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ABSTRACT

The regression model is considered, where the number of data points

n and parameters p are both large. It is shown that the boot-

strap approximation to the distribution of contrasts is valid,

provided p/n is small. It is also shown that if p/n does not

tend to zero, the bootstrap approximation is invalid. Similar

results are obtained for the full p-dimensional distribution of

the least squares estirates. Here, the relevant growth condition

is that p /n -> 0, and regularity conditions are needed on the

tails of the error distribution.
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MalZows metrics.

1. INTRODUCTION

This paper is a sequel to Freedman (1981). It will develop some

asymptotic theory for applications of the bootstrap to regression,

vwhere the number of parameters p and the number of data points

n are both large. In more detail, let

Y = X+ C, (1.1)

where
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8 is a p x 1 vector of unknown parameters, to be estimated
from the data;

Y is an n x 1 data vector;

X is an n x p data matrix, nonrandom, of full rank p < n;

c is an n x 1 vector of unobservables.

The main assumptions are on c:

The components c1, 2,. O.yn of c are supposed to be

independent random variables, with common distribution (1.2)
F, having mean 0 and variance a2> 0; both F and

a2 are unknown.

Under the circumstances, the conventional least squares estimate P

for 8 is S = (XTX) 1XTY. Let Q2 be the cross-product matrix:

Q = X X. Then B has mean 8 and variance-covariance matrix
2 2a /Q . If additional conditions are imposed, the distribution of

the pivotal quantity Q(S-_ )/a is asymptotically normal, with mean

O and variance-covariance matrix Ipxp, the p x p identity

matrix.

Notation

XTX is positive definite, so it has a unique positive definite

square root; this is Q. "Positive definite" is taken in the strict
2 2 2-2 -2 2sense. And a /Q is to be interpreted as aQQ = Q a

It is convenient to separate the normalization by Q and by

a; only the first will be considered in detail. Let Tnp(F) be

the exact distribution of Q( -8), with n data points, p

parameters, and law F governing the disturbance terms. Similarly,
if c is a p x 1 coefficient vector, let Tnpc(F) be the exact

distribution of the contrast c (B-,), normalized so c (-8) has

variance a ; that is,

c (X X) c = 1. (1.3)

The "Mallows metrics" are defined in Bickel and Freedman (1981);
also see Freedman (1981). In brief, let | stand for the

Euclidean norm on Rp, and let a > 1. Then d (P,v) = inf

E{IIU-Vi Io) /a, where U has law p and V has law v;
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the inf is over the joint distribution. Convergence in d is

equivalent to weak convergence plus convergence of moments of order

a or less.

There are useful inequalities connecting the Mallows metrics

with other metrics for weak convergence. Let dLp(p,v) be the

Levy-Prokhorov distance between p and v, namely, the inf of

C positive such that

p(K) < v(K ) + C and v(K) < p(K ) + E

for all compact K, where K is the set of x s RP whose

Euclidean distance to K is C or less. As may be seen from

Chebychev' s inequality,

d p, v ) < d (1lJ,Va//*+l (1.4)

In more detail,

"(K)= P{U e K}
< P{V e K} + P{IIU-VIl | }
< P{V E K } + SxE{IIU-VIIla}

Choose U and V to minimize the expected value, and set

C = d (p,v)cx/c1+l. Likewise for the bound on v(K). This completes

the argument for (1.4); the tightest bound is obtained when a = 1.

Similar comments apply to the "Bounded-Lipschitz" metric

dBL(11"v) < do(i,) (1.5)

where

dBL(P.,v) = sup< I dp - J¢dvI
the sup being over all ¢ such that

14(x)I ' 1 and jc(x)-4(y)l < I |x-y| I
for all x and y.

The bootstrap estimates the distribution Tinp(F) by Tnp(G),
where G is an estimate of F described below. Bounds will be

given on d2[p (F),'np(G)] and d2['npc(F),'np (G)] in terms of

d(F, G), for any F and G.
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Theorem 1.1. Let F and G be two possibZe Zaws for the
disturbance terms £i in the model (1.1-2); it is asswned that both
have mean 0 and finite variance. Then

(a) d [T p(F),.FY (G)]2< p-d (F.,G)22 np np

2 2

(b) d [T p( F ). (fG ) I2 < d2(F,IG)22npc npc =2

Proof. (a) Let ci(F) be independent, with law F; let

c(F) be the n x 1 column vector with components sc(F); likewise

for ci(G) and c(G). Let A be an arbitrary p x n matrix. Let

TA(F) be the law of Ac(F), and likewise for TA(G). As in

Bickel and Freedman (1981, Lemma 8.9),

d[TA(F),TA(G)]2 < (trace AAT)-d2,(FG)2 (1.6)
Clearly,

= Q(XTXY)-lXTk = Q-lT£

because Q2 = XTX Use (1.6), with A = Q1XT; verify that

AAT =Q- XTXQ-l =Q-1Q2Q- = I
pXp

has trace p.

(b) The proof is similar, with A = cT(XTX) XT.
Compare the bounds in Theorem 1.1 (a) and (b): the first has an

extra factor p on the right, due to the fact that it compares

p-dimensional distributions.

In the setup of Freedman (1981), G is the empirical
distribution Fn of the centered residuals. To be more specific,
in a regression problem the fitted values are

Y =X= HY, where H = X(XX)X. (1.7)

The residuals are

e=Y- Y = re, where r = Inxn-H. (1.8)

1 nLet Pn = E . ei; this may be nonzero, for the constants need not be

in the column space of X. Let Fn be the empirical distribution
of the centered residuals, assigning mass 1/n to each . -n
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Let Fn be the empirical distribution of l' ene
To review the bootstrap operation: Given Y,.. .,Y , let

'l.'. n be conditionally independent, with common distribution

F. And letn
* ,^ *

Y =X + c

Inform.ally, E is obtained by resampling the residuals. And Y

is generated from the data, using the regression model with

0 as the vector of parameters
F as the distribution of the disturbance terms e
n

Now imagine giving the starred data (X,Y ) to another statistician,
and asking him or her to estimate 8. The least squares estimate is

T l1T*
8 = (X X) X Y

Consider a contrast with coefficient vector c satisfying (1.3).
T "

The bootstrap principle is that the distribution of c (8 -8),
which can be computed directly from the data (e.g., by Monte Carlo),

approximates the distribution of cT(-8). Likewise for the full

p-di-mensional distributions.
2

Of course, there is also the problem of estimating ao. Let

£ be the residuals in the starred data set:

,^* * ^~* *
e = Y - X8 =I's

Let

2 1 n ^25 s
n-p i=l i

*2 1 n ^*2
S E- . £.n-p 1=1 1

Division by n-p rather than n is immaterial at the moment. The

dependence of 6, 8*, and s on n and p is suppressed in the

notation. The next result justifies the use of the bootstrap to

estimate the distribution of individual contrasts and t-statistics

based on them.
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Thieorem 1. 2. Asswne conditions (1.1-2) on the model. Let c

satisfy (1. 3). Condition on Y1, . . . ,Y . Let n -> ; if p ->c0

assume p/n ->0. In probability:
(a) Tlze d2-dis tance between the conditional distribution of

cT(8 -8) and the distribution of cT(8-) goes to zero,

unijformZy in c.

(b) The conditional distribution of S converges weakZy to

point mass at a.

(cc) Tle dI distance between the conditional distribution of

c (8 -8)/s and the distribution of c (8-8)/s goes to

zero, uniformZy in c.

Proof. Claim (a). Apply Theorem l(b) to the conditional
T -.* ^.

distribution of c (8 -8) given Y1,...,Yn: put F in place of
n ~~n

G. Tne bound is

d2(F,F") < 2[d2(F,F)2+ d (F F

As shown in Freedman (1981, Lemma 2.2),
E{dF 2 <(2 - 0

E{d,n, F ) } a (p+l)/n-> O2' n n =

On the other hand, d2(FyFn) 0 by Bickel and Freedman (1981,
Lemma 8.4). Claim (a) follows.

Claim (b). This is argued as ir. Freedman (1981).
Claim (c) is immediate from (a) and (b), using (1.4). Of

course, dLp can be replaced by dBL.

Evidently p/n -> 0 and (1.2) also suffice for bootstrapping

the joint distribution of c(T-8), where 1 < i < r and r is

fixed; the c. are to satisfy (1.3). If p/n does not tend to

0, the bootstrap will fail for general contrasts: see sections 2

and 3. What happens to the distribution of s ? A fairly technical

argument gives

Theorem 1.3. Assume conditions (1.1-2) on the model. Let n-p ->co.

Then the conditional distribution of s converges weakly to

point mass at a in probability.
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Here is an interesting variation on the bootstrap idea. Suppose

we want to use the resampled residuals from one model with n- x p1
design matrix X1 to analyze a second model with n2 x P2 design

matrix X2; the underlying distribution of the disturbance terms

are assumed the same, and (1.1-2) in force. For instance, Xi
might be a submatrix of X2. If p1/n1 ->0, and cTXIX2] c = 1,

the bootstrap can be used to estimate the law of c ($-,) in the

X2 model, without any conditions on n2 and P2 This is a

consequence of Theorem 1.1(b) since d2(F1,F) ->0 in probability,
where F is the empirical distribution of the centered residuals

from the model. Likewise for the law of the pivot c (a-a)/s.
Let Y = XB be the vector of fitted values. Of course,

E{1T1 =- a2H. Huber (1973) has shown that asymptotic normality of

all standardized contrasts is equivalent to the L consistency2
of all the fitted values, which in turn is equivalent to maxi Hii

- 0. Now trace H = p. So max. H.. > p/n; and Huber's condition
is stronger than that needed for bootstrapping contrasts, viz.,

p/n ->0. In particular, the bootstrap may work even when asymptotic

normality fails. See Example 2.1.

There are plausible modifications of F as an estimator of

F. One is to rescale the residuals by 4i7(n-p). Then s is the

conditional variance of the E. given Yl,...,Y . If p/n -O,
the theorems are unchanged. On the other hand, as shown in Sections

2 and 3, if p/n does not tend to 0, the rescaling does not

help. Another modification is to use the standardized centered

residuals (c.-ac)(rii-2ri.+ r**) 1/2, where r = IIrII is given

in (1.8), and the dot is the averaging operator. It is easy to see

that this works if (1.1-2) hold, and Huber's condition that

max. H.. --> is satisfied. With a little more effort, one can

show that Huber's condition can be replaced by the weaker condition

that p/n -->O. If F is normal but p/n does not converge to 0,

standardizing the residuals this way may give a consistent estimate

of F when our Fn fails. If F is not normal, standardizing
the residuals does not help: see Theorem 3.2.
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.If p is fixed, simultaneous inference for all contrasts can

be accomplished by the bootstrap, as in Freedman (1981). Another

approach is to use Theorem 1.1(a):

Theorem 1.4. Asswne conditions (1.1-2) on the model, suppose p

is fixed, and let n >Xo. Then the d2-distance between the

distribution of Q(R-5) and the conditional distribution of Q(" -a)
given Yl,...,Yn tends to zero in probability. Likewise for the

distribution of the pivotal quantities, with respect to the distance

dLP
If p >d but p2/n > O, and E{d2(Fn,F)21 = o(l/p), the

distance between the distribution of Q(R-a) and the corresponding

bootstrap distribution tends to 0. This has an interesting

consequence for the Scheffe' method of simultaneous inference.

Consider bootstrapping $ = [(S-8) Q(2- 1)] or S/s. Let

S = [(S a) Q (^ a)]

Theorem 1.5. Assume conditions (1.1-2) on the model. If n - ,
2/n O, and E{d (F F) } = o(l/p), the d -distance betweenp .1 2 n~~1/ 2
the distribution of S - pl/ s and the conditionaZ distribution of
S- pl/2s given Y1,. ..,Y tends to zero in probabiZity; Zikewise
for the distributions of S/s - pl/2 and S /s p/2, with respect

to the distance dL.1/
Proof. Let 4) (F) be the joint law of Q(S-S) and p/2s.

np
Arguing as in Theorem 1.1,

d2[np(F), np(G)] < 2p d2(F,G)2
because

S2= 1 lld2
n-p

Let 4 np(F) be the law of IIQ(S_I - p"2s. Then

d [4¢ (F),4P (G)l < 2d [ (F)IO (G)]2 < 4pd(FG)2
2 np - np 2 np np 2

This inequality can be applied to the bootstrap situation as in

Theorem 1.2:
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d[~(F,~ (~)2 A2 )2 2d [¢np(F) j,0bnp(Fn < 4pd (F.Fn)2 < 8p[d2(Fd,FF +d (FF)2[onp p( 4pd2(F )
n

r ~ n/ 2 n'n

Now pd2(FnFnA2 is of order p /n, which tends to zero by

assumption, as does pd2(F,FFn)2,

We expect E{d2(Fn,F)2} = 0(1/n), in which case if p =o(n),

then E{d2(Fn,F) } = o(l/p). Indeed, by Bickel and Freedman (1981,

Le.nma 8.2),

E{d2(FF1 = J EQ[F'(t)-F (t)] }dt

Suppose F concentrates on an interval (a,b), and f = F > 0,

and f is continuous on [a,b]. Then

nf E{[F (t) - F (t)]2}dt = f t(l-t)f 2(F-1(t))dt + o(l)

and our expectation is fulfilled. However, in general, there is a

delicate dependence on the tails of F. Under the conditions of

Leumma A2.3 of Albers et al (1976), if a = n I

n E{[F l(t) - F 1(t)]2}dt = (fl-a 2 1)

-;.nere f1 aenotes exact order. For the normal distribution,

E{d (F )2= ,(log log n) = 0(1)

for p=o( '). However, by taking F- (t)-t) it as t-+O, we get
2 = cE{d2(Fn,F) I Q(n ).

2. EXA.LLES
We illustrate the range of behavior of the bootstrap in the one-way

analysis of variance with p-l treatment groups, all of the same

size T, and a control group of size C. The model is

ij i ij (2.1)

The treatment groups are indexed by i = 1,...,p-l; the subjects
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by j = 1,.. .,T. The control group index is i = 0; the subjects

in control are indexed by j = 1,...,C. The disturbances

satisfy (1.2). So,

n = C + (p-l)T

. = Y. for 0 < i < p

The hat matrix H has diagonal entries l/T and 1/C; Huber's

condition is satisfied iff

both C and T tend to infinity. (2.2)

Everything works in this case. The variables C /2( o~8) and
1/2 -) for i > 1 are independent and asymptotically N(O,a )

under F. The residuals s. .-s. are automatically centered, and

have empirical distribution F with d2(F,F) ->O; so the

conrditional distributions of C112(8-o) and T i/2(R given

Y1,. .. Yn have the same behavior.

On the other hand, p/n -O 0 iff

either T >o or C/p >+o. (2.3)

The difference between (2.2) and (2.3) makes trouble, as follows.

Example 2.1. The bootstrap may succeed even if soie parameter

estimates are neither consistent nor asymptotically nor.mal. Suppose
p = 2 and C - c but T is fixed. Evidently. 1 is neither

consistent nor asymptotically normal. But d2(FnIF) -->O in

probability. Given Y1..,Yn, the joint distribution of

c /2 (60 a) and T112(O-la) is close to that of C / ( a0-o)

and T (a1-1
The next two examples show that, in general, the bootstrap will

fail if p is of order n; i.e., there are too many parameters.

Example 2.2. Suppose C = T = 2, so n = 2p. Then Fn is the

e.i,:irical distribution of ± y(e.1-e.2), for i = 1,...,Un As

n -->, this converges to the theoretical distribution F of

j4 11- 2). The conditional distribution of 8 - g. given
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Y Y goes to the theoretical distribution of E -C +E E-

whereas i-8. has the distribution of i c The two

distributions do not even have the same variance. If the residuals

are rescaled to have the right variance before resampling, i.e., to

( 11-ci2)/, the resulting bootstrap distribution does have the

right variance, but is still wrong unless F is normal. In this

example, the projection matrix is constant at 1/2 along the

diagonal, and the behavior is prototypical for Theorem 3.2 below.

Example 2.3. Suppose T = 2 and C -> X but C/p - pp<c. (For
instance, given that T = 2, in the optimum allocation for

estimating treatment effects C = 2p, so p = 0.) As before,
let F be the distribution of j(C -.c ) Then F converges to

F= + The~ ~ili2 n
a mixture F 2=re+- . The bootstrap distribution of 2( i-a)2p 2+P--'1
for i > 1 will have as a limit F*F, where * denotes

convolution. This will not agree with F*F for most F, including

F normal. If p > 0, rescaling by /n/(n-p) will not help with

the treatment means, although it will with the control mean. In

this example, the projection matrix is variable along the diagonal,

with np/(p+2) elements tending to 0 and the rest to 1/2. The

behavior is prototypical for Theorem 3.1 below. Rescaling the

residuals before resampling does give the right answer for all

contrasts if F is normal, but still goes wrong for other

distributions.

In Examples 2.2 and 2.3, the estimates of Bi are not

consistent; replacing 8. by n8i in (2.1), however, gives examples

where the estimates are consistent.

3. THE FAILURE OF THE BOOTSTRAP

Consider a sequence of regression models satisfying the condition

(1.2). In all these models, the disturbance terms c are assumed

to have the same distribution F. Suppose p/n, the ratio of

parameters to data points, converges to a limit a, with 0 < a < 1.

Let H be the projection matrix, and r = Inxn - H, as defined in
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(1.7-8). The empirical measure An of {rii : i = 1,. ..,n} sits on

[0,1] and has mean (n-p)/n. By compactness, suppose without loss

of generality that An converges weakly to a limit A. Since

(n-p)/n > 1-a, clearly Jx(dx) = 1 - a.

Theorem 3.1. Suppose A is nondegenerate: A{l-a} < 1. Suppose

F is N(0,1). Then the bootstrap fails. Indeed, the empirical

distribution Fn of the residuals converges weakly in probability
to a A-scaZe mixture of normals, rather than normal. Furthermore,

for each n there is an n x 1-coefficient vector c satisfying
(1.3), such that the conditional distribution of cT(, -B) given

YY..***Yn does not converge to normal. ScaZing the residuals by

/'(n-p)/p will not help.

This is the general phenomenon exhibited in a special case in

Example 2.3. The convergence is a bit perplexing. To be more

specific, let X be the A-scale mixture of normals. Thus,

X= 4¢X(dc) where (c is normal with mean 0 and variance c.jc c

The assertion of the theorem is that for any weak neighborhood N

of A,

P[Fn e N] > 1

In particular, Fn becomes almost constant at A. As it happens,~~~~~
X is a mixture. But this does not imply any asymptotic randomness

in F there is none.n

Proof. Let Pn(t) be the empirical characteristic function

of the residuals:
^

(t) = n exp( - t£)C~n n i=l1

Let ¢ be the characteristic function of the errors Ei, so

¢(t) = exp(- :t2). As before,

=. r.. .1 j 133

and
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Ej rijrjk =r )ik = rik "

Put k = i and use the symmetry of r:

1 n1 2 1 1 2E{"n(t)} = n . exp( - =iit ) - jexp(- ct )X(dc) .

Next, it is claimed that for most pairs (j,k), the elements rjk
are nearly zero. Indeed

1 E r2 =1 £
n2 jk jk n2 j

n n~2

(t)I= -

n

r.. =nep[ OT
JJ n2

Ejk ex[i t£-Ck)

(3.1)

E(2}= 12 Ej [- 21 2 2-r2
n n~2 ~jk Y.t F.~ kt

But

(rj-rg)2 = Eg r2 + E r2 - 2 E r rk,tjzkk t jt t FkL 21 j tkY

rjj + rkk - 2rjk

and now

E{bPn(t)1|1 = Ejk exp[- 2(Tjj+Fkk-2 jk)]
n

2

However, for most pairs jk, exp[t 1rjk is essentially one by
(3.1), so

E{Ion(t)I exp(- -ct2)X(dc)]2

Thus, o4(t) has an asymptotic variance of zero. It follows that

Fn, the empirical distribution of the residuals, converges weakly

Now

and

C k-S g( rjQ-rj -E k = Yrkk c9
So
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in probability to the X-mixture of normals. See Freedman and Lane

(1981) for details.

Turn to the contrasts. Since trace H = p, there is an i

with H.. > p/n. For each n, there will be a coefficient vector

c (corresponding to a fitted value) satisfying (1.3), but

i=l di i

and di > p/n for some i. The conditional characteristic function

of the contrast is

i=1 n(dit)
Any limit here has a proper scale mixture of normals as a factor,
and hence cannot be normal, by Cramer's theorem.

Here is the general phenomenon we exhibited in Example 2.2

Tneorem 3.2. Suppose X is degenerate, 0 < a < 1. Suppose

further,
(a) F is nondegenerate and is not representable as the

convoZution of the distribution of (l-l)e and another

distribution.
(b) The LapZace transform

p(t) = JetxdF(x)
is finite for t in an intervaZ about 0.

Then,
(1) F is not a Zimit point of the sequence {FnI in

probabiZity. That is, there exists a weak neighborhood
N of F such that P[Fn N] -.

Suppose further

(c) F is syrm'netric about 0.
Then,

(2) For each n we can find an n x 1 coefficient vector

c satisfying (1.3) such that the Levy distance between
the conditionaZ distribution of c(T-s) stays bounded
awhay from 0 in probabiZity.
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Notes

1. As the statement of the theorem and Example 2.2 suggest,

characterizing what Fn behaves like in general is difficult.
2. If F has (l-a)c as a component, it must have a

representation of the form Ikl(l1-a)kk, where the

are independent with common distribution F. In particular,
the symmetric two-point distributions satisfy a-b-c.

3. Let 4 be the characteristic function of F. If F has

(1-a)c as a component, then ¢(t)-= [(l-a)t]q(t) for

some characteristic function 4p. In particular, the symmetric
uniform distributions satisfy a-b-c.

4. The "balanced" designs with r.. = (n-p)/n are covered by

the theorem.

5. The conclusions of this theorem apply even if the residuals

are scaled or standardized.
The proof of this result requires two lemmas. The first extends

the main argument in Theorem 3.1. Its rather technical proof is

given in the appendix.

Let 4n be the empirical Laplace transform of the residuals,
and 4 the theoretical Laplace transform of F. Thus

n(t) n i=l exp(tE.
Let

*'n( t) = 4n(t)
Lerrna 3.1. Suppose 4' satisfies (b) of Theorem 3. 2. Then log 4
has a Taylor expansion convergent for Itl < a, a > 0, which we

shaZZ write

trlog 4(t) = 1rKl Kr r (3.2)

AKr!It|r f
And (1) 1_(t)l < exp{12cotj for Itl < a.

(2) sup{I4'n(t)-I4n(t)I: |tj< 21-}> 0 in probabiZity.
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Part (1) of Lemma 3.1 implies that not only are the distri-

butions EFn tight but also any limit point F of a subsequence

EFn possesses a Laplace transform 4p finite on (-a,a), whichrk
is the limit of 4n on (-a,a).nk
Lerrna 3.2. Such an F may be represented as the convoZlution of the
distribution of (l-a)e, and another distribution. EquivaZentZy
there exists a moment generating function p such that for It| <a,

(3.3)+P(t) = P((l-a)t)P(t).

Proof. By (A.3) of the appendix,

lpn(t) = n=1ip(r,t) ij,i ip(r.jt) .

Since X is degenerate, for Iti < a,

:n =1 1l(r -Wi(l-a l -> O.

So {in } behave like

k-)l(k
,P(lottnk i 1 j/i .,(ijt (3-4)

If the 4n converge to 4, the second factor in (3.4) doesnk
also, to p (say). Since p is the limit of moment generating
functions, the lemma follows.

Proof of Theorem. We argue by contradiction.

Claim (1). If F is a weak limit point of F in

probability, it is by part (2) of Lemma 3.1 also a limit point of

EF . Suppose that F = F. Then we would have a contradiction ton~k
assumption (a) by Lemma 3.2.

Claim (2). Since X is degenerate we can find {i I such

-> 1-a. Without loss of generality, suppose i = 1 for
nn n

all n.
TTake cT to be the first row of X. We will argue that any

weak limit of cT -) given Y Y is different from the

corresponding weak limit of c (0-s) and thus prove (2). Note first
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T n'
c ( -) = E H£* (3 5)

c (6-S) Hj=,HCi£ (3.6)

where H = x(xTx)-lx
Arguing as in Lemma 3.1 and using (3.6), we get

E(exp(c (-) < exp I:t=2{- r! |t|

Hence the distributions of cT(6-S) are tight and any weak limit
must have cumulants of all orders which are the limits of the

cumulants of cT(a-a). Similarly, by (3.5), and the Marcinkiewicz
inequality, for an absolute constant ak,

E{(c_))2kly < ak Eni=l HkE{r
l n 2kLnJn

(3.7)
< ax dF.

By Lemma 3.1(1), the right-hand side of (3.7) is bounded in

probability so any weak limit of the conditional distribution of

T*~~~~~~~~~~~~c (5S -5 ) must also have cumulants wshich are the limits in

probability of the conditional cumulants of c But, then,
if we let K be the rth cum.ulant of F and K that of F ,

r Trn n
the cumulants of c (5-5) and the conditional curnulants of
T *

c (5 -5) are respectively,

(Z =1 Hr I K and (£=i H§J Kn (3.8)~il li) r I r

Now- consider a subsequence n for which Fn converges to F

T ^ ~ ~~~~~~~~Tand c (5-5) converges weakly to G while c (5 -5) converges

weakly (conditionally) to G

We claim that if G = G we must have F = F and hence arrive

at a contradiction to part (1) of the theorem. If K are the

cum.ulants of F and Fn converges to F we must have

K -K (39
rn , r (3.9)
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in probability for each r. In view of (3.8) and (3.9), convergence

of c (a-B) implies the existence of y1,y2,... such that

En Hr" - -* y (3.10)i=l li r

for each r. Mioreover, the cumulants of G and G are
rreSpectively K y and K y . If r is even, y > a > 0, sincer r r r r r

the sum in (3.10) is no s!aller than Hll* So if G = G ,

KI K for r even. (3.11)
r r

But if F is symmetric about 0, so are G and G and

K =K =0 for r odd. (3.12)
r r

Since F has a moment generating function (3.11) and (3.12) imply
F = F and we have our contradiction.

APPENDIX

LerLma 3.1

Before proving Lemma 3.1 we need the preliminary

Lemma A.1. If rm n(a,b) > 1, max(a,b) > 2

Ei,j.,k Jrik l,|jklb K n312 (A.1)

ijoreover,

E. J|ri I < n3/ ( A.2 )

Proof. For (A.2) apply Cauchy Schwartz to get the bolmd

n1/2 E r2 1/2 = n112 Ei r12 < n312
For (A.1) bound by

i,j,k ir jkl Ej,k rkklrjkI < jkrjkj < n3/2 by (A.2)
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Proof of Lemma 3.1. (1) Since

.= £. r. .e.
1 j 1j 1

1 (A.3)Wn(t) n nj=" p(rijt)
By (3.1), if |tl < a,

n ~~n torij=l r r! i (A.4)~n(t) n zi=l epj =1 Er=2 r l riJt}.(

(Note that by assumption 1 = .)
Take absolute values and change the order of summation in the

exponent to get the bound

1 :n co I i r:n i=1 exp{Er=2 ritl =_1 Jrij r}

Claim (1) follows since En=1 Jrijr < r.. < 1 for r > 2.

(2) Compute

=2 .[Eexp(t(s+s.) EeE eptE( n( t )-n( t )) =n {Ei j [E exp( t(eEi+£ ) xp( tCi )Eep E )}-

(A.5)
Arguing as for (A.3), the right-hand side of (A.5) reduces to

2 Ei,j11 1
= P(t(rik+rJk)) - k=l (trik)P( jk

n

The two terms in each summand are bounded in absolute value by

(2t ) since Jr.kI < 1 for all i, k. So, if |t| < 2-, we can

apply claim (1) and the inequality aea-ebI < max(elal ,elbl )Ib-al
to bound the right-hand side of (A.6) by a constant depending only

on E*2 Litir (but not n) times

Eii.E. = [log ip(t(r.k+r.k)) - log p(tr) - log109 (tr.kYII.
n i

Arguing as for (A.4) we can bound this expression by

n2 i,Ij k zr=2 rtrI(rikrJX )r - rik - r.k]|
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Recalling that k rikrjk = rij we can bound this expression by

t2 -2 0,r. IKrI r1 (t -2E. J 9 r9
t K2n Ei iJrij + Er=3Itr r! Ek=1 (kn 2i,j,k1ikl1rjkl Q

Since min(Q.,r-Q ) > 1, max(Q.,r-Q ) > 2 we can apply Lemna A.1 to

get the bound

nl/2(t2K + Er=3 r!1|t| r2r} 0(nn 1/2

if |t| < . So, if It, < a

E( n( t )*n( t))= O(n1/2) and pn( t) - p(t) > O. (A.7)

Now, for any pair s, t, Isi, |tl < b < a

hPn(t) - 'P(t) - 'Pn(s)+'P_(t)I < sup{|iJ;(s)j + I|n(s): Ist <b}It-sI

Since ' , are Laplace transforms, the first factor above is~nln

Op fexp{(b+6)IxI}dFn(x) + fexp{(b+6)IxIdF (x))

for any 6 > 0. By (1) of Lemma 3.1 again we conclude that Pn - 'n
satisfies a uniform Lipschitz condition on any closed subinterval of

[-a/2,a/2]. In view of (A.7), part (2) of the lemma follows.
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