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Comparing Location Experiments*

By E.L. Lehmann

University of California, Berkeley

In Sections 1-3, the classical theory of the comparison of two experiments is reviewed
with particular reference to the comparison of two location experiments. It is shown
that the requirement of domination of one experiment by another for all decision
problems is too strong to provide a reasonable basis for comparison. For one-

parameter problems with monotone likelihood ratio it is therefore proposed to restrict
the comparison to decision problems which are monotone in the sense of Karlin and
Rubin (1956). Application of this weaker definition to the location problem is shown
to give satisfactory results. A scale-free comparison of this type leads to a new tail-
ordering of distributions, and this is explored in Section 6.

1. Introduction. An experiment E is a random quantity X and a family
P = {Po, 0 E Q2} of possible distributions of X. Let
F = ( Y,Q - {QO, 0 e II}) be another experiment, with the distributions PO
and QO corresponding to the same state of nature 0. The idea of patterning the
definition of one experiment being more informative than another on the concept
of sufficiency was initiated in an unpublished memorandum by Bohnenblust,
Shapley and Sherman and developed into a theory by Blackwell (1951, 1953).

DEFINITION (1.1). The experiment F is more informative than (or sufficient
for) E if there exists a random quantity Z with known distribution and a func-
tion h such that for all 0 E Q

Y is distributed as QO => h(Y,Z) is distributed as PO.

An immediate consequence of (1.1) is:

(1.2)For any decision procedure 6 based on X and any loss function L (0,d ) there
exists a (possibly randomized) procedure 6' based on Y such that
R (0,6') = R (0,6) for all 0.
It was shown by Blackwell, and under more general conditions by Le Cam

(1964) and Feldman and Ramamoorthi (1986) that typically not only does (1.1)
imply (1.2) but the inverse implication also holds. In fact, in the same papers it
is shown that (1.1) is implied by the following apparently even weaker statement
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(1.3)Statement (1.2) with the conclusion R (0,6') = R (0,6) for all 0 replaced by
R (0,6') < R (0,6) for all 0.
A fourth condition which typically is equivalent to (1.1)-(1.3) is the Bayes con-

dition that given any prior distribution A for 0, the Bayes risk is no larger when
the experiment is based on Y than when it is based on X.

If Y is more informative in the sense of these definitions, which are equivalent
in the situations to be considered in this paper, we shall write Y > X. If
Y > X and X > Y, the experiments X and Y will be said to be equivalent
(Y - X). The experiment Y is strictly more informat'ive than X(Y > X) if it
is more informative than X but not equivalent to it.

The various possibilities are illustrated by the following example.
EXAMPLE 1.1 (NORMAL). Let X= (X1, *, Xn ), Y (Y1,* * Yn)
where the Xi and Yi are independently normally distributed as N((,u2) and
N((,p2a2) respectively, with p known and 0 < p < 1.
(i) a = ao KNOWN. Here Y > X since Yi + Zi has the same distribution as

Xi when Zi is N(0,(1 - p2)o2). That Y is strictly more informative than X
is seen by noting that the UMV unbiased estimators of ( based on X and Y
are respectively X with variance ao /n and Y with variance p2ao/n. The
latter variance cannot be matched by an unbiased estimator based on X.

(ii) ( =(0 KNOWN. Assuming without loss of generality that 40 = 0, one sees
that Y - X since the variables Yi /p have the same distribution as the Xi,
and the variables pX. the same distribution as the Yi.

(iii) e AND a BOTH UNKNOWN. The surprising fact (see Hansen and Torger-
sen (1974)) is that in this case X and Y are not comparable.
This example illustrates the three possibilities: strict comparability,

equivalence, and noncomparability, and the two principal methods used to deter-
mine comparability. If Y is more informative than X it is typically easy to
determine the function h (Y,Z) required in (1.1). To prove that Y is not more
informative than X, one attempts to construct a statistical task which can be
.performed on the basis of X, but which either cannot be performed, or at least
not as well, on the basis of Y. For this latter purpose it is often most convenient
to find a function a (0) which has an unbiased estimator based on X but not on
Y. One reason for looking at this particular kind of task is that unbiasedness of
an estimator requires only the calculation of first moments. Another reason is a
result of DeGroot (1966, Theorem 4.1), which states essentially that if P is com-
plete, then Y is more informative than X if and only if for each set B for which
probability is defined a (0) = PO(X E B) has a non-negative unbiased estimator
based on Y.
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2. Comparing two location experiments.
PROBLEM 1: In most of this paper, we shall be concerned with the case that P"
and Q are location families, i.e. are given by

(2.1) P0(X < x) = F(x - 0) and Q0(Y < y) = G(y - 0).

For this case it was shown by Boll (1955) and independently by Stone (1961)
that condition (1.1) greatly simplifies in that the function h (Y,Z) can always be
taken to be of the form h(Y,Z) = Y + Z, i.e. Y > X if and only if there
exists a random variable Z independent of Y such that

(2.2) Y has distribution Qp > Y + Z has- distribution Pe.

As an example, suppose that F is the uniform distribution on - 2 J and

G the triangular distribution on (-1,1). Then Y > X since (2.2) holds with Z

uniformly distributed on (-j'|J.

If Ox and 4y denote the characteristic functions of the distributions F and
G respectively, (2.2) is equivalent to the condition that

(2.3) L(t ) - Ox(t )/qy(t ) is a characteristic fu-nction.

As an example, suppose that F is the double exponential distribution with

density 1
e and G the exponential distribution with density e-, x > 0.

2
Then

XX(t)= I 2 and 00(t)- t

so that L(t) = 1/(1 + it) which is the characteristic function of -Y. Thus Y is
more informative than X.

An immediate consequence of (2.3) is the surprising fact that if X is normally
distributed then Y can not be more informative than X unless Y is also normal.
This follows immediately from Cramer's theorem that if X is normal and X is
the sum of two independent random variables Y and Z, then Y and Z must be
normal. It is however disconcerting to learn that a normal location family

F(x - 0) = J[ even for very large a is never less informative than a

nonnormal G (y - 0) even if the latter distribution is very tightly concentrated

about 0. Of course, if G(y - 0) = 1 "Y 0 with r < a, then Y is more

informative than X by Example 1.1(i).
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Given any Y with distribution G (y - 0), it is trivial to construct a less infor-
mative X simply by taking F (x - 0) to be the distribution of Y + Z for any
independent Z. On the other hand, any particular given F and G will be com-
parable only in very exceptional cases since this would require one of the charac-
teristic functions Ox, Oy to be a factor of the other.

The normal example suggests the possibility that such comparisons may be
more readily available when G differs from F only by a scale factor, say
PROBLEM 2: P and Q are given by (2.1) with

(2.4) G(y-0)=F( e 0J 0<p<1.

This problem has been considered by Stone (1961) and Goel and DeGroot (1979).
A necessary and sufficient condition for Y given by (2.4) to be more informative
than X is that

(2.5) ¢(t) = ,x(t) is acharacteristic function for all 0 < p < 1.
Ox(Pt )

As was pointed out by Goel and DeGroot, the distributions F whose characteris-
tic functions Ox satisfy (2.5) were investigated by Levy in a quite different con-
text, and are called self-decomposable or belonging to class L. In particular, it
follows from Levy's work that all stable laws are self-decomposable and that on
the other hand all self-decomposable distributions are infinitely divisible.
EXAMPLE 2.1 (DOUBLE EXPONENTIAL). As a simple example of a self-
decomposable distribution which is not stable, consider the double exponential

distribution with density f (x) = - e 1 and characteristic function
2

(t ) = 1± 2. To see that this is self-decomposable note that

1t)t+ P t 2 + (1 _ p2)

Thus, iL(t) is the characteristic function of a variable which is equal to 0 with
probability p2 and has density f (x) with probability 1 - p2.

On the other hand, let F(z) be any distribution whose support is a finite
interval such as the uniform or triangular distribution. Then F cannot be self-
decomposable since it is not infinitely divisible.
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3. The uniform case. It follows from the discussion of the preceding section
that if X and Y are uniformly distributed as

(3.1) X : U(0- T +0±); Y : U(0- P2, 0±+ 2)
2 2' 2

then very surprisingly Y is not more informative than X for all 0 < p < 1. This
does not rule out the possibility that it may be more informative for some p, and
this is in fact the case.

THEOREM 3.1. Under (3.1), Y is more informative than X if and only if
p = 1/k for some positive integer k.

PROOF. (i) If p = l/k then (2.2) holds with Z being uniformly distributed
over the points

(k - 1) (k -3) k-3 k-1
2k k2k 2k' 2k

This is easily checked and well known.

(ii) To prove that Y is not more informative than X for p $ k we shall

exhibit a statistical task which X can perform in this case but Y can not. For
this purpose, consider the estimation of

1 if 0 < -1/2

(3.2) a (0) = Pe(X < 0) = |-0 if - 1 < < -

Oif 0> 1.
2

The estimator

1 if X < 0
60(X) = 0 otherwise

has the following two properties:
(a) 60(X) is unbiased;
(b) Var0[60(X)j = 0 when 0 < -1 and when 0 > 1.

We shall now show that an estimator based on Y which shares these properties
can exist only if p = l/k. Here attention can be restricted to non randomized
estimators 6(Y) since if 6'(Y,Z) has properties (a) and (b) where Z has a known
distribution, so does 6( Y) ElE'( Y ,Z ) Y 1.

Suppose now that 6( Y) satisfies (a). Then (Y) must be constant (a.e.) for y
sufficiently close to either +oo or -oo, and these constants must be 0 and 1
respectively if 6(Y) is to be unbiased. By differentiating the unbiasedness condi-
tion
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2

f 6(y)dy = a(#) forallO,

2

one finds further that b(y ) must satisfy (a.e.)
if-/2 < y < 1/2

(3.3) (?Y - P2) -6(Y + 2 0 otherwise

For almost all sequences b(y jip), (j = 0,1,2,...), 6 must therefore decrease
from its value 1 near j = -oo to its value 0 near j = +oo by steps the sizes of
which are restricted to 0 and p. This is possible only when p = l/k for some
positive integer k.

It seems plausible that the difficulty in this example is caused by the
insistence on 6 being unbiased, and that an estimator 6(Y) with risk uniformly
smaller than that of bo(X) does exist for most reasonable loss functions. It will
be seen at the end of Section 4 that this is indeed the case.



4. Monotone decision problems. The examples discussed in the preceding
sections make it clear that condition (1.1) for comparability is too strong to hold
in many situations in which intuition suggests that one experiment is more infor-
mative than another.

Three approaches to weakening the requirements for comparability have been
proposed.

(i) Le Cam (1964) replaces condition (1.2) by the approximate condition that
each risk function based on X can be matched within e by one based on Y.

(ii) Several authors suggest that comparisons should be made in terms of
some measure(s) of information such as Fisher, Shannon, or Kullback-Leibler
information.

(iii) Throughout the literature on the comparison of experiments, the sugges-
tion occurs of comparing two experiments not for all decision problems but only
for some family C of problems. For such restricted comparisons, (1.3) is the
relevant determining condition. So as to distinguish this approach from the clas-
sical one, we shall say that Y is more effective than X with respect to the class
C of decision problems concerning 0 if for any problem in C (specified by a set
of possible decisions and a loss function) and any decision procedure for this
problem based on X, there exists a procedure 6' based on Y such that
R (0,6') < R (0,6) for all 0. It is this last approach with which we shall be con-
cerned in the remainder of this paper. More particularly we shall be interested in
defining a class C which is large enough to include most of the statistical prob-
lems of interest, but not so large that comparability becomes practically impossi-
ble.
A suitable such class was introduced by Karlin and Rubin (1956) for the case

that 0 is a real-valued parameter. This class, the class of monotone procedures,
which we shall denote by M is defined in terms of the decision space and the
permissible loss functions. It may be loosely described as follows. (For more
detail, see Karlin and Rubin (1956).

CASE 1. (Infinite decision space). Here the problems being considered essen-
tially constitute the class of point estimation problems in which the estimand is a
real-valued increasing function a(0). The loss function is assumed to satisfy
L (0,a (0)) = 0 for all 0, with L (0,d ) increasing as a function of d as d moves
away from a (0) on either side.

CASE 2. (Finite decision space). A corresponding definition is given for the
case of a finite number of decisions, for example the case of two decisions
corresponding to testing a hypothesis H : 0 < 00 against the alternatives 0 > O0;
or the three-decision problem, in which the hypothesis H : 0o S 0 < 01 (0o S 01)
is to be accepted (decision do) or rejected in favor either of the alternatives
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0 < 00 (decision d 1) or 0 > 01 (decision d2), with suitable losses for wrong deci-
sions. (This class is treated in some detail in Ferguson (1967), Section 6.1).

The basic result of Karlin and Rubin (KR) is concerned not with a com-
parison problem but with a single family of densities po(x) with monotone likeli-
hood ratio in T(x) which without loss of generality we shall take to be x. It
then states that for any monotone decision problem for such a family po, the
class M of monotone procedures is essentially complete. Here a nonrandomized
procedure 6(x) is monotone if

x <x' => OX) < 6(x').

For the case of a finite number of possible decisions d1, , dk, a decision pro-
cedure can be described by k functions S= (01, Ok ) with

k
o < 4i < l and .2 +;(x)=1.

* =1

A procedure 4 is monotone provided there exist k + 1 points
x= -°° < x2 < * < =+ -+oo such that X;(x) = 1 or 0 as x lies in or
outside the interval (xi,xi+ ) with possible randomization on the end points.
[Under slightly stronger assumptions, Brown, Cohen and Strawderman (1976)
show M to be complete rather than only essentially complete.]

The KR -class of monotone problems does not cover the estimation of the
function a (0) defined by (3.2) since a (0) is not strictly increasing. This problem

can be viewed as a combination of the finite case (decisions that 6 < - 2 or
2

> 2) and the infinite case (estimation of a (0) for -1/2 < 0 < 1/2), and their
2

proof is easily seen to extend to such a mixed case.
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5. Relative effectiveness of location families. The aim of the present sec-
tion is to provide necessary and sufficient conditions for Y to be more effective
than X in problems 1 and 2 with respect to the class M. However, we begin by
presenting the result in its natural, somewhat more general setting.

Let P and Q consist of the families

(5.1) Pp(X < x) = Fp(x) and Q0(Y < y) =-G y).
THEOREM 5.1. Let Fo and Go have densities f e and go with respect to a com-
mon a-finite measure p, and suppose that the families f O(x) and g9(X) have
monotone likelihood ratio in x. Then a necessary and sufficient condition for Y
to be more effective than X with respect to M is that the function

(5.2) h -(T= G 1 [F,(xT) is a nondecreasing function of 0 for each x.

PROOF. By the KR -theorem, attention can be restricted to the ability of Y to
dominate any monotone procedure 6 based on X, i.e. to prove the existence of a
procedure 6' based on Y with risk uniformly no greater than that of 6. Although
this is not required for the proof, the construction will produce a monotone 6'.

Assuming (5.2), we begin by showing that for any 00 and any 0 < a < 1,
given any level a test of H : 0 < 00 against 0 > 0o based on X, there exists a
test for the same problem based on Y which is uniformly at least as powerful for
0 > 0o and uniformly at most as powerful for 0 < 00.

Since there exist tests based on X and Y respectively that are simultaneously
uniformly most powerful against 0 > 0o and uniformly least powerful against
0 < 00, it is enough to show that the claimed relationship holds for these two
tests. The optimal test based on X is given by the rejection region X > a and
that based on Y by Y > b, where for the sake of simplicity we assume for the
moment that no randomization is required and that the points a and b are
unique. Then a and b satisfy F 0(a =-Gpo(b =-1 - a and are therefore
related by

(5.3) b =GG1 [F0O(a)J.
The power of the two tests against any 0 > 0o is 1 - F,(a ) and 1 - G,(b) respec-
tively, so that domination of X by Y requires

Go(b ) < Fo(a ) for all 0 > 00
and analogously

Go(b) 2 Fe(a) for all 0 < 0o
substitution from (5.3) shows these inequality to be equivalent to

G 1 [FOO(a )] < Gj' [Fp(a )J for all 0 > 00
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with the inequality being reversed for 0 < 0o. Since this must hold for all a, it is
seen that (5.2) is a necessary condition for Y to be more effective than X for all
one-sided testing problems.

To complete the proof of sufficiency, one can now plug into the proof of the
KR -theorem. The result established so far corresponds exactly to Lemma 3 of
Karlin and Rubin. To construct a procedure based on Y to dominate any given
monotone procedure with finite decision space based on X one now simply
applies the arguments of their Lemma 4 and Theorem 1. Having established Y's
dominance for all finite problems in M, one then passes to the limit as in Section
7 of Karlin and Rubin to establish the result for the infinite case.

We next specialize Theorem 5.1 to Problem 1.

THEOREM 5.2. Let the distributions of X and Y be given by (2.1) and suppose
that F (x - 0) and G (x - 0) have densities (with respect to Lebesgue measure)
which are strongly unimodal. Then a necessary and sufficient condition for Y to
be more effective than X with respect to M is that

(54) G-'[F(b )| - G11F(a < 1 for all a < b.
b-a

PROOF. If f and g are strongly unimodal, the families f (x - 0) and g (x - 0)
have monotone likelihood ratio in x. The function h defined by (5.2) in the
present case reduces to

ho(x) G-'[F(x - 0)] + 0

and hence the inequality ho(x) < ho,(x) to (5.4) with a x--M0 and
b x -0.

Putting F(a) = u, F(b) v, we can rewrite (5.4) as

(5.5) G-1(v) - G-'(u ) S F1-(v ) -F'(u ) for all 0 < u < v <1.

Condition (5.5) states that F is more spread out than G in the sense that any
two quantities are at least as far apart under F than they are under G. These
are just the circumstances under which one would expect inferences about the
location of F to be more difficult than those about the location of G. Restric-
tion to monotone problems has thus replaced the original rather strange and - as
it turned out - not very useful condition (2.2) with one that nicely quantifies our
intuition.

Condition (5.5) was discussed in Bickel and Lehmann (1976) as the definition
of F being more spread out than G. It was also pointed out there that if F1
and G-1 are differentiable, (5.5) is equivalent to

(5.6) f [F-(y)I < 1 for all 0 < y < 1.
g [G1(y )J -
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Still another equivalent condition is given in Theorem 1 of Bickel and Lehmann.
Let us finally specialize the above results to Problem 2, defined by (2.4).

Since in that case G(y) = F(y/p), 0 < p < 1, we have G-'(y) = pF-'(y), and
it is seen that (5.5) holds for all F. We have thus proved
THEOREM 5.3. Let the distributions of X and Y be given by (2.4) and suppose
that F has a density f which is strongly unimodal. Then Y is more effective
than X relative to M for all 0 < p < 1.

Since the uniform distribution is strongly unimodal, this establishes in partic-
ular the conjecture expressed at the end of Section 3 for any loss function meet-
ing the KR conditions of case 1 of Section 4.
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6. Scale-free comparisons and a tail-ordering. Conditions (5.4)-(5.6) make
it possible for any particular F and G to decide on the comparability of the two
families (2.1) with respect to M. We shall in the present section consider a
scale-free version of this comparison.
PROBLEM 3. Given F and G, does there exist p sufficiently small so that

G y | is more effective than F(x - 0) with respect to M?
p

When such a p exists, we shall say that G has a more effective shape than F
with respect to M.

It follows from (5.5) that G has a more effective shape than F if and only if
there exists p such that

G'l(v)-G'l(u) < 1 forallO<u <v <1
F-'(v) F-'(u) P

i.e. if and only if

(6.1) G-1(v) - GF-(u) is bounded.
F1(V ) - F'l(u)

If F'1 and G-1 are differentiable, this reduces to

(6.2) f [F1(y)J is bounded.
g [G-'(y)J

The function f [F-'(y)J is studied in a different context by Parzen (1979) who
calls it the density-quantile function, and considers its limiting behavior as y -_ 0
or 1 a measure of tail weight. He also evaluates this function for a number of
important distributions. Condition (6.2) is also closely related to the s-ordering
of symmetric distributions introduced by van Zwet (1964), who requires that

(6.3) f [F-1(y ) b decreasing for y > 1/2
*63 1eG(y l increasing for y < 1/2

The ratio therefore attains its maximum at y - 1/2 and if f is bounded, (6.3)
implies (6.2).

As discussed by Loh (1984b), Van Zwet's s-ordering and some related order-
ings (including Loh's t-ordering) take into account not only the heaviness of the
tail but also the behavior of f (its "peakedness") at the center. In contrast,
condition (6.2) provides a definition of pure tail-ordering. As an example, if G is
double exponential and F Cauchy, then F is not tail-heavier according to the s-
ordering, but it is strictly tail-heavier according to the ordering (6.2) since (see
Parzen (1979))
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1 -tu fortu > 1/2

f [F-'(u )1= u for u< 1/2 when F is standard double exponential

and

f 1F-1(u )j = isin2(iru) - (1 - u )2 when F is standard Cauchy

where here and below - means that the ratio tends to a positive finite construct
as u -- 1. As another example, note that according to the s-ordering, the double
exponential is heavier-tailed than the logistic, while the two are equivalent
according to the ordering (6.3). This is seen from the fact that for the logistic
distribution

f [F-'(u)= u(1-u)
Let us now return to Problem 3 and provide examples of some situations in

which G has a more effective shape than F by being lighter-tailed according to
the definition (6.2). Suppose for example that G is uniform (or has any other
distribution whose density g is bounded away from 0 and oo on its support). It
then follows from (6.2) that the shape of G is more effective than that of any dis-
tribution F with bounded density, and that it is strictly more effective if the
bounded density of F is not bounded away from 0, e.g. if F is triangular, nor-
mal, etc.

As another example, suppose that G is the triangular distribution with den-
sity

g(x) 1-IxJ, -1 < x < 1.

Then g [G-1(y )] = /2(1 -y), and G is lighter-tailed than the logistic and dou-
ble exponential distributions but heavier-tailed than the extrema value distribu-
tion for which f [F-1(y )] = -(1 - y )log(1 - y) (see Parzen, l.c.)
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7. The case of n observations. So far, attention has been restricted to a sin-
gle observation from model (2.1) or (2.4). We shall now generalize Theorem 5.1
to the case that X1, - - , X.; Y1, - * * , Y. are i.i.d. with distributions Fo and
Go respectively, where 0 continuous to be real-valued. The definition of the class
M does not require any modification since it concerns only the parameter and
decision space but not the sample space.
THEOREM 7.1. Under the assumptions of Theorem 5.1, condition (5.2) is neces-
sary and sufficient for Y = (Y,,.., Y.) to be more effective than
X = (X,,.., X.) with respect to M.
PROOF. A decision procedure b(z 1, * - . x, ) is said to be monotone if

(7.1) Xi S x', for all i = 1, - - * , n impliesthat 6(x) < 6(x').

The KR -theorem discussed in Section 4 was generalized to n i.i.d. variables from
a MLR family by Oosterhoff (1969), Brown, Cohen and Strawderman (1976), and
Van Houwelingen and Verbeek (1985), who state that as in the one-dimensional
case the class of monotone procedures is essentially complete. We can therefore
as in the proof of Theorem 5.1 restrict attention to the problem of dominating
any monotone procedure based on X.

In analogy to the proof of Theorem 5.1, we begin by showing that for any 0o
and 0 < a < 1, given any monotone level a test b of H : 0 < 00 against 0 > 00
based on X = (XI, * * * , X,,) there exists a test for the same problem based on
Y = (Y1, - , Yn ) which is uniformly at least as powerful for 0 > 0o and uni-
formly at most as powerful for 0 < 00. Note, however, that there is now no
longer a unique monotone level a test (which is uniformly most powerful) but a
large class of such test.

To establish a test dominating X, let us denote the distributions F,o and GeO
by F and G respectively and replace the experiment Y by the equivalent experi-
ment Z with Z, = h(Y;) where h = F-1G. Then Xi and Z, have the same
distribution F = Foo when 0 = 00. We shall now show that the distribution Ho
of Zi satisfies

Ho(z) < Fo(z) when 0 > 00
(7.2) > when 0 < O0
To see this, note that

Ho(z) P0F-[F'G(Yi) < zJ = G0{G-'[F(z)j}.
Therefore Ho(z) < Fo(z) provided

w0hi [FOO(z )(< Go <0Fo(z)]
which by (5.2) is the case when 00 < 0 with the opposite inequality holding when
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o< 00.
Condition (7.2) states that Z, is stochastically larger than X;.
Let +(X) be any monotone test based on X (X1, * * , X.) and let

0*(Y) = 0(Z) be the same test based on Z = (ZI, * , Z.). Then it follows
from the basic property of stochastically ordered random variables, given for
example in chapter 3, Lemma 1 of Lehmann (1986), that

EOO(X) < EOO(Z) for 0 > 00
> for 0 < 0o

as was to be proved.
For more general decision procedures, we can proceed as in Brown et al (1976)

or Van Houwelingen and Verbeek (1985).
It is an immediate consequence of Theorem 7.1 that not only Theorem 5.1 but

also Theorems 5.2 and 5.3 and the results of Section 6 remain valid when the sin-
gle variable X is replaced by a sample X1, ... , Xn .
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