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Abstract

Let T be an estimate of the form Tn = T(F ) where F is thenn n' n

sample cdf of n iid observations and T is a locally quadratic func-

tional defined on cdf's. Then, the normalized jackknife estimates for

bias, skewness, and variance of Tn approximate closely their bootstrap

counterparts. Each of these estimates is consistent. Moreover, the

jackknife and bootstrap estimates of variance are asymptotically normal

and asymptotically minimax. The main result: the first-order Edgeworth

expansion estimate for the distribution of n1T2(Tn-T(F)), with F being

the actual cdf of each observation and the expansion coefficients being

estimated by jackknifing, is asymptotically equivalent to the corresponding

bootstrap distribution estimate, up to and including terms of order n 1/2

Both distribution estimates are asymptotically minimax. The jackknife

Edgeworth expansion estimate suggests useful corrections for skewness

and bias to upper and lower confidence bounds for T(F).
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1. Introduction

Suppose X1,X2,...,Xn are independent identically distributed random

variables with unknown cdf F. Let Fn be the empirical cdf of the sample.

If V is a sufficiently smooth real-valued functional defined on the set

of cdf's, then V(Fn) is an asymptotically optimal estimate of V(F), in

the local asymptotic minimax sense. Bootstrap methods, introduced by Efron

(1979), apply this familiar functional estimation idea to certain statistically

interestinq functionals, such as samplinq distributions, which may not have

closed form expressions.

Suppose that Tn = Tn(X9X2,...,X ) is an estimate of T(F), where T

is a specified real-valued functional. Let Hn(x,F) be the cdf of

n I2[TnT(F)]. Define the standardized bias, variance, and skewness of
nT byn

bn(F) = n[EF(Tn)- T(F)]

(1.1) sn(F) = nEFIITn-EF(Tn)]

k3 ,n(F) = n2sn3(F)EF[Tn-EF(Tn)J3
2respectively. Then Hn(x,Fn), bn(Fn n n andka3,n n

respective nonparametric bootstrap estimates of the four functionals just

defined. Evaluation of such bootstrap estimates is often indirect, for

lack of usable closed form expressions. Possible methods of evaluation

include: enumeration of all possible samples of size n from the discrete
A

empirical distribution Fn; Monte Carlo approximations based on pseudo-

random samples of size n drawn from Fn; and hybrid methods in which

analytical simplification of the bootstrap estimate precedes evaluation

by one of the first two methods. Examples and further details appear in

Efron (1979).
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Under some assumptions on Tn and T, the bootstrap distribution estimate

Hn(x, Fn) is locally asymptotically minimax among all possible estimates of

Hn(x,F) (Beran, 1982). If Fn is a smoothed version of Fn such that

IIFn - F^II = op(n 1/2), where 'l denotes supremum norm, then H (x, F )n n op n n
retains the local asumptotic minimax property. The further advantages and

drawbacks to smoothing Fn before bootstrapping are not well understood at

present.

The jackknife is an older, more specialized resampling procedure which

was originally introduced by Quenouille (1956) to remove the bias of Tn
and was extended by Tukey (1958) to the estimation of variance. Several

subsequent authors, including Miller (1964, 1974), Brillinger (1964, 1977),

and Reeds (1978) have found conditions under which the jackknife variance

estimate is consistent and the bias adjusted version of n [Tn -T(F)J

is asymptotically normal. Efron (1979) observed that the jackknife estimates

of b (F) and s 2(F) can be viewed as analytical approximations to the

bootstrap estimates bn(Fn) and sn(Fn), at least when the sample space is

finite.

The principal aim of this paper is to show that the bootstrap distribution

estimate Hn(x, Fn) itself may have a jackknife approximation Hn,JE(x)
which is close enough to retain the local asymptotic minimax property of

A ~~~~~~~~~~~~~~~~~~~~~

Hn(x, Fn)* The basic idea is as follows. Under certain assumptions on Tn9
the cdf H n(x, F) has a first-order bias-corrected Edgeworth expansion

(1.2) Hn,E (x) = $[(x-n 1/2bn(F))/sn (F)J
AA

-n"-/2k3 n(F)fp[(x-n1/2bn(F)/sn(F)J

where p(x) = 6 1(x-21)p(x) and D, p are, respectively, the standard
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normal cdf and density. Substitutinq jackknife estimates for the funtionals

b (F), s 2(F), k (F) which appear on the right side of (1.2) yields an n 3,n
jackknife Edgeworth expansion estimate H JE(x) for H n(x, F).

More precisely, let

Tni = Tn+i(Xi9X2 * * Xn X )

(1.3)
Tn,i,j = Tn+2(XlX229 * * *XnXin,Xj )

and let

2A A

Dn,i= (n+1) [Tn,i - Tn]

Dnij = (n+2)2[Tn,ijTnJ Dn,iD Dn,j
(1.4)

=1 0ni - Dn,i,/2

n,i j n,1i,j n,i + n,j/

for 1 < i,j < n. Define the positive jackknife estimates for bn(F), s 2(F),
and k3,n(F) to be

n^b i=n,iZ
n

A2 =n2(-1r j~

(1.5) sn, = n (n-l) in, n,in,J~ ~~~n

k3 n = [n4 3 + 3n 3(n-1)'1zM .u .U .J/3,n,J i=1 n,i i*j n,,i,j n,i n,j

-3 n 2 ~3/2[ni=1 n,i

Correspondingly, the jackknife Edaeworth expansion estirte for H n(x, F) is

(1.6) HnJE(x) = N[(x-n 12bn J)/s I

- n 1"2k3,n,J Ix-n 1/2 bn J)/snJ]
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where i and ¢ are as in (1.2).

Some positive jackknife estimates can exhibit severe downward bias
A A~~2(Hinkley, 1978). The estimates bn,J- and sn,J in (1.5) are designed to

handle asymptotically quadratic statistics Tn. As a result, sn2J tends to

be less biased than the usual positive jackknife estimate of variance. The

asymptotic results in this paper remain valid if b and sn aren,J n,J
replaced by more familiar negative jackknife estimates and if k3,n,J is

modified similarly.

It is shown in sections 2 and 3 that H JE(x) is asymptotically

equivalent, in a certain norm which metrizes weak convergence, to the bootstrap

estimate Hn(x, up to and includinq terms of order n-1/2. Consequently,
A

Hn,JE(X) shares the local asymptotic minimax property of the bootstrap

estimate H (x,F) In particular, dominates the normaln n fn,,JE(x)tenra
approximation N[x/snJI and the bias-adjusted normal approximation

A -.~~~~1/2A(1.7) Hn,JB(x) = $[(x- n bn,J)/s n,J]
These theoretical results have heuristic implications for confidence

regions concerning T(F). Let ca = ? (1-a). The form of Hn,JE(x)
suggests

A 1 A A 212A(1.8) T Cn[b +sk Cc -1)/61 + n112s cn n,Jn,J 3,n,J(c n,J c

as an upper confidence bound for T(F) of approximate level 1 - a. The

analogous lower confidence bound is

(1.9) -n 1 + j (c 1)/61 - nl/2A Aen n,J n,J 3,n,J(cG)6 n,J

On the other hand, there are no apparent implications for confidence intervals

based on n"2ITn'-T(F)I, because the skewness and bias corrections of order



5

n/ vanish in the implied asymptotic expansion for the cdf of

n 1/2ITn 'T(F)I. (I am indebted to a referee for this point.)

The speculative upper and lower confidence bounds (1.8) and (1.9)

receive empirical support from a Monte Carlo study which is described in

section 4. Also examined in this study are the performance of the positive
A A^2jackknife estimates bn,J2 Sn,J' k3,n J and the behavior of the associated

jackknife Edgeworth expansion estimate H JE(X)



6

2. Asymptotics for bootstrap and jackknife estimates

2.1 Assumptions on Tn" Let F be the set of all cdf's on the real line

whose support lieswithin a fixed compact interval I. We will suppose

that the observations {X ; 1 <i <n} are iid and that the actual distri-

bution of X has cdf belonging to F. Let hItll denote supremum norm.

ASSUMPTION A. The estimates {Tn; n >1} are of the form Tn = T(F )n n ~~~~~~~~~n
where Fn is the s cle cdf and T is a real-vaZued functional defined

on F. The functionaZ T is localZy quadratic at every F in F, in

the foZZowing sense: for every F and G in F, there exists a function

t(x,y,F) such that

(2.1) T(G) = T(F) + ft(x,y,F)dG(x)dG(y) + r(G,F)

-2The ratio IG-FI r(G,F) converges to zero as IIG-FI tends to zero and
-2sup{IG-FI r(G,F); GEF) < c for every F in F. The function t(x,y,F)

is continuou1s in (x,y) on I2; ft(x,y,F)dF(x)dF(y) = 0; and
2|t(x,y,F)dF(y)]dF(x) > 0. Without Zoss of generaZity, we wiZZ asswne

that t(x,y,F) is symnetricaZ in x and y.

Some examples of estimates which satisfy Assumption A:

(a) The rth sample moment n1 I Xj. Evidently, T(F) = (xrdF(x)

and t(x,y,F) = 2- (xr+yr) T(F) 1

(b) The sample variance n 1 -Xn) , where X1n = n X. In
12 ~~~~~~1l2this case, T(F) = 2 (x-y) dF(x)dF(y) and t(x,y,F)A= 2 (x-y) -T(F).

(c) L-estimates of location. Here T(F) = Frl(t)J(t)dt. If J

is continuously differentiable, then Assumption A holds with
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t(x,y,F) = -21 [I(X<Z) +I(Y <Z) 2F(Z)]J F(z)dz
(2.2)
(2-2) ~~~-2- l[I(x <Z)-F(z)][I(y <z) -F(z)]J'-F(z)dz

(Serfling, 1980, p.289)

(d) M-estimates of location. Let XF(t) = fP(x-t)dF(x), where ip

is strictly monotone with -M(a) < 0 and p(c) > 0. The functional T(F)

solves the euqation XF[T(F)1 = 0. If ip is twice continuously differentiable,

then Assumption A holds with

(2.3) t(x,y;F) = SF(X,Y) +8F(y,x) -{2X'[T(F)]}1A1CT(G)]aF(x)aF(y)

where

(2.4) aF(X) = -{xF(T(F)Jf '{x-J(F)J
8F(X,y) = aF(x)El +{2X.[T(F)]} p'[y4-T(F)]]

(Serfling, 1980, p.256).

2.2 Main results. The central concern of this paper is the asymptotic

performance of jackknife and bootstrap estimates for the cdf H n(x,F) of
1/2n [T T(F)] and for the bias, variance, and skewness of T . The

principal results, obtained under Assumption A, are stated in this section;

proofs are given in Section 3.

For notational convenience in what follows, let

t1 (x,F) = ft(x,y,F)dF(y)
(2.6)

t2(x,y,F) = t(x,y,F) -tl(x,F) -t1(y,F)

By Assumption A, ft (x,F)dF(x) = 0; t2(x,y,F) is symmetrical in the

arguments x, y; and ft2(x,y,F)dF(x) = 0. These properties imply the
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orthogonality relationship ft1(x,F)t2(x,y,F)dF(x)dF(y) = 0. Evidently,

t1(x,F) +t1(y,F) is the best linear approximation to t(x,y,F) in the

L2 (FxF) norm.

For every F in F, define the ball Bn(F,c) as the set of

distribution functions G in F such that HG-Fl < n 1/2c. Let the

notation supn,F,c designate the supremum over all distribution functions

in B n(F,c). The first theorem describes asymptotic behavior of the
n~~~~~~~~~~~~~

bootstrap estimates b (F), k (F), and s2n( n 3,nn n n('')

THEOREM 1. Suppose Asswnption A is satisfied. Then

lim supn,F,c PGIIbn(Fn)-bn(G)I >c) = 0

(2.7) lim supnF,c PG[lk3,n(Fn)k 3,n(G)I >e=0
2- 2lim supn,F,c PGIsn(Fn)-sn (G)j >e] = 0

n-xn~ ~ ~ n

for every F in F and every positive c and £. Moreover under

every sequence of distributions {Gn EBn(F,c)}, the asymptotic distribu-
1/2 2 )... 2(G2i

ionof {n sn(Fn)-sn(G i N(,(F)), where

(2.8) a2(F) = 16f[t2(x,F) +2rt2(x,y,F)t (y,F)dF(y) -s2(F)]2dF(x)

and

(2.9) s2(F) = 4ft (x,F)dF(x)

The second part of Theorem 1 implies that the LdvyAistance between the

distribution of n12(s2(n)-5n2(F)l and its bootstrap estimate converges

in probability to zero. As a result, bootstrapping the bootstrap variance

estimate yields asymptotically valid confidence intervals for s 2(F). (Use
Theorem 1 in Beran (1983) and equation (3.22)).
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Theorem 1 gives asymptotic normality only for s (Fn)* A similar

argument, under the stronger assumption that the functional T is

locally cubic with remainder term of order o(IIG-F12), would prove

asymptotic normality for bn ) and k3 F

How well does the bootstrap estimate sn (Fn) estimate sn(F), the

normalized variance of Tn? With the help of Theorem 1, it is not

difficult to show that sn(Fn) is asymptotically minimax among all
nn

possible estimates of 5n(F).
Let f, g denote the densities of the cdf's F, G in F with

respect to a dominating measure i. The Hellinger distance between F

and G is defined by

(2.10) IG-FIH = {fEgl/2_fl/2)2du})/2 ;

the choice of dominating measure i does not affect this distance.

Let S n(F,d) denote the set of distributions in F whose Hellinger

distance from F is no greater than n 1/2d. If c > 2d, then S (F,d)n

lies within the ball B n(F,c) defined earlier.

It will be shown in Section 3.2 that

(2.11) lim sup n1/21s2(G)-s2(F) -22(xF)f1/2(X)[g /2(x)-f1/2(x)]
n-m GC-Sn(F,d) nn 2f(F)l()g x

n 0~~~~~~~~~~~~ 0,

where

(2.12) &(x,F) = 4Et2(x,F) +2ft2(x y,F)t1(Y,F)dF(Y) -s2(F)]

Note that the asymptotic variance ac2(F) in Theorem 1 is precisely

fF2(x,F)dF(x).
Suppose u is a non-regular monotone increasing function defined
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+ V2eEuto 21)ada

on R . Let Vn be any estimate of sn(F) Equation (2.11) and an

application of the Hgjek-LeCam asymptotic minimax theorem (cf. Koshevnik

and Levit, 1976) yields the following lower bound on minimax risk: for

every F in F,

(2.13) lim lim inf inf supnFc EGu[n2V ns(G)] >EuEa(F)IZI]
c-mo nx n ,,n- nn

where Z is a standard normal random variable and a2(F) is defined

by (2.8).

On the other hand, if u is also bounded, it follows from the second

part of Theorem 1 that

(2.14) lim supn,F,c EGu[n i2Isn(Fn)-sn(G)I] = Eu[aCF)IZI]

for every positive c and every F in F. Thus, the bootstrap variance
2 ^ ~~~~~~~~~~~~~~2estimate sn(Fn) cannot be surpassed by any other estimate of sn(G) in

the sense that its maximum risk over Bn(F,c) is as small as possible,

asymptotically in n. This result improves substantially upon an earlier

version obtained by a different approach in Beran (1982).

Similarly, sn(Fn), the bootstrap estimate of normalized standard

deviation, is asymptotically minimax among all estimates of sn(F). Under

every sequence {Gn EBn(F,c)}, the limiting distribution of

{n 12sn(Fn)-sn(G)n is N(0,[4s2(F)] 1a2(F)).

The close relationship between jackknife and bootstrap estimates of

bias, variance, and skewness is described in the next 'tPeorem.

THEOREM 2. Suppose Asterption A is satisfied and

(2.15) sUPlGFl<d SuPx,y It(x,y.G)l < X
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for every F in F and some positive d. Then

lim supn,F,c PGlIbfnlJbnf(Fn)I >e' = 0

(2.16) lim supn,F,c pG[ik3,n,J-k3,n(Fn)I >£] =

lim supfFc PG[n 2 2- > = Fn,F,c G I^n,J- n(Fn)I >:

for every F in F and every positive c and e. Hence the conclusions

of Theorem 1 appZy also to the jackknife estimates bn,Jk3,n j, and

s2sn,J-
Because of Theorem 2, the jackknife estimate of variance is

asymptotically minimax and may be bootstrapped, just as Sn(Fn). Investigating
^2 ~~2higher order differences between sn,J and sn(F ) would require

higher order local expansions for the functional T.

The final theorem, the main result of this paper, establishes a close

relationship between the jackknifed Edgeworth expansion estimate

Hn J(x) defined in (1.6) and the bootstrap estimate H (x,F ). Becausen ,JE n n
of the remainder term in (2.1) and because the ball B n(F,c) contains lattice

distributions, convergence of the Edgeworth expansion for {H n(x,G); GEB n(F,c)}
becomes an issue.. Here we will deal with this technical problem by slightly

smoothi'ng Hn (x,G).

Let v be a symmetric probability density on the real line which

approximates the delta function. The relationship Ildl v = IId*v, where

* denotes convolution, defines a semi-norm for real,.alued functions d

on R. If the characteristic function of v is strictly positive, then

l Iv is a norm which metrizes weak converqence. For the particular

probability density
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(2.17) v(x) = fp(x/a) , a > 0

whose characteristic function is exp[-a2t2/21, the first,-.order Edgeworth

expansion of H (x,G) converges locally uniformly in the norm 1111n

over all cdf's G in B n(Fjc) (see Section 3 and Beran, 1982). Other

choices of v are possible, the key requirement being that the

characteristic function of v decay with sufficient rapidity as its

argument tends to + .0

THEOREM 3. Suppose Asswnption A is satisfied, (2.15) hoZds, and v is

given by (2.17). Then

(2.18) lim suPnFc PG[n 1I2IHn(X Fn)HnJE(x)v e]

fjror every F in F and every positive c and E. Under every sequence

{G GBn(F,c)}, the processes {nl/2 H (x)-H (x,G )]} converge weakZyn n ~~~~~~~n,JE( n n)1
in I-llv norm to the Gaussian process

(2.19) YF(x) = [2s3(F)]Y1a(F)Zx0[x/s(F)]

where Z is a standard normaZ random variabZe.

It is immediate from this theorem that Hn JE(x) like Hn(x,F n),
is an asymptotically minimax estimate of Hn(x,F); see Section 2 in

Beran (1982).



13

3. Derivations

3.1. Approximating moments of Tn. Assumption A has strong implications

for the moments of Tns properties which will be used in proving the

results stated in Section 2. A key fact is the following property of

the empirical cdf: for every F in F, c > 0, and p > 1

(3.1) supn supn,F,c EG[nPIIFn-FN2P] < K < 00

where Kp depends only on p.

To check (3.1), suppose Gn e B n(F,c). For every t > c and n > 1,

(3.2) PG [n11211FnFII >t] < PG [nO2Fn-Gn I >t-c]
n n nn

< A exp[-(t-c)2]

the constant A not depending on Gn or t (Dvoretzky, Kiefer, and

Wolfowitz, 1956). Since

(3.3) EG [nPIP n-F = PG [nrFPn FllF 2 ]d
n OnJG nuu

the bound (3.1) is immediate.

LEMMA 1. Suppose Assum2ption A is satisfied. Then, for every F in F

and every c > O, p > 1

(3.4) rn supn,F,C nPE IT-T(G) -fh(x,y,G)dF^ (x)dFn (y)lP = Q

where

(3.5) h(x,y,G) = t(x,y,F) -ft(x,y,F)dG(x)dJ(y)

A(Oo

(3.6) l urn SUnF,c nPEGIT~n -T(G) ft(x,Y,G)dF"'n (x)dF"" (y)tP 0
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PROOF. Equation (2.1) of Assumption A implies that

(3.7) Tn = T(F) +t(x,y,F)dF n(x)dF n(y) +r(Fn,F)

Suppose Gn E B n(F,c). By (3.2), {IIFn-FII} converges in probability to

zero under {Gn}. Consequently, in view of Assumption A, the expectation
-2 -under Gn of any positive power of IIFn-FII r(Fn ,F) converges to zero.

Combining this fact with (3.1) yields

(3.8) lim nPEG Ir(Fn,F)IP = O
n-xv n

which, with (3.7), implies

(3.9) lim supn,F,c nPEGI^n-T(F) -[t(x,y,F)dFn(x)dFny)jP = O

On the other hand, it is immediate from (2.1) and the definition

of the ball B (F,c) thatn

(3.10) lim supn,F,c nPjT(G) -T(F) -ft(x,y,F)dG(x)dG(y)IP =0

for every p > 1. Equation (3.4) follows from (3.9) and (3.10) by

4lnkowski ' s inequal ity.

The derivation of (3.6) is analogous to that of (3.9), with Gn

replacing F in (3.7) and (3.8). This completes the proof of the

lemna.

Decompose h(x,y,G) into orthogonal components

h1(x,G) = Jh(x,y,G)dG(y)
(3.11)

h2(x,y,G) = h(x,y,G) -h1 (x,G) -h1(y,G)
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by analogy with (2.6). The next lemma describes useful asymptotic

approximations to the normalized bias, variance, and skewness of T
n

LEMMA 2. Suppose Ass=nption A is satisfied. Let

b(G) = fh(x,x,G)dG(x)

(3.12) s2 (G) = 4{h1(x,G)dG(x)
k3(G) = s3(G)[8fh3(x,G)dG(x) +24fh1(x,G)h1(y,G)h2(x,y,G)dG(x)dG(y)]

Then

lim supn,Fc Ibn(G)b(G)l =

(3.13) lim supn,F,c ik3,n(G)-k3(G)I = 0

lim supn,Fc n1/2Is2(G)-s2(G)l = 0

PROOF. Setting p = 1 in (3.4) yields

(3.14) lim supn,F,c nlmn(G) -T(G) -EGh(x,y,G)dFn(x)dFntv)I = 0

which implies the first equation in (3.13).

Minkowski's inequality and the identity mn(G) = T(G) +n1 bn(G) give

lEGpITn-mn(G) -n2 jjh(X1,Xj,G)tP
(3.15) < nE /"|T -T(G)-fh(x,y,G)dF.(x)dFn(y)IP

+ E 1 h(X ,X ,G) -bn(G)IP

Since h(x,y,G) is bounded under Assumption A, the Marcinkiewicz-

Zygmund inequality implies that

n
(3.16)sp sup np2E in. h(X1,xi,G) -b (G) I <(3.16) sun sun,Fc EG n
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Applying (3.4) and (3.16) to (3.15) establishes

(3.17) lim supnFCnEl' Tn mn() 2 IP =n un,F,,c nG [Tn - mn(G) -n-2 Jh(Xi ,xi G)
n-xoa i fj

for p > 1.

Let

A =G n 2 hX
(3.18) n(G) = n9XX G)

Bn(G) Tn mn(G)

and set Dn(G) = Bn(G) -An(G). The boundedness of t(x,y,F) and the

orthogonal decomposition of h(x,y,G) into the sum hl(x,G) +hl(y,G)
+ h2(x,y,G) yield

lim suPn Fc nInEGA(G)s2(G)l < X

(3.19) limn-o Un,F,c n2(3.19) lim sup F Icn2EGA 3(G)-k (G)s3(G)( < E

lim supn,F c n2EGA4(G) < o

after some calculation. Since B n(G) = A n(G) +Dn(G), we may conclude

from (3.19), (3.17), and application of the Cauchy-Schwarz inequality

to the cross-product terms in the expansion of [An(G)+D n(G)]P, that

lim supnFc n1/2 nE B2(G)-s2(G)I = 0

(3.20) 2 3 3
lim suPn,F,c In EGBn(Gk3(s 0

The limits (3.20) imply the second and third lines in (3.13) because

s2(G) = nEGBn2(G) and k (G) = n2E [B3(G)s'3(G)I.44.(G Gn3,nGn n

A variant of Lemma 2 will be needed in studying the jackknife
est e 2nestimates bnJ snJ and k3nJ
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LEMMA 3. Suppose Asswrntion A is satisfied and (2.15) holds for every

F in F and some positive d. Then the functionals b(G), s2(G),
k3(G) in (3.13) may be replaced by

5(G) = ft(x,x,G)dG(x)

(3.21) s (G) = 44t2(x,G)dG(x)

k3(G) = s3(G)[8ftI(x,G)dG(x) +24ft1(x,G)t1(y,G)t2(x y,G)dG(x)dG(y)]

The proof of this lemma strictly parallels that for Lemma 2, using

(3.6) instead of (3.4). Note that the requirement (2.15) on t(x,y,G)

is satisfied automatically by h(x,y,G) under Assumption A.

3.2. Theorem proofs

PROOF OF THEOREM 1. Inequality (3.2) on the empirical cdf implies

(3.22) lim supn supn,F,c PG[Fn Bn(F,t)] = 0

Combining (3.22) with Lemma 2 yields

lim supn,F,c PGIlbn(Fn)-b(Fn)>] = 0

(3.23) lim SUPn,F,c PGG[k3n(Fn ) k3(Fn) >] 0

lim supn,F,c PGGEn Isn(Fn)-S-(Fn) > eK = 0
n-*w

for every positive £ and c. Indeed, if C = {Ib (F )-b(Fn)I >s},

the inequality

(3.24) PGECn,] < PGECn£fl{F GB (F,t)}]+P EFn Bn(F,t)](3.2) p [C
,e

< P [CnF- n Bn G n

and the inclusion



18

(3.25) C n {Fn eBn(Ft)} C {supnFtIbn(G)-b(G) I >C}

imply the first line in (3.23). The other two limits in (3.23) are

argued similarly.

Under {G EB (F,c)}, the empirical product measure determined byn n

Fn(x)Fn(y) converges weakly, with probability one, to that determined

by F(x)F(y). Hence

(3.26) suPx,y lh(x,y,Fn)-h(x,y,F)l --O w.p. 1

because t(x,y,F) is a continuous, bounded function; and therefore

supx 1h1(x,Fn)-h1 (x,F)I 0
(3.27) w.p. 1

suPX,y Ih2(x ynFn) h2(x9y)) 0

2~~~~It follows from this and (3.12) that b(Fn), s (Fn) k3(Fn converge

with probability one to b(F), s2(F), k3(F) respectively, under every

sequence {GneBn(F,c)}. Similarly, b(Gn), s2(Gn), k3(Gn) also converqe

to b(F), s2(F), k3(F) respectively. Consequently,

lim supn,F,c PGIlb(Fn)-b(G)I >sl = 0

(3.28) lim supn F,c PG[lk3(Fn)-k3(G)l >s] = 0

lim supn,F,c PGI1s2(Fn)-s2(G)l >s) = 0

The desired locally uniform consistency result (2.7) is implied by

(3.28), (3.23), and (3.13).
2To prove the locally uniform asymptotic normality of s (F ), itn n

suffices to show, in view of (3.13) and (3.23), that the limiting

distribution of {n1/2[s2(Fn).-s2(Gn)2} under {GnCeBn (F,c)} is N(O,a2(F)).
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Clearly

(3.29) ) = 4f[jt(x,y,F)dFn(y)-fft(x,y,F)dFl(x)dF (y)]2dF(x)

= An 1 -An2

where

An,l - 4 h(x,y,Gn )dFn(y)]2dFn(x)
(3.30)

A - 4EIIh(x,yG )dF (x)dF (y)]2n,2 jj''n n n

A straightforward calculation shows that EG An2I = 0(n 1) under

Assumption A.

On the other hand,

A =4n 3Et[ h(X2tXi,G]2

(3.31) = 4n)3)nAh(X.,Xi,Gn)h(XI,X,kGn ) +0 (n1)

where the triple sum is over all triplets (i,j,k) in which no two

components are equal. Replacing h(x,y,G ) by its orthogonal decompo-

sition h1(x,Gn) +h1(y,Gn) +h2(x,y,Gn) yields, after some calculation,

(3.32) A = 4[n 1 2hl(Xi,Gn) +2n 2 I3h2(Xh,X.,G)h (XG)] +Op(n1)n,l h1 Xj ) n (iXI n lj'iIn n-

The main term on the right side of (3.32) is a second order U-statistic,

in asymnetrical form. Applying Hoeffding's well-known projection argu-

ment, we obtain

(3.33) A1 = 4n 1 EhI(Xi,Gn) +2fh2(Xi,Y,Gn)h (y4n)dGn(y)) +0p(n1)n,l i =1i In() p

under {GneBn (F,c)}. Thus, the limiting distribution of
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1n1/2[A -s2(G )]} is N(O,a2(F)), with a2(F) defined by (2.8); note
~ n,l- n

that h(x,y,F) coincides with t(x,y,F) under Assumption A.

In view of the previous paragraphs, the asymptotic normality of

Sn(Fn) is now apparent. We note that the full strength of Assumption A

is not needed to prove this theorem.

PROOF OF (2.11).

(3.12) of s2(G)
A straightforward calculation using the

and Assumption A yields

definition

(3.34) s2(G) = s2(F) +2fE(x,F)fl/2(x)g 11/2(x) f1/2(x)]du

for i(x,F) as in (2.12). The limit (2.11) follows from

(3.13).

+O(NRG-FF H)

(3.34) and

PROOF OF THEOREM 2. Lemna 3 and (3.22) imply

lim supn,F,c

lim Supn,F,c

lim supn,F,c

for every positive c and

it suffices to show that

lim supn,F,c

lim supn,F,c

rim supn,F,c
n-xv

PGEIbn(Fn) 6(Fn) >£] = 0

PG[k3,n(Fn)-R3(^n)i>E]= O

1/2 2' .2(~ E]=PGE[n isn(Fn)-s (Fn)l>' l = °

e. To complete the proof of the theorem,

PGIlbnnJCb(Fn)I >s] = 0

PGEIk3,n,J k3(Fn)I ] =

PGEfl1/2l J-s2(Fn)I >£] = 0
I4s

for every positive c and e.

(3.35)

(3.36)
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Suppose Gn B n(F, c) and let

(3.37) Fn i(x) = (n+1) [nFn(x)+I(Xi<x)J , 1 ni

From (1.4) and Assumption A,

2 A

Dn,i = (n+1) [T(Fni )- T(Fn)]

(3.38) n
= 2n t1(Xi 9 Fn) + t(Xi lixi IFn rn,i

A m

where max fir 1; < i <nl}= oCi) because IFn Fn 11 2(n+1l).n.i;,n1
Thus,

(3.39)

under {Gn}.

Let

(3.40)

From (I

(3.41)

where

(3.41)

(3.42)

and

(3.43)

bn,J= ft(x,x,Fn)dFn(x)+ op(1)

Fn j.(x) = (n+2) InFn(x)+I(Xi<x)+I(Xi<x)] , 1 < i,j < n

1.4) and Assumption A,

Dn j = (n+2) [T(Fn )i - T(FnDn) Dn
= 2t(X,X. IFn) + rn,i ,j

max {Jrn,i,jl; 1<i,j<n} = op(1) under {Gn}. Combining (3.38) with

while recalling (2.6) yields

=2nt (X ,F )+ en,i 1 n n,ij

n,i,j t2(Xi'Xj.Fn)+n,i,j

I
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where max {Ien .1; l<i< n} = op(1) and max {en jl; l<i,j< n} = op(1).
It follows from (1.5), (2.15), and (3.42) that

^2 = 4r2(X)d ()o (n 1'
sn,J J14t(x,Fn)dFn(x)+ p

Equations (3.39) and (3.44) imply the first and third lines in (3.36).

The middle line (3.36) follows from (3.42), (3.43), and the definition
A

(1.5) of k3,n,Je

PROOF OF THEOREM 3. By the argument in Sections 4 and 2 of Beran (1982),

Assumption A implies

(3.45) lim supn n
1n/2 CH (x,G)-O(x/s(G))] +s' 1(G)b(G)O(x/s(G))

+ k3(G) t (x/s(G))4(x/s(G))Iv = 0

where t(x) = 6 1(x2-l) and 0, * are the standard normal cdf and

density. Consequently,

(3.46) lim supn,F c n 2Hn(x,G) -Hn(x,F) +s (F)[s(G)-s(F)]x4(x/s(F))Iv
-0;

see the remarks preceding (3.28). Therefore, in view of (3.22),

(3.47) lim supn,F,c PGEn"21Hn(x,Fn) -Hn(x,F)
+ s (F)[s(Fn)-s(F)]x0(x/s(F))lv >E] = 0

for every positive E and c. Combining (3.46) with (3.47) yields

(3.48) lim supn,F,c pGEn12 IHn(xFn) -Hn(x,G)
+ s2(F)[s(Fn )-s(G)]x0(x/s(F))I v > 0]

for every positive e and c. By Theorem 1, Lemna 2, and (3.23), the
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limiting distribution of {nl/ Es(Fn)-s(Gn)]}, where Gn E B n(F,c), is

N(O,[4s2(F)]1c72(F)). Hence, the processes {n1 2[Hn(X,Fn)-Hn(x,Gn)]}
converge weakly in 11iN norm to the gaussian process YF(x) defined

in (2.19).

On the other hand, in view of Theorems 1 and 2, Lemma 2, and (1.6),

(3.49 lmSPn,F,c PGEiin112HflJE(x)-¢(x/SflJ)) +s~1Jb^ ¢(X/s^ ,)

+k3,n,Jt(X/Snsj)¢(x/n j)lv >£] =O

and therefore

(3.50) lim supn F,c PGHnx/2 )-(x/ )b(

n-ocok An,JEnJ nA n,J n,

+ k(F )t(x/S(F ))¢(x/s(F ))v =0

3,nJ nJ0( nJ

for every positive £ and c. The last equation draws on (2.16) and

(3.23). Equations (3.45) and (3.22) entail

(3.51) lim sup PI n12E[H(x,F)-D(x/s(F ))] +s (F )b (F )(x/s(F )

n,F,c G nn,J ("n) nS n nW /("n)

+ k3(Fn)t(X/s(Fn))O(X/s(Fn))v >C] = 0

for every positive C and c. Combining (3.50) with (3.51) yields

(2.18) and completes the proof of the theorem.
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4. Numerical trial
-% ~~~1n2

Let T be the variance functional, so that Tn = T(Fn) = n1li-(Xi-I )Ln n~~~~~~~~
Suppose that F is the standard normal cdf. By classical theory,

b (F) = -1n

(4.1) s2(F) = 2(n-l)n-1

k3 n(F) = [8n(n-l) 111/2

and the exact distribution of nTn is chi-squared with n- 1 degrees of

freedom.

The mean and standard deviation of each jackknife estimate defined in

section 1 and the levels of the associated confidence bounds for T(F) were

estimated by Mlonte Carlo methods, for sample sizes n between 10 and 80.

In each case, one thousand pseudo-random N(0,1) samples of size n were

used. Some of the results are summarized in the following tables.

Table 1 compares the Monte Carlo expectations of bnJ sSn,J' k3,n,J
with the population values of bn (F), s 2(F), k3 n(F) respectively. The

positive jackknife estimates of bias and variance are nearly unbiased for

n greater than or equal to 20. However, the jackknife skewness estimate

has a more persistent downward bias which diminishes slowly as n increases.

Table 2 compares the actual cdf H (x,F) with its first-order Edgeworthn

expansion H E(x) [equation (1.2)] and with the Monte Carlo expectations

of the jackknife estimates Hn,JE(x) [equation (1.6)1, Hn,JB(x) [equation

(1.7)1, and Ox/sn,J1. For n greater than or equal to 20, the Edgeworth
-0 ~~~~~~~~~~~~~~~Aexpansion approximates H (x,F) well over plus or minus"'two standardn

deviations. The expectation of nH (x) is not as close to H.(x,F),n,JE(x n

even for n equal to 40 or 80. (The downward bias in k3,n,J undoubtedly

contributes to this effect.) However, Hn,JE(x) is noticeably less biased
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in the center and tails than HnJB(X) and is almost uniformly less biased

than the normal approximation D(x/Sn,J)*
Table 3 compares the observed levels in 1,000 trials of

(a) the bias-and-skewness-corrected upper and lower confidence bounds

defined in (1.8) and (1.9);

(b) the bias-corrected upper and lower confidence bounds

T -n b _ s cTn n,J n,J a ;

(c) the normal approximation upper and lower confidence bounds

T + n" s cn - n,J a

For n equal to 40 and 80, the bias-and-skewness-corrected confidence bounds

are the most reliable, particularly when the nominal level is close to 1 or

to .5. For smaller n, the discrepancies between nominal levels and observed

levels are unsatisfactory, no matter which confidence bounds are used.

TABLE 1

Mlonte Carlo expectations of positive Jackknife estimates for

bias, variance, and skewness compared with the actual values.

n bn (F) E(bn,J) sn(F) E(sn,J) k3,n(F) E(k3,n,J)

10 -1100 -.90 1.80 1.68 2-.98 1.75

20 -1.00 -.95 1.90 1.84 2.90 2.06

40 -1.00 -.98 1.95 1.94 2.86 2.32

80 -1.00 -.99 1.98 1.98 4.85 2.52
A~~~~~~~2.5 25
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TABLE 2

Monte Carlo expectations of three jackknife cdf estimates

compared with the actual cdf H4n(x,F) and with the actual

Edgeworth expansion Hn E(X)

x Hn(x,F) HnE(x) EH (x)I EHnBx)] E((x/.I_)

-3.0 .0083 .0090 .017 .025 .020

-1.5 .1675 .1697 .149 .149 .125

- .75 .3587 .3584 .331 .314 .274

n = 40 0 .5744 .5746 .571 .547 .500

.75 .7567 .7563 .773 .763 .726

1.5 .8788 .8764 .892 .896 .875

3.0 .9790 .9785 .978 .985 0981

-3.0 .0113 .0117 .016 .022 .019

-1.5 .1607 .1619 .152 .152 .135

- .75 .3400 .3400 .328 .315 .287

n = 80 0 .5526 .5527 .551 .532 .500

.75 .7413 .7411 .749 .740 .713

1.5 .8721 .8708 .879 .882 .865

3.0 .9798 .9795 .979 .984 .981
_______________________ 4. I I II I I I
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TABLE 3

Estimated levels of three jackknife upper

and lower confidence bounds for T(F).

Estimated Level

Bias-and-skewness
adjusted bounds
Upper Lower

988

. 973

.921

.876

.824

.711

.613

. 983

. 964

.921

.872

.815

* 714

.622

Bias-adjusted bounds
Upper Lower

Normal approximation
bounds

Upper Lower-4 .- w 4 --

. 995

.980

.932

.877

.815

o693

. 593

.975

954

. 910

.872

.817

.732

.636
4 4 4 t

.974

.951

e903

.852

.805

e701

.607

976

.948

.901

.859

.809

e718

.614

e986

.958

.906

853

.801

v687

v591
________________ I a -I

.969

942

.899

.859

.814

.727

.632

.995

.976

.914

.857

*793

.660

v 540

.981

. 955

.897

.835

. 782

.670

.567

v 983

* 968

* 929

.894

.853

. 764

.675

.975

.951

.908

.871

835

.751

.666

F
Nominal

Level

n = 40

n = 80

.975

.95

.90

.85

.80

.70

.60

.975

.95

.90

.85

.80

70

.60

...................... II I I I X- - --A-

I
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