire spontaneously, fairly frequently, if left uninfluenced by L10. The
bottom graph again suggests a not unreasonable fit of the model. The numbers
of pulses, L10 spikes, L3 spikes were 952, 359, 735 respectively.

In the final experiment whose data analysis will be presented, cells L2, L3,
L10 were observed. What is known (ibid) about these cells is that L10 inhibits
the firing of both L2 and L3. What is not know is whether or not L2 influences
L3 directly or L3 influences L2 directly. From estimating the crossintensity func-
tion, it is clear that the firings of the cells L2 and L3 are associated. A question
of interest then is are L2 and L3 connected directly? The numbers of firings for
the data analysed where 952, 359, 735 for cells L10, L2, L3 respectively. L10 was
Poisson driven in this particular experiment. The data is like that of Figure
15DEF of Bryant et al (1973).

Figure 4 provides the estimates a,, Lad b,,. On the basis of the figure and
these values and estimated standard errors, it seems reasonable to infer that neu-
ron L2 is not directly influencing neuron L3. This result is consistent with the
partial coherence analysis presented in Brillinger et al (1976). The graph further
makes it apparent that the neuron L10 is having an inhibitory effect on the firing
of the neuron L3. This effect seems to last for a bit over a second.

Figure 4 also provides 'vt as based on expression (3.2), with the threshold
given by do . This expression suggests how the neuron L3 is led to fire spontane-
ously, i.e. if left uninfluenced by other neurons. The last graph of the figure sug-
gests the fit is good.

Finally Figure 5 provides the results of a maximum likelihood analysis of the
question of whether neuron L3 is directly influencing neuron L2. The conclusions
are as before. The direct connection is the one from L10. Apparent differences
are though, that the summation function, a,,, is biphasic and the spontaneous
function, V,, grows slowly.

5.3 Spontaneous experiments. This section is provided only for appearances sake.
The principal concern of the paper has been situations wherein the influence of
other neurons is a principal contributor to the firing of a neuron. We remark
that Sampath and Srinivasan (1977) provide discussions of various stochastic
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models for spontaneous neuronal firing. Some of these models can also be fit by
the method of maximum likelihood.

6 Discussion
This paper has presented a new technique for disecting the connections of net-
works of neurons, as well as estimating biologically interpretable parameters for
those neurons, making use of extracellular data alone. It is based on an assump-
tion of random threshold and of firing as a level crossing process. The technique
produces estimates of the uncertainties and allows formal testing of hypotheses,
eg. whether specified phenomena are present. The technique handles feedback
that is present directly. The technique is highly flexible: an arbitrary number of
neurons are allowed, phenomena such as ageing and adaptation may be incor-
porated, the noise distribution may be changed. The new technique may be anti-
cipated to be more efficient than previously proposed second-order and partial
likelihood procedures. It further involves no assumption re the stochastioc pro-
perties of the inputs and can estimate more parameters than the existing tech-
niques.

Appendix
There follows a Glim program for carrying through the proposed analysis in

a three cell case. Assume that there exists a data file, called "nerve.data", con-
taining vectors made up of tt=-t, yl Ct, a=At, b=At- ,...,o-Bt, P

Bt-I *@

$units 9916 ! number of input vectors
$calc dl = 1 ! binomial parameter
$data tt yl a b c d e f g h ij k 1 m n o p q r s t u v w x y z al a2
! names of input values
$open 7 'nerve.data'
$dinput 7
$yvar yl ! yl is 1 if cell fired, 0 if not
$error b dl ! declares binomial model
$link p $ ! declares probit link function
$calc t2 tt*tt$
$calc t3 t2*tt$
$fit tt+t2+t3+a+b+c+d+e+f+g+h+i+j+k+l+m+n+o+p+q+r+s+t+u+v+w
.+x+y+z+alS

$d e$
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LEGENDS

Figure 1. Top graph. Summation function showing dependence of cell R15 on cell
RVP. Solid lines give ± 2 standard error limits plotted around 0. level.

Middle graph. Estimated spontaneous function V(t) of expression (3.2)
and estimated threshold level, e0.

Bottom graph. Estimate of the probability of cell R15 firing as a function
of the estimated linear predictor, expression (5.1).

Figure 2. Top graph. Summation function showing the effect of the directly
injected hyperpolarizing pulses on the firing of L10. The solid lines pro-
vide ± 2 standard error limits.

Middle graph. As for Figure 1.
Bottom graph. As for Figure 1.

Figure 3. Top graph. Estimates of summation functions a., b, of expression (3.5)
with At corresponding to injected hyperpolarizing pulses and Bt to firing
times of L10. The solid lines give estimated ± 2 standard error limits
about level 0. for the pulses.

Middle graph. As for Figure 1.
Bottom graph. As for Figure 1.

Figure 4. Top graph. Three cell experiment. Estimate of summation functions
a., b. of expression (3.5) describing firing of cell L3 in terms of firings of
cells L2 and L10. The solid lines give estimated ±t 2 standard error lim-
its about 0. level for L2.

Middle graph. As for Figure 1.
Bottom graph. As for Figure 2.

Figure 5. This is the same as Figure 4 except now the dependence of the firing of
L2 as a function of L3 and L10 is studied.



Response: R15 from RVP
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Response: Li 0 from Hyperpolarizing Pulses
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Responses: L3 from Pulses and L10
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Responses: L3 from L2 and L1 0
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Responses: L2 from L3 and Li 0
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Responses: L2 from L3 and L10
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