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Summary

Let f be a continuous and positive, but otherwise unknown, density

function on a known compact Interval I, let F denote the distribution

function of f, and let Q = F denote its quantile function. An

exponential family model for f is constructed having p parameters and

based on a B-spline model for log f. Maximum likelihood estimation of the

parameters of the model based on a random sample of size n from f yields

estimates f, F and Q of f, F, and Q. Under mild conditions, if p - a

appropriately as n -o c, these estimators achieve the optimal rate of

convergence. The asymptotic behavior of the corresponding confidence

intervals is also investigated. In particular, it is shown that the

asymptotic standard errors of F and Q coincide with those of the usual

empirical distribution function and empirical quantile function.

This research was supported in part by National Science Foundation Grants
MCS83-01257 and DMS-8600409.
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1. Statement of Results. Let Y1,Y2 be independent and identically

distributed random variables taking on values in a known compact interval,

which is taken to be I = [O, 1]. These random variables are assumed to have

a continuous and positive density function f on I. Let F denote the

distribution function of f and let Q = F denote its quantile function.

Given the positive integer n, consider the random sample Y,i ,Yn of size

n. We will construct an exponential family model for f having pn parame-

ters and based on a B-spline model for log f. Maximum likelihood estima-

tion of these parameters yields estimators and confidence intervals for f,

F, and Q. The asymptotic theory of these procedures, a blend of parametric

theory and nonparametric theory, will be investigated in this paper. The

main results will be described here and proven in the following sections.

Let m denote a positive integer and let Kn, n > 1. denote a sequence

of positive integers. Let I be partitioned into subintervals

Ik = [(k-i)/Kn, k/Kn), 1 S k < K , and IK = [(Kn-1)/Kn, 1i.
n

Let Yn denote the collection of functions s on I satisfying the follow-

ing two properties: s is a polynomial of order m (degree m-1) or less on

each of the subintervals I , I and if m : 2, s is (m-2)-timesI K
n

continuously differentiable on I. Then Yn is a vector space of dimension

P= m+Kn-1, which is referred to as the space of polynomial splines of order

m with simple knots at k/Kn for 1 < k < K . The functions in Yn are

called piecewise constant, linear, quadratic or cubic splines according as m

= 1, 2, 3. or 4. Let B 1 S k S pn, denote the usual B-spline basis ofnk' n

Y (see de Boor, 1978). Then 0 S B < 1 and Zpn B = 1 on 1. Theren nk 1 nk

is a fixed positive integer J, depending on m but not on n, such that the

support of each Bnk is contained in the convex hull of J consecutive

knots and if 1k-ji > J, the supports of BnJ and Bnk are disjoint.
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Given 9 e i , the collection of all pn-dimensional vectors, set

= (Xe2) 1/2

sn 0) ZJ ni'
i

C (9) = log(Jexp(s (.; 9))),
n n

and

f (*; 9) = exp(sn (*; 9)-Cn ()).

Then

If ) = 1 for e e n

Observe that fn(; 9), 9 e n, is an exponential family having Pn
parameters. Let Fn(*; 9) and Qn(-; 9) denote the distribution function

and quantile function corresponding to f(n; 9). Set

A (9) = E log f (Y; 9) = flog f (*; Of Js (); Of - C (), 9 (
n n n n n n

It is assumed from now on that Pn > 2 for all n. The vector 9 of

parameters is not identifiable; for if we add a constant to each element of

9, we do not change fn(; 9). Let enO denote the (pn-l)-dimensional
subspace of en consisting of those vectors 9 e 0n the sum of whose

elements is zero.

Let H (9) denote the Hessian of C
n

at 9; that is, the pn x Pn

matrix whose (j, k)th element is

a C (9)
n

as39 @3Jek
It is an elesentary and well known property of exponential families (see

Lehmann, 1983) that if 9,r e 0n, then

(1) r'H (9))r = J(s (*; r)-a) 2f (; 9), where a = Js (.; r)f ('; 9).
n n n n n

Thus r'H (9)r > 0 if r is a nonzero element of *nO* Consequently, Cn()

is a strictly convex function on enO. Since -H (9) is the Hessian matrix

of An() at 9 An(9) is strictly concave on 0nO. If 9 6enO and
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9 $ 0, then

A (to) = tjs (.; e)f - log(letsn(*; 0)
n n

and sn ; 9) is not almost everywhere equal to a constant on I; so

A (t9) -. -w as t -. x. It follows that for each n ' 1, there is a unique
n

9 E 9no that maximizes An (9), 9nO Set fn = f(-; 9)n Fn =F('; 9n
and Qn Q (; 9 ).

n n n

It follows from the assumption on f that log f is continuous and

hence bounded on I. Let 11 112 and 11 11 denote the usual L2 and L

norms of functions on I. Set

on = inf Ils - log fll.

n

If Pn as n b .,then 6n = o(1) by (2) on Page 167 of de Boor (1978).

Let ml be a nonnegative integer, let 0 < a < 1 and set q = m1+a. If f

is m1-times differentiable and its mth derivative satisfies a Holder

condition with index a, then on = Q(Pq) (see de Boor, 1978).
n n

THEOREM 1. (i) lf - f l1 0( ); (ii) IIF - FIl = O(p 6 ); and (iii)n n n c n n

IIQ -- Qll = (Pn1a).n n n

Let En be the log-likelihood function based on the logspline and the

random sample of size n; so that

tn(9) = Z log fn(Y.; 9) = Z(sn (Y.; 9)-Cn(9)).n i n ii n i ni i

Then £n(*) is a strictly concave function on 9tio. Let 9n e 9nO denote

the maximum likelihood estimate (MLE) of 9 C 9nO based on the random

sample of size n. Then 9n is unique if it exists. (A necessary and

sufficient condition for existence is given in Barndorff-Nielsen, 1978; see

also Johansen, 1979.) Set f = f (*; 9), F = F ; 9n) and
n n n n n n

Qn = Qn('; 9n). Then fn is called a logspline density estimate of f

since log f
n sn ; n) - Cn(n) e Y . If m = 1. then fn is the usual

histogram density estimate.
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From now on it is assumed that

p = o(n
5

) for some e > 0.

n

zero with

(ii)

(iii)

(iv)

(v)

(vi)

n;

-enn = r0(n/ Pi);
n n pr n

-1 1/2
max lenj- nJ = pr ((n pnlog(p )) );

lifn -fnIf2 = 0pr((n p) /2);

lf -f 11 = 0 ((n 1p log(p ))1/2

1IFn - Fn11 = 0pr(n

and

(vii) IIQn-Qn"lw = 0pr (n1/2)
Theorems and 2 allow us to get the usual optimal rates of convergence

under various smoothness assumptions on f; see Stone (1980, 1982, 1983).

Consider a smoothness assumption that leads, as above, to a conclusion of the

form an = O(p-q); and suppose that q > 1/2. Set X = 1/(2q+1) and r =

q/(2q+1) q. Then the positive constants Xy and r are both less than

1/2. To get the optimal rate of convergence of lff - ff1 to zero, we
n 2

choose p n1 and obtain

^ ~~~-r
iifn f 2 - pr(n

(Here an - bn means that an/bn is bounded away from zero and infinity.)

To get the optimal rate of convergence of lfnf - llX to zero, we choose

Pn ~ (n/log(n))
It

and obtain
~r

lff - ffl = 0 ((n log(n)) )

To get the optimal rate of convergence of IIFn-Ffll or IIQ n-QII to zero, we

choose p so that

Mn1/(2q+2) < p = O(n 5) for some M,a > 0

and obtain

ll-1=° -1/2
11n-F1* pr

n and IIQ n-QI = 0pr(n 1/2

(2)
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Let # n(9) = nHn() denote the information function based on the random

sample of size n and let $n (9) denote the inverse to f (9) viewed as a
n n

linear transformation of *nO* Set =
n 1n (9) and $n = $n (9n) Let

Gn(y),Gn(y) E GnO denote the p -dimensional vectors having elements

ac
G.(y) = B (y) - n
nj ni aeJ'3 n

and

'C

Gnj (y) = B-nj(y) '78 n)

respectively. Set

SE(fn(y)) = fn(y)(Gn(y)'*n Gn(y)1/2
and

SE(f (y)) =
f (y)(G (y)'1G (y)1/2

THEOREM 3. Suppose that Pnn w as n -. a. Then uniformly in y e I,

SE(f (y)) (n Pnn n

SE(f (y))n = 1 +0 (1),

SE(f (y)) pr

and

[ n n |.i(O, 1).
SE( n(y) )

It follows from Theorem 3 that fn(y) z-.5aSE(fn(y)) is an

asymptotic (1-ac)-level confidence interval for f (y); if
n

= o((n p )1/2), it is also an asymptotic (1-a)-level confidence interval

for f(y). Here *(z ) = q, 0 being the standard normal distribution

function. Set

1/2 1___2

SE(F (y)) = (F(y)(l-F(y))/n) and SE(Q (t)) = (l-t) 1/

n nf21QcI° ]
Note that Int(I) = (0, 1), since I = [0, 11.
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THEOREM 4. Suppose that pn . as n -. c. Then

(y)-F (Y)
I n n NO(O, 1) uniformly on compact subsets of int(I)

and

Q t)Q (t)
[fn fl I -.W(O, uniformly on compact subsets of (0, 1).
SEQ(t)Q ) Jn

Theorem 4 leads in an obvious manner to asymptotic (1-a)-level

confidence intervals for F (y) and Q (t). It follows from Theorem 1 that

under the mild condition a8/p = o(n 1/2), these are also asymptotic (1-a)-
n n

level confidence intervals for F(y) and Q(t). It is interesting to note

that the associated standard errors coincide with those for the usual

nonparametric estimators of these quantities. (Fn and Qn are much

smoother than the corresponding nonparametric estimators.)

The results in this paper can be extended in two directions with

essentially no change in proof: the restriction that the functions in ?n be

(m-2)-times continuously differentiable on I can be weakened in an

arbitrary manner; and the knot locations 1/KI* .(K -1)/Kn can be replaced

by a sequence which is a-quasi-uniform in the sense of Page 216 of

Schumaker (1981) (i. e., such that the ratios of the differences between

consecutive knots are bounded away from zero and infinity).

Modifications to handle I = (0, o) or I = (-0, w) involving data-

dependent knot selection, linear restrictions on the tails of the functions

in Yn, and transformations were described in Stone and Koo (1986) and illus-

trated on simulated data with n = 200 and pn = 5 (4 degrees of freedom).

The various estimates and confidence intervals look very reasonable and,

especially those for extreme quantiles, appear to have considerable practical

utility. But a thorough Monte Carlo study or a rigorous theoretical analysis

that takes these modifications into account has yet to be carried out.
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For recent bibliographies of nonparametric density estimation, see Wertz

and Schneider (1979) and Titterington (1985). Leonard (1978) and Silverman

(1982) considered various nonparametric estimators of log f, an attractive

feature of such an approach being that the corresponding estimate of f

itself is automatically positive. Logspline density estimation corresponds

to estimating log f by a normalized member of a particular flexible finite-

dimensional vector space, Y nP of functions and hence to estimating f by a

member of a particular flexible exponential family. Previously,

Neyman (1937) and Crain (1974, 1976a, 1976b, 1977) considered other such

exponential families.
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2. Proof of Theorem 1.

LEMMA 1. Js(fn - f) = 0 for s e Yn
PROOF. Choose s e Y and define g on R by Jf ets g(t) = 1. Then

n n

g'(o) = Jsfn. Also J(log fn + ts - g(t))f is maximized at t = 0 and

hence g'(O) = isf. Thus the conclusion of the lemma is valid.

By Lemma 1, fn - s is the orthogonal projection of f - s onto Yn
for all s e Y . Thus by Theorem 1 of de Boor (1976), there is an M > 0

such that 11f - sit ' M 1if - 811 for n ' I and s e Y . If s e Y and
n n n

l1f - sit 5 28 , then 1lfn - fit < 2(M+)8n. This yields (i). We will now

verify (ii), from which (iii) follows easily. It can be assumed that Pn CO

as n < ". It will be shown below that there is a positive constant M

-l -satisfying the following condition: for n > 1 and x e [2Mp , i-Mpn
there is an s e Y such that -1 < s ' I on I, s = on

n

[MP- , x - MP 1, and s = 0 on [x + MPn . 1]. According to Lemma 1,
n nn

O = I ( - = (f - f) + n (s - 1)(fn - f)

-1+M
+ r p (s - 1)(f - f J+ M s(fn - f).

The desired result now follows from Theorem 1(i).

In constructing the desired function s it can be assumed that m > 1

(since the result is obvious when m = 1). Let B1 and B2 be elements of

the usual B-spline basis with m replaced by m-i such that B vanishes

outside [0, Mp- ] and B vanishes outside [x-Mp-, x+Mp ]. Then B1
n 2 n n

and B2 are nonnegative functions. Let cl and c2 be positive constants

such that fc1B1 =1 and fc2B2 1. Then s, defi'ned by

s(y) YJl(c B1(z) - c2B2(z))dz,

has the desired properties. This completes the proof of Theorem 1.
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f

l1og

3. Proof of Theorem 2.

LEMMA 2. For any positive number M there is an a > 0 such that if

and g are probability density functions on I, llgll0 S M and

f - log gl0X < M, then
- 2 2

min J(log f - log g - a) -> 6(log f - log g)
a

PROOF. The minimum value of a is = flog f - flog g. Set

h = log f - log g - a0. Then lhl ' 2M. Since f and g integrate to 1,

h
aO= -log(1 + fg(e -1)). Thus there is a positive constant M1 depending on

M such that aO
2 M1Jh . Consequently

J(log f - log g)2 = a2 + ih2 S (Me+ l)fh2

which yields the desired result.

LEMMA 3. There is a positive number M such that

ICn(9)I S Millog fn(; 9)I1W for all 9 9nO'

PROOF. Since

log fn(; ) =Z(9n-Cn())BnJ for G e on

the desired result follows from (viii) on Page 155 of de Boor (1978).

LEMMA 4. Let M be a positive constant. Then there are positive

constants M and 6 such that if n a 1,9e o and

Illog f (.; 9) - log f 11 < mp1
then

Illog fn(.; 9n+t(S-0ne)M < M for 0 5 t < 1

A (9) A (9 ) S -alilog f (-; 9) log if2
n n n n n 2'

PROOF. Without loss of generality, it can be assumed that e no, It

follows from Theorem 1(i) and from Lemma 7 of Stone (1986) that there is a

positive constant M2 depending on M such that if n and are as in

the statement of the present lemma, then Illog fn _ M2 and

and
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Illog fn (*; 9)11e, S M2. Thus by Lemma 3 there is a positive constant 3

depending on M such that

lsn(.; 9n+t(9-9 ))lII < M3 for 0 5 t < 1,

which yields the first conclusion of the lemma. Observe that

d A (9 +t(e-e ))M = 0.
dt n n n t=O

Thus it follows from (1) and Taylor's theorem with remainder that

A (0) - A (9 ) = -21(S (-; °-°n) - a) 2f (; 9 +t(9-9 ))

for some t e (0, 1) and constant a. The second conclusion of the lemma now

follows from the first conclusion and Lemma 2.

LEMMA 5. Given M > 0, there is a a > 0 such that

Pr (nn n (An(9)-An(9))n cllog fn('; 9) - log fnll S 2e8nc

for n ' 1,i el and O<cSMp
n ~~~~n

PROOF. Write

(9) - e() - n(A(9) - A (9n))zip
where

Z. = log fn (Yi; O) log fn(Yi - E(log fn(Yi; ) nlogf (Y )).

Set a = Illog fn(; 9) - log fnI2. By Lemma 7 of Stone (1986) there is a

positive number M1 such that

IIlog f (; 9) - log f II < M ap1/2n n c 1 n

Thus there is a positive constant M such that lZ. 1SMap1/2 and2 ii M2a an

Var(Zi) S M2a . The desired result now follows from Bernstein's inequality

(see Theorem 3 of Hoeffding, 1963).

The next result is an immediate consequence of the definitions of the

various terms.

LEMMA 6. If 9 92 E an then

e n(90)-O(9S)n 2n n 1- (A (9 )-A (9 )) 2IIlog 9)f log f (*; 9 )1I
n ~n 2 nil ~ n' 2 n 1'
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Set n = (f (; 9): 9 e 9e}. It is convenient to define the "diameter"
n n n

of a subset F of n as

sup(lIlog f22 log f Ill: fi'2eF2 .

The next result, essentially Lemma 12 of Stone (1986), is a consequence of

Lemma 7 of that paper and (viii) on Page 155 of de Boor (1978).

LEMMA 7. Given e > 0 and 6 > 0, there is an M > 0 such that the

following is valid:

( e in : Illog f (-; 9) - log f II <nn(p /n) 1/2}n n n 2 n

can be covered by O(exp(Mpnlog(n))) subsets each having diameter at most

n2pn/n.

n~~~
LEMMA 8. fn exists and is unique except on an event whose probability

tends to zero with n. Moreover,

Illogf -logf ii -1 1/2nllogf - log fnao2= °pr(n (n Pn for all a > O.

PROOF. Set cn = n (n IP) 1/2 and

9n1 = (Ge nO: lllog fn(; ) - log fn2_ cn.

Then 9nl is a compact set whose boundary, relative to 9nO' is contained

in

9n2 = { e 9no Illog fn(.; 9) - log fn2 = cn).

In light of (2), it can be assumed that there is a positive constant M such

-1/2that cn < Mpn for n > 1. By Lemma 4 there is a6 > O such that

A (9) - A (9 ) ' -6c2 for all 0 e6n n n n n2'

Thus by Lemmas 5-7, except on an event whose probability tends to zero with

n,

en() < n(9) for all G en2
and hence e ) has a local maximum in the relative interior of 9n. The

desired conclusions now follow from the strict concavity of n(9) on 9nO.
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Let Sn () e no denote the score function; that is, the

pn-dimensional vector of elements

= I B .(Y ) --(9)aiR i [nj ( i ) R(

Set S S (9). Then ES =0 and

EIS 1 = nZVar(B (Y)) S nZEB2(Y) = nEIB2(Y) = 0(n).
n 21 nj 2 nJ n

Consequently, the following result is valid.

LEMMA 9. IS I = 0 (n).
n pr

The maximum likelihood equation for 9n is Sn(n) = 0, which can be

rewritten as

Dn(n-n) = Sn
where Dn is the pn x pn matrix defined by

D 1 a

Dn = n10 Hn(9n+t(9n-en))dt.
LEMMA 10. There Is a a > 0 such that, except on an event whose

probability tends to zero with n,

(-en )'Dn(n-en) : dnfllog fn - log f 2'

PROOF. It follows from Lemma 4, Lemma 8 and (2) that

max Illog fn (; 9n+t(n-9n )i 0pr (1).

The desired result now follows from (1), Theorem 1(i) and Lemma 2.

1/2LEMMA 11. ( n-n)S = 0pr ((np)n )lIlog fn - log f 112
PROOF. Let u denote the Pn-dimensional vector each of whose

coordinates is I. Then u'S = 0 since S
n

e . Nown n nO

(5) log fn- log fn 1( n- n-Cn(9 [)+C (n ))B
n

so it follows from Lemma 9 together with (12) of Stone (1986) that

l(9 -e )IS i2 - 1( n-en-(Cn (n)-Cn(9n))u)'S i

< 1(n-9 )-(C (9 )-C (9 )u 2is2n n n n n n IS

=0 (np )o1g f - log f 11
pr n n n 2

as desired.
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LEMMA 12. (i) Illog f - log f II 0 ((n pn n 2 pr n
-1/2

=(ii) Illog fn - log fnli = 0pr (n Pn) = (1);

(iii) hf- f II 0 ((n' 1/2(i) fn n 2 pr(( Pn
-1/2(iv) ln - n = pr(nn P

PROOF. According to the maximum likelihood equation for en,

(9 -e )ID (9 -e ) = (9 -e )'S
n n n n n n n n'

Thus the first result follows from Lemmas 10 and 11. The second result now

follows from (2) and Lemma 7 of Stone (1986). The third result follows from

the first two results and Theorem 1(i). Since (On-n)u = 0, it follows

from (5), the first result, and (12) of Stone (1986) that

°n n2 + p (C (9n)-Cn(9n l2 n -n + (Cn( n)-C (n
2 -1 2=O(pnllog fn - log fnI2) =0pr(n Pn)

and hence that the last result is valid.

The next result follows from (2), Lemma 4 and Lemma 12(i).

LEMMA 13. There are positive constants M1 and M2 such that, except

on an event whose probability tends to zero with n,

M < f (*; 9 +t(9 -e )) S M for 0 S t S 1.1 n n n n - 2

Let VCn() denote the gradient of Cn (); that is, the pn-dimensional
vector of elements

ac (9)

LEMMA 14. C (9 ) - Cn (n) = VCn (9d (° °n) +pr (n p ).

PROOF. Observe that

C (9 ) - C (9 ) = vC (9 )'(9 -e ) + (9 -9 )'R (e 9n)'n n n n n n n n n n n n n

where Rn is the Pn x pn matrix defined by

R J' (l-t)H (9 +t(9 -9 ))dt.
n On nn n

The desired result now follows from (1), Lemma 12(iv), Lemma 13 and (12) of

Stone (1986).
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LEMMA 15. There is a positive constant M such that, except on an event

whose probability tends to zero with n,

a30 2
Z [Z max 13 a (9 +t(9 S MP- I for T e *aea ae n n n Ik
j Ostil~< j k m n1'

PROOF. It is easily seen that

a3c (0)n____ = JB B B f (;9..k.3 m9 nj nk nm n

- JBnJBnkfn 0) IBnmfn
- IBnJBnmfn(; ) fB f(.; 9)

- nkBnmfn ;) IBnjfn(j ;n )

+ JBnJfn(.; 9) Bnkfn(.; 9) Bnfn( 9

The desired result now follows from Lemma 13 and the basic properties of B-

splines.

It follows easily from Theorem 1(i) that

(6) max 1--9* ) = O(p )
n~~~~~

and hence that

(7) IGn(y) 1 uniformly for y e I.

The next result follows from (5) and Lemma 14.

LEMMA 16. Illog f - log f - G (*)i(e -e )IIW = 0 (n p)n
For 9 e Q let min fn(*; 9) and max f (.; 9) respectively denote

n n n

the minimum and maximum values of fn(y; 9) as y ranges over I.

LEMMA 17. For each 9 c %, H (9) is a positive definite symmetric
nn

linear transformation on 9nO. There are positive constants M1 and M2
such that

M1p1 rl2 min f ('; 9) I r'H(O)t S m P1 irl2axf(911n n n 2p In ma n(;9

for n > 1. 9 en and r eO
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PROOF. The symmetry of Hn () follows directly from its definition.

By (12) of Stone (1986) there are positive constants M1 and M2 such that

M PI-TI : llsen - r): 112 < M2p 1rl2 for r e 9

It follows from (1) that

2 -1 2
r'Hn( )r S 1n(; r)112 max fn( °) : M2pn Irl max fn °

for r e9n. It also follows from (1) that if r e 9nO then

T'H (9)r > ls5 (; r-au)II2 min f (.; 9
n n 2 n

> Mp- I T-aut2 min f (; 9)
in ~~~n

-1 2> M1pn Tll min f(n; 9)

Thus the conclusion of the lemma is valid.

LEMMA 18. There are positive constants M1 and M2 such that

Minpn ITt 2 < rTCov(Sn)r < M2np ITrl2 for n > 1 and r E 9nO.

PROOF. Since

r'Cov(S )r = nJ(s (-; T)-a) 2f,n n

where a =Is ; r)f, the result follows from the argument used to proven

Lemma 17.

Consider the approximation rn e 0nO to n-e defined by nn n=S

Then r =
n

S and hence Gn(y)'n = (y)'# Sn It follows easily from

(7) and Lemma 17 that

(8) lr'J# G (y)I = O(n p lrl) uniformly in r E en and y e I.
n n n n

-1 1/2LEMMA 19. max Jr J
= 0pr((n P l ))p)n

-1 ~-1PROOF. Since Cov(S ) is the covariance matrix of in' i
n n n n

follows from Lemmas 17 and 18 that max Var(r? ) = O(p /n). Observe that

^ n -1
nj 1 n n i J

According to (8),

sup max (n Gn(y))i = O(pn/n).

The desired result now follows from Bernstein's inequality.
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'~2 -2 3LEMMA 20. len -en rnI =0 Pr(n p3log(p)).

PROOF. It follows from the maximum likelihood equation that
^ ^ ~~~-19 - =? (D -# )(e ).n n n n n n n n

According to Lemma 17,

-1 ~~~2 2 2
Is (Dn#n )9n°ne ) = 0pr (1)(Pn/n) I(Dn n ) )I

The (J, k)th element of Dn-n can be written as

n Anjkm ( nm nm
m

where

= 1 n (9 +t(O -e ))dt.
n4k| fo (i1-t)<i9 jakea. n+ n °n)njkm 0 Jelakam n nn

Thus the jth element of (D -n )(9 -en equals

nZZ£A (9 -e )(@ -9 ).kmZ njkm (ank 8nk )0nm-0nm
Hence by Lemmas 12 and 15

2 2
n(Dn-$n) n-°n)n =pr(n max (^nj nJ

n

and therefore

2 -1 2 2
-e°n- n =0pr(n pnmax ( nj-e ) )nn n pr n~~1<j<p njn

Consequently, by Lemma 19,

max(9 .-9 2 =o ('-12 2
max ( n-0nJ2 =Opr(n pnlog(pn) + n p2 max (9n-e)n).
1<<n I<JSpn

Thus by (2)

2 -1
max (9 nj- ) = 0pr (n pnlog(p )

which yields the desired result.

The first conclusion to Theorem 2 is contained in Lemma 8; the second

and fourth conclusions are contained in Lemma 12; and the third conclusion

follows from (2) and Lemmas 19 and 20. We will now verify the fifth

conclusion. It follows from (5) and Lemma 14 that

-((9) Illog fn - log fn- 0n (*)'(9 n-en)II0 = 0p (n pn).
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Since

ac
G (y) rn Z Bnj.(y) -n

Z (.n)2) '
n j i ;i

-

it follows from (6) and Lemma 19 that

-1 1/2(10) IIG () II = 0 ((n p log(p ) )n nwc pr n n

The fifth conclusion follows from (2), (7), (9), (10),

Lemma 12(ii), and Lemma 20.

We will now verify the sixth conclusion. It follows

Lemma 20 that

p ) ~-1 1/2(11) '7Cn ( n)4 (° n rn = 0pr (n Pnlog n)).
It follows from Lemma 20 (and, of course, the basic properties

that

(2-?nn1B = 0p (n' 1/2(12) zlenj- nj -rnj nJIn =

pr ( nlg (n

Theorem l(i),

from (6) and

of B-splines)

By (11) and (12),

-? = 0 (n' 1/2(13) n ) (en en n)I = °pr(n Pnlog n(pn
The sixth conclusion is a consequence of (2), (7), (10), (13), Theorem 1(i),

Lemma 20, and the following result; while the seventh conclusion follows from

the sixth conclusion and Theorem 1.

LEMMA 21. max ifx f (y)G (y)Irdyl = O (n1lt).

PROOF. Observe that

-1 -1 -1Var(VC (9 )'? ) = Var(VC (9 )'#n S ) = (# VvC(9 ))'Cov(S )# VC (9 ).VerV (n nli n VrCn(n 1n sn n lvn(nW VSn) n vcn( n)
Thus it follows from (6), Lemma 17 and Lemma 18 that

-1 -l12 - 12 -
Var(vC (9 )'l) = O(np .# VC (9)o ) O(n p (vC (9 )j ) = O(nn n n n n n n n n n

and hence that

-1/2
vC (9 )r = 0 (n ).

nn n pr

Consequently, to prove the desired result it suffices to verify that

ma4Ox<l IZ n = -1/2(14) max1 IZnf fn(Y)Bnj(y)dyl = 0Pr (n
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For any particular value of xI all but a bounded number of terms

x 1
J0 fn(y)Bn (y)dy are equal to lo fn(y)B n(y)dy or to zero. By (2) and

Lemma 19, the total contribution of the bounded number of exceptional terms

is

-1 1 -1 ~~~~~~~~~1/2-1/2o(p max r l) = 0 (pn (n p log(p))n ) =0 (n )
n:j< nJ r n n np

Thus, by the form of the support of the B-splines B 1 j ' n (see

de Boor (1978)), to verify (14) it suffices to verify

(15) maxlSf1 rnjifnBn'i = 0p(n 2)

Let t be a subset of consecutive integers in (1,***,p) and let J
n

denote the number of integers in t. Let r denote the Pn-dimensional

vector having elements JfnBnj for J e f and zero otherwise. Then

(16) l2 Pn2 uniformly in t and n.n

Since

-1 -Var( Z JfB) = (# r)'Cov(S )( r),
j6nJ n nj n n. n

it follows from (16) and Lemmas 17 and 18 that

-1 -l(17) Var( Z nJJf nB) (n Pn ) uniformly in t and n.
nnj

Observe next that

n ~~~-1n(18) Ze nf B z 1( Z BB=( # G(Y)) ) = zX .
Je*nnnJ j*#n nJ n n 1 J IniL

Here Xnji' 1 S i S n, are independent random variables having mean zero;

and, by (7), Lemma 17, and the basic properties of B-splines,

-.1 1/2(19) IXniI bn with bn = O(n Pn )

It follows from (17)-(19) and Bernstein's inequality that there is a p > 0,

which does not depend on n or t, such that

-1/2 cPr(J Z nJffnBn 2 An (J/P )

(20) S 2[exp(-_An /2P 1/2(J/p ) ) + exp(-OA2(p /J)1-2c),n n n

for A > 0 and 0 < c <.5
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Set R = min[r: 2r > p ]. For 0 ' r 5 R , let
n n n

of all sets of integers of the form

r r{(m-l)2 +1,*,m2 ) where I

It follows from (2) and (20) that, for any

sufficiently large so that
-1/2 c

Anr denote the collection

< m 5

' >

p /2An

0, A can be chosen

(21) Pr(J z ? .Jf B J1 ' An / (J/p ) for some J e UR-n A )
njnnj n 0 nr

:5 for all n > I.

For I S k I p.n (1, ,k} can be written as a disjoint union of sets

Alnr such that for 0 S r ,SRn there is at most one such e Alnr. Thus

it follows from (21) that (15) holds, as desired.
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4. Proof of Theorem 3. Now

(22) Var Gn(Y)Pn = Gn(Y)'#n Cov(Sn ) G (y),

so it follows from (7). Theorem 1(i), and Lemmas 17 and 18 that

_-1
(23) Var Gn(y)' n n pn

LEMMA 22. Uniformly in y 6 1.

1S(G n NWO, 1) as njD(G (y) Irn
n n

PROOF. Observe that G (y)'r =Z zni where Zni G (y)'#n G (Y )

For each n, the random variables Z '* Z have mean zero and arenl' nn

independent and identically distributed. Moreover,

fG (y)'# 0G (Y.fl S2 G (y)#J G(y)l IG (Y )'.- G (Y = O(n pIn Y$n n 1 In y$n n n i n ni n

The desired result now follows from (2), (23) and the central limit theorem

(see the corollary on page 201 of Chung, 1974).

LEMMA 23. There Is a positive constant M such that

1r'Cov(S )r - r'trl < Mnp a IrTl2 for n > 1 and r e e
n n n n n

PROOF. Set a = Js (; T)f and a* Js (*; r)f. Thenn n n n n

T'Cov(S )T = nJ(s *; T)-a 2f
n n n

and

T'# i = nJ(s *; r)-a*)) fn n n n

The desired result now follows easily from Theorem 1(i) and (12) of

Stone (1986).

It follows from (7), Theorem 1(i), Lemma 17 and Lemma 23 that there is a

positive constant M such that, for n ? 1 and y e 1,

(24) IG (y)"t- Cov(S])}n G (y) - G (y) '#n G (y) iS Mn P an n n n n n n n n n

It follows from (2), (7), (9) and Lemma 20 that

-1 1/2
lfo

n -lgfn -Gn nw1 pr (n n
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Thus by (23) and Lemma 22,

X((log f - log f )/SD(G (y) )) ) (O, 1) uniformly in y as n .
n n n n

It follows easily from this together with (2), (22)-(24) and Theorem 1(i)

that the first and third conclusions of Theorem 3 are valid.

LEMMA 24. Uniformly in r e on
'*

-le 2 -121(#(9)-#(9 ))rs = 0 (np log(p ))jrln n n pr n n

PROOF. Observe that

a2 a2c 3c32 8C 1 83Cn n ( ne~e n m n
,3 o )ZJ n o+(G ))(0 -0 )dt.)aiaek( n) a.a k n) m a.a kaj n °n n nm nm)

Thus the desired result follows from Lemmas 15, 19 and 20.

^-1 - -1 -1 ^ ^-ISince f - 'n= # $ -$ )# , the next result follows from Lemmasn n n n n n

13, 17 and 24.

LEMMA 25. Uniformly in r e 0nO,
n~ ~ ~ n^(-I _ })J2 = O (n 3p1gn) 2

2=LEMMA 26. Gn(y) - G (y) = pr (1/n) uniformly in y.

PROOF. Observe that

Gn(y) - Gnnn(y) n(on n n

Since

v'n ( n) -vCn(n ) (J1Hn(en*t( n-n))dt)(0n-9n)
the desired result follows from Theorem 2(i), Lemma 13 and Lemma 17.

The next result follows'from (7), (24), Theorem 1(i), and Lemmas 17, 25,

and 26.

LEMMA 27. Uniformly in y,
%-lA -l -1 -3 3 1/2 -1

G (y)'#S G (y) -G(y)'.# Cov(S )#t G (y) = 0 ((n p log(p)) + n p6a)n n n n n n n n pr n n n n

The second conclusion of Theorem 3 follows from (2), (22), (23), Theorem

1(i), Theorem 2(v), and Lemma 27.
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5. Proof of Theorem 4. For a given value of x e [0, 1], set

9 (9) = IfJ(Y; 9)dy.
It is easily see

(25)

The next result

LEMMA 28.

Observe tha

?n that

g n) = I' Gn(Y)fn(y)dy.

follows from (2), (9), (10), (13), (25) and Theorem 1(i).

^ , ^ ( ~~~~~-1/2F (x) - Fn(x) = vgn(n)'In pr
(n2) uniformly in x.

It

(26) Var(Vgn(n) r)= vgn(on)'n Cov(Sn)#nvg (9on
By (6) and (25),

(27) lvg (O )I2 = O(P ) uniformly in x.
n n n

It follows from (26), (27), Theorem 1(i), Lemma 17, and Lemma 23 that

(28) Var(vgn(On)'rn) = Vgn(9n)'#n vg (o ) + O(n 8 ) uniformly in x.

According to the Cramer-Rao inequality

(29) vg (o ) |$n vg (o ) S n Var (I [ (Y)) = n Fn(x)(l-Fn(x)).

LEMMA 29. Suppose that Pn -. c as n -# w. Then

vgn (9n)'#n vgn (9
lim n n n = 1 uniformly for x In compact subsets of int(I).
n n F(x)(1-F(x))

PROOF. Choose Pnr ne By Schwarz's inequality

(30) vgn (9°n )'#in vgn (9°n ) 2
n r nSr
nnn

By (1)

(31) ?AnPnn = n Var (s (Y; rP)).
n.n.n a n nn

It follows from (25) that

(32) vgn(n )'Pr = E (I to x (Y)(sn (Y; Pn )-E sn(Y; r )).nn 9 O,j n nn n

The desired result follows from (29)-(32), Theorem 1(ii), and the

construction of s e Y°n used in the proof of that result.

The proof of the next result is similar to that of Lemma 22.
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LEMMA 30. Uniformly for x in compact subsets of int(l)

'(n n -.'(N0, 1) as n- .
SD(Vg (9 )'r)1. nf n n

The first conclusion of Theorem 4 follows from (28) and Lemmas 28-30.

The second conclusion follows from the first conclusion and Theorem 1.
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