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1. Introduction.
(1.1) The recurrence relation:

2(' Iv+i(x) = Iv(X) - IV+2(x) (v > -1; x > 0)x

between modified Bessel functions implies

(1a) xI (x) I
v ( + 1) + xvI+2 (x)

v+ 1

and leads to the continued fraction expansion:

I
+ x2 x2 2___ _(l.b) Jx I l (x) = x x2 x2

-(1.b) x-(x 2±1 2(v±+2) + 2(v f-3) ±

a particular case of Gauss's continued fractions for ratios of hypergeometric func-
tions (see Jones and Thron [21, p.211, for example). Formulae (l.a) and (l.b) in
the case vI 1/2 are of special interest since:

xcoth x -1-x= 3/2
F1/2

and therefore:
x2 x2 x2

(l.c) x coth x -1 3 7+..

(1.2) Let ko(x) = x coth x - 1, and ho(x) = -x (x E R). The functions ho and
sh x

ko appear in Levy's formula:

(l.d) E[exp(ixS) B(1) = ml = ho(x)exp tiP2Lko(x)J

expressing the conditional characteristic function of the stochastic area

S f(B(1)(s)dB(2)(s) - B(2)(s)dB(W)(s))
0
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of 2-dimensional Brownian motion B - (B(1)' B(2)) started at 0, given its position
at time 1.

This formula (l.d) plays an important role in various questions, including
Bismut's approach [1] to the Atiyah-Singer theorem, and also the asymptotics of
the winding numbers for 2-dimensional Brownian motion (Pitman-Yor [6]).
Several proofs of formula (l.d) are known, among which:

- Levy's original proof using the development of Brownian motion along the tri-
gonometric orthogonal basis of L2([0,2wr, ds) ([4]);
- an application of Girsanov's theorem, which reduces the problem to determining
the semi-group of an Ornstein-Uhlenbeck process;
- an application of Ray-Knight theorem for linear Brownian local times.

These two last proofs are presented in D. Williams [71 (see also Yor [9]), and
hinge upon the identity:

2l
E[exp(ixS) I B(1) - ml = E[exp - Lfds IB(s)12 1 IB(1)1I ml.

0

(1.3) In this paper, we show the following extension of Levy's formula (l.d).
Theorem
Consider the orthogonal decomposition of Brownian motion

00 t

(l1e) B(t) = ((2p+1)fdsPP(2s-1))Ip (t < 1)
p=O 0

1

where: p- fdB(s)Pp(2s-1)
0

and (Pp ; p = 0,1,...) is the sequence of Legendre polynomials.

Then:

(i) With the notation: (Xy =Im((j), for (, E C, the stochastic area S can be
represented as:

00

S=O
where the convergence holds both in L2 and a.s;

(ii) For any p E N, we have:

p-i ImpI2E[exp(ixS) I /k = mk; 0 < k < PJ = exp(ix E mkXmk+l)hp(x)exp- 2 kp(x)k=0

where

(1.f) hp(x) = ; kp(x) = x (x); v = p+ .
2T(v±1)1,(x) IV2
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(1.4) In order to show more naturally how the Legendre polynomials are linked
with Levy's stochastic area, we have organized the proof as follows:
- in chapter 2, we prove that, if we represent (B(t), t < 1) as:

(l.-g) B(ti)- p(t) + tB(1), t < 1

with (p(t), t < 1) a Brownian bridge independent of B(1), and more generally, if
this orthogonalization procedure is adequately iterated, then Levy's formula (l.d)
yields a sequence of analogous identities, whose right-hand sides are:

hp(x)exp (- 1m2 kp(x))

where hp and kp are defined in (l.);

- in chapter 3, we identify the orthogonal expansion
00

B(t) Z up+ (t)gp (t < 1)
which is obtained in our orthogonalization procedure as the decomposition (l.e).
2. Levy's formula and some continued fractions of Gauss.
(2.0) NOTATION.
* If Z(t) - X(t) + iY(t), t < 1, is a complex valued continuous semi-martingale,
we write:

Sz fX(s)dY(s) - Y(s)dX(s)
0

* If m - m(1) + im(2), and n = n(1) + in(2) are two complex numbers, we write
mXn for Im(mi-n) - m(1)n(2) - n(I)m(2), and m n for Re(m-n) = m(I)n(l) + M(2)n(2).

J()=2T(v± 1)IFor v > -1, we note: I (x)

(2.1) We first reinterpret formula (l.d) in terms of the Brownian bridge p defined
in (1.g). Developing S, we obtain:

S = SP, + B(1) X/1, where: /ih -2fdsp(s),
0

and formula (l.d) becomes:

E[exp (ixSp + ixm X/1)J = ho(x)exp -_ Lko(x)J

so that:

(2.a) E[exp (ixS + in-1)] = ho(x)exp Ini2 ko(x)iP p 2 x2
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This formula confirms that I-1 is a centered 2-dimensional Gaussian variable, with
the additional information that:

1 (I12_)_i k0(x) _ 1
2 x--+O x" CO

Moreover, we deduce from (2.a) that:

E[exp (ixS,) I1- m -hl(x)exp (- lm2 kl(x)J

with:

ho(x)x2 2__
h1(x)- k(x)(x)co k(x) c

From the recurrence relation (l.a), we get:

hl(x) - ; kl(x) = x 15/2(x); co = 3.
1372(X) /2

(2.2) We now iterate the above procedure in defining a sequence of processes
(Bp(t), t < 1), and of Gaussian variables (ip) via the recurrence relation:

(2.b) J Bp(t)- BP+1(t) + up+l(t)IP

| -2fdup(s)Bp(s)
0

with original conditions: BO(t) = B(t), and go B(1), and the additional
requirement that BP+1(t) is orthogonal to O,p. In order that this recurrence rela-
tion be meaningful, we must verify recursively that the functions (up) are of
bounded variation. Suppose this is so for ul, * , up. Then, from the first half
of (2.b), using the orthogonality of ,Bp, p-, ,0/, we obtain:

t

up+l(t)E[21 - E[B(t)plJ= dsqp(s)N~~~~~~ 0

where Op(eL2([0,11,ds)) is the function appearing in the Wiener representation of
I

Op ffdB(s)op(s). Therefore, up+, is absolutely continuous, and the recurrence is
0

meaningful. Now, from (2.b), we obtain:

Sp= Sp+1 +±PXIp+1,
where, for simplicity, we have written Sk for SB, (k - p, p + 1). Consequently,
the functions hp and kp being defined via the formula:

E[exp(ixSp) #p = ml = hp(x)exp (- 2 kp(x)
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we obtain, much as in (2.1) above, the recurrence formulae:

__hp(x)x22
(2.c) (i) hp+1 - k (x)c (ii) kp+l(x) k x -c

x2where cp = lim . Moreover, we also have:
x-~O kp(x)

(2.d) -E( p+112) - 1/cp.2 '

We now deduce from the recurrence formula (l.a) that:

hp(x) - I (x)' kp(x) =x--I(x); cp = 2(v+ 1), with M= p 1/2.

(2.3) For p > 0, we introduce the process VP defined by:
t

1
Vp(t) = fdB(s)sP (t > 0), and Vp(0) = 0.

tp 0

This is a continuous semimartingale with decomposition:

ds
Vp(t) - B(t) - pf-dVp(s).

O s

Our interest in the process Vp comes from the fact that, if (ta; a > 0) denotes the
family of local times over the whole of R+ for the Bessel process, call it Rp, with
dimension cp = 2p + 3, then:

(2.e) (ta; a > 0) (=) (IVp(a)12; a > 0).

This is easily deduced from the particular case p = 0, which is due to D. Willi-
ams [8], and is in agreement with Le Gall [3], using deterministic time change,
and time-inversion.

We have the following

Theorem 1: Let p E N, and vI = p+±2 . Then:

E[exp(ixSp) =p ml E[exp(ixSvP) Vp(l) ml

- I.J) exp [- 12 x I (x)
I'(x 2 IV j

Proof: We have already shown the equality between the first and the last
expressions. To prove that the second and the last expressions are equal, we
remark that:

2l
(2.f) E[exp(ixSvy) Vp(1) = ml = E[exp _ x2 r IVp(s)I2 ds IVp(1)I2 = m11

20
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by a classical skew-product argument.

Using the identity in law (2.e), the right-hand side of (2.f) equals:

2 1

E[exp - ffdsl(R(S) < )I t1 -M
2o

and, from Pitman-Yor [51, for example, this quantity is equal to the closed form
expression presented in Theorem 1. 0

Theorem 1 may be extended, with no more difficulty, as follows: for any p > 0,
and q E N, we denote S(P) for Sv, and S (P) for S(V), where ((Vp)q; q E N) is the

sequence of processes appearing in the orthogonalization procedure detailed in
(2.2), but now applied to the process Vp, instead of B = V0.

The identities stated in theorem 1 now become:

E[exp (ixS P)) I 3 (P) = ml = E[exp (ixSv4 I Vpq(1) = ml

= l.2. exp | x .(x)j, where v = p+q+V(X) 2 IV 2

3. Levy's formula and Legendre polynomials.
We shall now determine explicitly the functions (up) which appear in the
recurrence relation (2.b).
Obviously we may, and we shall, assume here that (B(t), t < 1) is real-valued.
We need to introduce the Legendre polynomials (Pn) which may be defined by
the Rodrigues formula:

P 1 dn [(2_ 1)nl,Pn(x) - ~~-[(
2nn! dx'

and constitute an orthogonal basis of L2([-1, +1J, dx).

We now have the following

Theorem 2: Let p E N; then:

(i) E(<2) = 2p1 (ii) up+1(t) = (2p+1)fdsPP(2s-1).
0

Proof: a) In our proof of Theorem 1, we have already shown that

X = E(,32)- 1p p ~~2p-I1
(The difference of (1/2) with formula (2.d) comes from changing dimension 2 to
1). We shall give a direct proof of this below.
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b) We now prove that (U'k+1, k > 0) is a sequence of orthogonal functions in
L2([0,1], ds).
The Gaussian variable 1k admits a Wiener representation:

1

Ok- fdB(s)qk(s), with Ok E L2([0,1J, ds).
0

For any k, we deduce from the orthogonal development:
k

B(t) = Bk+l(t) + E uP+I(t)#PI
p=O

that:
t

Uk+l(t)\k = E[B(t)/kl = dsqk(s)
0

a formula we already obtained in showing that (2.b) is meaningful. Therefore,

(Utk+ = k; k > 0) is an orthogonal sequence in L2([0,1J, ds).
k

c) We now show the following relations:
1 1

(3.a) (i) fdup(s)up+i(s) = -1/2; (ii) fdup(s)uk+l(s) 0 (k > p)
0 0

which, by integration by parts, may also be written as:
1 1

(3.a') (if)Jdup+1(s)up(s) = 1/2; (ii') f duk+l(s)up(s) 0 (k > p).
o 0

These relations are obtained by writing:
q

Bp(t) =-Bq+I(t) + k2 Uk+1(t)/k (q > p);k=p

Thus:
1 q

Op 3 -2fdup(s){Bq+1(s) + k2 Uk+1(S)1k}
o k=P

which implies (3.a), since p ,13p+1, *. , q, Bq+i are orthogonal.
d) Next, we remark that the covariance of the process Bp may be deduced

p-1
from the orthogonal development: B(t) = Bp(t) + ES uk+l(t)fk.

We obtain:
p

E[Bp(t)Bp(s)] (t^ s) - E uk(t)uk(s)Xkl.4
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e) Using our previous remarks, we shall now obtain a simple recurrence for-
mula between up 1, up and up+,. We deduce from the equality:
Bp(t) = Bp+1(t) + up+1(t)i3p that:

up+ (t)Xp- EBp(t)/pl = -2fdup(s)E[Bp(t)Bp(s)]
0

which, using d), and then c), gives:
t

(3.b) up+1(t)Xp = -2fdup(s)s + 2tup(t) + up l(t)X\p2 (p > 1)
0

For p 1, we have:
1

U2(t)X1 = -2fds{tA s - st} = -t(1 - t).
0

In particular, a recurrence argument shows that for every p E N, up is a polyno-
mial of degree (p + 1).
Consequently, using b), we have: up+1(t) = apPp*(t), where ap is a constant to
be determined, and

P *(t) = (2p+1)1/2PP(2t - 1) (p E N)
is the orthonormal family in L2([0,11, dt) which is deduced from the Legendre
polynomials (Pp).

f) It remains to determine the two sequences (ap) and (Xp). Writing (3.b)
again in terms of (a,p), (Xp) and (Pp), gives the following relation:

X n+1 n+1(2n+3)'/2Pn+l(x) =-an(2n + n)X/2(x) ± n n(2n-1) /2Pin AX)
which, when compared with the classical relation:

Ptn1 = (2n+1)Pn + P'n-I
implies:

2p1 ,andca (2p+1)S/29

4. Concluding remarks.

(4.1) The proof of the theorem stated in the Introduction is obtained by putting
together Theorem 1 and Theorem 2. Indeed, since (Pp; p E N) is an orthogonal
basis of L2([-1,11, ds), we now know that (,p3; p E N) is an orthogonal basis of
the Gaussian space generated by (B(t), t < 1). Hence, the formula

k
B(t) = Bk+l(t) + E up+I(t)OP

P=
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implies (l.e), as k -+ oo.

Likewise, the formula:
k

S =Sk±1 + pE IpXIp±1
* - ~ ~ ~ ~ =

implies
00

and the convergence holds both in L2 and a.s, since:
k

( I,pX#p+l ; k E INI) is a(Fk) martingale,
p=o

where Fk is the a-field generated by (/o,i,, %k+i). This proves part (i) of
the theorem. Part (ii) is then an immediate consequence of theorem 1.

(4.2) To prove formula (l.d), P. Levy [41 develops Brownian motion along the

trigonometric basis of L2([0,11,ds), and obtains ho(x) .x , and
shx

ko(x) _ x cothx - 1 in their classical infinite product representations. On the
other hand, we have shown in this paper that, when developing Brownian motion
along the Legendre basis, one obtains ko(x) in its continued fraction representa-
tion (1.c).
(4.3) A number of variants of theorems 1 and 2 can be obtained if we replace the
Brownian functional S by

1 1

=() fJdSs(s), or by A( = dsq(s) IB(s)12,
0 0

with [:[0,11 -+ a nice function, and in particular )(s) sk(k > 0).

Acknowlegment:
This work was done partly at the Dublin Institute of Advanced Studies, and at
the University of California, Berkeley, during the months of July and August,
1986.

The authors would like to thank John Lewis (Dublin) and Jim Pitman (Berkeley)
for their kind hospitality, and several discussions which led to a substantially
better presentation of their work.



- 10 -

References

[1] J.M. BISMUT: The Atiyah-Singer theorems, I and II. Journal Funct. Anal.,
57, 1984, p. 56-99; p. 329-348.

[2] W.B. JONES and W.J. THRON: Continued Fractions: Analytic Theory and
Applications. Encyclopedia of Mathematics and its Applications, G.C. Rota, edi-
tor. vol 11 (1980). Addison-Wesley.

[3] J.F. LE GALL: Sur la mesure de Hausdorff de la courbe brownienne. Sem.
de Probas XIX. Lect Notes in Maths 1123. Springer (1985).

[4] P. LEVY: Wiener's random function, and other Laplacian random functions.
Proc. 2nd Berkeley Symp. Math. Stat. Proba., Vol II, 171-186. Univ. California
(1950).

[5] J.W. PITMAN and M. YOR: Bessel processes and infinitely divisible laws,
In: "Stochastic Integrals", ed. D. Williams. Lect. Notes in Maths 851. Springer
(1981).

[6] J.W. PITMAN and M. YOR: Asymptotic laws of planar Brownian motion.
Annals of Prob. July 1986.

[7] D. WILLIAMS: On a stopped Brownian motion formula of H.M. Taylor.
Sem-Probas X. Lect. Notes in Maths 511. Springer (1976).

[8] D. WILLIAMS: Path-decomposition and continuity of local time for one-
dimensional diffusions - Proc. London Math. Soc. 28, 738-768 (1974).

[9] M. YOR: Remarques sur une formule de P. Levy. Sem.de Probas XIV.
Lect. Notes in Maths. 784. Springer (1980).


