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ABSTRACT

Simulation methods, in particular Efron's (1979) bootstrap, are being applied more

and more widely in statistical inference. Given data, (X1,* ,Xn), distributed accord-

ing to P belonging to a hypothesized model P the basic goal is to estimate the distribu-

tion Lp of a function Tn (X1, * *Xn,P). The bootstrap presupposes the existence of

an estimate P (X1, - - Xn) and consists of estimating Lp by the distribution L* of

Tn(XI,* ,Xn,P) where (X1, * *- ,Xn ) is distributed according to P. The method is

particularly of interest when L*, though known in principle, is realistically only com-

putable by simulation.

Such computation can be expensive if n is large and Tn is very complex - see for

instance the multivariate goodness of fit tests of Beran and Millar (1985). Even when

application of the bootstrap to a single data set is not excessively expensive, Monte

Carlo studies of the bootstrap are another matter.

We propose a method based on the classical ideas of Richardson extrapolation for

reducing the computational cost inherent in bootstrap simulations and Monte Carlo stu-

dies of the bootstrap by doing the simulations for statistics based on two smaller sam-

ple sizes.
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We study theoretically which ratio of the two small samples sizes is apt to give us

best results. We show how our method works for approximating the X2. t and

smoothed binomial distributions and for setting bootstrap percentile confidence inter-

vals for the variance of a normal distribution with mean 0.

KEY WORDS: cost of computation, Edgeworth, approximation.
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1. INTRODUCTION

Let L,*', as in the abstract, be the bootstrap distribution of a statistic

Tn (Xi, ... ,v,P). With knowledge of particular features of L,* various devices

such as importance sampling can be used to reduce the number r of Monte Carlo

replications needed to compute (or rather estimate) L * closely. The total cost of com-

putation for a simulation is proportional to c (n )r where c (n), the cost of computing

T., usually rises at least linearly with n and often faster. In this note we explore a

way of reducing c (n ) rather than r. To fix ideas suppose T, is univariate and let Fn*

be the distribution function of L * For most statistics Tn of interest, it is either known

or plausible to conjecture that Fn* tends to a limit AO in probability

Fn*(x) = A0(x)+o (1) (1.1)

for all x and often uniformly in x as well. Examples, see, for instance, Bickel and

Freedman (1981), are the usual pivots for parameters 0(F) when X1, * X**Xn are i.i.d.

F and P - F is the empirical distribution. Thus if Tn = 41 (0(F)- 0(F)) then

AO = N(O,a2(F)) under mild conditions, and if T,, =4(0(F) e0(F)) n
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Ao = N(O,1). Ao can also be known to exist but not be readily computable. For

example let T, = sup, IF (x) -F (x) with F possibly discrete, a situation discussed

in Bickel and Freedman (1981). Even more, an asymptotic expansion in powers of

n-112 is known to be true in some cases and reasonable to conjecture in many others.

That is,

k r {k+l)]
Fn (x) =Ao(x)+ I n-jl2Aj(x)+Op kn 2 J.(1.2)

j-1

The most important special cases anse when Ao is normal and the expansion (1.2) is

of Edgeworth type. Examples of such expansions appear in the context of the

bootstrap in Singh (1981), Bickel and Freedman (1981), Abramowitz and Singh (1985)

etc. Expansions for the distributions Fn of statistics Tn(Xl , *- ,Xn) under fixed F

have been extensively studied - see for example Bhattacharya and Ranga Rao (1976).

In this context, our proposal is to calculate F, ,, F* *,,,, where,

nl+* +nk+l = b4n. (1.3)

We use the Fnj to approximate Fn. This procedure is classically used in numerical

analysis, where it is called Richardson extrapolation, as a way of approximating Fm.

Our application of these ideas differs in that,

i) We are interested in Fn, not F.,

i) F., is sometimes known, as in the Edgeworth case, and can be used to improve

the approximation



- 3 -

iii) We are interested in the design problem of selecting the nj subject to the

"budget" constraint (1.3).

The use of our method in the bootstrap context just involves putting * on the F.

F.. We develop the method in detail in the next section and give explicit solutions to

three formulations of the design problem for k=l. Finally in section 3, we test our

method on approximations of known F. as well as some bootstrap examples. The

results are very encouraging.

2. EXTRAPOLATION

Throughout this section (I-K) will refer to Isaacson and Keller (1966). Write

-1/2 ~~~~~~~~~~~~~~At = n-/2, < t . 1. We are given a sequence of distribution functions Fn = Gt and

write,

Gt =Pt+ At. (2.1)

Pt =Ao+ ZtJAj.

The argument in the functions Gt, Aj plays no role in our discussion and is omit-

ted. We calculate Gto --. , Gtk t<to< *- <tk. If At = 0 for t,to,... ,tk we

obtain Gt perfectly from the Gt, by using the Lagrange intexpolating polynomial, (I-K

p.188)

k
Gt= I£Gt~kj(t)G (2.2)

j=O
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k,j(t) =I*ijI(t -ti)/(t - tiA
In particular for the only case we study in detail, k = 1,

Gt = (tI -to)-l[(tI -t)Gto+ (t -to)Gt1] (2.3)

We consider three classes for A depending on a parameter M

dk+lA, dk+lAtD, = (A: d k- exists and supi tk+1IMA:dtk+l t dt1
Since A is only defined at the points n-1/2, n = 1,2,... we interpret Ae D1 as applying

to some smooth function agreeing with A at all points n112. Our other two classes

make no smoothness assumptions on A.

D2= (A: suptt(k+l)IAtI<M1
D3 =(A: 0 <tOk+l)At <M for all t > 0 or -M < t{k+l)At , for all t > 0).

For fixed t,to, ...*, tk we define the error of approximation by,

Ei (t,top ..* * tk) = sup IlGt -Gt 1: Ae Di },1:5 i < 3.

We want to minimize Ei subject to a fixed budget b

k
£ tj = b. (2.4)
j=O'

If tj satisfy (2.4) and b - then to -°0.

We claim that,

M k

E2-Mj1;(k+l) = j ) t (2.6)2 j=0o^ ttj + 26

1k k
E3--m I [OIikj t)] t+1J v [Z[1 *0.j(t)]- + + + (2.7)

j=O j=-O _
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where a, = a vO, a- = -(aA0). To check (2.5) apply theorem 1 p.190 (I-K) according

to which,

k dk+lGt
Gt - Gt = [(k + 1)!].Ht - ti ) (a) (2.8)

i= dtk+l
dk+l

where t < , < tA . Note that dt k+ll = 0. To check (2.6), (2.7) note that, interpolation

is linear so that

Gt =Pt+At.
Since Pt = Pt, we have

Gt - G, = At - /v,

and (2.6), (2.7) follow from (2.2). From (2.5), E1 is minimized subject to (2.3) as

b -*O0 by

to = * * * = tk (+l) (2.9)

The allocation (2.9) is, of course, not feasible since the tj must be distinct. However

the clear moral is that if the error term A is sufficiently smooth the nj should be

chosen as nearly equal to each other as possible.

This is analogous to the prescription appearing in the leave one out jackknife. The

argument for doing so in that situation rather than leaving more out has more to do

with the polynomially increasing number of subsets that need be considered. This

conclusion is clearly valid not just under (2.4) but under any reasonable symmetric

side condition on to, - * , tt. If we suppose t = o(t), i.e. the budget is much smaller
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than n we can simplify (2.6) to,

k k
E2-M (rIj=o,)l ttIi< j(-ti )lIi, (t- -tj )] 1 (2.10)

and (2.7) to

k k

E3-M(rIj=:otj;) tj*{[Il (t' -ti)]+A[nIi*-(tj-ti}*(.1j=O
I 211

Evidently (2.10) is minimized asymptotically by

tj-2= 3b

where Xj > 0,

k
£X2= 1 (2.12)
j=O

and ko, . Lk minimize,

k k

(rIj .~j)-, I IX, rIi j i xj)IIi>j(j Xi T] (2.13)

subject to (2.12). This minimization can be carried out, in principle, for any k. The

explicit solutions for the cases we are prmarily concerned with, E2 and E3 for k = 1

are as follows, if we ignore the restriction that the XJb are integers. For E2J2

ko2= 1-1= .89 (2.14)

or more specifically

= cos [-.(sn-L))

where coo = 1 25 1.6180 is the unique positive root of,2

co3-2co-1 = 0.
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To see this note that for k = 1, (2.13) is just (X iE1(Xo-XiT1(Xo+ki). Substitute

k= cosO to get as objective,

2(1 + sin2O)(cos2Osin2O)1

and then substitute sin20 = -= Similarly for k = 1,

EMtot
2

(t I -to)
and a similar minimization leads to,

Ub=1[1+ =.85. (2.15)

In all these cases Ej = o (b-(k+1-2).

Here are two examples of (Fn } for which we will check our approach and which

belong to D1 and D3 respectively.
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1. The Gamma Family:

Let F. be the distribution of (Sn - n )(2n )112 where Sn has the %2 distribution.

Evidently, we can define Gt for t >0 by

Xi

Gt(x) = Fl(v1l)Xv Je-Jsv-lds (2.16)
0

where

x = xv 1/2+ v

v = 2t-2, x = . It is not hard using standard Stirling type expansions for r and its

derivatives to show by writing

G e(x) =e-v v-1/2 (1-V-+uv-12)]v(1+uv-1I2)-lduG,(x) 1'( J [e" +U

that Ao = 4', the standard normal distribution and that G, has bounded derivatives of

all orders in t. So Ae D1 here for all k. Evidently, taking x = 2 plays no role and

this observation applies to the standardized gamma family in general.

2. The binomial distribution with continuity correction

Let Fn be the distribution of (Sn - np )/4npq) convoluted with the uniform distribu-

tion on (-_ 1 1 ) where Sn has a binomial (np) distribution, q = 1-p,
2 24 wh a( s,

O<p < 1. It is well known that, see for example Feller (1971) p.540, Fn is of the

forml,
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Fn(x) = D(x)+n -"2A ,(x)+ (n

However, if we analyze the remainder term further, by Theorem 23.1 p.238 of Bhatta-

charya and Ranga Rao it is of the form,

Fn(x)-D(x)-n-l2AAI(x) = n1 | | (np +x-u)du (2.15)

where a = i

SI(t) = t - 1, O<t < 1
2'

Sl(t + 1) = S

Check that

2 1

J uS1(v - u )du = - (x +-) (2.16)2 2
2

We claim that unless x = 0 andp is rational the sequence (S1(np +,Inx 2+ ) is uni-

1 ~~~~~~~1formly distributed modulo 1, i.e. #(h:S1(np+4nax+ -).t, n<N}IN) t+- as

1 1N °° -2 < t < -2. A proof is sketched in the appendix.
2 2

Hence as n -+ oo the coefficient of n-1 in (2.15) ranges over an interval [0-] or

1- 0] and comes arbitrarily close to all values in the interval. So (F. ) belongs to8'

D3 for k = 1.
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Notes: 1). In a wide class of examples including the two we have discussed AO is

known. Then if (2.1) holds for k = r + 1 we can improve our estimate using only k

sample sizes and still have an error which is 0 (b(r+l)/2). We define Qt = °
t

and use the estimate

Gt =Ao+tQt
where Qt is defined by (2.2) with k = r. In particular for r = 1, the allocations (2.9),

(2.14), (2.15) give errors which are 0 (b-312). We study this approximation also by

simulation in the next section.

2). In some cases, for example Fn the t distribution with n degrees of freedom, the

series for Fn is in powers of n 1. It is easy in this case also to obtain the optimal

choice of to for D2, D3 that is, for (2.4) replaced by,
tl

tol+tll =0 +:1 -b.

We find for D2

nj=pjb, pi=1-po,

Po = .5(1 +4) = .79 (2.17)

and for D3

po = .75. (2.18)

If as would usually be the case in applications the Aj, t are unknown it would seem

safer to use the approximation for t = n-1/2.
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3). An undesirable feature of our approach is that no a postenronr estimate of the error

actually incurred is available. If tI is small and A e D1 we can get an estimate by

increasing our budget. We add j2 . -2, j =0, 1 units and calculate Gj. Now, by

(2.8)

1 d2A~~ ~ ~ ~~~dA
G U-GU = 1 (4)(tI-to)-'(u -to)(u -t ) (2.19)

where t < , < t1, for any t s u s t. If tI is small we expect the coefficient d2 in

(2.19) to be stable, so that we obtain

IGt - Gt I I(t -to)(t -t1)(s -to)0Y(s -t1)-' IG-t-Gt l. (2.20)

If Ae D2 or D3 no realistic estimate of the error presents itself. However, suppose

as may be shown to be true in example 2 that, if 0 <X1< ... <2k < 1, a,1, at are

real, n s n1Sj =[jn-1/2

k
#(A s<s/aj : 1.j. k)ln- l G (aj). (2.21)Sii ~~~~j=1

That is sj2 As1,, 9 ASk24 are asymptotically independently distributed with common

distribution G. This is, of course, a poor approximation if kj, Xj,l are too close and

we are prevented from using (2.21) for the purposes of design. However if we

increase our budget so as to permit calculation of G at to,t1.** ,-t k .2 and assume

(2.1) it is natural to consider the estimate G,A

Gt = A0+tA 1 (2.22)
Al Al

where A0, A 1 are the weighted fixed least squares estimates of A0, A 1,
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A1 = I(ti - t)Gt., _2/(_2 2
i=AW0

AO = zt AIi=0O

(Yi = ti2
1

W = £crT-2i=oI
I

t = ZotI I2/W.

Gt - Gt can be estimated by

(Wl + :2z(ti - t)2a2f1 (G,; -A0 )2-A)I 1 2. (2.25)

The range of validity of the approximations (2.20) and (2.25) needs to be investigated

by simulation.

where

(2.23)

(2.24)

The error,
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3. COMPUTATION AND SIMULATION

In this section we study the actual performance of our approximations in the exam-

ples of section 2. We also study the performance of the approximation for student's t

1distribution where the expansion is in powers of -. Finally in table 6 we provide the
n

results of a bootstrap simulation where we illustrate the operating characteristics of

confidence bounds based on a Richardson extrapolation approximation compared with

those based on a full bootstrap.

a) xi approximation

a)- n
We computed the Richardson extrapolation for Xn , a = 10%, 90%, 95%, 99%,

where X2(a) is the ah percentile of the X2 distribution, and compared it the Fisher

square root approximation applied to the quantiles.

2(a)-n Z2(a)
-42on () 2-J-

where Z (a) is the standard normal a-percentile. We used n = 50, 100 b = 15, 20, 30

no0and 1-X=- =.1.2,.2 5,.40wheren0<n1,n0+nI=b. Wenote,
b

(i) The approximation improves as b and n increase.

(ii) The allocation X = .6 is best, as expected.

(iii) For n0+ nI = 15,20 and all X the Richardson extrapolation is essentially as

good as Fisher's approximation for the .9, .1 percentiles and still gives the

same two significant figures as Fisher's does for the .95, .99 percentiles.

(iv) For n0+ n1 = 30 it is better in all cases save one where the results are virtu-

ally equivalent. The X = .6 allocation seems to give nearly 3 significant

figures.
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Table 1. Richardson extrapolation 2.3 for X2

n = 50

true values

Fisher app.

no+nl = 15

no n1

1, 14

3, 12

4, 11

6, 9

no+nl = 20

no, ni

2, 18

4, 16

5, 15

8, 12

10

-1.2311

-1.1995

(0.0317)

-1.2557

(-0.0246)

-1.2528

(-0.0217)

-1.2511

(-0.0199)

-1.2493

(-0.0182)

-1.2481

(-0.0169)

-1.2448

(-0.0137)

-1.2439

(-0.0127)

-1.2424

(-0.0113)

percentiles

90 95

1.3167

1.3637

(0.0470)

1.3572

(0.0404)

1.3417

(0.0250)

1.3391

(0.0224)

1.3367

(0.0200)

1.3374

(0.0207)

1.3319

(0.0152)

1.3307

(0.0139)

1.3289

(0.0122)

1.7505

1.7802

(0.0297)

1.7995

(0.0490)

1.7796

(0.0291)

1.7764

(0.0259)

1.7735

(0.0230)

1.7747

(0.0242)

1.7680

(0.0175)

1.7665

(0.0160)

1.7644

(0.0139)

99

2.6154

2.5969

(-0.0185)

2.6686

(0.0532)

2.6446

(0.0292)

2.6410

(0.0256)

2.6377

(0.0223)

2.6400

(0.0246)

2.6324

(0.0170)

2.6307

(0.0153)

2.6285

(0.0131)
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n =100

true values

Fisher app.

no+nl = 20

nono

2, 18

4, 16

5, 15

8, 12

no+nl = 30

no n1

3, 27

6,24

7,23

12, 18

-1.2475

-1.2235

(0.0239)

-1.2740

(-0.0265)

-1.2687

(-0.0212)

-1.2671

(-0.0197)
-1.2649

(-0.0174)

-1.2628

(-0.0154)

-1.2592

(-0.0117)

-1.2585

(-0.0110)

-1.2569

(-0.0095)

1.3080

1.3397

(0.0317)

1.3399

(0.0319)

1.3314

(0.0234)

1.3294

(0.0214)

1.3267

(0.0187)

1.3252

(0.0172)

1.3205

(0.0125)

1.3198

(0.0117)

1.3180

(0.0100)

1.7212

1.7406

(0.0193)

1.7585

(0.0373)

1.7481

(0.0268)

1.7457

(0.0245)

1.7424

(0.0212)

1.7410

(0.0197)

1.7354

(0.0142)

1.7345

(0.0133)

1.7324

(0.0112)

2.5319

2.5176

(-0.0143)

2.5694

(0.0374)

2.5576

(0.0257)

2.5550

(0.0231)

2.5515

(0.0196)

2.5508

(0.0189)

2.5448

(0.0129)

2.5439

(0.0120)

2.5418

(0.0099)

In table 2 we exhibit the Richardson extrapolation results for the x. distribution using

the knowledge of the limiit as n -*co, as in note 1. That is, we use the expansion
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or n -Z(a) =A1+A2-2=+op (,]

2~~~~~~~~~~~~~~~~~~~~~~~
where Z (oc) is the a percentile of the standard nonnal. A , A2 are estimated using X20

and x,. The results are extremely good for both n = 50 and n = 100 (which we

omit). The extrapolation, even for n0+ nI = 15 and x = .9 gives three significant

figures for all percentiles. For n0 + nI = 30 it often gives five significant figures.

Table 2: Richardson extrapolation (Note 1) for X50.
percentiles

n = 50 10 90 95 99

true values -1.2311 1.3167 1.7505 2.6154

Fisher app. -1.1995 1.3637 1.7802 2.5969

(0.0317) (0.0470) (0.0297) (-0.0185)

no+nl = 15

nono

1, 14 -1.2289 1.3165 1.7510 2.6178

(0.0022) (-0.0002) (0.0005) (0.0024)

3, 12 -1.2306 1.3168 1.7510 2.6172

(0.0006) (0.0001) (0.0005) (0.0018)

4, 11 -1.2307 1.3168 1.7509 2.6171

(0.0004) (0.0001) (0.0005) (0.0017)

6, 9 -1.2308 1.3168 1.7509 2.6169

(0.0003) (0.0001) (0.0004) (0.0016)

no+nl = 20

nono
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2, 18

4, 16

5, 15

8, 12

no+nl = 30

no n1

3,27

6, 24

7 23

12, 18

-1.2305

(0.0006)

-1.2309

(0.0002)

-1.2309

(0.0002)

-1.2310

(0.0001)

-1.2310

(0.0002)

-1.2311

(0.0001)

-1.2311

(0.0001)

-1.2311

(0.0000)

1.3167

(0.0000)

1.3168

(0.0001)

1.3168

(0.0001)

1.3168

(0.0001)

1.3167

(0.0000)

1.3167

(0.0000)

1.3167

(0.0000)

1.3167

(0.0000)

Student's t distribution has an expansion in powers

1.7509

(0.0004)

1.7508

(0.0003)

1.7508

(0.0003)

1.7508

(0.0003)

1.7507

(0.0002)

1.7506

(0.0002)

1.7506

(0.0001)

1.7506

(0.0001)

ofn!. The
n

2.6168

(0.0015)

2.6166

(0.0012)

2.6165

(0.0011)

2.6164

(0.0010)

2.6161

(0.0007)

2.6159

(0.0005)

2.6159

(0.0005)

2.6159

(0.0005)

Richardson extrapola-

tion (2.3) with I gave no improvement over the ordinary normal approximation as

expected. In table 3 we present the Richardson extrapolation to the t distribution as in

note 2. and compare these results to the normal approximation. We looked at the

same values of n, b, ., a for approximation to t,, (a), the cth percentile of the t distri-

bution with n degrees of freedom. For X = .6 b = 30 the approximation is valid to 3

significant figures for n = 100 in all but one case and improves on the normal approxi-

mation.
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Table 3 : Richardson extrapolation for the t distribution.

n = 50

true values

normal app.

nO+nj = 15

nono
3, 12

4, 11

6, 9

nO+n1 = 20

nono
4, 16

5, 15

8, 12

n =100

true values

normal app.

10

-1.2987

-1.2816

(0.0171)

-1.2849

(0.0138)
-1.2878

(0.0110)
-1.2900

(0.0087)

-1.2922

(0.0065)
-1.2933

(0.0055)
-1.2945

(0.0042)

-1.2901

-1.2816

(0.0085)

percentiles
90 95

1.2987

1.2816

(-0.0171)

1.2849

(-0.0138)
1.2878

(-0.0110)

1.2900

(-0.0087)

1.2922

(-0.0065)
1.2933

(-0.0055)

1.2945

(-0.0042)

1.2901

1.2816

(-0.0085)

1.6759

1.6449

(-0.0310)

1.6376

(-0.0383)

1.6462

(-0.0298)
1.6526

(-0.0233)

1.6584

(-0.0175)

1.6614

(-0.0146)

1.6649

(-0.0111)

1.6602

1.6449

(-0.0153)

99

2.4033

2.3263

(-0.0770)

2.2099

(-0.1934)
2.2595

(-0.1438)
2.2947

(-0.1086)

2.3198

(-0.0835)
2.3357

(-0.0676)

2.3535

(-0.0498)

2.3642

2.3263

(-0.0379)



no+ni = 20

nono

4, 16

5, 15

8, 12

no+nl = 30

nono

6,24

7,23

12, 18

Tables 4,5 give the Richardson extrapolation for the continuity

tribution. That is we define

corrected binomial dis-

Bn (s) =
. n"p (1 -p)n-k + (s -[S])

n[s+1] j[ p>n(s)k=Os +

and Q (u) = Bn (np + u 4np(l-p)). We approximated the percentiles Q-1(a) for

n, b, X as before with p = .2,.4. Note that,

(i) The X = .75 allocation seems to work best but differs little from X = .8, .9.

On the other hand X = .6 is poorer. This is in agreement with our theory for

class D3. For p = .2, n = 50; 100 b = 15; 20 the X = .75 allocation does as

well as the normal. For b = 20; 30 it's better, typically giving one more

significant figure. For p = .4, it is in general poorer though far from terrible.
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-1.2818

(0.0083)

-1.2831

(0.0070)

-1.2848

(0.0053)

-1.2869

(0.0031)

-1.2873

(0.0028)

-1.2880

(0.0020)

1.2818

(-0.0083)

1.2831

(-0.0070)

1.2848

(-0.0053)

1.2869

(-0.0031)

1.2873

(-0.0028)

1.2880

(-0.0020)

1.6378

(-0.0224)

1.6417

(-0.0185)

1.6463

(-0.0139)

1.6520

(-0.0082)

1.6530

(-0.0072)

1.6550

(-0.0053)

2.2577

(-0.1065)

2.2785

(-0.0857)

2.3018

(-0.0624)

2.3274

(-0.0368)

2.3321

(-0.0321)

2.3414

(-0.0228)
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This is understandable since for p = .5, A 1 = 0 and the extrapolation is adding
noise to the normal approximation.

Table 4 : Richardson extrapolation for the Binomial

distribution with p = .2

n = 50

true values

normal app.

no+nl = 15

nono

1, 14

3, 12

4, 11

6, 9

10

-1.2591

-1.2816

(-0.0225)

-1.2689

(-0.0097)

-1.2392

(0.0199)

-1.1692

(0.0900)

-1.1679

(0.0913)

percentiles

90 95

1.3125

1.2816

(-0.0309)

1.2591

(-0.0533)

1.3702

(0.0577)

1.2861

(-0.0264)

1.4169

(0.1044)

1.7177

1.6449

(-0.0728)

1.6071

(-0.1106)
1.6743

(-0.0434)

1.5821

(-0.1356)

1.6882

(-0.0295)

99

2.4900

2.3263

(-0.1637)

2.4969

(0.0068)
2.6561

(0.1661)

2.3349

(-0.1551)

2.5377

(0.0477)

no+nl = 20

nono

2, 18

4, 16

5, 15

-1.2182

(0.0409)

-1.2751

(-0.0160)

-1.2724

(-0.0133)

1.3060

(-0.0065)

1.2595

(-0.0530)

1.3224

(0.0099)

1.6984

(-0.0193)

1.7357

(0.0180)

1.7362

(0.0185)

2.4728

(-0.0172)
2.4304

(-0.0597)

2.5814

(0.0914)



8, 12

n =100

true values

normal app.

no+nl = 20

no n1

2,918

4, 16

5, 15

8, 12

nO+nj = 30

no n1

3,27

6 24

7,23

12, 18
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-1.1082

(0.1509)

-1.2733

-1.2816

(-0.0083)

-1.2111

(0.0622)

-1.2699

(0.0033)

-1.2638

(0.0094)

-1.0651

(0.2082)

-1.2644

(0.0089)

-1.2233

(0.0500)

-1.2386

(0.0347)

-1.1641

(0.1092)

1.2538

(-0.0587)

1.3036

1.2816

(-0.0220)

1.2835

(-0.0202)

1.2280

(-0.0757)

1.3054

(0.0018)

1.2220

(-0.0816)

1.3313

(0.0277)

1.3226

(0.0190)

1.2849

(-0.0187)

1.3332

(0.0296)

1.8704

(0.1527)

1.6922

1.6449

(-0.0473)

1.6845

(-0.0078)

1.7121

(0.0199)

1.7208

(0.0286)

1.8840

(0.1918)

1.6692

(-0.0231)

1.6628

(-0.0294)

1.7134

(0.0211)

1.4957

(-0.1966)

2.8400

(0.3500)

2.4351

2.3263

(-0.1088)

2.4144

(-0.0207)

2.3686

(-0.0665)

2.5622

(0.1271)

2.8864

(0.4513)

2.4688

(0.0337)

2.4172

(-0.0179)

2.3774

(-0.0577)

2.4281

(-0.0070)
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Table 5 : Richardson extrapolation for the Binomial

distribution with p = .4.

percentiles

n = 50

true values

normal app.

no+ni = 15

nono

1, 14

3, 12

4, 11

6, 9

no+nl = 20

nono

2, 18

4, 16

5, 15

8, 12

10

-1.2776

-1.2816

(-0.0040)

-1.2692

(0.0084)

-1.1991

(0.0785)

-1.2562

(0.0214)

-1.2007

(0.0770)

-1.2344

(0.0432)

-1.2823

(-0.0047)

-1.2702

(0.0074)

-1.3054

90

1.2882

1.2816

(-0.0066)

1.2656

(-0.0226)

1.3197

(0.0315)

1.1647

(-0.1235)

1.0239

(-0.2643)

1.2776

(-0.0105)

1.2781

(-0.0101)

1.2816

(-0.0066)

1.2832

95

1.6694

1.6449

(-0.0245)

1.6423

(-0.0271)

1.6443

(-0.0252)

1.6847

(0.0153)

1.8705

(0.2010)

1.6229

(-0.0466)

1.6526

(-0.0168)

1.6411

(-0.0283)

1.7722

99

2.3720

2.3263

(-0.0457)

2.4690

(0.0971)

2.3799

(0.0079)

2.2989

(-0.0731)

2.4680

(0.0961)

2.4184

(0.0464)

2.3583

(-0.0137)

2.3911

(0.0191)
2.5967
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(-0.0278) (-0.0049) (0.1027) (0.2247)

n = 100

true values

nonrlW app.

-1.2811

-1.2816

(-0.0005)

1.2892

1.2816

(-0.0076)

1.6619

1.6449

(-0.0170)

2.3475

2.3263

(-0.0212)

no+nl = 20

nono

2, 18

4, 16

5, 15

8, 12

no+nl = 30

nono

3,27

6,24

7 23

12, 18

-1.2167

(0.0644)

-1.2738

(0.0073)

-1.2674

(0.0138)

-1.3107

(-0.0295)

-1.2317

(0.0494)

-1.2379

(0.0432)

-1.2601

(0.0210)

-1.2439

(0.0373)

1.2576

(-0.0316)

1.2589

(-0.0303)

1.2767

(-0.0125)

1.2668

(-0.0224)

1.2922

(0.0030)

1.2613

(-0.0279)

1.3154

(0.0262)

1.2762

(-0.0130)

1.5951

(-0.0668)

1.6383

(-0.0236)

1.6183

(-0.0436)

1.7943

(0.1324)

1.6644

(0.0025)

1.6580

(-0.0039)

1.6403

(-0.0216)

1.6676

(0.0057)

2.4224

(0.0749)

2.3349

(-0.0126)

2.4029

(0.0554)

2.6437

(0.2962)

2.3581

(0.0106)

2.3519

(0.0043)

2.3348

(-0.0128)

2.3576

(0.0101)
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In table 6 we show the results for the bootstrap experiment. The "population" is

Ca2Xj and we are interested in a confidence bound for a. We study the unadjusted

bootstrap i.e. the percentiles of the bootstrap distribution of N1Xn where X is the sam-

ple mean. For n = 50,100,500 we took 500 samples of size n from x2. For each

sample we took 1,000 bootstrap samples and computed the .05 .1 and .95 percentiles

of the bootstrap distribution of X for sample size no, n 1, n . We study the behavior

of the "90%" lower confidence bound and the "90%" confidence interval i.e. the .1

percentile and the interval between the .95 and .05 percentiles.

For each n we count the number of times the population parameter falls inside the

confidence set, out of the 500 samples. We computed the average and S.D of the res-

caled lower bound, i.e. of

4n-(1 -G*- ( 1))
and of the rescaled interval i.e.

In (9) = n n

where G-1(a) is the a percentile of the bootstrap distribution of 4. Table 6 shows

clearly that Richardson extrapolation is a good approximation to the full bootstrap and

is not very sensitive to the allocation of no, n 1. The last entry gives estimated comput-

ing times on Sun workstations at Berkeley. The linear saving in the sample size we

expected is confirmed.

Table 6: A Bootstrap experiment.

rescaled rescaled rescaled rescaled

n n0 nlI lower bound interval C.boumd C.bound length length time

count count ave sd ave sd (cpusecs)

50 ful Bootstrap 462 443 0.83732 .007231 2.23093 .018770 1603

50 2 18 455 439 0.84251 .007652 2.26337 .019407 680

50 4 16 468 449 0.83286 .007090 2.23915 .018084 680
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100 full Bootstrap 457 445 0.85825 .005957 2.25543 .015018 3171

100 2 18 459 438 0.85736 .006190 2.27469 .014191 688

100 4 16 472 446 0.85685 .006639 2.26594 .014139 686

500 fuU Bootstrap 453 453 0.89302 .003029 231675 .070418 15754

500 5 45 454 448 0.88568 .004092 231589 .009186 1665

500 10 40 454 455 0.89668 .004200 233916 .086705 1666
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4. APPENDIX: theory for example 2

We establish the claim asserted in example 2 in the form of a theorem.

Theorem: [an + b '1lj is uniformly distributed (u.d.) mod 1 unless b = 0 and a is

rational.

Proof: We refer repeatedly to the text of Kuipers and Niederreiter (K-N). Suppose

a is irrational. Note that

a(n +1)+bJn -an -b4n = a +bO(n-1/2)4a
as n -0. By theorem 3.3 of (K-N), an + b 4 is u.d. mod 1.

If a is rational we apply

Lemma: Let bn be a sequence such that (b5j+k)j 1 is u.d. modi for s .0, O<k .s.

Then if a is rational, a =-, an + bn is u.d. mod 1.
S

Proof: Check Weyl's criterion (K-N). Let n = ms. Then

1n 1 m-is-i 27tih rkr +bj+, 1
I e ~ = 7,e "I(4.1)

n__= Ms j=O k=O
s-ll1 m-1 2nb.+

S k=O mj=i
as m-oo by Weyl's criterion applied to (bsj+k)j,. If n =ms+b, 0<b<s, the

difference from (4.1) is at most b 0. The lemma follows by Weyl's criterion.
ms

Q.E.D.

Put bn = b . If b >0 bs(+1>+k -b5j+k is decreasing to 0 in j since Fx is con-

cave. Moreover,

j(bs(q+l}sk bsj+k ) =- (j )
2

By Fejer's theorem (K-N Theorem 2.5) (bj+kt) is u.d. mod 1 and the theorem follows.
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