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ABSTRACT

The regression model is considered, where the number of data points
n and parameters p are both large. It is shown that the boot-
strap approximation to the distribution of contrasts is valid,
provided p/n 1is small. It is also shown that if p/n does not
tend to zero, the bootstirap approximation is invalid. Similar
results are obtained for the full p-dimensional distribution of

the least squares estimates. Here, the relevant growth condition
is that p2/n —> 0, and regularity conditions are needed on the
tails of the error distribution.
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1. INTRODUCTION

This paper is a sequel to Freedman (1981). It will develop some
asymptotic theory for applications of the bootstrap to regression,
where the number of parameters p and the number of data points

n are both large. In more detail, let
Y=XB8+¢, (1.1)

where
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B is a p x 1 vector of unknown parameters, to be estimated
from the data;
Y is an n x 1 data vector;
X is an n x p data matrix, nonrandom, of full rank P $ n;
€ is an n x 1 vector of unobservables,

The main assumptions are on «€:

The components € of € are supposed to be

€11€55 -
independent random variables, with common distribution (1.2)

F, having mean O and variance 02 > 0; both F and

02 are unknown.
Under the circumstances, the conventional least squares estimate R
for B is B = (XTX)_lXTY. Let Q2 be the cross-product matrix:
Q2 = XTX. Then B has mean B and variance-covariance matrix
02/Q2. If additional conditions are imposed, the distribution of
the pivotal quantity Q(B-B)/c is asymptotically normal, with mean
0 and variance-covariance matrix Ipxp’ the p x p identity
matrix,

Notation

XTX is positive definite, so it has a unique positive definite
sqiare root; this is Q. "Positive definite" is taken in the strict
sense. And 02/Q2 is to be interpreted as OZQ-2 = Q-202.

It is convenient to separate the normalization by Q and by
0; only the first will be considered in detail. Let Wnp(F) be
the exact distribution of Q(B-B), with n data points, p
parameters, and law F governing the disturbance terms. Similarly,
if ¢ isa px1l coefficient vector, let Wnpc(F) be the exact
distribution of the contrast cT(é—B), normalized so cT(é-B) has

variance 02; that is,
cT(xM)te = 1. (1.3)
The "Mallows metrics" are defined in'Bickel and Freedman (1981);

also see Freedman (1981). In brief, let ||+|| stand for the

Euclidean norm on Rp, and let o > 1. Then da(u,v) = inf

E{]IU—VIIa}l/a, vhere U has law u and V has law v;
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the inf is over the joint distribution. Convergence in da is
equivalent to weak convergence plus convergence of moments of order
o or less.

There are useful inequalities connecting the Malléws metrics
with other metrics for weak convergence. Let dLP(u,v) be the
Levy-Prokhorov distance between u and v, namely, the inf of

€ positive such that

u(K) < v(Ke) + € and V(K) < u(KE) + €

for all compact K, where KE is the set of x ¢ RP whose
Euclidean distance to K is € or less. As may be seen from

Chebychev's inequality,
a/a+l
a p(u,v) € @ (uv)¥* (1.4)

In more detail,

P{U € K}
P{ve Ke} + P{||U-V|] > €}
PIVeEK} + e %E(]|u-v| %}

u(K)

HA A

Choose U and V to minimize the expected value, and set
€ = da(u,v)a/a+l. Likewise for the bound on V(K). This completes
the argument for (1.4); the tightest bound is obtained when a = 1.

Similar comments apply to the "Bounded-Lipschitz" metric

A

dgr(u,v) < d (u,v) (1.5)

dg; (u,v) = sup¢lj¢du - I¢dv|
the sup being over all ¢ such that
l6(x)| <1 and |e(x)-6(y)| < ||x-y||

for all x and Y.

The bootstrap estimates the distribution Wnp(F) by Wnp(G),
vhere G 1is an estimate of F described below. Bounds will be
given on dZ[Wnp(F),Wnp(G)] and dz[W (F),Wnpc(G)] in terms of
dz(F,G), for any F and G.

npce
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Theorem 1.1, Let F and G be two possible laws for the
disturbance terms €; in the model (1.1-2); it is assumed that both

have mean 0O and finite variance. Then

(a) d,0¥, (F)¥ (6)1° g pray(F,6)°

A

2 2
(b) a0¥  (F),¥  (6)1° < dy(F,0)

Proof. (a) Let ei(F) be independent, with law F; let
e(F) be the n x 1 colum vector with components ei(F); likewise
for ei(G) and €(G). Let A be an arbitrary p x n matrix. Let
\}‘A(F) be the law of Ae(F), and likewise for ‘:I’A(G). As in
Bickel and Freedman (1981, Lemma 8.9),

4,1¥,(F),¥,(6)1% ¢ (trace aaT)-a (F,0)? . (1.6)
Clearly,
«B-8) = ax"x) e = o ixTe

because Q2 = XTX. Use (1.6), with A = Q—lXT; verify that

-1.2,-1 _

aaT = o xTxet = oY% I

PXp
has trace p.

(b) The proof is similar, with A = cT(XTX)_lXT.

Compare the bounds in Theorem 1.1 (a) and (b): the first Las an
extra factor p on the right, due to the fact that it compares
p-dimensional distributions.

In the setup of Freedman (1981), G is the empirical
distribution ﬁn of the centered residuals. To be more specific,

in a regression problem the fitted values are
Y-8 = HY , where H = X(X'x)2xT . (1.7)

The residuals are

€E=Y~-Y=Te, whereT = Inxn—H . (1.8)

Let ﬁn = % Z?=1 Ei; this may be nonzero, for the constants need not be
in the column space of X. Let ﬁn be the empirical distribution

of the centered residuals, assigning mass 1l/n to each Ei - ﬁn'
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1rer o€y

To review the bootstrap operation: Given Yl,...,Yn, let

Let Fn be the empirical distribution of €

* *
SRR be conditionally independent, with common distribution
?n. And let

¥ A *
Y =XB +¢e .

* *
Informally, € is obtained by resampling the residuals. And Y

is generated from the data, using the regression model with

é as the vector of parameters

?n as the distribution of the disturbance terms ¢

Now imagine giving the starred data (X,Y*) to another statistician,
and asking him or her to estimate ﬁ. The least squares estimate is
8% = (xT Ty .
Consider a contrast with coefficient vector ¢ satisfying (1.3).
The bootstrap principle is that the distribution of cT(é*-ﬁ),
which can be computed directly from the data {e.g., by Monte Carlo),
approximates the distribution of cT(§-B). Likewise for the full
p-dinmensional distributions.

Of course, there is also the problem of estimating 02. Let
E* Ye the residuals in the starred data set:

~% *

A%
P A
Let

2 1 n ~2
s :..___z. .
n-p i=1 i

s*2 = —};-Z?_ ETZ
n-p “i=1 71

Division by n-p rather than n 1is immaterial at the moment. The
dependence of é, é*, and §* on n and p 1is suppressed in the
notation. The next result justifiés the use of the bootstrap to

estimate the distribution of individual contrasts and t-statistics

based on them.
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Theorem 1.2. Assume conditions (1.1-2) on the model. Let ¢
satisfy (1.3). Condition on Yl,.
assume p/n —>0. In probability:
(a) The d2-distance between the conditional distribution of
cT(é*-ﬁ) and the distribution of cT(é—B) goes to zero,

wniformly in c.

..,Yn. Let n—w; if p —>x,

I e ¥
(b) The conditional distribution of s  converges weakly to
point mass at o.
(e) The dLP-distdnce between the conditional distribution of

cT(é*-ﬁ)/s* and the distribution of cT(ﬁ-B)/s goes to
zero, uniformly in c.

Proof. Claim (a). Apply Theorem 1(b) to the conditional
X A
distribution of cT(B -B) given Y

G. Tne bound is

l,...,Yn: put ﬁn in place of

FE )

8 \2 2
ay(F,F ) ¢ 21a,(F,F )" + a,(F_,F )°).

As shown in Freedman (1981, lLemma 2.2),
A \R 2
E{dZ(Fn’Fn) } < o"(p*l)/n— O .

On the other hand, d2(F,Fn)-—e-0 by Bickel and Freedman (1981,
Lemma 8.4). Claim (a) follows.

Claim (b). This is argued as in Freedman (1981).

Claim (c) is immediate from (a) and (b), using (1.4). Of
course, dLP can be replaced by dBL'

Evidently p/n — 0 and (1.2) also suffice for bootstrapping
the joint distribution of cg(ﬁ-s), where 1 <igr and T is
fixed; the c, are to satisfy (1.3). If p/n does not tend to
O, the bootstrap will fail for general contrasts: see sections 2
and 3. What happens to the distribution of §*2? A fairly technical

argunent gives

Theorem 1.3. Assume conditions (1.1-2) on the model. Let n-p —> .
Then the conditional distribution of s* converges weakly to

point mass at o in probability.
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Here is an interesting variation on the bootstrap idea. Suppose
we want to use the resampled residuvals from one model with n X Py
design matrix Xl to analyze a second model with n, x P, design

2

matrix X the underlying distribution of the disturbance terms

;
are assumgd the same, and (1.1-2) in force. For instance, X1
might be a subratrix of X,. If p,/n, —>0, and Tcilxgle_lc =1,
the bootstrap can be used to estimate the law of ¢ (B-B) in the
X2 model, without any conditions on n, and Py- This is a
consequence of Theorem 1.1(b) since dz(fl,F) — 0 in probability,
where F1 is the empirical distribution of the centered residuals
from the fl mgdel. Likewise for the law of the pivot cT(ﬁ—B)/s.

Let Y = X8 be the vector of fitted values. Of course,
E{?YT} = 02H. Huber (1973) has shown that asymptotic normality of

all standardized contrasts is equivalent to the L, consistency

of all the fitted values, which in turn is equivalint to max, Hii
—> 0. Now trace H = p. So max, Hii > p/n; and Huber's condition
is stronger than that needed for bootstrapping contrasts, viz.,
p/n —> 0. In particular, the bootstrap may work even when asymptotic
normality fails. See Example 2.1.

There are plausible modifications of ﬁn as an estimator of
F. One is to rescale the residuals by //{n-p). Then s° is the
Y . II" p/n — 0,

l,oo-, n
the theorems are unchanged. On the other hand, as shown in Sections

. s * .
conditional variance of the ei given Y

2 and 3, if p/n does not tend to 0O, the rescaling does not

help. Another modification is to use the standardized centered

residuals (g€,-€ XT.,-2T, + T )-1/2
1 L] 11 1. LN ]

in (1.8), and the dot is the averaging operator. It is easy to see

that this works if (1.1-2) hold, and Huber's condition that

max, Hii —> 0 1is satisfied. With a little more effort, one can

, where T = |[rij|| is given

show that Huber's condition can be replaced by the weaker condition
that p/n — 0. If F is normal but p/n does not converge to O,
standardizing the residuals this way may give a consistent estimate
of F when our fn fails. If F 1is not normal, standardizing

the residuals does not help: see Theorem 3.2.
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If p 1is fixed, simultaneous inference for all contrasts can
be accomplished by the bootstrap, as in Freedman (1981). Another

approach is to use Theorem 1.1(a):

Theorem 1.4. Assume cornditions (1.1-2) on the model, suppose D

is fixed, and let n —> =, Then the dz—distance between the \
distribution of Q(B-8) and the conditional distribution of QB -B)
1,...,Yn tends to zero in probability. Likewise for the
distribution of the pivotal quantities, with respect to the distance

dLP'

given Y

If p-—> but p2/n—>-0, and E{dZ(Fn,F)Z} = o(1/p), the
distance between the distribution of Q(B-8) and the corresponding
bootstrap distribution tends to 0. This has an interesting
consequence for the Scheffé method of simultaneous inference.
Consider bootstrapping S = [(é-B)TQz(é—B)]l/2 or S/s. Let

s* = (B - 3B BN

Theorem 1.5. Assume conditions (1.1-2) on the model. If n —> e,
p2/n —> 0, and E{dz(Fn,F)z} = o{1/p), the d2—distance between
the distribution of S - p/%s and the conditiomal distribution of
S* - pl/zs* given Yl,...,Yn tends to zero in probability; likewise
for the distributions of S/s - pl/2 and S*/s* - p1/2, with respect
to the distance dLP'

Proof. Let ¢ (F) be the joint law of Q(f-8) and o/,

Arguing as in Theorem 1.1,
2 2
d2[¢np(F)’¢np(G)] L2 dZ(F,G)
because
2 _ 1 2
2= Lird? .
~ 2 1/2
Let ¢np(F) be the law of [Q(R-B)Y - p/“s. Then
4 (8 (F),6 (6)1° < 24,06 (F),® (G)1° < 4pd (F,G)°
2 np' ¢’ 'np =2 "np'" "’ 'np = 24’

This inequality can be applied to the bootstrap situation as in
Theorem 1.2:
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a8, (F), & (F 012 < 4pay(F,E)% < splay(FF )%ay(F L E )%
Now pdz(Fn,f‘n)2 is of order p2/n, which tends to zero by
assumption, as does pd2(F,Fn)2.
We expect E{dZ(Fn,F)Z} = 0(1/n), in which case if p = o(n),

then E{dZ(Fn,F)Z} = o(1/p). Indeed, by Bickel and Freedman (1981,
Lerma 8.2),

1
E{a,(F_F)°} = fOE{[F;l(t)-F_l(t)lz}dt )

Suppose F concentrates on an interval (a,b), and f = F > 0,

and f 1is continuous on [a,b]. Then

1 1
nf E([F (1) - F(t)1°)at = f t(1-t)fT2(FY(t))dt + o(1)
0 0

and our expectation is fulfilled. However, in general, there is a
delicate dependence on the tails of F. Under the conditions of

Lemma A2.3 of Albers et al {(1976), if a = n-l,

nJlE{[F;l(t) - Fi1)1%)at - Q[fl-a

t(l—t)f‘z(F'l(t))dt]
0

a
wnere § aenotes exact order. For the normal distribution,

2y _ orlogl - L
E{d,(F _,F)°} = 9(__£L7§¥ill) = 0(50

~i+¢g

for p=o(vn). However, by taking F'l(t)~t as t+0, we get

E{dz(Fn,F)z} = o(n"%),

2. EXALPLES
We illustrate the range of behavior of the bootstrap in the one-way
analysis of variznce with p-1 +treatment groups, all of the same

size T, and a control group of size C. The model is

ij ° Bi + eij (2.1)

The treatment groups are indexed by i =1,...,p-1; the subjects
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by j=1,...,T. The control group index is i = 0; the subjects
in control are indexed by Jj =1,...,C. The disturbances Eij

satisfy (1.2). So,

C + (p-1)T
Yi- for 0<ig<p

n

B,

1

The hat matrix H has diagonal entries 1/T and 1/C; Huber's

condition is satisfied iff
both C and T tend to infinity. (2.2)

Everything works in this case. The variables (B B ) and
l/2(6 B ) for i > 1 are independent and asymptotlcally N(0,o )
under F The residuals €;;"€;. are automatically centered, and
have empirical distribution ﬁn with 4 (? ,F) > 0; so the
ccrditional distributions of Cl/z(ﬁ B ) and Tl/z(B ﬁ ) given
Y .,Yn have the same behavior.

On the other hand, p/n — 0 iff

12"

either T —s ® or C/p —> . (2.3)
The difference between (2.2) and (2.3) makes trouble, as follows.

Example 2.1. The bootstrap may succeed even if some parameter
estimates are neither consistent nor asymptotically normal. Suppose
=2 and C—> but T is fixed. Evidently. él is neither
consistent nor asymptotically normal. But dz(ﬁn,F) —»0 in
probability. Given Y
1/2 1/2

’Yn’ the joint distribution of

1/2,4
(By-8,)

170

(BO BO) and T (é;-él) is close to that of C

1/2
ana T/%(8-8,).
The next two examples show that, in general, the bootstrap will

fail if p 1is of order n; i.e., there are too many parameters.

Exemple 2.2, Suppose C =T =2, so n =2p. Then ﬁn is the

s X . . 1 _ . 1
empirical distribution of * i(eil eiz), for i l,...,in; As
n —>, this converges to the theoretical distribution F of

Xe

s s . . . e . .
- 11-612). The conditional distribution of Bi - Bi given
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. . . . 1
Yl""’Yn goes to the theoretical dlstrlgutlon of Z<ell-612+€21'€22)
whereas Bi-Bi has the distribution of E(ell+€12)' The two
distributions do not even have the same variance. If the residuals
are rescaled to have the right variance before resampling, i.e., to

e )/— the resulting bootstrap distribution does have the

117
right varlance, but is still wrong unless F 1is normal. In this
example, the projection matrix is constant at 1/2 along the

diagonal, and the behavior is prototypical for Theorem 3.2 bhelow.

Example 2.3. Suppose T =2 and C-—>® but C/p — p<w. (For
instance, given that T = 2, in the optimum allocation for
estimating treatment effects = 2/p-1, so p = 0.) As before,
let F be the distribution of %( 2).

a mixture F = 2+p §:5F The bgo}strap dlstrlbutlon of 2(8 B )
for i 2> 1 will have as a limit F*F where * denotes

Then F converges to

convolution. This will not agree with F¥F for most F, 1including
F normal. If p > 0, rescaling by vn/(n-p) will not help with
the treatment means, although it will with the control mean. In
this example, the projection matrix is variable along the diagonal,
with np/(p+2) elements tending to 0O and the rest to 1/2. The
behavior is prototypical for Theorem 3.1 below. Rescaling the
residuals before resampling does give the right answer for all
contrasts if F is normal, but still goes wrong for other
distributions.

In Examples 2.2 and 2.3, the estimates of Bi are not
consistent; replacing Bi by nBi in (2.1), however, gives examples

where the estimates are consistent.

3. THE FAILURE OF THE BOOTSTRAP

Consider a sequence of regression models satisfying the condition
(1.2). In all trhese models, the disturbance terms € are assumed
to have the same distribution F. Suppose p/n, the ratio of
parameters to data points, converges to a limit a, with O < a <1,

let H be the projection matrix, and T = Ian - H, as defined in
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(1.7-8). The empirical measure An of {Fii: i=1,...,n} sits on
[0,1] and has mean (n-p)/n. By compactness, suppose without loss
of generality that An converges weakly to a limit A. Since

(n-p)/n — 1l-a, clearly Jxx(dx) =1 - q.

Theorem 3.1. Suppose X is nondegenerate: M{1l-a} < 1. Suppose
F s N(0,1). Then the bootstrap fails. Indeed, the empirical
distribution ﬁn of the residuals converges weakly in probability
to a A-scale mizture of normals, rather than normal. Furthermore,
for each n there is an n X l-coefficient vector c satisfying
(1.3), such that the conditional distribution of cT(ﬁ*-B) given

Yl,...,Yn does not converge to normal. Scaling the residuals by

A n-p)/p will not help.

This is the general phenomenon exhibited in a special case in
Example 2.3. The convergence is a bit perplexing. To be more

specific, let X be the A-scale mixture of normals. Thus,
X = J@ck(dc) where ¢c is normal with mean O and variance c.

The assertion of the theorem is that for any weak neighborhood N

of A,

P[Fne N} — 1.

In particular, ﬁn becomes almost constant at i. As it happens,
A is a mixture. But this does not imply any asymptotic randomness

~

in Fn: there is none.

Proof. Let ¢n(t) be the empirical characteristic function
of the residuals:

n A
Lioy exp( V=1 tei) .

~ _ 1
¢n(t) T n “i=

Let ¢ be the characteristic function of the errors €ss so

o(t) = exp(- %tz). As before,

and
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_ (2 -
Zj rijrjk = (T )ik - rik .

Put X = i and use the symmetry of TI:

(l

1 2 1
n exp( - Eriit ) — J exp( - §ct2)x(dc) .
o]

E(G (0)} = 217

Next, it is claimed that for most pairs (j,k), the elements rjk

are nearly zero. Indeed

1 e _ 1 n-p (3.1)
=, I ==L, T..="F_50.
n° K Jk 275 Td5 2
Now
15 ()% = L 5. ex/T «(E.-8)]
n 2 Yk i %
and
5 = & T Zl(rjl_rkz)el .
So
A 2, _ 1 1.2 2
E{lo (£)[7} = n—zzjk exp[- 5t zl(rjz_rkz) 1.
But
2 _ 2 2
Eo(TipTyg)™ = Zp T * Iy Tiep = 2 IpT5olhg
=T, +T -2,
JJ kk Jk
and now

2 2, _ 1 1.2

However, for most pairs jk, exp[tzrjk] is esséntially one by

(3.1), so

R 1
B(I3_(1)]%) — 1 [Oexp<- Le?n(ae))? .

Thus, $n(t) has an asymptotic variance of zero. It follows that

?n’ the empirical distribution of the-residuals, converges weakly
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in probability to the A-mixture of normals. See Freedman and Lane
(1981) for details.

Turn to the contrasts., Since trace H = p, +there is an i
with Hii > p/n. For each n, there will be a coefficient vector
¢ (corresponding to a fitted value) satisfying (1.3), but

n *
. d.e,
i=1 "i71i

TA*A
c(B-B)=1=L
and di > p/n for some i. The conditional characteristic function

of the contrast is

Any 1limit here has a proper scale mixture of normals as a factor,
and hence cannot be normal, by Cramér's theorem.

Here is the general phenomenon we exhibited in Example 2.2

Theorem 3.2. Suppose X 1is degenerate, O < o < 1. Suppose
further,
fa) F 1is nondegenerate and is not representable as the
convolution of the distribution of (l-a)e and another
distribution.

(b) The Laplace transform
W) = [e™ar(x)

is finite for t in an interval about O.
Then,
(1) ¥ 1is not a limit point of the sequence {ﬁn} in
probability. That is, there exists a weak neighborhood
N of F such that PIF_& N] —>1.
Suppose further
(e) F 1is symmetric about O.
Then, '
(2) For each n we can find an n x 1 coefficient vector
e satisfying (1.3) such that the Lévy distance between
the conditional distribution of c (B-8) stays bounded
away from 0 in probability.
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Notes

1.

2.

As the statement of the theorem and Example 2.2 suggest,
characterizing what ?n behaves like in general is difficult.
If F has (l-a)e as a component, it must have a
representation of the form 2:=1(1‘a)k5k’ where the €y

are independent with common distribution F. In particular,
the symmetric two-point distributions satisfy a-b-c.

Let ¢ be the characteristic function of F. If F has
(1-a)e as a component, then ¢(t)= ¢[(1-a)t]¥(t) for

some characteristic function ¢. In particular, the symmeiric
uniform distributions satisfy a-b-c.

The "balanced" designs with rii = (n-p)/n are covered by
the theorem.

The conclusions of this theorem apply even if the residuals
are scaled or standardized.

The proof of this result requires two lemmas. The first extiends

the main argument in Theorem 3.1. Its rather technical proof is

given in the appendix.

let @n be the empirical Laplace transform of the residuals,

and Y the theoretical Laplace transform of F. Thus

Let

‘Bn(t) = % £, exp(t€;)
y(t) = B (t) .

Lemma 3.1. Suppose Y satisfies (b) of Theorem 3.2. Then 1log ¥
has a Taylor expansion convergent for |t| < a, a > 0, which ve
shall write

-] tr
log P(t) = Zr=l Kp 7T ° (3.2)

K
Iy

And (1) Iwn(t)| f,exp{2:=2 —;j—Jtlr} for [t] < a.

(2) sup{[ﬁn(t)-wn(t)|: Jt]< %J — 0 in probability.
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Part (1) of Lemma 3.1 implies that not only are the distri-
butions Eﬁn tight but also any 1limit point F of a subsequence

A

EF possesses a Laplace transform & finite on (-a,a), which

is the limit of ¥, on (-a,a).
k

Lemma 3.2. Such an F may be represented as the convolution of the
distribution of (1l-a)e, and another distribution. Equivalently

there exists a moment generating function p such that for |t] <a,
¥(t) = w((1-a)t)p(t). (3.3)
Proof. By (A.3) of the appendix,
(4) = 1m
V(8] = 2 I3 g BTy t) T WTyt)
Since ) is degenerate, for |[t] < a,

Lgn T t)-u(1-a)t)] - o

So {y_ } behave like
Ty

"k

Ul((l—cx)t);ll—k):izl s W04t (3.4)

If the converge to @, the second factor in (3.4) does
also, to p (say). Since p is the limit of moment generating

functions, the lemma follows.

Proof of Theorem. We argue by contradiction.

Claim (1). If F is a weak limit point of Fnk in

probability, it is by part (2) of Lemma 3.1 also a limit point of
EF_ . Suppose that F = F. Then we would have a contradiction to

aszgmption (a) by Lemma 3.2.
Claim (2). Since XA is degenerate we can find {in} such
Fi ; — l-0. Without loss of generality, suppose in =1 for
nn
all n.
Take cT to be the first row of X. We will argue that any
weak limit of cT(ﬁ*—ﬁ) given Yl,...,Yn is different from the
corresponding weak limit of cT(g-B) and thus prove (2). Note first
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c(B*-8) = 2 Hy el (3.5)
~ *
e(B-8) = £, H e} (3.6)

where
H = X(Xx)"%x .

Arguing as in Lemma 3.1 and using (3.6), we get
K
T, 4 L T T
E(exp(c (8-B))) < exp I, {—|t|"} .

Hence the distributions of cT(é—B) are tight and any weak limit
must have cumulants of all orders which are the limits of the
cunilants of cT(é-B). Similarly, by (3.5), and the Marcinkiewicz

inequality, for an absolute constant ay,

XKy ...,

B{(c'(B-8)) ¥} <o 2D BRI Y, .Y )

(3.7)

< ak{xzde
By Lemma 3.1(1), the right-hand side of (3.7) is bounded in
probability so any weak limit of the conditional distiribution of
cT(B*—B) must also have cumulants which are the limits in
probability of the conditional cumulants of éT(é* é). But, then,
if we let Qr be the rth cumulant of F and K m that of F n’
the cumulants of ¢ (B B8) and the conditional cumulants of
cT(é*-é) are respectively,

n r n r] ~
[Zi=l Hli] K and (Zi=l Hli] Ko * (3.8)

fa ~
Ncw consider a subsequence n, for which Fn converges to F

and cT(é—B) converges weakly to G while cT(é*-é) converges
weakly (conditionally) to G*.

We claim that if G = G* we must have F = F and hence arrive
at a contradiction to part (1) of the theorem. If Er are the

cumulants of F and ﬁn converges to F we must have
L

Krnz — K, (3.9)



Bickel and Freedman 45

in probability for each r. In view of (3.8) and (3.9), convergence

of cT(é-B) implies the existence of ACIEEE such that

n
Loy Y (3.10)

*
for each r. Moreover, the cumulants of G and G are
> of > 0, since
T— %
So if G =G,

respectively Kryr and KrYr. If r ;s even, Y
11-

K. = K, for r even . (3.11)

the sum in (3.10) is no smaller than H

*
But if F 1is symmetric about O, so are G and G and

K. =K. = 0 for r odd. (3.12)

Since F has a moment generating function (3.11) and (3.12) imply

F= F and we have our contradiction.

APPENDIX

lerma 3.1

Eefore proving Lemma 3.1 we need the preliminary
Lemma A.1. If min(a,b) > 1, max(a,b) > 2

z |° 5_n3/2 . (A.1)

a
i,j,k |rik| II|,jk
Horeover,

L, . .. </, (A.2)
i,5 Migh =

Proof. For (A.2) apply Cauchy Schwartz to get the bound
nt/? z.[z. r?.]l/z = a2, 12 32
ity ij i “ii —
For (A.1) bound by

2

- 3/2
i 5k riklrjkl =I5y rkk|rjk| f_ijlrjkI <n by (A.2).
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Proof of Lemma 3.1. (1) Since

Ei = Ej rijei
(A.3)
1
wn(t) - H zi H?:l w(rijt) .
By (3.1), if |t]| < a,
w(t)=1 = r rr 17} (A.4)
n i= €xp J=1 r =2 1l -4

(Note that by assumption Ky = 0.)
Take absolute values and change the order of summation in the
exponent to get the bound

Krl

II‘
r=2 1l

1 T
= ):1 - exp{i._, ——|t Y lrijl

Claim (1) follows since T :-rii <1 for r > 2.

n
zj:l |rijl
(2) Compute
-~ 2 — -2 ~AA A ~
E(wn(t)—wn(t)) = n {zi,j[E exp(t(ei+ej)) - E exp(tei) E exp(tej)]}.
(A.5)
Arguing as for (A.3), the right-hand side of (A.5) reduces to

L

n n
2 zi,j[nk=l w(t(rik+rbk)) - w(trik)w(trjk)] . (A.6)

The two terms in each swmmand are bounded in absolute value by

y(2t) since Irikl <1 for all i, k. So, if |[t] < %3 we can
apply claim (1) and the inequality Iea-ebl j_max(e'al,elbl)lb-al
to bound the right-hand side of {(A.6) by a econstant depending only

K
on Z:=2 l;glltlr (but not n) times

1 n
1y 5|y loe MATLem ) - og w(aryy) - g w(ar )|
Arguing as for (A.4) we can bound this expression by

1 K
-1, .|Z iy r r
2 %1,517k “r= 2 +T (T, )y - rik - Pj

1k JK
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Recalling that Zk rikrjk = rij we can bound this expression by

t2K n~°

x|
o r'r r-1,t, -2 L r-%
P B Il gt S Ty (T I AT T T

r!

Since min(%,r-£) > 1, max(&,r-£) > 2 we can apply Lemma A.1l to

get the bound

-1/72(.2 o Il -1/2
n / [t Ky * Zr=3 —;%‘Itlrzr] = 0(n / )

. a . a
it |t} < 3 . So, if [t] <5

B(§ (4)-y_(£))° = 0(n™?) ana § (1) - v (+) 2> 0. (A7)
Now, for any pair s, t, |s|, |t] <b< %

[9.(£) - v (£) - §_(s)+y (£)] < sup{[¥ ()] + Ju (s)]: [s] <b}|t-s]

A~

Since wn, wn are Laplace transforms, the first factor above is
Op( Jexp{(b+6)|x|}d§n(x) + fexp{(b+6)|x]an(x)

for any 6 > 0. By (1) of Lemma 3.1 again we conclude that @n - wn
satisfies a uniform Lipschitz condition on any closed subinterval of

[-a/2,a/2}. In view of (A.7), part (2) of the lemma follows.
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