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ABSTRACT

An alternative to the local scoring method of Hastie and Tibshirani[15] is
provided for nonparametric estimation of the relative risk in the Cox model.
The method involves penalized partial likelihood. Computations are carried out
using a damped Newton-Raphson iteration. Each iterate is evaluated using an
appropriately preconditioned conjugate gradient algorithm. The algorithm is
globally convergent under mild conditions. One-step diagnostics are developed
and cross validation criteria are provided to guide the evaluation of the degree
of smoothness of the estimator. These cross-validation scores have potential
application to model selection in standard Cox regression contexts also. Baye-
sian confidence intervals akin to those of Wahba[32] are defined. The prefor-
mance of the methodology is illustrated on real and simulated data.
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1. Introduction

The proportional hazards model of Cox[6] specifies that the hazard function for the sur-

vival time of an individual with covariate vector x is given by

X(t Ix) = ko(t) e .(1.1)

X0 is the baseline hazard and the relative risk jYx is a linear model in x with ( the vector of

parameters. Since its introduction this model has become a standard tool in survival analysis,

see Carter, Wampler and Stablein[5], Cox and Oakes[7] and Kalbfleisch and Prentice[17] for

example. In modem data analysis environments the detection and modeling of non-linear

covariate effects has become an important prcticable issue. Some approaches to this problem

have been proposed by Lagakos[18], Leurgans[20], Stone[29] and Tibshirani[31]. A proposal

based on a penalized likelihood ideas of Good and Gaskins[13] is described here. Although I

will confine myself to a single one-dimensional covariate, the methods and algorithms naturally

extend to the multivariate situation.

To begin, let the conditional hazard be expressed as:

X(t Ix) = XV(t) w(x) e@X), (1.2)

IReseach _uppoIed by the National Science Foundation under Grant No. MCS-840-3239.
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where w is a given nonnegative weight function. The function 0 is to be estimated. Including

the weight function makes it possible to use the technique as a component in a more elaborate

algorithm. Thus just as one-dimencional smoothers are used as components in the ACE algo-

rithm of Brieman and Friedman[2], the back-fitting algorithm of Hastie and Tibshirani[15] and

the forward stepwise algorithm of Tibshirani[31], the present technique might be used itera-

tively to fit additive approximations to the relative risk when there are several covariates.

Suppose there is a sample of censored survival times and corresponding covariates. Let

the distinct failures occur at times tI,t2, ,t,,. The number of individuals with survival

times equal to ti is mi. Of these mi individuals di fail, the remaining survival times are cen-

sored. The covariates associated with the di individuals are denoted xi(*) for k = 1,2,9.. ,di.

Treating ties in the manner suggested by Peto[27] and Breslow[l], the penalized partial likeli-

hood estimator is defined to be the minimizer of

i.R(0) = Edilog[ ww(xj)e(Xj)] - 1(xi(o) + [(S)]2dS, > 0, (1.3)
imi j E R(1) k-i

where RW is a risk set of individuals with survival times greater than or equal to ti. The first

two tenns make up the negative logarithm of a partial likelihood functional, the last term is a

familiar roughness penalty used in nonparametric regression, see Wahba[331. The parameter R

contrls the smoothness of the estimator. As p is increased the estimated relative risk function

is forced to be more and more linear. The estimation problem is to find 0, in an appropriate

function space, to minimize the penalized partial likelihood. As 1i,,(O) = 1,i,(0 + c) for any

constant c, it will only be possible to identify 0 up to a constant shift. Estimates of 0 will be

arbitrarily adjusted so that they integrate to zero.

The negative logarithm of the partial likelihood is convex so results in O'Sullivan Yan-

dell and Raynor(241 can be easily adapted to show that the existence of a unique (up to a con-

stant shift) minimizer of i,;L is guaranteed provided there is a unique (up to a constant shift)
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minimizer of the negative log-partial likelihood term in (1.3) over the set of linear functions.

Asymptotic convergence properties of the- estimator are worked out in O'Sullivan[251. Rates

of convergence similar to those of familiar nonparametric smoothing spline regression estima-

tors are obtained. These results extend to bounded multivariate time dependent covariates.

An algorithm for minimizing the penalized partial likelihood functional is described in §

2. The algorithm is a damped Newton-Raphson procedure. This has the attractive property of

being globally convergent under mild conditions. Significant gains in computational efficiency

result from using an appropriately preconditioned conjugate gradient method, see Golub and

Van Loan[12], to evaluate iterates. One step diagnostics are defined and a cross-validation cri-

terion for assessing the degree of smoothing is provided. Approximate pointwise Bayesian

confidence intervals are also developed. The techniques are illustrated on real and simulated

data.
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2. Fitting Procedure

2.1. B-spline Representation

The minimization of In, is carried out over the Sobolev space of continuous functions

whose second derivative is square integrable. It is shown in O'Sullivan[22] that any solution

to this minimization problem is a cubic spline with knots at xj's for which j E R(M). It fol-

lows that the minimization can be carried out over the set of functions of the form

p
0 = ,0,B, (2.1)

r-1

where p = #R(l)+2, B, are cubic B-splines with interior knots at xj for j e R(1), and

0 = (e1,e29 ,... ) are B-spline coefficients. A standard reference on B-splines is the book

by de Boor(8], for a statistical perspective see Silverman[28]. As one might expect, the local

support property of B-splines leads to great gains in computational efficiency.

Letting zi = (B1(xi)tB2(xi), . Bp,(xi)) and zi(k) = (BI(xi(k)),B2(xi(k).. BP(xi(k

the objective function in (1.3) becomes

z*'
1n;(0 = dd,log[ £ w(xj )e' - Zi(k)'O + ±0t9@ (2.2)

i-i jeR(1) k=1

where E, =JBr(x)B6(x)dx for rs = 1,2, ... p. The goal is to find O e RP to minimize

this function.

2.2. Damped Newton-Raphson Algorithm

The gradient or score vector, s(O), and the Hessian, G(O), of l,, are given by:

S(0) = VeIn;(O)

£w(xj)ezj eZ.
- di, j R(j)Z - iZ(k)+2IZO (2.3)
I ; w(xi )e k-i

j e R(j
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^ z~~ W(xj)e zI.0zjzj w(j)z Pez w (xj)e zj l

i. w(xj)eZJ [. w(xj)ez1J w(xj)e
j e R(,) j E R j J(i)

+ 2pZ

= H(l)(O) - H(2)(O) + 2pZE. (2.4)

Due to the local support property of B-splines, H(1)(O) + p±£ is 7-banded. s(O) and

H(l)(O) + pl can be evaluated in 0 (n) Floating Point Operations (Flops), however, since H(2)

is full the computation of the entire hessian requires 0 (np2) Flops.

Basic Iteration

The damped Newton-Raphson iteration, see page 501 of Ortega and Rheinbold[26], has

the form

0(1+1) = @(l) - a,G(O(')F's(O(o') I = 0,1,2, (2.5)

where the l'th step size a, is chosen to minimize the objective function in the direction

- G(O(')-'s(0(1) from @(') at each iteration. If G(O) is strictly positive definite for all 9 then

from Theorem 14.4.3 of Ortega and Rheinbold[26] the damped Newton-Raphson iteration is

globally convergent. By convexity of the penalized partial likelihood, G(O) is always positive

semi-definite - it is strictly positive definite whenever tere is a unique minimizer of the objec-

tive function. Thus it is easy to show that the algorithm is globally convergent under a mild

condition. The theorem in Ortega and Rheinbold[26] also shows that after a finite number of

steps the iteration is quadratically convergent. Exact minimization with respect to the step size

does not seem to be necessary - my implementation uses step size halving similar to that

described by Hopkins in BMDP[9].
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Preconditioned Conjugate Gradient Technique

The H(2)() term makes the Hessian a full matrix. H(') + 2j±: is banded and its inverse

can be computed very quickly (0(P) computations). Since [H(2)(O) + 2±ZV' H(2)(9) tends to

have low rank, from Golub and Van Loan[12] a conjugate gradient procedure with

[H(l)(0) + 2;LT] as a preconditioner is well suited for computing the direction G(O('))-'s(O(')).

The method typically converges in just two or three iterations giving an effective 0(p2) pro-

cedure for computation of the Newton-Raphson direction.

2.3. Some Comments

Altemative techniques for nonparametric estimation in the Cox model have been proposed

by Hastie and Tibshirani[15]. These techniques are known as Local Scoring and Local Likeli-

hood. For exponential family models the local scoring algorithm and the standard Newton-

Raphson algorithm are closely related. For the Cox model tis is no longer true. Here the

local scoring procedure corresponds to some form of quasi-Newton iteration. Convergence

properties of this algofithm have yet to be studied.

The damping factor a, is very important in practice. Only with the damping factor does

the algorithm lose sensitivity to starting guesses. Concems about sensitivity to starting guesses

have been raised by Brillinger[3]. If damping factors were incorporated into the algorithms of

Hastie and Tibshirani[14] and O'Sullivan Yandell and Raynor[24], then these methods would

also be globally convergent in many cases.
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3. One-Step Diagnostics and Cross-Validation Scores

Since the number of parameters is large, exact one-step diagnostics such as those of

Storer and Crowley[30] are prohit.tively expensive to compute. For the same reason exact

one-step Newton-Raphson cross validation, see Burman[4], is not computationally feasible

either. If the baseline cumulative hazard were known then one-step diagnostics and model

selection cross-validation scores would be easy to define. Using these diagnostics with the

baseline cumulative hazard replaced by a nonparametric estimate seems to work very well.

3.1. Baseline Cumulative Hazard Known

Let A0 be the baseline cumulative hazard. If AO is known then e could be chosen to

minimize the penalized likelihood

1;YAO(t,)w(x8(k))e i(k) - kI X(kX) ] + >LJ[O(x)]2dx , .> 0. (3.1)
i.l-1 m knl

Here xi(k) for di < k S mi corresponds to censored observations at ti. Letting Cj(k) = 0 if xi(k)

corresponds to a censored observation and ci(k) = I otherwise, (3.1) becomes

j [AO(ti)w (Xi(k)e ci()(xi(k)] + J|fO(x)]2dx (3.2)

The weiglts and adjusted dependent variates for an Iterative Reweighted Least Squares algo-

rithm would be:

Wi(k) = w(x,(k)AO(ti)e

Yi(k) = 0 ')(Xi(k ) + Ci(k/W(Xi(k))- 1 , (3.3)

for I = 1,2,* Thus the next iterate, 0(/+1), would be chosen to minimize

, mi
£ £WiW(k)[yi(k*)_(X(i(k)]2 + p4[9(x)]2dx (3.4)
imikul
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At the final iteration the predicted values 0 = (8g(Xl( )),0)(x1(2)) ,eZ(xn(m)) are

0 = X'[X'WX + 2gif]- XWy (3.5)

where y is the vector of final adjusted dependent variates, W the diagonal matrix of final

weights, and X is a matrix with (i(k),j)'th entry equal to Bj(x(i(k)). With this

0 = Hy , (3.6)

where H is the linearized hat matrix. As in Eubank[ 11] the i 'th diagonal element of H, call it

hi, is referred to as the i 'th leverage value. A fast 0(n) algorithm for computing the vector

of leverages is given in O'Sullivan[23], see also Hutchinson and de Hoog[16].

Cross Validation Scores

The ordinary cross-validation score for the final weighted least squares problem is

rI[Y'((kI2V0(i)= ) - ox I,)VO(A) = 2:̂wi (* ){ tYi%2) ~ 8(x t;(* ))] } (3.7)
i=lk=1 [1-hi]

and the Generalized cross-validation score is

W2 i(k)tyi,()) _ 3(X(i(k)]2
[1-h.A2 (3.8)

where h. is the mean leverage. From the discussion in O'Sullivan Yandell and Raynor[24],

these cross validation scores should perfonn well from the point of view of the weighted mean

square error

R(g) = I IWi(k)[OA(Xi(k))o(X(i(k)]2 (3.9)
i=lk=l

where 00 is the tnue value of 0 and wi(k) = Ao(ti)eeo(x())
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Approximate Bayesian Confidence Intervals

Bayesian confidence intervals similar to those of Leonard[ 19], Silverman[28], and

Wahba[32] can also be defined. The approximate 95% confidence interval for e(x) takes the

form

O(x)+2 a(x), (3.10)

where O(x) = VB(X)[XWX + 2p.Z]-'B(x) and B(x) = (B1(x),B2(x), ,B )

3.2. Baseline Cumulative Hazard Unknown

Having minimized the penalized partial likelihood a nonparametric estimator of AO, such

as that of Breslow[l] (a variety of others are indicated in Cox and Oakes[7]), can be computed.

Substituting this into the definition for the weights in (3.3) allows one to evaluate leverages,

cross validation scores, and confidence intervals. These cross validation scores miglt also be

used to select the number of variables entering a finite dimensional Cox regression model. It is

interesting that the score vector for the penalized partial likelihood is exactly the same as the

score vector for the full penalized likelihood with baseline cumulative hazard replaced by the

Breslow estimate corresponding to the current value of 0.
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4. Two Examples

4.1. Stanford Heart Transplant Data

The technique is used to study the effect of age in the well klown Stanford Heart Tran-

splant data reported by Miller and Halpem[21]. In these data, survival times are number of

months until death following a heart transplant. More than 30% of the cases are censored.

There are 43 distinct age values.

The degree of smoothness is chosen to minimize the ordinary cross-validation function

(formula (3.7) with the baseline cumulative hazad replaced by the Breslow estimate). The esti-

mate and 70% confidence bands are given in Figure 4.1. The relative risk is low and fairly flat

from 20 to 40 years, it climbs quickly after 40 years. A Bootstrap analysis employed by Efron

and Tibshirani[10J found no significant difference between a quadratic model and a non-

parametric fit (based on the local scoring algorithm) for ages less than 40 years. The Bayesian

confidence intervals agree with this finding. The age distribution is markedly skewed to the

left and leverage values and the width of the confidence bands are larger at the lower end of

the age distribution, see Figure 4.2. The explains the poorer resolution at lower ages.

4.2. Simulated Data

A set of data, (Xi,Ti,Ci) i = 1,2,9 . n, was generated as follows: The Xi are indepen-

dent and identically distributed unifonn [0,1] random variables. Conditional on Xi

Ti = min(YiZi) and Ci =I[i<Z.i (4.1)

where Yi is a failure time and Zi is a censoring time. Ci is a censoring indicator. The hazard

function for Yi is

A(t iX,) = Ao(t) esin(2xX) (4.2)

with a Weibull baseline hazard AO(t) = r58e4. The censoring time Zi is exponentiaL
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generated independently of Xi and Yi.

A sample of n = 157 observations was generated with the level of censoring being such

that around 33% of the observations were censored. The simulated data has been set up to

have some general features in common with the heart transplant data. A comparison between

the baseline survival functions is given in Figure 4.3; exp(-AO(T(i)) is plotted against

exp(-AO(t(i) where AO is the estimated baseline cumulative hazard for the heart transplant

data. T(i) and t(i) are the i'th smallest survival times in the simulated and real data sets.

(Since partial likelihoods only depend on the ranks of survival times, an empirical qq-plot of

simulated and actual survival times would not be that interesting).

The estimated relative risk with smoothing parameter chosen to minimize the ordinary

cross-validation function is graphed in Figure 4.4. 70% confidence bands are also included.

Leverage values are plotted against the covariate in Figure 4.5. Not surprisingly, leverages are

larger when the x-values are near the edge of the interval [0,1]. There is also a tendency for

leverages to increase with survival time. The ordinary and generalized cross-validation func-

tions and the associated loss are graphed in Figure 4.6. The scale on the horizontal axis is in

units of the logarithm of the trace of the hat-matrix (h.). From (3.9) the loss is

R(ll)= 2;^O(ti)eS(^)[O>(xi) - sin(2xxi)]2 (4.3)
i-i

The minima of the cross-validation functions are very close to the minimizer of the conjectured

risk. In this particular instance, the minimizer of ordinary cross validation function is a litte

closer to the minimizer of the true risk.
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5. Discussion

Penalized partial likelihood combined with cross-validation is a practicable method for

non-parametric estimation of relativc risk in the Cox model. The example shows that the pro-

cedure will identify non-linear effects when they are genuinely present.
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Figure Legends

Figure 4.1 : Non-parametric estimate of the relative risk (solid line) along with 70% confidence

bands (dotted line).

Figure 4.2: Leverage values versus age.( - denotes an uncensored value, + a censored value.)

Figure 4.3: Estimated baseline survival probability for the Heart Transplant data versus the

baseline probabilities in the simulated data.

Figure 4.4 : Non-parametric estimate of the relative risk (solid line), and 70% confidence bands

(dotted lines). The true risk is also included (dashed line).

Figure 4.5 : Scaled ordinary (dashed) and generalized (dotted) cross-validation scores. The

true risk (see (3.9)) is the solid line.

Figure 4.6 : Leverage values for the simulated data. (- denotes an uncensored value, + a cen-

sored value.)
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Figure 4.3
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Figure 4.4
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Figure 4.5
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Figure 4.6
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