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ABSTRACT

A new approach to the analysis of episodic hormone data is described.
This involves a stochastic model in which measured blood hormone concentra-
tion is represented as a convolution of individual pulses each of which is
thought of as the response to a burst of neural activity. Individual pulses are
not constrained to occur in a fixed regular pattern. Statistical image processing
ideas are used to develop an appropriate deconvolution criterion and a repeated
local adjustment deconvolution algorithm is presented. The methodology splits
an observed data time series into a spike train of pulse peak times together
with a set of pulse shape parameters. This decomposition motivates fresh
approaches to the analysis of hornone data. A set of luteinizing hormone data
on ovariectomized cows is analyzed.
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1. Introduction

Typical experimental designs used in human and animal endocrinology involve taking

repeated measurements of blood hormones concentrations over time. The resulting time series

display a characteristic pattem of episodic pulses, see, for example, Evans et al.[7] and Rahe et

al.[18]. There has been a great deal of interest in developing tools which can be used to obtain

physiologically meaningful summaries from such data (Brinkley[3], Yates[22]). A number of

procedures have been proposed, the most popular of which are the threshold based methods of

Santen and Bardin[19], Merriam and Wachter[15], and Clifton and Steiner[4]. Spectral times

series methods have also been applied (Rahe et al.[18] and McLeod and Craigon[14]) but typi-

cal deviations from periodicity severely limits the applicability of these methods (Clifton and

Steiner[4]).
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In threshold methods, the basic idea is to apply batteries of statistical tests to groups of

consecutive data points in the time series. If the test statistics exceed some specified thresholds

then the group of data points is dermed to constitute a pulse. An important feature of thres-

hold methods is that there are no explicit modeling assumptions made about the data. The

threshold criteria must be carefully calibrated to ensure that the number of false positives and

negatives are maintained at acceptable levels. Apart from the work of Clifton and Steiner[4]

and Ellis and Desjardins[6], there has been no attempt to systematically evaluate when thres-

hold methods provide statistically reliable summaries and when they do not. Merriam and

Wachter[15] point out that such studies would be greatly facilitated if there were a plausible

collection of stochastic models for blood hormone data.

One purpose of this communication is to propose a possible model for episodic hormone

release. The model specifies that hormone level in the blood is made up of a sum of elemental

pulses which may occur with very flexible patterns in time. The distribution of interpulse

times governs regularity in the series. Measured concentration of hormone involves a com-

ponent of measurement error which is also incorporated into the model. As there are no con-

straints on the number or size of individual pulses it would be inappropriate to base an estima-

tion criterion on a residual sum of squares. Statistical image processing ideas are used to

develop an appropriate estimation criterion and an algorithm is provided to compute the best

model. Similar kinds of algorithms have been developed by Kornylo and Mendel[11, 12] for

seismic deconvolution problems. A set of data on ovariectomized cows is analyzed.
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2. Methodology

2.1. A Model for Episodic Hormone Data

The basic building block in the model is an individual pulse. Think of a pulse as the

response to a burst of neural activity in the hypothalamus. We assume that pulses have a

characteristic (double exponential) pattem of release described by three parameters: an ampli-

tude a, a rate of infusion (1, and a rate of diffusion 02' see Figure 2.1. The set of pulse

parameters is denoted 0 = (a,013,,2). The time of occurrence of the pulse is identified with a

pulse peak time x and the hormone concentration in the blood at time t due to the pulse is

p e(t-x), where p q(t-x) is given by

F -It-x I/I3t<ae t, tx
pe(t-X ) = S -It-x l/52 (2.1)ae , >x

A graph of a pulse is given is Figure 2.1.

The total amount of hornone in the blood at any time is assumed to be a sum of contri-

butions from several individual pulses. If there were a total number of K pulses occurring at

times xK1;2'.* ,XK, the level of hormone in the blood at time t would then be given by the

sum of the contributions from the individual pulses

p0(t-X 1) +p 0(t-X2) + + p0(t-XK). (2.2)

The measured hormone concentration at time t, denoted y (t), is subject to measurement noise

so our model specifies that

y(t) = pe(t-Xi) + p0(t-X2) + +Pe(t-XK) + e(t) (2.3)

where e(t) represents the measurement error or noise at time t.
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Some Examples

A range of series generated by the model are displayed in Figure 2.2. In each case, the

noise is Gaussian with standard deviation chosen to be about 10% of the amplitude of an indi-

vidual pulse. If the interpulse times are large by comparison to the sampling frequency then

the series tends to have a very clear pattem of pulses. As the interpulse times become smaller

the pattern of individual pulses becomes less clear. Finally if a series of pulses occur in rapid

succession then the series simulates a surge in the honnone level. The data presented by Rahe

et al.[18] demonstrates how all three of these conditions can arise in practice.

2.2. A Deconvolution (Estimation) Criterion

From a signal processing point of view the measurement in (2.3) represents a noisy con-

volution of pulses. Model estimation will identify the number and location of the pulse peak

times aswell as the individual pulse parameters, this results in a deconvolution of the observed

signal. Since it is possible to obtain a perfect fit to any data set by reducing the size of the

individual pulse and allowing a very large number of pulse peak times, it would be inappropri-

ate to use the residual sum of squares as a deconvolution criterion. A more satisfactory cri-

terion is based on statistical image processing ideas, see, for example, Titterington[20,21].

Here the residual sum of squares (RSS) criterion is replaced by a modified criterion of the

fonn

RSS + <?(x) (2.4)

where D is a functional which measures the physical implausibility of the vector

x = (x1X2,*.* ,XK) of pulse peak times. For example, if apriori one assumes that the number

of pulses has a Poisson distribution with mean ± then one might take

@(x 109lo( PK )=-logofg (2.5)
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where PK is the apriori probability of observing K pulses. With this the deconvolution cri-

terion becomes

RSS - Klog,u + log(K!) l p. > 0. (2.6)

A similar kind of criterion arises in the classification and regression tree methodology of Brei-

man et al.[2]. There K corresponds to the number of nodes in a classification or regression

tree. More sophisticated specifications for (D might be motivated by communication theory

ideas discussed in Yates[22].

The parameter p is termed a regularization parameter, increasing p will lead to greater

numbers of estimated pulse peak times, decreasing p will begin to restrict the number of pulse

peak times. Various techniques for choosing p have been proposed, see Titterington[20,21]

for a discussion. In principle cross-validation might be used but the computational require-

ments tend to rule it out. When the standard deviation of the noise is known then a popular

method of choosing p. is so that the residual standard deviation matches the theoretical value.

The radioimmunioassays used to estimate blood hormone concentrations, see Gorbman et

al.[9], typically lead to a coefficient of variation (cv) being reported for the data. Once the

model has been fitted for a particular value of the regularization parameter the coefficient of

variation can be estimated by the root mean square of the residuals, r(t), divided by predicted

values y(t)

cv -i [r(t1)/y(t,)]2 . (2.7)

In our work we adjust p so that cv matches the value reported in the assay and this seems to

work quite well.
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2.3. Repeated Local Adjustmet (RLA) Algorithm

A two stage iterative algorithm for fitting the model will now be described. In the first

stage (Adjustment of Pulse Peak limes), the individual pulse parameters are fixed and the

pulse peak times are updated. During the second stage (Adjustment of Pulse Parameters), the

pulse peak times are fixed and the individual pulse parameters are adjusted. Each iteration is

guaranteed to reduce (rather not increase) the deconvolution criterion, the procedure is ter-

minated once stops decreasing significantly from one iteration to the next. A schematic for the

RLA algorithm is as follows:

RLA Algorithm

Initialize the model parameters

0=00= ; X) = (X1(° ,X2(), . . * KO

Repeat Until Convergence

I

(i). Adjustment of Pulse Peak Times

(ii). Adjustment of Pulse Parameters

End.

A fuller description of the two stages in the RLA algorithm follows.

(i) Adjustment of Pulse Peak Times

During this step the current information about the pulse parameters is used to update the
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number and location of the pulse peak times. The updating procedure is based on a local

adjustment strategy. At a typical step in the updating, consecutive pulse peak times xi-,, xi,

and xi+, are considered. Three possibilities are entertained: (a) the inclusion of a new pulse

between xi-, and xi, (b) relocation of xi to altemative position between xi-, and xi+,, and (c)

removal of xi. The condition resulting in the smallest value for the model fitting criterion is

retained. Repeated passes are made through the set of pulse peak times until the local adjust-

ment process fails to improve the fit.

(ii) Adjustment of Pulse Parameters

With the pulse peak times fixed, the adjustment of the pulse parameters is carried out by

standard non-linear least squares regression techniques. A damped Gauss-Newton algorithm as

described in Ortega and Rheinbold[17] is used.

Comments

The deconvolution algorithm is similar in philosophy to the SMLR (Single Most Likely

Replacement) algorithm of Kormylo and Mendel[l 1912] and the ICM (Iterated Conditional

Modes) algorithm of Besag[l]. SMLR has been successfully used to estimate Bemouilli-

Gaussian processes in seismic deconvolution problems (see also Cox and Ehrenberg[5]). ICM

has been applied to various image restoration problems. Since both the number and location of

the pulse peak times is being estimated the RLA algorithm is computationally intensive. No

care is take to ensure that the algorithm does not get caught in local minima and it is conceiv-

able that things could be improved by introducing a stochastic relaxation strategy into the itera-

tions (see Besag[l], Geman and Geman[8] and Lundy[13]). However experimentation with the

algorithm (O'Sullivan[16]) has not convinced us of the immediate need for this sophistication.
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3. Analysis of Luteinizing Hormone Data on Ovariectomized Cows

The collection of reproductive hormones constitute a complicated dynamical system with

sophisticated feedback control mechanisms operating between the ovaries, the pituitary and the

hypothalamus. Some references are Brinkley[3], Gorbman et al.[9], and Yates[22]. An impor-

tant reproductive hormone is luteinizing hormone (LH) whose primary roles in many species

are the fonnation and maintenance of the corpus luteum. LH pulsing patterns in sexually

mature cows have been studied by Rahe et al.[18]. In a study of the role of season on the

regulation of the onset of puberty in the bovine female, Kamwanja[IO] gathered data on 46

ovariectomized cows classified by age of ovariectomy (3, 5, or 7 months) and date of birth (

March or September). Ovariectomy eliminates feedback from the ovaries to the hypothalamus

and the pituitary. The relationship between the LH pulsing pattem and date of birth and age of

ovariectomy is studied here. For each animal blood samples were taken every 30 minutes over

a 36 hour time period one month after the animals had been ovariectomized. The animals

were split into a control group and a treatment group with the treatment group receiving an

injection of estradiol-171 2.5 hours after the beginning of sampling. Only data on 22 controls

are analyzed here. Blood concentrations of LH were determined by standard radioimmunioas-

says, see Gorbman et al.[9]. A full set of data consists of 73 blood samples (records on some

animals are missing between 3 and 6 samples).

The data is plotted on the same scale in Figure 3.1. There appears to be an effect due to

date of birth with March-bom animals having higher levels of LH than the September-bom

group. There are serious departures from nonnality but for what its worth a repeated measures

analysis of variance reveals gives that the effect of birth is statistically significant.

A range of fits of the model to data on a March bom cow ovariectomized at 7 months are

given in Figure 3.2. As the regularization parameter (ft) is decreased the number of pulses

decreases and the individual pulses start to become bigger. The estimated coefficient of varia-
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tion is plotted against log(g) in Figure 3.3(i). The coefficient of variation in the assay was

about .15. The regularization parameter is chosen so that the estimated coefficient of variation

is also .15. The estimated individuai pulse and the spike train of pulse peak times are given in

Figure 3.3(ii). A similar fitting strategy was used for the other animals. The individual pulses

are given in Figure 3.4 Estimated spike trains are given in Figure 3.5. March born animals

seem to have larger pulses and possibly more frequent pulsing than the September animals. A

summary of pulse areas (total honnone output per pulse) and pulse frequencies (number of

pulses per hour) are given in Table 3.1. A two-way analysis of variance was performed on

pulse area; the date of birth has statistically significant (p = .02) effect on pulse area but date

of ovariectomy does not (p = .53). There was no statistically significant interaction between

date of birth and date of ovariectomy. An similar analysis of pulse frequency revealed no

strong effects for date of birth or ovariectomy, the p -value for the date of birth effect was .12.
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Table 3.1: Mean pulse areas (total hormone output per pulse) and frequencies (number of

pulses per hour). The standard deviation of the means are given in parentheses.

Columns correspond to dates of birth (March, September); rows to dates of ovariectomy

(3, 5, 7 months).

Pulse Area

Mar Sept

3

5

7

Pulse Frequency

Mar Sept

2.18(.20) 1.56(.47)

2.61(.35) 1.86(.18)

2.49(.41) 1.80(.28)

1.00(.06) 0.74(.10)

0.86(.07) 0.71(.16)

0.89(.05) 0.91(.10)
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4. Discussion

The deconvolution of episodic hormone data has close links to a range of problems aris-

ing in reflection seismology, radar, and sonar, see Kormylo and Mendel[11, 12] and Cox and

Ehrenberg[5]. There is much to be gained by thinking about the common structure of these

problems. It is interesting that the early approaches to deconvolution in reflection seismology

were based on threshold ideas similar to those of Santen and Bardin[ 19].

The model proposed for hormone data might be sophisticated to allow the individual

pulse amplitudes to vary smoothly in time. This would be useful for modeling the effects of

various treatments. It could also be used to study changes in hormone pulsing pattems during

the estrous cycle. Rahe et al.[18] have presented some interesting data associated with this

phenomenon.

An appropriate methodology for detennining the statistical variability of the quantities

recovered by the algorithm must be developed. Monte Carlo simulation can provide some

answers but it may be possible to develop altemative resampling methods. A set of similar

problems arise in connection with image reconstruction, see Besag[l].
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Figure Legends

Figure 2.1 An individual pulse

Figure 2.2 Examples of data generated by the model (2.3). The pulsing frequency is low in

the first panel, somewhat higher in the second and the final panel shows the result of when

several pulses occur very close to eachother.

Figure 3.1 LH data for control animals (March, September). All plots are on the same scale.

Figures 3.2 and 3.3 relate to the March-bom cow marked by "+".

Figure 3.2 Fits of the model corresponding to three values for the regularization parameter.

These resulted in 51, 26 and 8 pulses being estimated. The solid line is the model prediction,

the actual data points are marked by "".

Figure 3.3(i): Estimated coefficient of variation (cv) plotted against the logarithm of the regu-

larization parameter.

Figure 3.3(ii) : Estimated pulse and pulse peak times for the data. The regularization parame-

ter is chosen so the estimated coefficient of variation is about .15.

Figure 3.4: Estimated pulses (March, September) for the cow data. All plots are on the same

scale. The horizontal scale is in hours and stretches from a half an hour before the begining of

sampling to half an hour past the end of the sampling period.



Figure 3.5: Estimated pulse peak times (March, September). The ticks indicate the pulse peak

times. The horizontal axes are set up as in Figure 3.3.
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