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Introduction.

The term "statistics" is used in different ways. "Accident statistics", or

"Sales statistics" refer to numerical data in these areas. (The corresponding

theoretical terminology defines statistics to be any functions of observable ran-

dom variables). Common problems encountered in the work with such data and

those collected by scientists, engineers, government officials, lawyers, doctors,...

have led to the development of general methods and principles concerning the

collection, presentation, and analysis of data. The term statistics is also used as

the discipline concerned with such methods.

The present article considers statistics broadly as the field comprising all of

the above concerns. It might be described as the enterprise dealing with the col-

lection of data sets, and extracting and presenting the information they contain.

Comprehensive surveys of the present state of the field of statistics are pro-

vided by the nine volumes of this Encyclopedia and the two volumes of the Inter-

national Encyclopedia of Statistics. (Reference to articles in the first of these will

be indicated by an * and in the latter by a +. To locate these articles, it may

sometimes be necessary to consult the index of the Encyclopedia.) However, like

any other scientific disciplines, statistics is an ongoing, everchanging endeavor.

This is obvious for the collection of data relating to constantly changing popula-

tions. Regularly published guides to the enormous volume of government
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statistics are providled by thie American Statisticai In(ex hIe Statistcal

Abstracts of the lUnited Sats and the Statistica! Reference Index (for the U.S.),

and bv the Index to International Statistics. Many other types of data are

covered by

Statistical Sources: A Suibject Guiide to Data on Industrial Busine Social

Eduicational. Financial and Other Topics for the U.S. and Internationally, which

is also periodically updated.

On the mnethodological side, new methods and formulations are constantly

being developed, new types of application come into view and in turn give rise to

new problems. This flow of research is disseminated through a multitude of jour-

nals being published around the world. A listing of annual contributions (more

than 8000 in 1984) is available in the Current Index to Statistics: Applications,

NiMet.L and Theory, published since 1975.

WVhat establishes statistics as a discipline is that the same kind of data requir-

ing the same kind of concepts and methods turn up in many different fields. On

the other hand, specific areas of application also may require some specialization

and adaptation to particular needs. Separate articles in this Encyclopedia outline

how statistics is used in Actuarial work, Agriculture, Animal science, Anthropol-

ogy, Archaeology, Auditing, Crystallography, Demography, Dentistry, Ecology,

Econometrics, Education, Election forecasting and projection, Engineering, Epi-

demiology, Finance, Fisheries research, Gambling, Genetics, Geography, Geology,



-3-

Historical Studies, Human genetics, Hydrology, Industry, LaT ibrarscience,

Linguistics, Literature, Manpowver planning, MIanagement science, Marketing,

Medical diagnosis, Meteorology, Nlilitary science, Nuclear material safeguards,

Ophthalmology, Parapsvchology, Pharmaceutics, Physics, Psychology, Public

administration and policy, Quality control, Sociology, Survey sampling Taxon-

omy, and Zoology.



I. Data Interpretation

Statistical Methodology.

It is a central fact, underlying essentially all statistical thinking, that an

actual data set typically is only one of many possible such sets that might have

been obtained under the given circumstances. (For a possible exception, see

Diaconis [12].) MIeasurements vary when they are repeated. A store inventory,

besides depending on the day on which it is taken, will be affected by bookkeep-

ing and counting errors. In a survey, different households would be obtained if a

new sample were drawn; even if the same households are visited on another occa-

sion, different members may be at home and provide different answers; and,

finally, even the same family member may answer the same questions differently

on another day.

As a consequence, interpretation of a data set depends not only on the actual

data but also on what (if anything) is assumed about the possible alternative

observations that might have been obtained instead. The following sections con-

sider three categories of such assumptions, and briefly indicate the kinds of sta-

tistical procedures that can be based on each.
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Data Analysis.

It is rare that a data set is studied without any preconceived notions. Con-

sider how%,ever the idealized approach of pure data analysis in w%,hich the data are

considered on their own terms. The statistical methods developed on this basis

have as their primary aim

(i) exploration of the data to uncover the features of principal interest,

and

(ii) presentation of the data in a manner that will bring out and highlight

these features.

The set of techniques dealing with (i) and (ii) are called exploratory data

analvsis* and descriptive statistics+ respectively. Both employ a great variety of

numerical and graphical+ techniques.

The simplest, most basic data analytic methods concern a single batch of

numbers, for example, the first-year sales of the twelve novels of a successful

author, forty measurements of corrosion taken at different locations on a copper

plate, or the ages of 350,000 cancer patients listed in a tumor registry. Histo-

grams*, stem and leaf displays, and one-dimensional scatter plots* are some of

the many ways of presenting the numbers of a batch. From these one can get an

impression of where the data are centered (the general level of their values), and

how spread out they are. Observations that lie far from the bulk of the data,
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socalled otutliers , may correspond to errors or exceptioit;ai(;msej,n may

deserve special attention. The display may exhibit unusual features such as

bimodalitv, perhaps suggesting the possibility of a mixture of two batches, each

uniinodal but wvith different modes*. If there is marked asymmetry, the possibil-

ity arises of making a transformation* (suchi as taking logarithms) to obtain a

more symmetric dat a set.

Instead of a fairly detailed display of the data, authors frequently present only

one or two summary statistics; for example, the mean* or median to indicate the

general level of the numbers, and a measure of their variability such as the stan-

dard deviation*, median absolute deviation, or interquartile range*. A comprom-

ise is the five number summary , consisting of the smallest, largest, and median

observation, and the first and third quartile. These may be displayed graphically

as a bo Dlot. (See Notched Box and Whisker Plots*).

Additional information concerning the numbers of a batch may be available

and important. If the order is known in which the twelve novels appeared, the

data may show that the sales steadily increased, or that they increased up to a

certain point and then leveled off, and so on, thus providing an indication of the

author's changing reputation and success.

Example 1. Corrosion Data. The exploratory use to which even very sim-

ple data can be put is illustrated by 40 corrosion readings taken at random over a



nmetal plate (Campbell '6 , Wolfowitz .361). No particular patternl emerged]when

the observations wvere plotted according to their position on the plate. However,

wvhen they wvere plotted in the order in which they were taken, a bunching

together in runs* of high and low observations suggested (as it turned out,

correctly) a malfunctioning of the delicate measuring device.

Much of data analysis deals with batches of more complex units such as pairs

of numbers, more general vectors, matrices, or curves, and it need not be res-

tricted to a single batch. With multivariate data, one may be interested in the

separate features of the different variables, in relationships among the variables

or sets of variables, or in aspects of the overall pattern of the multidimensional

data set. The development of graphical (including in particular computer-

displayed) and numerical methods for these purposes is a very active area of sta-

tistical research. (See Multivariate graphics*.) It includes, among others, such

approaches as cluster* analysis, and multivariate classification+, multidimensional

scaling*, pattern recognition*, and factor analysis"+. When several batches are

being considered simultaneously, comparisons of the batches will tend to be of

primary interest.



- 8 -

Statistical analysis based on probability models.

The data-analytic approach indicated in the preceding section can provide

clarification of the phenomena represented by both simple and very complex data

sets, and can lead to important new insights and hypotheses. In its simplest

forms such as numerical summaries and histograms, it is the statistical presenta-

tion most frequently encountered by the general public in newspaper articles and

magazine reports. (Through misleading use, it also lends itself to much mischief.

See for example. Huff [241.) However, this approach lacks what is often an essen-

tial requirement of the resulting inferences: Because of the fact, mentioned ear-

lier, that the same phenomena might have led to different observations, it is

impossible to assess the reliability of the conclusions.

Such as assessment requires knowledge concerning the alternative data sets

that might have been observed in the given situation instead of the set that was

observed. The crucial step underlying the modern theories of statistical inference

and decision making is to consider the observed data as realizations of random

variables. The possible values of these variables are governed by probability dis-

tributions specifying the probabilities of observing the various possible data sets.

The unknown aspect of the situation (for the clarification of which the data were

collected), is represented by the fact that we don't consider the probability distri-

bution to be known, but only assume it to belong to a postulated family of



possible distributions.

For a single batch Xt, ^ , Xn, for example a set of n measuirements of some

quantity, investigators often assume that the n observations are independent, and

that each has the same probability distribution. If this common distribution is

denoted by F, thie model is conmpleted by specifying a family F to which F is

assumed to belong. This may for example be the family of all possible distribu-

tions F (i.e. no further assumptions are made), or the family of all distributions

which are symmetric with respect to a specified or unspecified point of symmetry.

Such broad families are called nonparametric+ in distinction to parametric fami-

lies where F is known except for the values of some parameters, for example, the

family of all normal, Poisson, or Weibull distributions. Once the model is

specified, one can now ask, and answer, the type of question concerning a single

batch considered in the preceding section, with more precision. In particular, the

conclusions no longer refer to this particular data set, but to the underlying pro-

cess that produced it.

Suppose- for example that the aspect of interest is the overall level previously

represented by the average of the observations. Suppose that F is the family of

normal distributions with mean e and unit variance. Then ( is the average value

not of these particular n measurements but rather of all potential measurements,

each weighted according to its probability. The average X = (XI+ - - - + Xn)/n,
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which before was a dnscriptive measure of the general >evel of the batch, nowv

becomes an estimator of the unknowvn (: for example, the true value of the quan-

tity being measured or the average value of the characteristic (e.g. height, age, or

income) in the population from which the X's were obtained as a sample.

The model assumptions make it possible to get an idea of the accuracy of an

estimator such as X, for example in terms of the expected closeness to the true

value (. One commonly used measure of this closeness is the expected squared

error, which for the case of n independent measurements with variance 1 equals

E(X - ()2 lIn.

This formula shows for instance how the accuracy improves with n, and enables

one to determine the sample size n required to achieve a given accuracy.

This approach also provides a basis for comparing the accuracy of competing

estimators. For the median X of the X's for example, one finds that approxi-

mately (if n is not too small) E(X _ ()2 = 1.57/n, more than 50%70 larger than

the corresponding value 1/n for X. The median is thus considerably less accurate

than the mean. This conclusion depends strongly on the assumption that the X's

are normally distributed. For other distributions the result may be just the

reverse. (See for example the section on robustness in the article on Estima-

tion*).

Another way of describing the accuracy of X is obtained by noting that
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(1) P[(IX-Y-I6) < 1.96/v'¶i = .95,
so that with probability .95 the estimator X will differ from the true value ( by

less than 1.96/v'H. The statement (1) can be paraphrased by saying that the ran-

dom interval (X - 1.96/vnH, X + 1.96/Vn) will contain the unknown ( wvith proba-

bility .95. Random intervals that cover an unknown parameter ( with probabil-

ity greater than or equal to some prescribed value -y are called confidence inter-

vals± at confidence level -.

Point estimation and estimation by confidence intervals provide two of the

classical approaches to statistical inference. The third is hypothesis testing*.

Example 2. Extrasensory Perception. Suppose the claim of a subject A

to have extrasensory perception (ESP) is to be tested by tossing a coin 100 times

at a location invisible to A, and recording A's perception (Heads or Tails) for

each toss. Suppose A obtains the correct result on 54 of the tosses. This clearly

is not an indication of a strong ability at ESP. However, even a very slight abil-

ity would be of extraordinary interest. Is there support for such a finding, or is

the result compatible with purely random guessing? Under the null hypothesis*

of pure guessing, the probability of calling a toss correctly is 1/2 for each toss,

and the probability of getting 54 or more right is then -1/4. The result is

therefore not particularly surprising under H, and a case for A's ability to do

better than pure chance has not been made. Had A correctly identified 65 tosses

rather than 54, the conclusion would be quite different. The probability of 65 or
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more correct calls is only .002 when H is true. In the light of so extreme a result,

one would have to give serious attention to A's claim.

Hypothesis testing, and point and interval estimation, are all used extensively

in applications, with each being more useful and popular in some areas than in

others. The theory of these three methodologies is concerned with the perfor-

mance of proposed procedures (including the determination of sample size to

achieve a desired performance), the comparison of different procedures, and the

determination of optimal ones. An important consideration is the robustness* of

a given procedure under violation of the model assumptions. If the procedures

are very sensitive to these assumptions, one may want to study the problem in a

nonparametric setting of the kind described for a single batch at the beginning of

this subsection. Nonparametric (and semiparametric*) models are particularly

important for the analysis of large data sets, which has become more practicable

as a result of increased computer capabilities and availability.

A unified framework for the three areas is provided by Wald's Decision

Theory*. This very general theoretical approach deals with the choice of one of a

set of possible decisions d on the basis of observations xi let the chosen d be

denoted by 6(x). The observed value x is assumed to be the realization of a ran-

dom quantity X with probability density p0(x), 0 unknown. A loss function

L(O,d) measures the loss resulting from decision d when 0 is the true parameter
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value, and the performance of a decision procedure 6 is measured by its risk

function

R(0,6) -= EIL(0,6(X)I,

the average loss incurred by 6 when 9 is true. A principal concern of the theory

is the determination of a 6 for which the risk function is as small as possible in

some suitable sense. Another problem is the characterization of all admissible*

procedures, i.e. all procedures whose risk cannot be uniformly improved.

Decision theory can also be made to encompass Sequential Analysis*, the

Design of Experiments (by letting the loss function take account of the cost of

observations), and the choice of model (by imposing a penalty that increases with

the complexity of the model). However, it is an abstract approach which has

been useful primarily for exhibiting general relationships rather than for its

impact on specific methods. An important consequence of Wald's theory has

been its liberating effect on the formal consideration of new types of situations,

among them multiple comparisons and other simultaneous inference procedures.
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Exploration vs Verification.

To illustrate both the relation and the difference between the approaches

described in the preceding two sections, consider once more the ESP example.

Example 2. Extrasensory Perception (continued). WVhen looking over

the results of the 100 tosses, suppose the experimenter notices that of the 54

successes, 33 occurred during the last and only 21 during the first 50 tosses. The

probability of 33 or more successes in 50 tosses with success probability p = 1/2

is only about .01. One might be tempted to explain away the poor performance

in the first half of the experiment by the theory that it requires some warming up

before the ability hits its stride, and to declare the success of the second half

significant. However, such a conclusion would not be justified on the basis of this

analysis since the calculation does not take account of the fact that the particular

test (restricting oneself to the second half) was not originally planned but was

su-ggested by the data.

Suppose the situation had been reversed, that there had been 33 successes in

the first and 21 in the second half. A possible explanation: the exercise of ESP

requires great concentration, and after 50 attempts the subject is likely to get

tired. Similar explanations could have been found if success had been unusually

high in the middle 50, or on the last 25, or the first 25, and so on. Instead of

high concentration of successes in a particular segment of the sequence, other
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patterns migllt lhave struck anl observer: for example, a grad'ridA tise in the fre-

quency of success, or a cyclic pattern of successes and failures, and so on. For

each, an explanation could have been found.

This is the problem of multiplicitv. Every set of observations - even a com-

pletely random one - will show somne special features, and explanations can usu-

ally be found post facto to account for them. Unfettered examination of many

different aspects of a data set is legitimate, and in fact a primary purpose, of

exploratory data analysis. However, the results will then tend to look more

significant than they really are since attention is likely to focus on the extremes

of a large number of possibilities. To legitimize a theory suggested by the data

one must test it, for example, on a separate part of the data not used at the

exploratory stage or from new data specially obtained for this purpose. (A some-

what more limiting alternative to such a two-stage procedure is to formulate a

number of possible theories to be considered before any observations are taken.

The simultaneous testing* of such a number of possibilities provides a legitimate

calculation: for the probability of the most striking of the associated results.)

The two stages: exploration of the data leading to the formulation of a

hypothesis, followed by an independent test of this hypothesis, constitute the

basic pattern of scientific progress as described by scientists (see for example

Feynman [141, Chapter 7) and discussed by philosophers of science. Before con-

sidering a third aspect in the next section, let us briefly mention another
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distinction. which relates to the purpose of a statistical inmestJgcaticn. This 1s (he

difference between inference* and decision making. It may be illustrated by the

problem faced by a doctor who wants to arrive at a diagnosis (inference) but

must also select a treatment (decision).

Example 3. Medical Diagnosis. Suppose there are k possible conditions

(diagnoses) 01, Ok that might have led to the observed symptoms and test

results, X (the data), including for example measurements of temperature, blood-

pressure, and so on. Under condition 0, the observations X have a distribution

p6(x). The problem of diagnosis is thus the statistical problem of using the

observed value of x to determine the correct value of 0. (A standard procedure is

to select the value 0 of 0 that maximizes pe(x) for the given observation x, the

socalled maximum likelihood estimate+ of 0). The associated decision procedure

might be to select the treatment that would be most appropriate for the chosen

0. The situation is however more complicated since the choice of treatment must

also take account of the severity of the consequences in case of an incorrect diag-

nosis resulting in an nonoptimal treatment, the socalled loss function. The dis-

tinction between inference and decision making is reviewved in Barnett [2J. For a

discussion of computer-based medical diagnosis and treatment choice, see

Shortliffe [31], and Spiegelhalter and Knill-Jones [34].
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Bayesian inference and decision making.

Example 3. Medical Diagnosis (continued). Suppose a patient P. being

tested for the conditions 01, -- , k of the last example is told that the tests

point to 0(= 01, say) as the most liely cause of the symptoms. Not unnaturally,

P. wants to know just how likely it is that 01 is in fact the true cause. The doc-

tor has to admit that the term 'most likely' was used imprecisely; that 5= 0 is

the condition which assigns the highest probability to the observed test results,

not necessarily the most likely of the conditions 01, Ok, and that in fact no

probability can be assigned to these conditions.

Actually, in this example it may be possible to make such an assignment.

Suppose that ri is the incidence of condition 0i in the population of sufferers from

the given symptoms, and hence is the probability that a patient drawn at ran-

dom from the population of such sufferers has condition 0i The condition of such

a patient is then a random variable e, with prior probability P( = 0) =ri

before the tests are taken, and posterior probability P(E = i x) in the light of

the test results x. The latter probability can be calculated from the -xi and the

p9.(x) by Bayes' theorem*.

On being presented with this probability, P. may however still not be satisfied

but complain to the doctor: "You have treated me for 20 years, you know my

complete medical history, life style, and habits. In the light of all this additional
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inforrmation, What is the probability of suffering from Oi not for ai random patient

but for me personally?" . Unfortunately, the interpretation of probability as fre-

quency, which was tacitly assumed up to now, and which in particular applied to

the prior probabilities 7ri of the preceding paragraph, precludes assigning proba-

bilities (other than 0 or 1) to unique events such as this particular patient's

suffering from condition Oi.

This difficulty is met head-on by the Bayesian approach according to which iri
can be chosen to represent the physician's probability that condition Oi obtains

for this particular patient. The meaning of probability is however different from

the earlier one. Probability is no longer a frequency but the degree of belief*

attached to the event in question. (If the event is repetitive, this probability typ-

ically draws close to the observed frequency as the number of cases gets large.)

In general, the Bayesian approach assigns a prior probability distribution* to

a parameter 0 before the observations X are taken. Once the values x of X are

available, the prior distribution of 0 is updated to the posterior (i.e. conditional)

distribution of 0 given X = x, which shows how the prior beliefs regarding the

chances of different 6-values have changed in the light of the data.

In the decision theoretic terminology introduced earlier, the relevant assess-

ment of the performance of a procedure 6 from a Bayesian point of view is not

the risk function R(e,6) but rather the posterior expected loss



- 19 -

r(x,b) -- E[L(0,6(x) xi,
calculated according to the conditional distribution of 0 given x.

Ideally, a Bayesian has a comprehensive, consistent view of the world with a

probability attached to every unknown fact. These probabilities must satisfy an

appealing set of axioms (the axioms of coherence*), and must be updated as new

information becomes available. For an individual's response to the world (or

even a specific problem), a chief difficulty in implementing this program is the

determination of the prior distribution*. A considerable literature deals with

methods for eliciting a person's degrees of belief* with respect to a given situa-

tion.1

Ideally, each person has a single correct personal probability regarding any

unknown event. However, in practice, these probabilities "can never be

quantified or elicited exactly (i.e. without error) especially in a finite amount of

time" (Berger, [31 p. 64). This has led to the suggestion of a robust Bayesian

viewpoint according to which one "should strive for Bayesian behavior which is

satisfactory for all prior distributions which remain plausible after the prior elici-

tation process has been terminated" (Berger, L.c.).

A second difficulty arises in situations in which the decision or opinion con-

cerns not a single person, but represents a joint problem for a group or occurs in

1 There is also an objective Bayesian school in which the prior distribu-
tion represents total lack of information. This will not be discussed here.
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the public (lonmain, as is the case for example in the publication :)f the analysis of

a scientific investigation. Some aspects of this problem will be considered in the

next section.
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The Bayesian/Frequentist controversy.

The mutual criticism of Bayesians and Frequentistst has criven rise to a livelv

(andicl sometimes acrinmonious) debate, which has hielped to clarify a number of

basic statistical issues. One of the central concerns is that of subjective versus

objective data evaluation in scientific inference and reporting. Fisher*, Neyman*,

and E.S. Pearson* developed their frequentist theories in a deliberate effort to

free statistics from the Bayesian dependence on a prior distribution, and this

aspect has continued as the central frequentist objection. The Bayesian response

to this criticism is twofold.

On the one hand, it is pointed out that frequentist analysis involves similar

types of specification. There is the choice of model and loss function, both of

which must be chosen in the light of previous experience and involve judg,ments

which are likely to vary from one person to another. In addition, there is the

problem of selecting a frame of reference which forms the basis of the frequency

calculations. In assessing the incidence of the conditions 01, * * , Ok Of the

preceding section, for example, for what population should this be calculated:

the population of the world, or the country or city in which the person lives;

should the comparison be restricted to patients of the same age, sex,,...? This is

1 There are many different variants of Bayesians and Frequentists, not
all of which will agree with the positions ascribed to these approaches
here.
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the problem of conditional inference*, which so far has founid nr satisfactory fre-

quentist solution. (For the Bayesian, the problem does not arise in this form

since the probabilities wvill always refer to this particular patient, but the same

issue arises when one must decide how to weigh the experience with other

patients in forming an opinion about this one).

As a more positive response, there have been recent Bayesian suggestions (for

example, Dickey [13], Smith [331), that in scientific inference the analysis should

be reported under a variety of different priors which- it is hoped - will include

the opinions of the readers. The view that "any approach to scientific inference

which seeks to legitimize an answer to complex uncertainty is a totalitarian

parody of a would-be rational human learning process" (Smith [33]), considerably

narrows the gulf between the two approaches.

The reason for this narrowing can be found in the combination of two facts.

The first is a basic result of Wald's (frequentist) decision theory to the effect that

every admissible procedure is a Bayes solution or a limit of Bayes solutions.

Secondly, frequentists tend not to believe in a unique correct approach, and may

therefore try a number of different solutions corresponding to different optimality

principles, robustness properties, and so on. If these lead to similar conclusions,

any one of them can be adopted. Otherwise, a careful examination of the

differences may clarify the reason for the discrepancies and point to one as the

most appropriate. Lacking such a resolution one may instead prefer to report a
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number of different procedures.

The Bayesian and frequency approaches lead to different ways of assessing the

performance of a decision procedure. From a strict Bayesian point of view, only

the posterior distribution of 0 given x, and the posterior expected loss r(x,6), are

relevant, wvhile frequentists measure the performance of a procedure by its risk

function. However, on this issue also, an accommodation to statistical practice

and the need for communication has narrowed the gap by generating a Bayesian

interest in risk functions. Thus Rubin [301, p.1161) writes: "Frequency calcula-

tions that investigate the operating characteristic* of Bayesian procedures are

relevant and justifiable for a Bayesian when investigating or recommending pro-

cedures for general consumption". Similar considerations can be found in Berger

[41.

In the other direction, the frequentist approach has been strongly influenced

by Bayesian ideas, in particular, by recognizing that it is natural and useful to

consider the prior distribution leading to a proposed admissible procedure. An

example in which such a Bayesian interpretation has made an important contri-

bution to a theory developed in a decision theoretic framework is that of Stein

estimation*.
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II. Data Acquisition

Measuring single units.

Part I dealt with the interpretation of data once they have been collected. In

this and the following sections, we consider some of the processes that produce

data, and the statistical problems arising at this earlier stage. (An extensive dis-

cussion of various types of data is provided in Hoaglin et al [211.)

The basic data units are the numbers, symbols, words, or other entries mak-

ing up a data set; for example, measurements of the height of a person or plant,

or of the weight of a wagonload of fruit or a minute amount of some chemical;

barometer or temperature readings; or the scores of a student on an intelligence

or aptitude test. Alternatively, the observations could be the information pro-

vided by a person answering a questionnaire or interviewer such as family size,

last year's income, or religious and political affiliation.

A concern for data quality, for their reliability and validity, is an important

task preceding the collection of data. Efforts must be made to eliminate bias*,

reduce variability, and eliminate sources of error. In constructing a question-

naire, great care is required to avoid ambiguities. Checks on the reliability of

responses can often be built into the data set, for example by asking for the same

information in a number of different ways or in different contexts.
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Another aspect of data improvement arises after the data have been obtained.

Data editing* (or "cleaning") involves the deletion or modification of entries

w%hich do not appear to be in consonance with the rest of the data and which

sometimes represents obvious errors (for example, in a series of monthly measure-

ments of a baby's head circumference when one month's measurement is smaller

than the preceding ones). A variety of statistical methods have been developed

for this purpose. In addition, robust statistical procedures are available, which

satisfactorily control the effect of outlying observations. (See for example Hoaglin

et al [221 and Hampel [18]). On the other hand, data cleaning by inspection,

without clearly stated rules, runs the risk of introducing a subjective element.

(For example, just which observations are to be singled out for such treatment?).

Even with good rules, it may remove valuable evidence and destroy the basis for

probability calculations. For this reason, it is typically better to consider the

editing of data as part of the statistical analysis and, while perhaps indicating

definite or suspected errors, not to change the original data.

The improvement of data quality mentioned above is not the only aspect of

data collection to be considered before obtaining the observations for an investi-

gation. Two questions in particular, which are of crucial importance and which

will be discussed in the next sections are how many, and what kind of observa-

tions are required.
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Assessing population characteristics.

The target of most investigations is not a single unit. but a populntion of sucI

units. A set of professors, apples, days, mice, or light bulbs, is typically exam-

ined not because of interest in these particular specimens but in order to reach

conclusions about the populations tlhiy represent. (It is this aspect and the asso-

ciated quantification that has earned statistics its reputation of being

antihumanistic).

Efforts to obtain information about every member of the target population

through a census" go back to at least the third millenium B.C. in Babylonia,

China, and Egypt. (For a nontechnical history of the census, see Alterman[1l.)

The purpose was usually to provide a basis for taxation or proscription. Today,

population censuses seeking a great variety of information are carried out, many

of them at regular intervals, in nearly all countries of the world.

However, taking a complete inventory is not the only way, and often not the

best way, to obtain accurate statistical information about a population. The

same end can usually be achieved more economically by collecting information

only from the members of a sample, taken from the population by a suitable

sampling* method. The much smaller size of the sampling operation tends to

make this procedure not only cheaper but also more accurate since it permits

better control of the whole process and hence the quality of the resulting data.



On the other hland, a census has the advantage - not shared y ;iN- sa.imple - of

providing information even for very small subpopulations.

Suppose a population [l consist of N units, each of which has a value v of

some characteristic of interest, such as the age or income in case of a human

population, the number or weight of the apples on each of the N trees in an

orchard, or the length of life or brightness of the lightbulbs in a shipment

received from the factory. To obtain an estimate of the average v-value

V = (v1i+ * + vN)/N, a sample is taken from the population. In the early days

of sampling, investigators usually relied on judgment samples, in which judgment

is used to obtain a sample 'representative'* of the population. It is now realized

that such sampling tends to lead to biases, and does not provide a basis for calcu-

lating accuracy or the sample size needed to achieve a desired accuracy. The

methods used instead are probability sampling schemes* which select the units to

be included in the sample according to stated probabilities. The simplest such

scheme is simple random sampling according to which n units are chosen in such

a way that- every possible sample of size n has the same probability of being

drawn. The average of the sample v-values is then the natural estimate of V.

Better accuracy can often be attained, and the needed sample size and result-

ing cost therefore reduced, by dividingr the population to be sampled into strata

within which the v-values are more homogeneous than in the population as a

whole but which differ widely among each other. (The population of school



- 28 -

childlren of a city might for example be stratified by school. grade, aiui iender.jA

stratified* sample of size n is then obtained by drawing a simple random sample

of size n- from the i-th stratum for each i, where Sn1 n.

In a different direction, the cost of sampling can often be reduced by combin-

ing units into clusters* (for example, all the apartments in an apartment house,

all houses in a city block, or all patients in a hospital ward), and obtaining the

required information for each member of a sampled cluster. The two approaches

can be combined into stratified cluster sampling, and many other designs are pos-

sible. For references to the extensive and sophisticated methodology available,

see the articles on sampling" and sample surveys".

Sample surveys to obtain information about a population are in widespread

use and have become familiar through election polls, market surveys, and surveys

of television viewers to establish ratings. However, they are not very well under-

stood. In particular, it appears puzzling how it is possible to obtain an accurate

estimate of the opinions or intentions of many millions from information concern-

ing just a few thousand.

Example 4. An election poll. To get some insight into this question, let

us simplify the situation, and suppose that a population [l consists of a large

number N of voters, each of whom supports either candidate A or B. A simple

random sample of n voters is drawn from Hl, and the preference of each member
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of the samnple is ascertained. If X is the number of voters in thie sample favoring

A, then X/n, the proportion of A-supporters in the sample, is the natural esti-

mate of the proportion p of A-supporters in the population.

The question at issue is how large a sample is required for X/n to achieve a

prescribed accuracy as an estimate of p, for example, for the standard deviation

(SD) of X"n to satisfy

(1) SD(X/n) < .01.

It is often felt intuitively that the required sample size n should be roughly pro-

portional to the population size N. However, it turns out that this intuition is

misleading and that in fact for large populations the required n is essentially

independent of the value of N.

To see this, suppose for a moment that the sampling is done "with replace-

ment", i.e., that the members are drawn successively at random, with each - after

giving the required information - being put back into the population before the

next member is drawn, again at random. This method is slightly less efficient

than the original simple random sampling (and therefore requires a larger sample

size), because it allows the same unit to be drawn more than once. It is intro-

duced here because it is particularly simple to analyze. Sampling with replace-

ment is characterized by two properties: (i) On each draw, the probability of

obtaining an A-supporter is p; (ii) the results of the n draws are independent in

the sense that the probability of getting an A-supporter on any given draw does
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not depend on the resuits of the earlier drawvs.

Let us now compare this situation with a quite different one. Suppose a coin

wvith probability p of falling heads when spun on its edge (this probability may be

far from 1I 2), is spun n times and that X is the number of times it falls heads.

Then (i) the probability of heads is p on each spin, and (ii) the results of the n

spins are independent. The standard deviation of X/n is therefore the same for

this coin problem as in the election-sampling with replacement. The number n

required to reduce this standard deviation to .01 is therefore also the same in

both cases. Note however that the coin problem involves only n and p; no popu-

lation is involved. Therefore the required n cannot depend on N.

This argument depends of course crucially on the assumption that the sam-

pling was random. It is the randomness which insures that with high probability

the sample contains approximately the same proportion of A-supporters as the

population. In addition, it was tacitly assumed that the preference of each voter

can be ascertained without error. In practice, the possibility of "response error"

can rarely be ruled out.
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Data from experiments.

A study is called an experiment if its data are produced by an intervention

(i.e. do not occur naturally) for the purpose of gathering information. It is a

comparative experiment if its purpose is to compare several ways of doing some-

thing (e.g. different teaching methods, medical treatments, fertilizers, and so on)

rather than to determine some absolute value.

Example 5. Weather modiflcation*. Consider a company's claim to be

able to increase precipitation be seeding the clouds of suitable storms. Here the

comparison is between seeding and not seeding. How can one obtain data to test

the claim and to provide an estimate of the amount of increase?

As one possibility, the company might seed all suitable storms in the given

location, and compare the resulting rainfall with that during the corresponding

period in the preceding years. Of course, if the results are very striking (for

example, if an enormous downpour occurs immediately following each seeding)

this may settle the issue. However, typically the results are less clear. Suppose,

for example, that the total rainfall matches, or even slightly exceeds, that of the

wettest of the last five years. This may be the result of the seeding; or it may

just be the consequence of an exceptionally wet year.

This difficulty is inherent in studies in which there is no randomness in the

assignment to the experimental units of the conditions or treatments being



compared. A better basis for the establishment of a causal rcia.tioiionlip - in this

case that the increased rainfall is due to the seeding- - is obtained if storms are

compared within the same season, and if they are assigned to the two treatments

(seeding and not seeding) according to a random mechanism. This can be done

in a variety of wvays, corresponding to different experimental desins*.

As a simple possibility, suppose that the experiment is to extend to the first

20 storms that are suitable for seeding. Of these, 10 will be seeded and 10 not,

the latter providing the controls. According to one design (complete

randomization), ten of the numbers 1,...20 are selected at random; the storms

bearing these numbers will be seeded, the remaining ten will not. An alternative

design (paired comparisons*) pairs the storms (1,2), (3,4),...,(19,20), and within

each pair assigns at random (e.g. by tossing a coin) one storm to seeding, the

other to control. This second design will be particularly effective if storms occur-

ring close together in time are more likely to be similar in strength than storms

separated by longer time intervals.

It is interesting to note the close relationship of these designs to the sampling

schemes of the preceding section. In the first design, the storms assigned to seed-

ing are a simple random sample of the 20 available storms; in the second case,

they constitute a stratified sample, with samples of size 1 from each of ten strata

of size 2.
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Unfortunately, random assignment of the conditions beingcFmpared is nt

always possible. Consider for example a study wshich reports that married men

tend to live longer than unmarried ones. It is tempting to draw the conclusion

that marriaoe prolongs life, perhaps by providing a more regulated life style.

However, such a conclusion is not justified. Mtarried and unmarried men consti-

tute groups which differ in many wvays. The latter for instance includes men wyith

health problems which preclude marriage and which also tend to shorten life. It

is thus not clear whether the observed effect is the result of the difference in mar-

ital status or of conditions leading to this difference. All that can be safely con-

cluded is that marriage is associated with longer life expectancy. This may be

enough for an insurance company but does not answer the sociological or public

health question regarding the effect of marriage. Quite generally, observational

studies* in which subjects have not been assigned to the conditions being com-

pared (marital status, smoking habits, religious beliefs,...) can establish associa-

tions (such as that between marital status and longevity) but have great difficulty

in validating causal relationships. To establish causation" is a cherished goal of

statistical methodology but tends to be rather elusive. (For some further discus-

sion of this point, see for example Mosteller and Tukey ([281, p.260/261).)

Example 6. A headache remedy. Suppose that you wake up with a

headache, take a headache remedy, and an hour later find that the pain is gone.

Based on this isolated instance (which in words attributed to R.A. Fisher is an
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experience ratlher than an e.xperiment) it. Is clearly!not posswt':Ir,ciu1 hat

the result is due to the remedy. The cause might instead have been another

intervening event such as breakfast, or possibly the headache had run its course

and *vould have dissipated in ally case.

The attribution of the cure to the medication becomes much stronger if the

incident is not isolated. If you have suffered from headaches before, took the

medicine sometimes soon after onset, at other times only after having waited in

vain for the pain to subside on its own; if on different occasions you took the

tablets at different times of day, and if under all these different circumstances the

headache disappeared shortly after treatment and never (or only very rarely)

before, the robustness of the effect over many different conditions would tend to

carry conviction where a single instance would not. The finding could be

strengthened further if your own experience could be merged with that of others.

(However, even if the evidence for a treatment effect is convincing, observations

of this kind can not determine whether the ingredients of the medication are

responsible- for the improvement, or whether it is a placebo effect, i.e. the

patient's belief in the effectiveness of the treatment, which relieves the pain).

To see how to systematize the informal reasoning of the preceding paragraph,

consider another example.

Example 7. New traffic signs. Suppose that 4-way stop signs have been
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inst;alled at a dangerotus intersection, and that four accdent had clurredir tn

month precedinc the installmr nt of the signs but only one in the month following

it. Tlese facts by themselves provide little basis for an inference. Suppose for

example that the monthly accident frequencies constitute a purely random

sequence of which the value 4 was a chlance high, which however caused the

installment of the signs. Then even without this intervention, a decrease could

have been expected in the succeeding month.

A more meaningful comparison can be obtained if the accident statistics are

available not only for one month before and after, but for several months in both

directions. One is then dealing with an interrupted time series for which it is

possible to compare the observations before with those after the "interruption"

(the installment of the signs). Even the nonrandom choice of the time of inter-

vention would then have only a relatively minor effect.

While the interrupted time series can establish that the accident rate is lower

after installment than it was before, it can not establish the new signs as the

cause of thbe decrease since other changes might have occurred at the same time.

To mention only one possibility, the community may have been affected by edi-

torials published at the times of the third and fourth accidents. Some control -

although not as firm as that resulting from randomization - can be obtained by

studying the accident rates during the same months also at some other intersec-

tions, a multiple time series design. If the other series do not show a
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corresponding decease. this wviil clearly strengthen the 'ausal trgI§ruutP

Quasi-experiments such as the interrupted time series and multiple time

series deseribed above, which trv to identify and control the most plausible alter-

natives to the treatment being the cause of the change, are treated by Cook and

Campbell '9] and Cochran !8i; for an elementary discussion see Campbell 7'.

They can greatly strengthen the causal attribution although they can not be

expected to be as convincing as a controlled randomized experiment.

A better term might be quasi-controlled experiments.
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Serial data.

Most of the data considered so far were assumed to be collected on a one-shot

basis. Often, they are obtained instead consecutively over a period of time. Such

data are particularly useful in assessing changes over time. (.Are winters getting

colder? Is the birthrate in the U.S. falling? Are an author's novels becoming

more popular?)

An important application is provided by statistical quality control*. An esta-

blished production process is monitored by taking observations of the quality of

the product at regular intervals. The process is said to be in control if the suc-

cessive observations are independent and have the same distribution. A control

chart* on which the successive observations are plotted provides signals when the

process appears to be going out of control. A similar approach is used in moni-

toring the cardiogram of a heart patient in intensive care, where however the

data consist of a continuous graph instead of a discrete sequence of points.

Analogously, seismographs provide continuous data for the monitoring of seismic

activity while persons watching their weight through regular weighings provide

another illustration of the discrete case.

In these applications, a single process is followed to check that no changes are

occurring and to alert us when they are. A different situation arises when one is

interested in assessing the changes occurring in a population as part of a develop-
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ing pattern or as the result of some intervention. For exampie, to study the pat-

tern of growth (the zrowth curve*) of children, plants, or institutions, or the

effect of several different programs (say, of different rehabilitation programs on

juvenile offenders), one observes each member of a sample from the population

over a period of time. In such longitudinal studies* the observations of the same

units at different times often are dependent. Probability models for sequences of

dependent observations are considerably more complicated than those for

sequences i.i.d. variables. Such models and their statistical analysis are treated in

the theory of time series* or more generally of stochastic processes

Observations arising serially, for instance on patients coming to a clinic, suc-

cessive books by an authors, or stockmarket performance in successive time

periods, provide an opportunity to economize by letting the size of the study be

determined by the data. (according to a clearly specified rule), instead of fixing it

in advance. Suppose for example that a shipment of goods is being sampled to

determine whether its overall quality meets certain specifications. Items are

being drawn at random, and examined, one by one. It may then be possible to

stop early when the quality of the initial observations is either very satisfactory

or very unsatisfactory, while one may wish to take a larger sample when the ini-

tial observations are mixed. The working out of economical stopping rules pro-

viding the desired statistical information, and the analysis of the resulting data,

is the problem treated in seguential analysis*.
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Designing experiments.

Part I of this article has been concerned with the interpretation of data once

thiey have been obtained, Part II with various processes used to acquire the data.

However, preceding even this stage, it is necessary to plan how many and what

kind of data will be needed to answer the questions under consideration.

As an illustration, consider once more the ESP study of Example 2, based on

100 tosses of a coin. Suppose the investigator had decided, before the experiment

was carried out, to give serious attention to the possibility of ESP provided the

number of Subject A's correct calls would be at least 65. As was pointed out in

Example 2, under the hypothesis of pure guessing the probability of 65 or more

answers is .002. There is thus little danger of paying attention to the claim if it

has no validity.

However, is this study giving Subject A a fair shake? What is the probability

of getting 65 or more of the tosses right if A really does possess the claimed abil-

ity? The answer depends of course on the extent of the ability, which can be

measured by the probability of calling a toss correctly. Here are some values,

computed under the simplifying assumptions that the 100 calls are independent,

and that the probability p of a correct call is the same for each toss.
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P.6

P(No. correct calls > 635) .0>27 .179 .884 .900

z-Power

The probability in this table measures the powver* of thie test of the

hlypothesis H: p = 172, i.e. the probability of following up A's claim, against

various alternative values of p. It show: that the power is quite satisfactory

when p is .7 or more, but not, for example, when p = .6. In this case, despite

the large discrepancy between pure guessing and an ability corresponding to

p .6, the probability is less than 20'% that serious attention would be given to

the claim. To get higher power would require a larger number of tosses. For

example. to increase the power against p = .6 to .9, while keeping the probabil-

ity of following up the claim when p = .5 at .002, would require a sample of

about 425 tosses instead of the previous 100. A statement of the goals to be

achieved, e.g. the required power of a test or accuracy of an estimate, and deter-

mination of the sample size needed for this purpose, are crucial aspects of plan-

ning a study.

Taking a fixed number of observations (100, or 425,...) is not necessarily the

best design. Suppose for example that A calls all of the first 25 tosses correctly.

This may be enough to provide the desired evidence of A's ability (or suggest

that something is wrong with the experiment). Thus, a sequential stopping rule
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of the type indicated at the end of the last section nlght be inor' etlicient.

Consider next the problem of determining an optinal design when different

types of observations are involved. Suppose we are concerned with the com-

parison of two treatments, and that the total number of observations is fixed at

N = 2k. Then it will typically be best to assign k subjects to each treatment,

since this will tend to maximize the power of the tests and minimize the variance

of the estimate of the difference. This may of course not be the case if observa-

tions on one of the treatments have smaller variance than on the other.

Finding the optimum assignment becomes much more difficult when observa-

tions are taken sequentially, and a decision is required at each stage which treat-

ment to apply next. What is the best (or even a good) rule depends strongly on

the purpose of the procedure. If the only concern is to decide whether the treat-

ments are equally effective and, if not, which is better and by how much, the

treatments should be assigned in a balanced way, i.e., so that each is received by

the same number of subjects. However, if one is comparing two treatments of a

serious medical condition, an additional consideration arises: a desire to minimize

the number of patients in the study who receive the inferior treatment. A

sequential procedure that has been suggested for such a case is the "play the

winner rule" in which the next patient receives the treatment which at this point

looks better. (For details, see for example, Flehinger and Louis [151 and Sieg-

mund [321.) It should be noted however, that such an xi
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to lead to termination of the study and hence to a recommendation. Thus, the

inferior treatment will be assigned to fewer patients within the experimental

group but to a larger number outside it.

Comparative experimnents typically involve more than the study of just one

difference. Consider an experiment to investigate the effect of a number of fac-

tors (to which experimental units can be assigned at random) on some observable

response such as rainfall, crop yield, or length of life. Two possible designs are

one-at-a-time experiments, in which each factor is studied in a separate experi-

ment with all other factors held constant, and factorial experiments*, which pro-

vide a joint study of the effects of all factors simultaneously. The latter type of

design has two important advantages.

Two or more effects may interact in the sense that the effect of one factor

depends on the level of the other. In a study of the effect of textbooks and

instructors on the performance of students, for example, it may turn out that a

textbook which works very well for one instructor is quite uncongenial to

another. The existence and size of such interactions* are most easily investigated

by studying the various factors simultaneously. When no interactions are

present, joint experimentation has the advantage of requiring far fewer observa-

tions to estimate or test the various effects than would be needed if each factor

were studied separately. (For further discussion of these and related issues, see
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for example C'ox ;1OJ and Box, Hunter, and Hunter 5 .

A factorial experiment is concerned with the study of a number of factors,

each of wshich can occur at several levels. A study of cancer treatments, for

example, might involve different types of surgrery, a number of surgeons, and

several kinds of postoperative therapy (radiation, chemotherapy,...). The fac-

torial experiment is said to be complete if one or more observations are obtained

at all possible combinations of levels. If the number of such comnbinations is too

large, the complete design may be replaced by a fractional factorial design*, in

which only certain combinations of levels are observed. The theory of experimen-

tal design* is concerned with the search for good (or possibly optimal) designs

able to provide the basis for a suitable analysis of the resulting data.

Unless the experimental units (the patients, students, agricultural plot,...) are

fairly homogeneous, it may be advisable to divide them into more homogeneous

strata, as was discussed earlier for the sampling of populations. In the present

context, such stratification is called blocking*. The strata or blocks then play a

role which in some respects is similar to that of an additional factor.

Much of the theory of factorial designs was originated by R.A. Fisher* in the

1920's, in the context of agricultural field trials, where it continues to play a cen-

tral role; in addition, its uses have since expanded to many other areas of applica-

tion.
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Conclusion.

Statistics has been discussed in this article as dealing with the collection and

interpretation of data to obtain information. We have been particularly con-

cerned with the uncertainty caused by the fact that the observations might have

taken on other values, and with the resulting variability of the data. An alterna-

tive viewv of statistics is obtained by noting that uncertainty attaches not only to

data, but also to many other other 'chancy' events such as length of life, the

occurrence of accidents, the quality of a manufactured article, or the fall of a die.

Correspondingly, statistics has also been defined as the subject concerned with

understanding, controlling, and reducing uncertainty. Actually, there is little

difference between these two descriptions: Data involve uncertainty, and the

study of any particular uncertainty requires the collection of appropriate data. It

is a matter of emphasis.

Earlier sections have given a general indication of the pervasiveness and

impact of statistical considerations relating to both data and uncertainty. To

illustrate the power and wide range of the statistical approach we shall in this

concluding section take a brief look at three specific studies.

Example 8. Polio vaccine trial. To test whether a proposed polio vaccine

(the Salk vaccine) was effective, a large scale study was carried out in 1954. The

most useful part of the study was a completely randomized trial in which about
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half of approximately 400,000 school-children were assigned at random to receive

the vaccine, with the other half receiving a placebo (injection of an ineffective

salt solution). The study was double blind, i.e. neither the children nor the phy-

sicians making the diagnosis knew to which of the two groups any given child

belonged. The results in

Total number Number confirmed polio

Vaccinated 200,745 57

Placebo 201,229 142

Table 1. Adapted from Meier [251

Table 1 show that vaccination has cut the rate of polio to about 40%. The pro-

bability of that marked a decrease under the hypothesis that the vaccine has no

effect is about 1/107, much too small to reasonably attribute the effect to pure

chance. (Note that this example is of the same type as the hypothetical Example

2 (ESP).)

Example 9. Medical progress. In the preceding example we were con-

cerned with the effectiveness of a single medical innovation - the Salk vaccine.

The study reported in the present example (Gilbert, McPeek, and Mosteller [171)

addresses a much broader question: What can be said about the effectiveness of

present-day medical (or rather more specifically, surgical and anesthetic) innova-
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tions as a whole? Such an investigation of the comin'dirnpiicatious f a whoile

area of studies is called a meta-analysis. (For a recent accoiunt of Mfeta-analvsis

with manv references to the literature, see hledges and,1kOkin '

A first step toward such an analysis is to aecide whiat data to collect, in par-

ticular, which studies to include in the investicatiion. Ideally. one wvould like to

have a list of all relevant studies for thie period in question. For medical

research, an approximation to this ideal is available in NMEDLARS (Nat. Library

of Medicine's MEDical Literature And Retrieval System), which provides exhaus-

tive coverage of the world's medical literature since 1964. From MEDLARS, the

authors obtained a set of 107 papers ("'the sample") evaluating the success of

specific innovative surgical and anesthetic treatments, and used these to assess

the effectiveness of such treatments as a whole. The authors view this set of

papers as a sample from the flow of such research studies, and therefore believe

that the results should give a realistic idea of what to expect from future innova-

tions, at least for the short term.

The sample contained a total of 48 comparisons of a new treatment with a

standard (control). In 36 of the cases, the assignment to treatment and control

was randomized, but not in the remaining 12. The results are summarized in the

following table.
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Innovation Innovation About Standard L. n da e

highly preferred preferred equal preferred highly preferred Total

Randomized 5 7 14 5 4 36

Non-randomized 5 2 3 1 1 12

Table 3. Adapted from Gilbert, NMePeek and Mosteller

A striking feature of the results for the randomized trials is that only 5 out of

36 or about 14%o of the innovations were highly preferred. This sugg,ests, the

authors point out, that medical science is sufficiently well established so that sub-

stantial improvements over the standard treatments are difficult to achieve yet

that it is not so settled that only a major theoretical advance will lead to any

substantial further improvements.

A more sanguine assessment is obtained from the nonrandomized studies,

where 5 out of 12 or about 42% of the innovations were highly preferred. Since

randomization provides a surer foundation, the results in the first row may be

deemed to be more reliable than those in the second. However, such a judgement

overlooks the fact that the comparison of randomized with nonrandomized stu-

dies is itself not randomized, i.e. the assignment of studies to these two types was

not, and was in fact far from, random. As a result, the two types of studies may

not be directly comparable. For example, a surgeon who is strongly convinced of

the great superiority of the new treatment, might for ethical or other reasons not

be willing to apply the standard treatment, and would therefore have to look for

controls from an earlier period or from other surgeons, while no such qualms
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nmight arise for a iess dramatic innovation where a randomized t. ; 1hln

be acceptable. MIany- other explanations could be imagined. and much more

information would be needed before one could attempt to assign a cause.

The authors go beyond the frequencies displayed in Table 3 to estimate the

size of the treatment effects. For this purpose, they utilize a sophisticated tech-

nique, empirical Bayes* wvhich is particularly suited for meta-analysis.

Example 10. Literary detection. The Federalist papers are a historically

important set of 85 short political essays published mostly anonymously in

1787/88 by Alexander Hamilton, James Madison, and John Jay. The authorship

of most of the papers was eventually established but that of twelve of them has

remained in dispute between Madison (M) and Hamilton (H), with historical

research in all cases leaning towards, but not clearly deciding in favor of,

Madison.

An effort to resolve the doubt by statistical methods was undertaken by Mos-

teller and Wallace [291. The basic idea of such literary detection is to find

aspects of the writing styles of the two (or more) authors in question which have

good ability to discriminate between the various possibilities. This was particu-

larly difficult in the present case because the two authors have very similar styles.

However, by comparing known texts of M and H, Mosteller and Wallace were

able to identify a number of words that were used with much higher frequency



- 49 -

b) one of the auithors than the other. As an illustration Table " shows the fre-

quency of occurrence of the wyord 'on' in blocks of about 200 words from texts by

the two authors. (For

Total Number

0 1 2 3 4 5 6 of blocks

H 145 67 27 7 1 - - 247

M 63 80 55 32 20 8 4 262

Table 2 (Adapted from Mosteller and Wallace).

example, the number of blocks in which the word 'on' occurred exactly twice was

27 for the 247 H-blocks, but 55 for the 262 M-blocks). The rate of occurrence of

the word 'on' per thousand words of text was 3.38 for H and 7.57 for M.

The present problem is similar to the diagnostic problem of Example 3, with 0

taking on the two values H and M. (The statistical methodology dealing with the

attribution of an item to one of two or more classes, a patient to a disease or a

piece of writing to an author, is called classification+ or discrimination.) Mos-

teller and Wallace's first task was to decide on observations X which might pro-

vide them with the evidence needed to settle the question. They selected a total

of 30 words (including the word 'on') with high discriminating ability, and used

as their observations X the frequencies with which these words occurred in a
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given text of disputed authorship.

Next the distribution p0(x) for the frequency of a given word had to be

specified for each author with the help of the known H and M texts. Bayesian

analyses for each of the 30 words based on the chosen family of distributions

were combined into overall odds for NI and H. For all but two of the papers,

these overwhelmingly (several hundred million to one) favored Madison, given

any reasonable prior odds for M and H. For each of these papers, the analysis

leaves little room for doubt. In the remaining two cases Madison is also favored,

but the odds are more modest, and the statistical attribution therefore less cer-

tain.

Statistical considerations arise in nearly all fields of human endeavor. Many

of the associated activities are carried out by large numbers of full - or part -

time professional statisticians. Some of the demands and satisfactions of a sta-

tistical career are described by Healy [191, in the pamphlet: Careers in Statistics

(Revised 3-rd ed., 1980) published by the American Statistical Association, and in

Deming [111. More detailed descriptions of the work and requirements of statisti-

cians at various levels in Government and Industry can be found in articles on

Preparing Statisticians for Careers in Federal Government and in Industry

(Amer. Statistician, vol. 36 (1982) 69-89 and vol. 34 (1980) 65-80, and in Moser

[261.
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The basic training in statistics, as in most other fields, occurs at Universities

and Colleges where Departments of Statistics offer both undergraduate and gra-

duate degrees in statistics. (At some institutions, the principal statistics courses

are instead provided by the mathematics department.) In addition, there may be

degrees in biostatistics*. Statistics courses and quantitative programs with a

strong statistical component may also be offered in Operations Research, Business

Schools, Demography, Economics, Education, Psychology, and Sociology. In

addition to courses and programs preparing for a profession in statistics, Statis-

tics Departments also provide 'service courses' both at introductory and advanced

levels to students in other fields who may need to use statistical methods in their

work.

Another need of statistical education is filled by courses in statistical concepts

as part of a general education. Acquiring the ability to think in statistical terms

is of great importance even for persons without a quantitative bent in view of the

pervasive occurrence of statistical ideas in newspapers and magazines, and in the

terminology we use to describe and discuss the world around us. What do we

mean by saying that women tend to live longer than men, or that cancer patients

survive longer today than ten years ago? Does it mean they live longer on the

average, that the median length of their life is longer, or that they have a better

chance to survive to any given age? And is the longer survival of persons diag-

nosed to have cancer primarily due to the availability of more effective
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treatments, includinig earlier diagnosis? In fact, is thera even an nerease in

length of survival, or is the apparent increase just a statistical Consequence of

earlier diiagnosis? If the disease is diagnosed a year earlier, the survival after

dianonosis has increased by a year even if nothing else has changed.

To consider another example, what is neant by the rate of unemployment?

Roughly speakinrg, it is the proportion among the peopie wishing to be employed,

who are not. But do the official rates include those past seekers for jobs who

have given up in despair? A change in the figure for unemployment may be the

result of a small change in the definition, or of some sociological change such as

the increased entry of women into the work force.

Many of the considerations involved in such issues are statistical. For-

tunately, the basic ideas needed for general discussion and comprehension can be

communicated at a fairly nontechnical level, as is done, for example, in Tanur et

al [351, Mosteiler et al [271, and Freedman, Pisani, and Purves [16j. Books such

as these, and the increasing availability of first courses in probability and statis-

tics in High- Schools, should have the effect of gradually raising the general level

of statistical literacy.
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