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Abstract
Let ?n be an estimate of the form fn = T(?n), where ?n is the
sample cdf of n iid observations and T 1is a locally quadratic func-
tional defined on cdf's. Then, the normalized jackknife estimates for

A

bias, skewness, and variance of Tn approximate closely their bootstrap
counterparts. Each of these estimates is consistent. Moreover, the
jackknife and bootstrap estimates of variance are asymptotically normal
and asymptotically minimax. The main result: the first-order Edgeworth

‘/2(?n-T(F)), with F being

expansion estimate for the distribution of n
the actual cdf of each observation and the expansion coefficients being
estimated by jackknifing, is asymptotically equivalent to the corresponding
bootstrap distribution estimate, up to and including terms of order n']/z.
Both distribution estimates are asymptotically minimax. The jackknife
Edgeworth expansion estimate suggests useful corrections for skewness

and bias to upper and lower confidence bounds for T(F).
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1. Introduction

Suppose Xl’x2""’xn are independent identically distributed random
variables with unknown cdf F. Let ?n be the empirical cdf of the sample.
If V is a sufficiently smooth real-valued functional defined on the set
of cdf's, then V(?n) is an asymptotically optimal estimate of V(F), in
the local asymptotic minimax sense. Bootstrap methods, introduced by Efron
(1979), apply this familiar functional estimation idea to certain statistically
interesting functionals, such as sampling distributions, which may not have
closed form expressions.

Suppose that ?n = ?n(xl,xz,.;.,xn) is an estimate of T(F), where T
is a specified real-valued functional. Let -Hn(x, F) be the cdf of

nllzl?n-T(F)]. Define the standardized bias, variance, and skewness of

Tn Py
b, (F) = nigg(F ) - T(F)]
(1.1) s2(F) = nep (T - (F 12
k3. n(F) = 025 3(FIE IF, - Ep(F 01

respectively. Then Hn(x,?n), bn(?n), sﬁ(?n) and k3,n(?n) are the
respective nonparametric bootstrap estimates of the four functionals just
defined. Evaluation of such bootstrap estimates is often indirect, for
lack of usable closed form expressions. Possible methods of evaluation
include: enumeration of all possible samples of size n from the discrete
empirical distribution ?n; Monte Carlo approximations §ised on pseudo-
random samples of size n drawn from Fn; and hybrid methods in which
analytical simplification of the bootstrap estimate precedes evaluation

by one of the first two methods. Examples and further details appear in

Efron (1979).



Under some assumptions on ?n and T, the bootstrap distribution estimate
Hn(x,?n) is locally asymptotically minimax among all possible estimates of
* R .. A
Hn(x,F) (Beran, 1982). If F, 1is a smoothed version of F, such that
|.

retains the local asumptotic minimax property. The further advantages and

HF: - ?n” = op(n_l/z), where denotes supremum norm, then Hn(x,F;)
drawbacks to smoothing ?n before bootstrapping are not well understood at
present.

The jackknife is an older, more specialized resampling procedure which
was originally introduced by Quenouille (1956) to remove the bias of ?n
and was extended by Tukey (1958) to the estimation of variance. Several
subsequent authors, including Miller (1964, 1974), Brillinger (1964, 1977),
and Reeds (1978) have found conditions under which the jackknife variance
estimate is consistent and the bias adjusted version of nl/zl?n-‘T(F)]
is asymptotically normal. Efron (1979) observed that the jackknife estimates
of bn(F) and sﬁ(F) can be viewed as analytical approximations to the
bootstrap estimates bn(?n) and sﬁ(?n), at least when the sample space is
finite.

The principal aim of this paper is to show that the bootstrap distribution
estimate Hn(x,?n) itself may have a jackknife approximation ﬁn,JE(x)
which is close enough to retain the local asymptotic minimax property of
Hn(x, ?n). The basic idea is as follows. Under certain assumptions on ?n,
the cdf Hn(x, F) has a first-order bias-corrected Edgeworth expansion

(1.2) Hy £(x) = o L(x=n"2p (F))/s (F)]

4

Vg (Ewlxn 2 (F)/s (P,

where y(x) = 6'1(x2-1)¢(x) and %, ¢ are, respectively, the standard
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normal cdf and density. Substituting jackknife estimates for the funtionals
o
bn(F), s;(F), ks n(F) which appear on the right side of (1.2) yields a
jackknife Edgeworth expansion estimate ﬁn JE(x) for Hn(x, F).

More precisely, let

Tn,i = n+1(XI,XZ,...,Xn,Xi)

(1.3)

Tn’i’j = Tn+2(x1’X2,.-o’Xn’Xi,Xj)
and let

D .= (m1)2F .-7]

1,1 n,i n

On1,3 = (04200 =Tl = 0y g0y

(1.4)

D-n,'i = Dn,i 'Dn,'i,i/z

D,4,3 = Pnyi,5 ™ (Pp,i* Dy, )/

for 1< 1,j <n. Define the positive jackknife estimates for bn(F), sﬁ(F),
and k3’n(F) to be

n

A _ _1 —
bn,J =n iglon,i
" 2
~2 D
(1.5) Sn.d " (n 1) n,i
A -4 .3 -3 -1
“3,n,0 = [0 5E Dy 3 #3077 (=12 2D, 4 iy,i0p, 51/
302 372
[n EIDn il

Correspondingly, the jackknife Edaeworth expansion estirf#te for Hn(x, F) is

o . SV PR
(106) Hn,JE(X) = Q[(x-n bn’J)/Sn J]

n-1/2¢% -1/

Ky p,g¥lx-n sz)/SnJ] ’



where ¥ and & are as in (1.2).

Some positive jackknife estimates can exhibit severe downward bias
(Hinkley, 1978). The estimates Sn,J' and §§,J in (1.5) are designed to
handle asymptotically quadratic statistics ?n‘ As a result, gﬁ,d tends to
be less biased than the usual positive jackknife estimate of variance. The
asymptotic results in this paper remain valid if Bn,J and gﬁ,d are
replaced by more familiar negative jackknife estimates and if E3,n,J is
modified similarly.

It is shown in sections 2 and 3 that ﬁn,JE(x) is asymptotically
equivalent, in a certain norm which metrizes weak convergence, to the bootstrap
estimate Hn(x,?n), up to and including tefms of order n'1/2. Consequently,
ﬁn,JE(x) shares the local asymptotic minimax property of the bootstrap
estimate Hn(x, ?n). In particular, ﬂn’JE(x) dominates the normal

approximation o[xlgn J] and the bias-adjusted normal approximation
(1.7) Ry ga®) = elx-n"28 )5 1.

These theoretical results have heuristic implications for confidence
regions concerning T(F). Let c, = @'1(1 -a). The form of ﬁn JE(X)

suggests

1/2;

-1,2 A A 2 -
(1.8) -n [bn,J+ Sn,Jk3,n,J(ca'1)/6] +n Sn,J o

n

as an upper confidence bound for T(F) of approximate level 1 - a. The

analogous lower confidence bound is

-1/2§

2
n,J'Qu °

A _1 A A A 2

On the other hand, there are no apparent implications for confidence intervals

based on nl/zl?n-T(F)l, because the skewness and bias corrections of order



n'l/2 vanish in the implied asymptotic expansion for the cdf of

n'llzl?n-T(F) (I am indebted to a referee for this point.)

The speculative upper and lower confidence bounds (1.8) and (1.9)

receive empirical support from a Monte Carlo study which is described in
section 4. Also examined in this study are the performance of the positive

. . . A ~2 n . .
Jjackknife estimates bn,J’ Sn,J’ k3,n,J and the behavior of the associated

jackknife Edgeworth expansion estimate ﬁn JE(X)‘



2. Asymptotics for bootstrap and jackknife estimates

2.1 Assumptions on ?n‘ Let F be the set of all cdf's on the real line

whose support lieswithin a fixed compact interval I. We will suppose
that the observations {Xi; 1<i<n} are iid and that the actual distri-

bution of Xi has cdf belonging to F. Let |-l denote supremum norm.

ASSUMPTION A. The estimates {T 3 n>1} are of the form T o= T(F)

where En 18 the sample cdf and T 1is a real-valued functional defined
on F. The functiomal T 4s locally quadratic at every F in F, 1in

the following sense: for every F and G in F, there exists a function

t(x,y,F) such that
(2.1) T(6) = T(F) + [t(x,y,F)dG(x)dG(y) + r(G.F) .

The ratio IG-FI;Zr(G,F) converges to zero as |G-Fl tends to zero and
sup{IG-FI-Zr(G,F); GEF} <= for every F in F. The function t(x,y,F)
i8 continuous in (x,y) on IZ; It(x,y,F)dF(x)dF(y) =0; and
I[jt(x,y,F)dF(y)]zdF(x) > 0. Without loss of generality, we will assume

that t(x,y,F) <s symmetrical in X and Y.

Some examples of estimates which satisfy Assumption A:

(a) The rth

n
sample moment n"I ) X;. Evidently, T(F) = [xrdF(x)
i=1
and t(x,y,F) = 2-](xr+yr) - T(F).
. AF Ly 542 g - =17
(b) The sample variance n~' } (xi-xn) , Where Xn =n ) Xi. In
i= i=
this case, T(F) = z"[(x-y)zdr(x)dr(y) and  t(x,y,Flz 27 (x-y)2 - T(F).
1 s
(c) L-estimates of location. Here T(F) = f F'1(t)J(t)dt. If J
0 .

is continuously differentiable, then Assumption A holds with



t(x.y.F) = -z"f[x(xiz) +1(y <2) - 2F(2) 19+F(2)dz

(2.2) q
-2 j[r(xgz) ~F(2)1[I(y <z) -F(2)13"'-F(z)dz

(Serfling, 1980, p.289) .

(d) M-estimates of location. Let AF(t) = fw(x-t)dF(x), where 1y
is strictly monotone with y(-e=) < 0 and y(w) > 0, The functional T(F)

solves the eugation AF[T(F)] = 0. If y is twice continuously differentiable,

then Assumption A holds with

(2.3)  t{x,y3F) = B(x,y) +8¢(y,x) -{21§[T(F)]}'1A;[T(G)JaF(X)aF(y) ,

where

ap(x) = ~OAIT(F) 1 ylx-T(F)]

(2.4) q
Be(x,y) = ap(x)[1 +{2A¢[T(F)1} "y' [y-T(F)1]

(Serfling, 1980, p.256).

2.2 Main results. The central concern of this paper is the asymptotic

performance of jackknife and bootstrap estimates for the cdf Hn(x,F) of
n]/z[?n-T(F)] and for the bias, variance, and skewness of ?n' The
principal results, obtained under Assumption A, are stated in this section;

proofs are given in Section 3.

For notational convenience in what follows, let

fO6F) = [ty Rty %
tz(xv.YsF) = t(x9.YaF) -t](X,F) 't](th)

(2.6)

By Assumption A, It1(x,F)dF(x) = 03 tz(x,y.F) is symmetrical in the
arguments x, y; and Itz(x,y,F)dF(x) = 0. These properties imply the
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orthogonality relationship Jt](x,F)tZ(x,y,F)dF(x)dF(y) = 0. Evidently,
t](x,F) +t](y,F) is the best linear approximation to t(x,y,F) in the
L2(FXF) norm.

For every F in F, define the ball Bn(F,c) as the set of
distribution functions G in F such that 16-FI < n"V2c. Let the

notation sup designate the supremum over all distribution functions

n,F,c
in Bn(F,c). The first theorem describes asymptotic behavior of the

. A A 2 A
bootstrap estimates bn(Fn), k3,n(Fn)’ and sn(Fn)'
THEOREM 1. Suppose Assumption A is satisfied. Then

Tim sup, £ PG[lbn(?n)-bn(e)l >e] =0

(2.7) lim SUP, F . PG[[k3 n(Fn)-k3 n(G)I >e] =0
n_.c 9 9 9 9
Tim sup_ ¢ . PG[lsﬁ(?n)-sg(G)l >el =0
n_m 9 9

for every F in F and every positive ¢ and €. Moreover under
every sequence of distributions {G €B (F,c)}, the asymptotic distribu-

tion of {n]/z[sﬁ(?n)-sﬁ(Gn)]} is N(O,OZ(F)), where

(2.8)  o2(F)

16[T€20x,F) +2[t,(x,y.F)t, (v, ) () - s2(F) 12eF ()
and

(2.9)  s2(F)

4It$(i,F)dF(x) .

The second part of Theorem 1 implies that the Lévy ‘distance between the
distribution of n1/2[5§(?n)- Sﬁ(F)] and its bootstrap egtimate converges
in probability to zero. As a result, bootstrapping the bootstrap variance
estimate yields asymptotically valid confidence intervals for sﬁ(F). (Use

Theorem 1 in Beran (1983) and equation (3.22)).
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Theorem 1 gives asymptotic normality only for Sﬁ(?n)‘ A similar
argument, under the stronger assumption that the functional T is
locally cubic with remainder term of order o(HG-FHZ), would prove
asymptotic normality for bn(?n) and k3’n(?n).

How well does the bootstrap estimate sﬁ(?n) estimate sﬁ(F), the
normalized variance of ?n? With the help of Theorem 1, it is not
difficult to show that Sﬁ(?n) is asymptotically minimax among all
2(F).

Let f, g denote the densities of the cdf's F, G in F with

possible estimates of s

respect to a dominating measure u. The Hellinger distance between F

and G is defined by
(2.10) 16-FI,, = {I[g]/z-f]/z]zdu}]/z ;

the choice of dominating measure u does nat affect this distance.
Let Sn(F,d) denote the set of distributions in F whose Hellinger
distance from F 1is no greater than V2. 1 ¢ > 2d, then S (F,d)
lies within the ball Bn(F,c) defined earlier.
It will be shown in Section 3.2 that
(2.11)  1im  sup n‘/zlsz(s) -s2(F) -zfs(x,r)f‘/z(x)[g"z(x)-f’/z(x)]du
e GES_(F,d) n n o

where

(2.92)  &(x,F) = 4[t{(x,F) +zjt2(x.y,r)t1(y,r)dr<y) -s%(F)]
2,

£
Note that the asymptotic variance oz(F) in Theorem 1 is precisely
[Eexprarea).

Suppose u is a non-regular monotone increasing function defined
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on R'. Let Vn be any estimate of sﬁ(F). Equation (2.11) and an
application of the Hijek-LeCam asymptotic minimax theorem (cf. Koshevnik
and Levit, 1976) yields the following lower bound on minimax risk: for

every F in F,

1/2

. .. . 5 2
(2.13) 1im lim inf inf; SUPp £ ¢ EGu[n |Vn-sn(G)|]_3Eu[c(F)|Z|] .

where Z is a standard normal random variable and oZ(F) is defined
by (2.8).

On the other hand, if u 1is also bounded, it follows from the second
part of Theorem 1 that
(2.14)  Vimsup, ¢ Equln'/2[s2(F )-s2(6)|1 = Eulo(F)[2]]
for ebeny positive ¢ and every F in F. Thus, the bootstrap variance
estimate sﬁ(?n) cannot be surpassed by any other estimate of sﬁ(G) in
the sense that its maximum risk over Bn(F,c) is as small as possible,
asymptotically in n. This result improves substantially upon an earlier
version obtained by a different approach in Beran (1982).

Similarly, sn(?n), the bootstrap estimate of normalized standard
deviation, is asymptotically minimax among all estimates of sn(F). Under
avery sequence {G € Bn(F,c)}, the 1imiting distribution of
tn'/2s (F)-s (60} is N(0,[4sP(F)TTGP(F)).

The close relationship between jackknife and bootstrap estimates of

bias, variance, and skewness is described in the next tpeorem.

THEOREM 2. Swuppose Assumption A i8 satisfied and
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for every F in F and some positive d. Then

112 SUPL F ¢ PG[|bn,J-bn(Fn)l >e] =0

n

(2-]6) ll:: SUDH,F,C PG['k3,n,J-k3,n(Fn)| >€] =0
. 1/2,42 2,2

lim SUP, F.c PG[n / lsn,J'Sn(Fn)l >¢] =0

n-o

for every F in F and every positive ¢ and €. Hence the conclusions

A

of Theorem 1 apply also to the jackknife estimates Sn J° k3 n.J? and
9 9 9

a2
Sn’J.

Because of Theorem 2, the jackknife estimate of variance is
asymptotically minimax and may be bootstrapped, just as Sﬁ(?n). Investigating

2 2,2 .
n,Jd and Sn(Fn) would require

higher order differences between §
higher order local expansions for the functional T.

The final theorem, the main result of this paper, establishes a close
relationship between the jackknifed Edgeworth expansion estimate
ﬁn,JE(x) defined in (1.6) and the bootstrap estimate Hn(x,?n). Because
of the remainder term in (2.1) and because the ball Bn(F’C) contains lattice
distributions, convergence of the Edgeworth expansion for {Hn(x,e); G(EBn(F,c)}
becomes an issue.. Here we will deal with this technical problem by slightly
smoothing H_(x,G).

Let v -be a symmetric probability density on the real line which
approximates the delta function. The relationship IIdlIv = [[dxvl, where
* denotes convolution, defines a semi-norm for realsyalued functions d
on R. If the characteristic function of v is stricf1y positive, then
-1,
probability density

is a norm which metrizes weak convergence. For the particular
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(2.17) v(x) = ¢(x/a) , a>0

whose characteristic function is exp[-a2t2/2], the first~order Edgeworth

expansion of Hn(x,G) converges locally uniformly in the norm H-Hv

over all cdf's G in Bn(F,c) (see Section 3 and Beran, 1982). Other
choices of v are possible, the key requirement being that the

characteristic function of v decay with sufficient rapidity as its

argument tends to + oo,

THEOREM 3. Suppose Asswmption A is satisfied, (2.15) holds, and v is
given by (2.17). Then

. 1/2 A A =
(2.18) llz SUP E ¢ PG[n an(x’Fn)'Hn,JE(x)"v >¢] =0

for every F in F and every positive ¢ and €. Under every sequence
U%}GBn(F,c)}, the processes {n]/z[ﬁn JE(x)-Hn(x.Gn)]} converge weakly

in I-lv norm to the Gaussian process

(2.19) Ye(x) = [253(F) T o(F)zxelx/s(F)]
where I <18 a standard normal random variable.

It is immediate from this theorem that ﬁn JE(X)’ like Hn(x,?n),

is an asymptotically minimax estimate of Hn(x,F); see Section 2 in

Beran (1982).
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3. Derivations

3.1. Approximating moments of ?n‘ Assumption A has strong implications

A

for the moments of Tn’ properties which will be used in proving the

results stated in Section 2. A key fact is the following property of

the empirical cdf: for every F in F, ¢ >0, and p > 1
PiE -Fp2P o
(3.1) supp sup, ¢ o EgnIF -FITT] < k) <

where Kp depends only on p.

To check (3.1), suppose Gn € Bn(F,c). For every t>c and n>1,

1/2,2 1/2,2
(3.2) PGn[n IF,-Fl >t] < PGn[n nFn-GnI >t-c]

< A exp[-(t-c)?]

the constant A not depending on G or t (Dvoretzky, Kiefer, and
Wolfowitz, 1956). Since

PiE -F12PT - PiF -fy2P
(3.3) EGn[n ﬂFn FI=F] J:Pen[n an FIF >uldu ,

the bound (3.1) is immediate.

LEMMA 1. Suppose Assumption A ig satisfied. Then, for every F in F

and every ¢ >0, p > 1

(3.4) limsup, ¢ npsel?n -T(G) -Ih(x,y,G)d?n(x)d?n(y)lp =0,

| naed

where
(3.5) h(x,¥,6) = t(x,y,F) -jt(x.y.nde.(x)&s(y) :
Also

(3.6) 1im sup

PE_IT -T(6) - |t(x,y,6)dF_(x)dF Pao.
i AN [ttxy.61df (04 ()]

n,F,c
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PROOF. Equation (2.1) of Assumption A implies that

(3.7) o = TOF) + [tlxay F)F (06F () +r(F L)

Suppose G € Bn(F,c). By (3.2), {Hﬁn-FH} converges in probability to
zero under {Gn}. Consequently, in view of Assumption A, the expectation
under Gn of ahy positive power of ﬂ?n-Fﬂ'zr(?n,F) converges to zero.
Combining this fact with (3.1) yields

(3.8) Tim anG

Ir(F ,F)IP = 0
| ol n

which, with (3.7), implies

(3.9)  limsup, o PEGlT - T(F) - [e(xy PR (0B ()P = 0

Pes<o n,F,c
On the other hand, it is immediate from (2.1) and the definition

of the ball B,(F.c) that

o |T(G) -T(F)'-ft(x.y,F)ds<x)de(y)lp = 0

(3.10) 1im sup
peo  MaFsC

for every p > 1. Equation (3.4) follows from (3.9) and (3.10) by
tinkowski's inequality.

The derivation of (3.6) is analogous to that of (3.9), with Gn
replacing F in (3.7) and (3.8). This completes the proof of the

lemma.

Decompose h(x,y,G) into orthogonal components

(0,6) = [h(x,y,6)d6(y)
(3.11)
hz(X,ng) = h(X.Y.G) 'h](st) 'h](.Y9G)
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by analogy with (2.6). The next lemma describes useful asymptotic

A

approximations to the normalized bias, variance, and skewness of Tn.

LEMMA 2. Suppose Assumption A is satisfied. Let

b(G) Ih(x,x,G)dG(x)

(3.12) s2(6)

4!h$(x,6)d6(x)

3(6) = 576081 (x,6)46(x) +24 [, (x,6)ny (¥,6)hy(xy,6)dB(x)de(y) ]

n,F,c Ibn(G)fb(G)| =0

1im sup
N->co
3.13 1im su ka (G)-k,(G)] =0

1im sup n]/zlsZ(G)-sz(G)l =0
n,F,c n

PROOF. Setting p =1 in (3.4) yields
(3.14) lim sup, ¢ c n|m (G) - T(6) -EGIh(x.y,G)an(x)an(y)| =0,

which implies the first equation in (3.13).
Minkowski's inequality and the identity mn(G) = T(G) +n']bn(G) give

negPIT, - m (6) - "-Zizfz-h(xi’xj’e) ?

J
(3.15) < ngg/PIT - T(6) -Jh(x,y,G)d?n(x)d?n(y) P

L
+ £4/Pn 121"(Xi’x1’6) -b, (6P

Since h(x,y,G) is bounded under Assumption A, thesMarcinkiewicz-

Zygmund inequality implies that

2. -1 10
(3.16) sup,, sup nP/ Egln i§1h(xi’xi’e) -bn(G)lp <=,

n,F,c
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Applying (3.4) and (3.16) to (3.15) establishes

(3.17)  Timsup, ¢ nE/PIT -m (6) -n7% TTh(X.,X,6)[P =

Neco n,F,c n i#3 J
for p > 1.
Let
A(6) = "2 TTR(X,,X.,6)
(3.18) . 7] J
B,(6) = T -m (c)

and set Dn(G) = Bn(G) -An(G). The boundedness of t(x,y,F) and the
orthogonal decomposition of h(x,y,G) into the sum h](x,G)~+h1(y,G)
+ hz(x,y,G) yield

lim sup_ F.c nInEGAﬁ(G)-sz(G)| < @
n-oo e

(3.19) Vim sup, ¢ o [nEh3(6)-kq(6)s3(6)] < =
n-o L

. 2. A4
1im sup N"ELA(G) < =
fesoo n,F,c 6’

after some calculation. Since Bn(G) = An(G) +Dn(G), we may conclude

from (3.19), (3.17), and application of the Cauchy-Schwarz inequality

to the cross-product terms in the expansion of [An(G)+Dn(G)]p, that
. 1/2 2 2

Tim sup n'’“|nE.BS(G)-s(G)| = 0

e  MeFsC G'n

(3.20)

. 2- o3 3 -
1im sup In EGBn(G)-k3(G)s (G)] =0

n-co

n,F,c

The 1imits (3.20) imply the second and third lines in (3.13) because
s2(6) = nEGBZ(6) and Ky (6) = nlEg[B3(G)s 3(6)]. 4
A variant of Lemma 2 will be needed in studying the jackknife

~ AZ A
estimates bn,J’ Sn,J’ and k3,n,J'
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LEMMA 3. Suppose Assumption A is satisfied and (2.15) holds for every
F in F and some positive d. Then the functionals b(G), sz(G),

ky(G) in (3.13) may be replaced by

5(6) = [t(x,x.6)d6(x)
(3.21) 5%(6) = 4th$(x,G)dG(x)
k5(6) = 373(8)[8[63(x,8)d6(x) +28t; (x,6)t, (1,61, (x,y,6)6(x)d6(y)]

The proof of this lemma strictly parallels that for Lemma 2, using
(3.6) instead of (3.4). Note that the requirement (2.15) on t(x,y,G)

is satisfied automatically by h(x,y,G) under Assumption A.

3.2. Theorem proofs

PROOF OF THEOREM 1. Inequality (3.2) on the empirical cdf implies
(3.22) 1‘1‘2 Sup, sup, ¢ . PG[Fn QEBn(F,t)] =0

Combining (3.22) with Lemma 2 yields

:‘E supn’F,C PG[!bn(Fn)-b(Fn)l >€] =0

(3.23) lim sup, ¢ o Pellky n(?n)-k3(|?n)| >e] =0
n_m 9 9 9
. Ay 2,2
Tim SUP, £ c PG[n]/zlsﬁ(Fn)-s‘(Fn)l >e] =0

n-c

for every positive € and c. Indeed, if Cn’s = {]bn(Fn)-b(Fn)l >e},

the inequality
A A ”"
(3.24)  pelc, 1<Pelc, NI{F €8 (F,t)}]+PclF &8 (F,t)]

and the inclusion
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(3.25) C, . N{F €8 (F,t)} C {sup ¢ b (6)-b(G)| >e}

imply the first line in (3.23). The other two limits in (3.23) are
argued similarly.

* Under {GnEBn(F,c)}, the empirical product measure determined by
?n(x)?n(y) converges weakly, with probability one, to that determined

by F(x)F(y). Hence
(3.26) S,y Ih(x,y,Fn)-h(x,y,F)l — 0 w.p. 1
because t(x,y,F) 1is a continuous, bounded function; and therefore

sup, Ih](x,?n)-h](x,F)I — 0
(3.27) w.p. 1
squ’y lhz(x:yan)'hz(x’y’F)l - 0

It follows from this and (3.12) that b(l?n), 52(?n), k3(?n) converge
with probability one to b(F), sZ(F), k3(F) respectively, under every
2
(

sequence {GnEBn(F,c)}. Similarly, b(Gn), s Gn)’ k3(Gn) also converge

to b(F), sZ(F), k3(F) respectively. Consequently,

11 P.[Ib(F.)-b(G)| >e] = 0
(3.28) 14 P.L[Ik,(F. )-k,(G)] >c] = 0
m s“"pn,F,c G[| 3''n 3 l el

lim sup, ¢ . Pells®(F )-s%(6)] >€] = 0
n_m 9 9

The desired locally uniform consistency result (2.7) is implied by
(3.28), (3.23), and (3.13). .

To prove the locally uniform asymptotic normah‘t; of sﬁ(?n), it
suffices to show, in view of (3.13) and (3.23), that the limiting

distribution of {n”z[sz(?n)-sz(en)]} under {GnGBn(F,c)} is N(O,GZ(F))-
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Clearly
2,2 _ N ) ) A .
(3.29) s°(F ) = 4f[ft(x,y,F)an(y) fft(x,y,F)an(x)an(y)] dF (x)
= An,l -An’z
where
= N 2 A
(3.30) An,] - 4ftfh(XsyaGn)an(y)] an(X)

A2 = 9L [nxy.6,)dF (x)aF (1) TP

A straightforward calculation shows that Eg lAn 2] = O(n']) under
n 9
Assumption A.

On the other hand,

Apy = 4n7330) h(X;,X;,6,12
‘ 1

J
-3 -1
4n i§§;kh(xi’Xj’Gn)h(Xi’xk’Gn) +0p(n )

n,1
(3.31)

where the triple sum is over all triplets (i,j,k) in which no two
components are equal. Replacing h(x,y,Gn) by its orthogonal decompo-

sition h](x,Gn) +h](y,Gn) +h2(x,y,Gn) yields, after some calculation,
(3.32) A =4[n"" Th3(X,,6.) +2n"2 TTh, (X, ,X,,G )hy (X:,6 )] +0_(n"})
: n,l 3 1'%1°"n i 27173 n 1Y n p

The main term on the right side of (3.32) is a second order U-statistic,
in asymmetrical form. Applying Hoeffding's well-known projection argu-

ment, we obtain
(3.33) A, =4n E [h2(X,,6.) +2[h,(X,,y,6)h: (y5& )d6_(y)1+0 (n™1)
' n,1 A e 2\ R42Y 28 Ny LY 58 )G LY I 1 0

under {Gn€B (F,c)}. Thus, the limiting distribution of
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n'/2[A 2(Gn)]} is N(0,0%(F)), with o2(F) defined by (2.8); note

n,173
that h(x,y,F) coincides with t(x,y,F) under Assumption A.

In view of the previous paragraphs, the asymptotic normality of
sﬁ(?n) isinow apparent. We note that the full strength of Assumption A

is not needed to prove this theorem.

PROOF OF (2.11). A straightforward calculation using the definition
(3.12) of s2(6) and Assumption A yields

(3.38) s2(@) = s2(F) +2[506, ) 2001 2001200 Jau +0(16-F1G)

for &(x,F) as in (2.12). The limit (2.11) follows from (3.34) and
(3.13).

PROOF OF THEOREM 2. Lemma 3 and (3.22) imply

T1im sup
[ { mard

(3.35) lim sup ¢ . Pellk, n(?n)-i3(?n)| >e] =0
nac 9% 9 b4

Tim sup ¢ _ Peln'/2|s2(F )-32(F )| >e1 = 0

N L

n.F.c Pallba(F)-B(F )| >e1 = 0

for every positive ¢ and e. To complete the proof of the theorem,

it suffices to show that

1im sup P.[lb ,-B(F )| >e]l =0
foo n,F,¢ G-'"n,d n

. 1/2,22 =2,z
Tim sup Paln'/€|s. -s°(F )| >e]l =0
Ps<o n,F,c G n,J n “

for every positive ¢ and «.
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Suppose G € Bn(F, c) and let
(3.37) P = (D)7 HF () + 10X, <x)] 1<i<n

From (1.4) and Assumption A,

o
|

= (D)2, ) -TE]
(3.38)

2n tl(xi , Fn) + t(xi ’Xi’Fn) + "n,i

where max {|r_ .|; 1< i < n}=o0(1) because H?n . ?n” 5_2(n+1)'1.

n,i
Thus,

(3.39) B, g = [ExuxF)df (x) +0,(0)

under {Gn}.
Let

A _ -1,.2 e o
(3.40) Fn,i,j(x) = (n+2) [nFn(x)+I(X1._<_x)+I(Xj5_x)] » 1<i,j<n .
From (1.4) and Assumption A,

D

J -
nyi,j = (M2)IT(Fy 5 5)-T(FI =Dy 5-Dp 5

(3.41)

2t(Xi,Xj,Fn)4-rn’i,j

where max {|r 1<i,j<n} = op(l) under {G }. Combining (3.38) with

ni,il3
(3.41) while recalling (2.6) yields

(3.42) Uh,i = 2nt1(Xi,Fn)4-en’i .
.

and

(3.43) Un,i,j = ztz(xi,Xj,Fn)+en’i’j



where max {|e_ .|; 1<i<n}=o0 (1) and max {|e

n,i p n,i,J p
It follows from (1.5), (2.15), and (3.42) that
(3.44) $2 5 = 4[e2oF)df (x) +op(n7)

Equations (3.39) and (3.44) imply the first and third lines in (3.36).
The middle 1ine (3.36) follows from (3.42), (3.43), and the definition
(1.5) of k3,n,J'

PROOF OF THEOREM 3. By the argument in Sections 4 and 2 of Beran (1982),

Assumption A implies

V210 (x,6)-0(x/5(6))] +s (6)b(G)o(x/5(6))

+ ky(B) t (x/5(6))e(x/5(8))], = O

(3.45) 1im sup n
Pesco n,F,c l

where t(x) ='6°](x2-1) and ¢, ¢ are the standard normal cdf and
density. Consequently,

(3.46) 1im sup

N

nV/2JH_(x,6) - H_(x,F) +s"2(F)[s(6)-s(F) Ixa(x/s(F))],
=0

n,F,c

see the remarks preceding (3.28). Therefore, in view of (3.22),

V214 (x,F ) -H(x,F)

+ T2 (F)Is(F )-s(F) Ixo(x/s(F))1, >€] = 0

(3.47) 1im SUP, £ ¢ PG[n

n=<o

for every positive ¢ and c. Combining (3.46) with (3.47) yields

4
. 1/2 a "
(3.48) 1lim SUPp F e PG[n IHn(x,Fn) -Hn(x,G)

+ sT2(F)Is(F )-s(8) Ixo(w/s(F), >l = 0

for every positive € and c. By Theorem 1, Lemma 2, and (3.23), the
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limiting distribution of {n'/?[s(F )-s(6 )]}, where 6 €8 (F.c), is
N(O,[452(F) ']cz(F)). Hence, the processes {n]/z[Hn(x,En)-Hn(x,Gn)]}
converge weakly in uonv norm to the gaussian process YF(x) defined
in (2.19).

On the other hand, in view of Theorems 1 and 2, Lemma 2, and (1.6),

]/Z[H

(3.49) 11m SUP, F.c G[ﬂn E(x) ¢(x/s J)] +sn J n, J¢(x/s )

3 n, Jt(x/s J)<t>(x/s Wy >l =

and therefore

(3.50) 1im supy ¢ Pelin'/ 2T, je(x)-0(x/s (B )T +s™ (F (R Dolw/s(F)
+ ky(F)t(u/s(F ))olx/s(F )], >el =

for every positive € and c. The last equation draws on (2.16) and

(3.23). Equations (3.45) and (3.22) entail

(3.51) 1im SUP, E.c G[In]/2

n->e

My (xF )-0(x/s(F )T 57 (FOb(F De(x/s(F))
+ ky(F )E(x/s(F ))o(x/s(F )], >€l =

for every positive e and c. Combining (3.50) with (3.51) yields
(2.18) and completes the proof of the theorem.
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4, Numerical trial

A A - n —
Let T be the variance functional, so that Tn = T(Fn) =n ligl(xi- Xn)2.

Suppose that F 1is the standard normal cdf. By classical theory,
bn(F) = -1

(4.1) sg(F) = 2(n-1)n"!
k3 n(F) = [8n(n-1)"111/2

and the exact distribution of n?n is chi-squared with n-1 degrees of
freedom.

The mean and standard deviation of each jackknife estimate defined in
section 1 and the levels of the associated confidence bounds for T(F)  were
estimated by Monte Carlo methods, for sample sizes n between 10 and 80.

In each case, one thousand pseudo-random N(0,1) samples of size n were
used. Some of the results are summarized in the following tables.

Table 1 compares the Monte Carlo expectations of Bn,J’ gﬁ,d’ E3,n,J
with the population values of bn(F), sﬁ(F), k3’n(F) respectively. The
positive jackknife estimates of bias and variance are nearly unbiased for
n greater than or equal to 20; However, the jackknife skewness estimate
has a more persistent downward bias which diminishes slowly as n increases.

Table 2 compares the actual cdf Hn(x,F) with its first-order Edgeworth
expansion Hn,E(x) [equation (1.2)] and with the Monte Carlo expectations
of the jackknife estimates ﬁn’JE(x)[equation~(1.6)], ﬁn,JB(x)[equation
(1.7)1, and ¢[x/sn’J]; For n greater than or equal to 20, the Edgeworth
expansion approximates Hn(x,F) well over plus or minu;*two standard
deviations. The expectation of ﬁn’JE(x) is not as close to H“(x,F),
even for n equal to 40 or 80. (The downward bias in E3,n,J undoubtedly

contributes to this effect.) However, ﬁn JE(x) is noticeably less biased
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in the center and tails than ﬁn’JB(x) and is almost uniformly less biased
than the normal approximation @(x/gn’J).
Table 3 compares the cbserved levels in 1,000 trials of
(a) the bias-and-skewness-corrected upper and lower confidence bounds
defined in (1.8) and (1.9);

(b) the bias-corrected upper and lower confidence bounds

Tp-m bn,J £n Sngd G

(c) the normal approximation upper and lower confidence bounds

A _1/2/\
Tn rn Sn,J QxA .

For n equal to 40 and 80, the bias-and-skewness-corrected confidence bounds
are the most reliable, particularly when the nominal level is close to 1 or
to .5. For smaller n, the discrepancies between nominal levels and observed

levels are unsatisfactory, no matter which confidence bounds are used.

TABLE 1

Monte Carlo expectations of positive jackknife estimates for

bias, variance, and skewness compared with the actual values,

n b, (F) b, 4) s2(F) E(?ﬁ,d) k3 n(F)  Elky ;) 3)
10 -1.00 -.90 1.80 1.68 2.98 1.75
20 -1.00 -.95 1.90 1.84 2.90 2.06
40 -1.00 -.98 1.95 1.94 2.86 2.32
80 -1.00 -.99 1.98 1.98 42,85 2.52
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TABLE 2

Monte Carlo expectations of three jackknife cdf estimates

compared with the actual cdf M (x,F) and with the actual

n

Edgeworth expansion Hn E(x).

x H (x,F) Hy g0 B o001 B 5a()) Ele(x/S, )]
-3.0 .0083 .0090 .017 .025 .020
-1.5 .1675 .1697 149 149 125
- .75 .3587 .3584 .331 .314 .274
=40 0 5744 .5746 571 547 .500
75 | L7567 7563 773 763 726
1.5 .8788 .8764 .892 .896 875
3.0 | .979 .9785 .978 985 .981
-3.0 .0113 .0117 .016 022 .019
-1.5 .1607 .1619 152 152 1135
- .75 | .3400 .3400 .328 315 287
=80 0 5526 5527 551 532 .500
5 | L7813 7611 .749 740 713
1.5 .8721 .8708 .879 882 865
3.0 | .9798 .9795 .979 .984 .981
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TABLE 3

Estimated levels of three jackknife upper

and lower confidence bounds for T(F).

Estimated Level

Bias-and-skewness Normal approximation
Nominal adjusted bounds Bias-adjusted bounds bounds

Level Upper Lower Upper Lower Upper Lower

.975 .988 .983 .995 .975 .995 .983

.95 .973 .964 .980 .954 .976 .968

.90 .921 .921 .932 .910 .914 .929

= 40 .85 .876 .872 .877 .872 .857 .894
.80 .824 .815 .815 .817 .793 .853

.70 711 .714 .693 .732 .660 .764

.60 .613 .622 .593 .636 .540 .675

.975 .974 .976 .986 .969 .981 .975

.95 .951 .948 .958 .942 .955 .951

.90 .903 .901 .906 5 .899 .897 .908

= 80 .85 .852 .859 .853 % .859 .835 .871
.80 .805 .809 .801 . .814 .782 .835

.70 .701 .718 .687 727 .670 .751

.60 .607 .614 .591 .632 .567 .666
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