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1. Introduction. Much of mathematical statistics deals with inference

concerning the unknowns in a stochastic model for a random phenomenon. In

the parametric approach the unknowns are a specific finite number of real

parameters. In the nonparametric approach they are functions, perhaps

subject to smoothness or other regularity conditions. These functions can be

approximated by means of a flexible finite-dimensional function space. To

some extent, this reduces the nonparametric approach to the parametric

approach. But the asymptotic theory is different when the error of

approximation is taken into account and the dimension of the approximating

function space is allowed to tend to infinity with the sample size. We will

illustrate this theory by means of three examples: density, estimation,

logistic regression, and additive logistic regression.

1This research was supported in part by National Science Foundation Grant
DMS-8600409.
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2. Density estimation. Let Y be a d-dimensional random variable

taking on values from a known compact subset C of R . It is assumed that

the distribution of Y has a density function f which is continuous and

positive on C. By definition If = 1. Set g = log f. Let fn denote a

pn-dimensional vector space of functions on C having basis Bnj'
1 < j < Pn. It is assumed that ZjBnj = 1 on C and that no nontrivial

linear combination of Bnj, 1 < j S pn, is almost everywhere equal to zero on

C. Given 9e Gn the space of pn-dimensional vectors, set

Cn(9) = log(Jexp(ZejBnj))
and

fn( ; 9) = exp( jjBnj -Cn(9)).
Then ff (*; 9) = 1 for 9 E Q . Observe that f (.; 9), 9 e is an

n n n n

exponential family in canonical form. Let nO denote the (pn-1)-
dimensional space consisting of those 9 e

n
the sum of whose elements isn

zero. Let En denote the unique value of 9 e nO that maximizes the

expected log-likelihood function A (*), defined byn

A (9) = E[(Z9Bnj (Y)-Cn ()] = Z.JBnif Cn (9), 9 6 nO0
Consider the loglinear density approximation fn = fn (; 9n) to f.

Let Y .. ,Y be independent random variables each having density f.1' n

The log-likelihood function for the parametric model is given by

n(9) = ZjjZiBnj (Yi) - n (9).

The maximum likelihood estimator (MLE) 9n is the value of 9 e 0nO that

maximize's Pn) Since t£ ( is a strictly concave function on 9nO' the

MLE is unique if it exists. The corresponding estimate f = f (-; 9n) ofn n n

f is called a logl inear density estimate, since log f
n

e f
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Let 11 11 and il 11 denote the usual L and L norms of functions
2 2 0

on C. Let 11 11 A denote the L. norm of functions on A. It is assumed

5-e
that pn 0X as n e x, that pn = o(n' ) for some e > 0, and that

lim inf 1ls-h11 = 0 if h is continuous on C.
n-.o seYn

Let nh denote the orthogonal projection of h onto ?n with respect to

L2(C). It is assumed that there is a positive constant M such that

lnhilYh < MlIhIll for n > 1 and h e L"(C);

lBnjI < M on C for n > 1 and I < j S p ;

for 1 ' j < Pn, Bnj = 0 outside a set Cnj having diameter at most

Mp 1/ and C . n C nonempty for at most M values of k;
n nj nk

and

M la9 i S lIzkGkBnk112'C < MPnJc (ZkGkBnk) for n 2 1, 0 e 9n, and

ni nj~~~~~~~~~~~ I :S j < pn.
These properties can be satisfied with Cnj, 1 < j S pn, a partition of

C and B . the indicator function for C . Here f is the corresponding
nj nj n

histogram density estimate. They can also be satisfied with d = 1, Yn a

space of splines and Bnj, 1 j < Pn, a basis consisting of B-splines; see

de Boor (1976, 1978) or Stone (1985, 1986a, 1986b) for details. Presumably,

they can also be satisfied with tensor product spaces of splines and with

spaces of the type that arise in the use of the finite element method (see

arguments in Descloux, 1972, and de Boor, 1976).

Some asymptotic properties of loglinear density estimation will now be

summarized. The proofs follow from arguments in Stone (1986b). Set

6n = inf lls - gill.
n
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THEOREM 1. (i) lifn - f lic = 0(6n);
(ii) fn exists except on an event whose probability tends to zero with

(iii) fn n 112 =0pr(( Pn)
and

-1 1/2(iv) Ifn - fn co
= 0pr ((n pnlog(p )) ).

Write

f - f = f - f + f - f .
n n n n

The quantity f - f is a "bias" term, while f - f is a "noise" term
n n n

whose magnitude is indicated by its asymptotic variance. Under typical

smoothness assumptions on g, 6 = Q(pqq/d) for some positive number q
n n

(this holds with q = m if g has a bounded mth derivative).

= 1/(2q+d) and r = q7v. Suppose that vd < 1/2 or, equivalently, that

q > d/2. To get the optimal rate of convergence of ilfn - f I2 to zero,

-yd ~2 -i -2r
choose p -n Then nn p - n and hence

-r
n ~ ~ ~I-fn

fn - fl 2 = 0pr(n
To get the optimal rate of convergence of lfn - fhIc to zero choose

P ~ (n/log(n)) . Then a
2

n p log(p) (n 1log(n))2r and hence

~rlif - fli = 0 ((n log(n)) ).

(See Stone, 1982, for a precise definition of optimal rate of convergence.)

Let #n(-) denote the information function based on the random sample

of size n. Then f n(9) is the Hessian matrix of nCn () at 9; that is,

the pn x pn matrix whose (j, k)th element is

n

n
aea

k

Let #i 1(9) denote the inverse to fi (9) viewed as a linear transformation
n n

of Set t (9 and t (9 Let G (y) ,G (y e an
n0' n n n n n n n n n

Set
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denote the p -dimensional vectors having elements

G (y) = B (y) - (n

and

ac
Gnj (y) =B n(Y) -a- (9n

respectively. Set

-1 1/2SE(fn(y)) = fn(y)(Gn (y)'fn Gn(y))/
and

SE(f (y)) =f (y) ( y)'1 G (y))

THEOREM 2. Uniformly in y e I,

SE(fn(y)) (n Pn)

SE(fn(y))
n = 1+0 1pr(),

SE(fn(y))
and

X Sn n .'| A(O, 1).
(SE n(y))

It follows from Theorem 2 that fn(y) 1-.aSE(fn(y)) is an

asymptotic (l-a)-level confidence interval for fn(y); if

o = o((n pn) / ), it is also an asymptotic (1-a)-level confidence interval

for f(y). Here *(z ) = q, 0 being the standard normal distribution

function.

Let P denote the distribution corresponding to f, defined by

P(A) =Af, and let Pn and Pn be defined similarly in terms of fn and

fn. Let A denote a class of subsets of C. Given distributions Ql and

Q2 on C set

Q1Q Q2 upAA IQ1( ) - Q2(A)I.
AeA
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Under reasonable conditions on A, Yn and f

lip l Atp l1/daIIn - l (n en)

and

P (A)-P (A)1/
4[ n( )n( ))-Y(O, 1) with SE(Pn(A)) = (P(A)(1-P(A))/n)

(SEPn( ))

It was shown in Stone (1986b) for the special case of d = 1, bases

consisting of B-splines, and A the collection of subintervals of a compact

interval C that

-1/2lIP - Pn11 =0p (n ).n nwX pr

What is a corresponding result in the more general context of the present

paper?
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3. Logistic regression. Let X, Y be a pair of random variables such

that X ranges over a known compact subset C of R and Y takes on only

two values, 0 and 1. It is assumed that the distribution of X is

absolutely continuous and that its density is bounded away from zero and

infinity on C. Let f be the regression function, defined on C by

f(x) = Pr(Y = liX = x).

It is assumed that f is continuous and that 0 < f < 1. Let g denote the

corresponding logistic regression function, defined by g = logit(f) -

log(f/(i-f)); so that f = exp(g)/(l+exp(g)).

We can approximate g by a member of a pn-dimensional vector space Yn
of functions on C. Let Bnj, 1 S j < Pn, denote a basis of f . Then the

expected log-likelihood function A (*) is defined by

An() = E[Z9.Bnj (X)Y-log(liexp(ZjajBn (X)))], e n

Let 9n be the unique 9 E 9n that maximizes An() and set

gn = Z njOBnj and fn = exp(gn)/(l+exp(gn)).
Let (X1, Y1),***,(X, Yn) be independent random pairs, each having the

same distribution as (X, Y). The log-likelihood function for the parametric

model is given by

n(9) = zjjziYiBnj (Xi) - Zilog(l+exp(ZjjBnj(Xi)),
which corresponds to an exponential family in canonical form. Let *n

denote the MLE of 9 and set gn= z9njBnj and fn = exp(gn)/(l+exp(gn)).
Under appropriate regularity conditions, analogs of Theorems 1 and 2 of

Section 2 should hold.
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4. Additive logistic regression. Let C be a rectangle, say,

C = [0, 1] d. It is then useful in practice to assume that g is additive

or, more generally, to replace g by its best additive approximation g*;

this is defined to be the unique additive function h on C that maximizes

the expected log-likelihood

Efh(X)Y-log(l+e )].

Set f* = exp(g*)/(l+exp(g*)). If g itself is additive, then g* = g and

f* = f.

To obtain a pn-dimensional space of additive approximations to g*, we

consider Pnk-dimensional vector spaces ?nk of functions on [o, 1] for

1 5 k 5 d, each containing the constant functions, and let Yn be the

collection of all functions of the form

s(x1i**Xxd) = Zksk(xk) where nkfor 1 k d.

Then

Pn =1 + Zk(Pnk-l)*
Analogs of Theorem 1 of Section 2 and its consequences for optimal rates of

convergence should hold with f replaced by f*, g replaced by g*, and d

replaced by 1; see Stone (1985, 1986a) for what has been rigorously verified

to date. An analog to Theorem 2 should also hold if g itself is additive.

Otherwise, a more complicated standard error formula would be required since

Pr(Y = 11 X = x) would not be exactly equal to f*(x).
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